Zorp GPL 7 Reference Guide

Publication date March 04, 2024

Abstract
This document is a detailed reference guide for Zorp GPL administrators.

e BALASYS

Balasys

Copyright © 1996-2024 Balasys IT Zrt. (Private Limited Company)

This documentation and the product it describes are considered protected by copyright according to the applicable laws.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/). This product includes
cryptographic software written by Eric Young (eay@cryptsoft.com)

Linux™ is a registered trademark of Linus Torvalds.

Windows™ 10 is registered trademarks of Microsoft Corporation.

The Balasys™ name and the Balasys™ logo are registered trademarks of Balasys IT Zrt.
The Zorp™ name and the Zorp™ logo are registered trademarks of Balasys IT Zrt.

All other product names mentioned herein are the trademarks of their respective owners.
DISCLAIMER

Balasys is not responsible for any third-party websites mentioned in this document. Balasys does not endorse and is not responsible or liable for any
content, advertising, products, or other material on or available from such sites or resources. Balasys will not be responsible or liable for any damage or
loss caused or alleged to be caused by or in connection with use of or reliance on any such content, goods, or services that are available on or through
any such sites or resources.

www.balasys.hu ii

http://www.openssl.org

Table of Contents

2 4 LS xiii
1. SUMMATY Of CONENES oeeieiieeee xiii

B 1<) v 111 T0] [0 = PP xiii

3. Target audience and Prer@QUISITESceeeeieeeeiriiueiieeeeeeeeetiiiiieeeeeeeerrerennnaaaeeeeeeeerennnnsaesseeeseesnnnns xiv

4. Products covered in this GUIAEcccceiiiiiiiiiiiiie e e e e e e e e e et e e e e e eeeeeeannnaeeee s XV

5. Contact and support iNfOrMAtiON eeuveuuuuruirieieriieierererererereerrererrrerrrerererer———.—.———————.. XV

5.1, SALES COMEACE wuvuteruretiiiiiiiietitiitt ettt bbbttt eeebeeeee XV

5.2, SUPPOTE COMEACE .uuieiiuirieiiuiereetiiesettuiesetteuaesereunaaseeesnaseansnnssesesnnssesssnnssesennnseesesnnssesennnns XV

ST T 1 = Y1111 1V PSPPSRI Xvi

6. ADOUL thiS dOCUIMENE ... s XVvi

6.1, FEEADACK .ottt bttt be bttt bebebeaeeene XVi

1. HOW ZOYP WOTKS .ooviiiiiiiiiiiiiiiiiss 1
1.1. Zorp startup and initialiZAtioN ccceeeieiiiiiieiee e eeeeeri e e e e e e e re e e e e e e erraaa e eaaans 1

1.2. Handling inCOMING CONNECHIONS vuvuuieeieeiieiiiiiiieeeeeeeeeetiteieeeeeeeeeeeeannnaaeeeeeeeessnnnnaesseessersnsnns 1
1.2.1. Handling packet filtering Servicesccccccciiiiiiiiiiiiiiie, 2

1.2.2. Handling application-1eVel SEIVICESuueeeeeiiiiiiiiiiiiieeeeeeeeeriiieee e e e e eeeeeeaaneeeeeeaeeeeanes 2

1.3. Proxy startup and the server-side CONNECHION cccuuuuueiieererieeiiiiiiieeeeeeeeeriiireeeeeeeeeeenennneens 3

2, CoNfIGUIING ZOTP PIOXIES ...eevvvvvrvessse 4
2.1. Policies for requests and TESPONSES vvrvrrrrrrerrrerrrerererererrrrressserrrrrererere.....———————". 4

B 0 R B T 181 L= Tl o) 1 ST PRUPP 5

N O U] o) 1 T oo Ta PP 6

2.2, SECONAATY SESSIONS ..ceeeeerriuuniieeeeeeeettiuieiaeeeeererrurnneaeeeeeseeressnsnaeeeseeessssssssaeeeseessesssssnsesesesseesssnns 7

2.3. Embedded protoCol aNalySisccuuuuiiereriieiiiiiiiiieeeeeeeeeiiiiieeeeeeeeettianeaaeeeeeeenraanaeeeeaeenreannnns 7
2.3.1. ProXy StACKITIZ ...ceeiiiiiiiiiiiiieeieeeieiiiieee e e e e e eettiteee e e e e eeeetaaanaeeeeeeaeessssnnnneeeeaaenssssnnnnneesaans 7

2.3.2. Program StaCKiNEccuuuiieeeieiiiiiiiiiieeeseeeeetiiitiaaeeeeeeeeatsannaeseeaeeserennnnaeesasenessssnnnnsess 8

3. The Zorp SSL frameWOrKccceeeeeeeeeeeeememememmmememmmemmss 9
3.1, The SSL PIOTOCOL ...uieiiiiiiiiiieee e e eeeetieee e e e e et ettt eee e e e e eeeetaaaaaaeeeeeeeesasannnaeseaeeenssnsnnnaeseeeeennses 9
3.1.1. The SSL handshakecccoiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeteeteeee ettt eeeeeeeeeeee e eeeeeeeee 9

3.2. Configuring TLS and SSL encrypted CONNECIONScceeeeeieeeieieeeieieeeeeeeeeeeeeee e, 10
3.2.1. Behavior of the SSL frameworkccccceiiiiiii, 10

3.2.2. Handshake callbackscoooeiiiiiiiiieieee e 11

3.2.3. X.509 CeTtifiCaAES ...evtttieeieeieiiiitieeee e ettt e e e e e ettt et e e e e e ettt e e e e e e eesabeeeeeeaeeens 12

3.2.4. Setting the allowed TLS ProtoCOlccooviiiiiiieiiiiiiiiiiiiee e e eeeeriieee e e e e eeeeaaseeeseeaeeees 14

3.2.5. SSL CIPher SEleCHION uuueieiiiiiiiiiiiieee e eeeeetiree e e e e eee et ee e e e e e eeeeaaaraeeeeeaeesanennnnnneeas 14

3.2.6. Enabling STARTTLS ooiiiiiieee ettt ettt e e e e e eeeeeeeas 15

3.2.7. Keybrigding CETtifiCatescccieeeeeiiieieiiieiieeieeeieeeeeeese s ese s e e e se e e e e e e e e e e e e e e e e s e e e e e e e e e e eeeeeaaeeeens 16

3.3. Related StandardsS c.eeeeeieieeeieiiee ettt e e e e e s ettt e e e e e e e s aanbeeeeeas 18

R BT o) o100 s L <l () =)o L 18

4. PYOXIES ooceiirrnneneiiiiiiiisiinnetetiiseisissssssseetessssssssssssesesssssssssssssssesssssssssssssssessessssssssssssssessssssssssssnnssnees 19
4.1. General information on the proxy modulescceeeeieiiiiiiiiiiiiiiiiiceeeeeeeerer e 19

4.2, ATTIDULE VALUES ettt e e e e ettt e e e e e s ettt e e e e e e e e eeanee 19

4.3, EXAIMPLES coiiiiiiiiiiic e 20

4.4, MOdUIE ANYPY oo 20
4.4.1. Related Standardsccceeeeiieiiiiiiiiiiee et e e ettt e e e e et eeeeeas 20

4.4.2. Classes in the AnyPy moduleoooooeeiiiiiiiiiee e, 20

www.balasys.hu iii

4.4.3. Class ADSITaCtANYPYPIOXY oeeeeeieieieieieieieeeee e 20
4.4.4. Class ANYPYPIOXY coeiiiiiiiiiiiiiiieieeeeee e 21
4.5, MOQUIE FIGOI .. s 21
T O Ny T S o)) 0] (o [l) P 22
4.5.2. Proxy Behaviorccooiiiiiiiiiii e 22
4.5.3. Related Standardsceceeeerieiiiieiieeieee ittt e e e e e e e e eeeeeeeees 22
4.5.4. Classes in the Finger module ..., 23
4.5.5. Class AbStractFiNGerPIOXY ...cccoeviiiiiiiiiiiiii 23
4.5.6. Class FINGEIPIOXY oveeeeeieieieieieieieseeesese s e 25
4.6. MOQUIE FIDP oo 25
4.6.1. The FTP PIOtOCOL ..ceciiiiiiiiiiiiiiiiiiiiiiiiitietette ettt ettt ettt ettt et tee ettt e ee e et e teeeeeeee e et eeeeeeeeeaeeeeees 25
4.6.2. Proxy Behaviorcoooiiiiiiiii e 26
4.6.3. Related Standardsceeeeeerieiiiiieieeteee ittt e e e e e e e e e reeeeeeees 29
4.6.4. Classes in the Ftp MOdUlecoooiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e e e e e e 29
4.6.5. Class ADSIaCtFIPPIOXY .ecciiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeee ettt e e et e e e e e e e e e e e e eaeeeeees 30
4.6.6. Class FIPPIOXY cooeeeiiiiiiiiiiiieeeeeeeeee e 35
4.6.7. Class FtpProxyAnonRO ... 35
4.6.8. Class FIPPTOXYANONRW ... 35
4.6.9. Class FIPPTOXYRO .coiiiiiiiiiiiii 36
4.6.10. Class FIPPTOXYRW ..iiiiiiiiiiiiiiiiiiiiiiiiitititee ettt ettt ettt ettt ettt e e et et e et eee et e e e e e e e eeeeeeeeeeeees 36
v B\ (o 111 (<IN = 4o PSRRI 36
VS R N Tl = U o o) 0] (Yo) U 36
4.7.2. Proxy Behavior ...ccooiiiiiii e 37
4.7.3. Related Standardsceeeeeerirriimieieeteen i tee et e e e e e e e e eeeeeeeees 48
4.7.4. Classes in the Http MOAUIEcoeiiiiiiiiiiiieie et e e e e e e aeee e e e e e eeeeaeees 48
4.7.5. Class ADBStraCtHttPPIOXY .oeoeiiiiiiiiiiiiieeeeee e 49
4.7.6. Class HIPPIOXY ..eeeitttiiiiititiiiiiiittiittttettttttttttteteeteeteeeee et ettt ettt tetete et eee et eeeeeeeaeeeeeeeseeeaeaes 61
4.7.7. Class HtpProxXyNONTTaNSPAIeII ...cceeeereieiiieiiieiiieiiieieieieeeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeaeeaaeeas 61
4.7.8. Class HttpProXyURIFIIET ...ccooeeeeiiieeeeeeeeee e 61
4.7.9. Class HttpProxyURIFilterNonTransparentcccccceeeeeeeeeeieeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 61
4.7.10. Class HttpProxyURLCategoryFilter ..., 61
4.7.11. Class HUpWeDdavPIoXycccoiiiiiiiiiiiiiiii e 62
4.7.12. Class NontransHttpWebdavProXycoeeeeeeeiiiieeieeeeee s 62
v T\ [Ta L1 [o LT 62
4.8.1. Proxy behaviorcoooiiiiiiiii e 62
4.8.2. Related StandardScceeeeeriiriiiieiieteer it e e e e e e e reeeeeeees 63
4.8.3. Classes in the Plug modulecooooiiiiiiiiiiiiiiiieeeeeeee 63
4.8.4. Class AbStractPIUgPIOXY ..ccceiiiiiiiiiiiiiiiiii 63
v/ RS O] T o 111 3 (o) o O 65
v TR\ o4 111 (<IN =) 0 1 USRS 65
4.9.1. The POP3 PIOLOCO] uoieiiiiiiiiiiiieee e e e eeettiteeeeeeeeeeeeaaneaaeeeeeseeessnnnnaaeeeeanssssnnnnnaeseeaeenes 66
4.9.2. Proxy behaviorcoooiiiiiiiii 67
4.9.3. Related StandardSceeeeeerirriiiieieeieee i e e ee e e e e e eeeeeee e 70
4.9.4. Classes in the POP3 MOAUIE coeiiiiiiiiiiiieee e eeeeeer e e e e e e e e e eeee e e e e e eeeeaenns 70
4.9.5. Class AbStraCtPOP3PIOXY .oeeeeiiiiiiiiiiiiiee e 70
4.9.6. Class PODP3PIOXY e s 73
4.9.7. Class POP3STLSPIOXY oeiiiiiiiiiiiiiiiiie e 73
Y o 101 (IS 114 PP 73

www.balasys.hu iv

4.10.1. The SMTP PIrotOCOL ...eeeeeeeeeeeeeeeeeee e 73

v/ L 4 10> 4 A 1 1 4 o) 74
4.10.3. Related StandardsS eveeniieiiii et eaans 76
4.10.4. Classes in the Smtp Moduleoooiiiiiiiiiiiiii 76
4.10.5. Class ADSraCtSMIPPIOXY ceeeieiiiiiiiiiiiiiiieiiieeee e 76

v/ (O ST O F- R 1013 20 (0)7 79
g I L oY LU L= <)o <] SRR 81
4.11.1. The Telnet ProtOCOL ...ccciiiiiiiiiiiiiiee e 81
4.11.2. ProxXy DERAVIOT ..o s 82
4.11.3. Related StandardSccoeeueieeuniiiuniiiie et e e et e e e et e e eaans 84
4.11.4. Classes in the Telnet MOAUIEoovueiiiiiiii e e 84
4.11.5. Class AbStractTeINetPIOXYccciiiiiiiiiiiiiiiiiiieiieeeeee e 84

v T O =T 1 1 1S4 & o) /U 85

v N A O =T) i T o 00 25 113 [85
g Y (o Ta L1 LI YAV Vo) £ TR 86
4.12.1. The WhOis ProtOCOL ... s 86

v/ R 4 100 4 A 1 1 4 To) 86
4.12.3. Related StandardsS eeeeeiiieiiii e e aaas 86
4.12.4. Classes in the Whois MOAULE oouiiiiiiiii e e 86
4.12.5. Class AbStraCtWhOISPIOXY ..cceeeeiieieiiieeeee e 86
4.12.6. Class WHOISPIOXY .ccceiiiiiiiiiiiiiiiiiiiiiiiititiittttieteeteeteeeteteteteeeee et eeeeeeeeeeeeteeeeeeeeeeeeeeaeaeaees 87

5. COTE ceeeieeiieniteectnnienncestcasceascsascsnscsscsssesasssassssssssssssssssssssssasssssessssssssssssasssasssnssasssssssnsssnsesnsesnsesnennns 88
ST LY, oY LU L AN K 88
5.1.1. Authentication and authorization basiCscoviveiiiiiiiiiii e 88
5.1.2. Authentication and authorization in ZOIPcceeeeiieeiiiiiiiiiie e eeeeeiicie e e e e eeereerreeeeeees 88
5.1.3. Classes in the Auth MOAUIEcouniiienniiiii e e 89
5.1.4. Class AbStractAUthentiCatiONccocueviiiniiiiiiii e e e e e e e e 90
5.1.5. Class AbStraCtAUthOTIZAtIONccuuiiiuniiiiiiiiec e e e e e e e e eaaaas 91
5.1.6. Class AUtNCACHE ...ouniiiiiiee et e e e e e e e e eanns 91
5.1.7. Class AuthenticationPOliCycccoeeeieieieieieieeee e 92
5.1.8. Class AUthOTIZAtIONPOLICY uuuueiiiiii s 93
5.1.9. Class BaSiCACCESSLIST ...ceuuniieiiiiiiiieeeieee e e e e et e et e e e e raaeeeaneeannees 94
5.1.10. Class Inband AuthentiCationceeuviiueiiieiiiieie et ee et et e e e e e eanaes 95
5.1.11. Class NEYeSAUtNOTIZAtION uuuuuii s 95
ST I D O F: T o 1 N U 11 0 To) 721 o) L 97
5.1.13. Class PEIMULGIOUD ..v.uuuueieeeeeiiiiiiiiiiieeeeeeeeeeitnneiaeeeeeeeerersnnnaaeseseesessssnnaeesseessssssnnnneees 97
5.1.14. Class PermitTiIMIEcoeuuiiieniiieiiiieeeieeeee e et e et e et e e e e e e e eaeesanseraaeeanerennees 98
5.1.15. Class PeITItUSEI civuuiiieiiiii it e e e e et e e e e e een e e ean e ean e nanes 99
5.1.16. Class SatyrAUthentiCationeeeeeieiieeiiiiieiieiiiiiiiitieeteieeeteeeereeeeereeeeeeeeeeeeeeeeereeeeeee 99
5.1.17. Class ServerAuthentiCationccoeeeviiiiiiei i e e e e e e e 99
5.1.18. Class ZAAUtheNtiCAtION ..ccevuiviniiiie i e e e e e e e e e e e nanaas 100

5.2. Module AUtRIDB ..o e e raaas 101
5.2.1. Classes in the AuthDB MOdULEouviiiniiiii e 101
5.2.2. Class AbstractAuthenticationBackendcoooouviiiiiiiiiiiiiieie e 101
5.2.3. Class AuthentiCationPIOVIAETcoiiuuniiiiiiiiiiiiiiie e et e e e e e eaneees 102
5.2.4. Class ZAS2AuthenticationBackendccooouviiiiiiiiiiiiiieee e 102

STRC LY oY LU L @ 5 F=1 13 <) R 103
5.3.1. Selecting the Nnetwork ProtoCO]ccceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiteeeeteteteeeeeeeeeeeeeeeeeeeeeeeeeees 104

www.balasys.hu v

5.3.2. Classes in the Chainer moduleoooiiiiiiiiiiiiiie e e e eeeeeeaeees 104
5.3.3. Class ADStractChaiNercceeiiiiiiiiiiiiiieie e e eeeeticeee e e e e e e ee e ieeeeeeeeeraarnaaeeeeeeesenenns 105
5.3.4. Class AvailabilityChainercccccoiiiiiiiiiiiii 105
5.3.5. Class ConnectCRAINETuuiiieeiieiiiiiiiieie e e e eeeeeeiee e e e e e e e eeaeaeeaeeeeeeeessennnaaeeeaeeennees 106
5.3.6. Class FailoverCRaiNercccooiiiiiiiiiiiiiiie e e e e e eeereee e e e e e e eeeateaeeeeeeeeeeanees 107
5.3.7. Class MultiTargetChainercoooiiiiiiiiiiiiiiiii e, 108
5.3.8. Class RoundRobinAvailabilityChainercooeeeieiieiiiiiieieeeeeeeeeeeeee s 109
5.3.9. Class RoundRoObINChaiNeTccoiviiiiiiiieiiiecceiceee e e e e e e e e e e e e eeeaeee 110
5.3.10. Class SideStackCRhainerccooeiiiiiiiiiriieieiiiieie e e e e eeeetiere e e e e eeeerareeaaeeeeeeeesenenns 110
5.3.11. Class StateBasedChainerccccccooeiiiiiiiiiiieeeieeeeiiiiieee e e e e e eeerreee e e e eeeeeresenaaeeaaeeens 111
5.4, MOAUIE DEECIOT .uvuueeeiieieiiiiiieee e e e e eeeeit i eeeeeeeeeeetttae e eeeeeeeesssenanaaaeeeesessssnnnasaesessessssnnnnseaaeens 112
5.4.1. Classes in the Detector ModUleoueiiiiiiiiiiiiiiiie e e e e e e eeeaeees 112
5.4.2. Class ADSITaCtDEIECIOT ...cvvvuveuieeeeeeeeiiiiiiiieeeeeeeeetttteieeeeeeeeeessrenaaaeaeeeeseessnnnaaaeeeeeesssenns 113
5.4.3. Class CItDEIECIOT cceevvuuuuiieeeeeeeertuttniaeeeeeererarennaaeeeessersssnnasasesessssssnnsaeesesssssssnns 113
5.4.4. Class DeteCtorPOlICYcoooiiiiiiiiiiiiiii 114
5.4.5. Class HIPDEIECIOT ..cceiiiiiiiiiiiiiiiiieieteieeeeeeeee ettt ettt ettt e e e e e e et e e e e e e e e et e eeeeeeeeaeaaaeaaeas 114
5.4.6. Class SNMIDETECIOT uuuieeeiieeiiiiiiiiieeeeeeeeeittiieaeeeeeereeatennaaeseeereerrennnaaasaeesesssssnnnaasaseenes 115
5.4.7. Class SSNDELECIOT ccceevviiiiiiieeeeeeeieiiiiiieeeeeeeereateeaaaeeeeereestennnaaaeeeeseesssnnnaaeseeeeeessnns 116
5.5. Module ENCIYPLON ooeiiiiiiiiiiiiiiieeee e 116
5.5.1. SSL parameter CONSIATILS uveeerrunreerrunnreerreireeerenseeerenseeerenseesnennseessennseesnsnaneeessnnnns 116
5.5.2. Classes in the Encryption moduleccciiiiiiiiiiiiiiiiiiiiiiiiiiieieieieeeeeeeeeeeeeeeeeeeeeeeeeee 118
5.5.3. Class ABStraCtVEIIfiercccoeeeeieiiieeeeee e 120
5.5.4. Class CeItifiCateeeeveriririririiiiirerirerirererererrrerrrrrreererererrr.—..—..—......—......—...—.—.—.———. 122
ST T O P T O 1o (1<) O = N 124
5.5.6. Class ClientCertificate Verifiercoooeeeeiieiiiiiieeee e 125
5.5.7. Class ClientNoneVerifierccoiviiiiiiiiiiiiiiiceeeeeeeeeeeeeeeeeeeeeeeeee e, 128
5.5.8. Class ClientOnlyENCTYPHON .oeeeeeeeeeeeieeeeeeeeee e 128
5.5.9. Class ClientOnlyStart TLSENCTYPHON ...ccoiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 129
5.5.10. Class ClieNtSSLOPLIONS ..ccvvuveuiieeeeeeiiiiiiiiieeeeeeeeetttiiieeeeeesreeseennaaaeaeeseresrennaaaaesseenes 131
5.5.11. Class DHPATAIMccceviiiuiiieeeieieieiiiiieee e e e eeeetttieaeeeeeeeeetasenaaeeeeessensssnnnaaaeeaseeessnes 135
5.5.12. Class DynamiCCertifiCatecccceeeeieriiiiriieeeeeeeeeeiieeeeeeeeseeerereeeeeeeeeeennraeeeeeeens 136
5.5.13. Class DynamicServerENCryptioncccoeiiiiiiiiiiiiiiiiiiiiieieieceeeeecececeeeeeeeeee e 137
5.5.14. Class ENCryptionPOlCY ...ccoooeeeieieieeeee e 139
5.5.15. Class FakeStart TLSENCTYPHON ooeeeeeeieeeeeieee e 140
5.5.16. Class ForwardStart TLSENCIYPLON cooiiiiiiiiiiiiiiiiiiiiiiceeeeeeeeee 142
5.5.17. Class Private eycccciiiiiiiiiiiiiiiiiiiiiiiiitititieieteet ettt ettt ettt et eeeeeeeeeeeeeeeeeeeeeeeeeeeeees 144
5.5.18. Class SNIBasedCertifiCatecivviiiieiiiiiiiiieiiieieieeeeeeeeeeeeeeeeee e 146
5.5.19. Class SSLOPLIONS ...cceiiiiieeiiiiiiieeeeeeeeeitiiiieeeeeeeeeetaeeeaeeeeeeseeesennnaaaeseseesessnnnaaaaseeeeenes 147
5.5.20. Class ServerCertificate Verifierccccccviiiiiiiiiiiiieeee, 151
5.5.21. Class ServerNONEVETIfIErcccceieiiiiiiiiieieeeeeeeee e e e e aan 153
5.5.22. Class ServerOnlyENCIYPHON ccceiiiiiiiiiiiiiiiiiiiiiiieeee e 153
5.5.23. Class ServerSSLOPLIONS uuceeeeiieeiiiiiiiieeeeeeeetetittiaaeeeeeereerenennaeaeeeesrensennaeeeeaeseesnnes 155
5.5.24. Class StatiCCertifiCatecoeeeeeiiieeeee e e e e e e 158
5.5.25. Class TwoSidedENCIyPtONcccooiiiiiiiiiiiiiiiiii e 159
5.6. Module Keybridgecooiiiiiiiiiiiiiiiiiiiiiiieeeeeee ettt e e e e e e e e e 161
5.6.1. Classes in the Keybridge moduleccccoiiiiiiiii 161
5.6.2. Class X509KeYBIIAGE ...ceeitiiiiiiiiiiiiiiiiiiieiiieieeeteeteeeeeee ettt ettt ettt e e e e e e e e e e e eeeeeeees 161
ST\ [Ta b1 LY =1 1<) USSR 163

www.balasys.hu

vi

5.7.1. Classes in the Matcher MOdUleccoouiiiiiiiiii i 163
5.7.2. Class ADStraCtIMatChErcoeuniiiiniiiiiiiie e et e e e e et e e e eaanees 164
5.7.3. Class CombINeMatCROTuiieuniiiiiiiii it e et et e e e e e eaaeennnees 164
5.7.4. Class DINSMAtCHET uuiiuniiiiiii e et e e e e e e e aaeenanaes 165
5.7.5. Class MatCherPOLICY ..ccoeeeeeeeeieieeeeeeeeee e s 166
5.7.6. Class RegexpFileMatChercooiiiiiiiiiiiiiiiiiiiieee e 166
5.7.7. Class ReGEXPMALCRETcciiiiiiiiiiiiiiiiiiiiiiiiiitieteeeeteeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeaeeeeeeeaeee 167
5.7.8. Class SmtpInvalidRecipientMatCherccceeiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 168
5.7.9. Class WindowsUpdateMatChercoooeeiiiiiiiiiieiiieieeeeeeeeeeeeeeeeeeeee e 170
ST LY (oY LU T L=\ 7 AN 170
5.8.1. Classes in the NAT MOAUIEoouviiiiiiiiiiie e e 170
5.8.2. Class ADSIIACHINAT ...oeueiieeieiiee et e et e e et e e e e e e e e saeeeaneeraeennneennnnns 171
5.8.3. Class GeneTalNATuiiiiiiie et et e et e e e e e e e e er e eaneeannens 172
5.8.4. Class HAaShINAT ...oeiieiiiiiiee ettt e e e e e e e e e e e rraeeeaneennnens 173
5.8.5. CLaSS INATAG ..eeeeeeeeee ettt e e et e et e e e e e e e e e raneraaeesaneennneees 174
5.8.6. CLaSS INATEA ..ooveeiiiiiieieeeiee ettt ettt e ettt e ettt e e et e e e taa e s eetaaseeesbneeesrnanns 174
5.8.7. Class NATPOICY ooeeeieieieieieeeeee e 175
5.8.8. Class OneToONeMUItINATcouniiiiiii et e e e e e e e e ees 176
5.8.9. Class ONeTOONEINAToieiiiiie et e et e e e e et e e e e e ean e eaneesnneeennenes 177
5.8.10. Class RANAOIMINAToeuniiiiiiie ettt et e et e et e e e e e e e e aaeesaneeeaneeannees 178
SRS TR R O 1= T 7 Tl A2 N 178
FSTRe LY (oY 11 [\ [o] w1 s (al= Y4 o) o NSRS 179
5.9.1. Classes in the Notification MOAUIEcoevuniiiiiiiiiiiiiee e 179
5.9.2. Class AbstractNotificationMethodcocoovveeiiiiiiiiiiiiiie e 179
5.9.3. Class EmailNotificationMethodoooiiiiiiiiiiiiiieiiiiee ettt 179
5.9.4. Class NotificationPOIICY ...cceeeeieiiiiiiiiee et e e e e e e 180
5.10. MOdUIE PTOXY oceiiiiiiiiiiiiiiiiiiiiiitititiettetet ettt ettt ettt ettt ettt ettt ettt et ettt et et e ee e et e ee e et e e et et e eeeeeeaeaes 180
5.10.1. Functions in Module PrOXYccooiiiiiiiiiiiiiiii 180
5.10.2. Classes in the Proxy module ... 180
5.10.3. FUNCHONS civtiiiiiiniiiiiie et ee e e et e ee e e et e et e st e st e st esneesnesaneranesssnneesnesrnenanes 180
ST R T O] - T & (o) o 181
5.11. MOAUIE RESOIVET ... et e e et e e e e e e e et e raaeeaaeeenneennnnas 184
5.11.1. Classes in the Resolver Modulecooouiiiiiiiiiiiiie e 184
5.11.2. Class ADSIACRESOLVEL uuiiiiiiiiiiee e e e et e e e e e e eeaneenes 184
5.11.3. Class DINSRESOIVEL ...ccuuiiiniiiieiiiie et e et e et e e e e e e eaeeeaaeeeaeeenneernnenes 184
5.11.4. Class HAShRESOIVET iveuniiiiiiiie et e et e et e e e e eaneeees 185
ST A\ (oY U1 [20 111 1<) N 186
5.12.1. The source address used in the server-side CONNECLIONcccovvnvevenviieneereiereineeennnenns 186
5.12.2. Classes in the ROuter MOAUIE couuniiiiniiiiiiiieeee e 187
5.12.3. Class ADSITACLROULET oeuuiiiiiiiiiiiie et et e e e e e e e e e e e eanneeees 187
5.12.4. Class DireCtedROULETuuiiiuniiiiiiiiieiiie e e e et e e e e e e e e e e e e eaeeeaneeranneees 188
5.12.5. Class INDANAROULET ivvnniiiiiiiiiieie et e e e e e e e e e e e e eeaneeeanneees 189
5.12.6. Class TranspareNtROULET ccceiiiiiiuiieeeieeeeiiiiceee e e e eeeeeiaieeeeeeeeeeeeannnaeeeeeeeeesennnns 190
ST B T (o Ta LU T L= R N 191
5.13.1. Evaluating firewall TULEScoieieiiiiiiiiee et e 191
5.13.2. SAMPLE TUIES oeevieiiei e e e e e e e e e ettt e e e e e e e eeeaaan e e e eaeeeeeaenns 193
5.13.3. Adding metadata to rules: tags and desCriptionccceeeeeieiiiieiiiiiiiiieieeieeeeeeeeeeeeeeees 193
5.13.4. Classes in the Rule Moduleoooveiiiiiiiiiie e 194

www.balasys.hu vii

5.13.5. Class POTRANGE ccciiiiiiiiiiiiiiiiiiiiiiiiieieieteeeeeee ettt teeeeeeeeeeeeeee ittt eeeeeeeeeeeeeeeeeeeeeeeeeaeees 194
5.13.6. ClasS RUIE ..ceeeiiiiiiii ettt e et e e e e e e e e e e ean e nanns 195

ST 1Y oY LU [T <] T (ol PN 197
5.14.1. NAIMING SEIVICES cevvuuuieeeeeeititiiiiiieeeeeeetttttiieaeeeeeteettruaaeeeeereerennaaseseeeseemesmmnnasseeeeee 197
5.14.2. Classes in the Service MOdUIeco.eviiieiiiiiiiiieie e 198
5.14.3. Class ADSITACESEIVICE ...ucvvuniiiieiiieeiie et e e e et e e e e et e e e e eraa e eanneesnneeees 198
5.14.4. Class DENYSEIVICE eeeeeeeeieiiiiiiieieeeieee e e e e e e e e e e e ee e e e e eeeeseeeseaeans 199
5.14.5. ClasS PESEIVICE ..uivveiiieiiiee ettt et e e e e e e et e e e e eraaeeeaneeanneees 200
5.14.6. ClASS SEIVICE .uiivniiiiiiii et e ettt e et e et e et e et e eaaeeaan e eaneeranersneesnneeennees 202

ST ST oY 11 LY==y (o) o N 207
5.15.1. Classes in the Session MOAULEc.ouviieiiiiiiiiiiie e 208
5.15.2. Class StaCKeASESSION evvuniieiniiiiiiiie e eeeeee e et eere e et e eea e e e e eeanserrnsesneennnens 208
ST S Y [Y6 LT (o Tad AN [| R 209
5.16.1. Classes in the SOCKAAAr MOAUIEuuiieniiiiiiiiec e 210
ST S T O P T Yo Yl A Na a1 1<) AN 210
5.16.3. Class SOCKAAAIINEIE couuniiiieiiiieiie e e e et e e e e e e e eaaeeanneeees 211
5.16.4. Class SOCKAAArINetHOSINAMEciivnniiiiiiiiieieeei et e e e e e eeees 211
5.16.5. Class SOCKAAAIINEtRANGE ...cceeeeeeeieieieeeeeee e 212
5.16.6. Class SOCKAAAIUDNIX ..uuuiieniii i ettt e e e e e e e e e e eaneeeaneees 213

ST Y oY L1 (<] 7 Tl <N 213
5.17.1. Classes in the Stack MOAULE ouiieeiiiiiiii e 214
5.17.2. Class AbstractStackingBackendcccciiiiiii 214
5.17.3. Class RemoteStackingBackendcccccoiiiiiiiii 214
5.17.4. Class StackingProviderccceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeete ettt eeeeeeeeeeeeeeeeeeeeeeees 215

ST R T oY L0 L0} o < 216
5.18.1. Classes in the Zone MOAUIEvivieiiiiiiiiiiie e 217
ST R T O P T3/ /o) LIS 217

ST LY (0T L (/70 y o USSR 218
6. COT-IMEEIMAL ...ccouviiererieerreenieerenneeereeereecessssseerssssssessssssesssssssssssssssssssssssssssssssssnssssesssssssessnnssssssnnes 219
L0 Y/ (o Ta 111 (I O T o TR 219
ST 1Y (o a1 11 (I @0 <R 219
oG T\ (oTa 111 (I B 1] o L1l P 219
6.3.1. Zone-based ServiCe SEIECLION viivuniiiiniiiiieiie e e e e e e e e e e e e eanenes 219
6.3.2. Classes in the Dispatch Modulecccooeiiiiiiiiiiiiiiie e e e e 220
6.3.3. Class CSZOoNeDiSPatChercccciiiiiiiiiiiiiie e e eerere e e e e e e e e e arere e e e e eeeeeneees 220
6.3.4. Class DISPAtCRETccceiiiiiiiiiie i e e eeee e e e e e e e e et e seeeeeeeseeaeenaaeeeeaaeeenenes 221

6.4. MOAUIE GIODALS ...ouvieeieeieeee e r e 223
SRS\ (o Ta N1 LI 6 <Y . + R 223
6.5.1. Classes in the Stream MOdULeooiveniiiiiii e 223
(SRS O F= T 1 Y1 o o 223
Appendix A. Additional proxy informationccccceceeeesescscscsssese 225
A.1. TELNET QPPENAIX teevtuuuuiieieieiiiiiiiiiieeeeeeeteettteiiaaeeeseeetstsnnnsaseeesessrsnnnnasesesessesssnnnaeessessesssens 225
Appendix B. Global options 0f ZOoYPcccccvvvrerrrirrrrrcrersssrssese 232
B.1. Setting global OpPtionS Of ZOTP ..eeiiiieiiiiiiiee et e e 232
[5] 1) o TN 233
116 R 234
(0] 0] 10) 1 1PNt 236
Appendix C. Zorp ManUal PAGESccceceerrserrscssese 237

www.balasys.hu viii

T 72 1 Lol TN 0] 1 1 USRS 238
1010 1T A 0) OO PP P O PO PP PP PP PP PP UPPPPPPPPP 240
/0] §) PSP PP PP PR UPPPPUPPPRTON 241
/0] 31l | PP P PP PP PP PPPPPPPPPPPPPPPPPRE 243
/0] 3 5 Tad 1 Il o) 1 | PSS SSPRRR 245
Appendix D. Zorp GPL End-User License AGreementccocceeeeiiieiissssssnneeriiessssssssssesssssessssses 247
D.1. 1. SUBJECT OF THE LICENSE CONTRACT ...cottiiiiiiiieieeiiee ettt eeeaee e e e e eeeaens 247
D.2. 2. DEFINITIONS oottt sttt ettt eeettee e et ttee s e eeaaeeeeasaaseeasnnsaessnnssaresnnnsasssnnnserennn 247
D.3. 3. LICENSE GRANTS AND RESTRICTIONS ...coitiiiiiiiiieietiiee et eeeeee e e e 248
D.4. 4. SUBSIDIARIES ..ottt etee et ttee s e et s e ettt e e aeasaaesaeasnnsanasnnsesssnnnsersnns 250
D.5. 5. INTELLECTUAL PROPERTY RIGHTS ..ottt 250
D.6. 6. TRADE MARKS oottt e ettt e ettt e e ettt e e eaanaaseeasnnseeasnnnseessnnnseenenn 250
D.7. 7. NEGLIGENT INFRINGEMENToiitiiiiiiiiiiiiiiiie ettt e et e eeetiieeeeeaaeseeeenneeeesennseenens 250
D.8. 8. INTELLECTUAL PROPERTY INDEMNIFICATIONciiiiiiieiiiiiieeeeiiiieeeeeiieeeeeiieeeenens 250
D.9. 9. LICENSE FEE ..ottt et e ettt e ettt e e e taaa e e e et e e eeaaaaesaeaaanseasennnssassnnnssanennns 251
D.10. 10. WARRANTIES eeieiiiiiiiee ettt ettt e e e e e e sttt e e e e e e eesnnsseaeeeeeeeesennnnnneeeeeeens 251
D.11. 11. DISCLAIMER OF WARRANTIES ..ottt ettt eevtee s eeaee s enaaneeeeees 252
D.12. 12. LIMITATION OF LIABILITY oottt eetiee e eettee e eeteie s eetanesaeeaneseessnnnsaennns 252
D.13. 13.DURATION AND TERMINATIONuiiiiiiiiiiiiiieieeiiiee e eetiee e eetieeseetaiaeseeanneeersnnesasanns 252
D.14. 14. AMENDMENTS oottt ettt e et e e e et taa e e ettt s e aeaaaeeasanaseanennnseanennns 252
D.15. 15, WATLVER oottt e et te e e ettt e e e tta e s eeaaaaesasannnseensnnnsansnnnseanes 253
D.16. 16. SEVERABILITY oottt e ettt e e e tte e e ettae e s eeaaaseesanaseesennnssansnnnseanes 253
D.17. 17. NOTICES ..ottt ettt e ettt e e e e et e e e et taa e e ettaaa s aeaanassaessnnssanssnnssarennnseenenn 253
D.18. 18. MISCELLANEQUS ...oiiiiiiiiiiiiiitieee e e ettt e e e e s e ettt e e e e e e sennnbereeeeeeeeeaannseeaaeeeeens 253
Appendix E. Creative Commons Attribution Non-commercial No Derivatives (by-nc-nd) License
.. 254
Index Of ProXy attriDULES ooiiiiiiiiiiiiiiiee et e ettt e e e e e e ettt e e e e e e e e e anreeeeeeeeeeennnnneeees 259
Index Of COTe AttriDULES .o.eeeeeieiiieeee et e ettt e e e e e e ettt eee e e e sesnneenaeeeeeeeesennnnes 262
Index of all AttrIDULES ...ooiiiieiee ettt e e e e e ettt e e e e e e e st ae e e e e e e e e nnes 265

www.balasys.hu ix

List of Examples

2.1. Customizing FTP COMIMANAS cceeiiiiieiiiiiiiieeeeeeetiiiiiieeeeeeeeettttaniaeeeseeeeerssnnnnaaeseeessessssnnnaeeseassnsssnnns 5
P ST T o T o O)) (G A ot o) o P 5
2.3. Default and XPliCit ACHIOMS uvuviiuiuriiiiiiiiirereretereierererererererer..—.—.——————————————————.—.—.——.—.———..—.—.—..—.—————. 5
2.4, CuStOMIZiNgG TESPONSE COUBS .uvuuuueeierereiiiiieiiaeeeeereettetenaaeeseeererssnnnaaaesesesesssssnsasesssesesssssnnseeesasseesssnns 6
2.5. Example PlugProxy allowing seCONdary SESSIONSc...ccceevvvruuieeeeeeeeeerrinnniaeeeeeeeernsnnnaaeeesesenssnnnnnnns 7
2.6. HTTP proxy stacked into an HTTPS CONNECHIONcceeviiiiiiieeieeeeeiiiiiiie e e e eeeeeriiiseeeeeeeeeeenanneeeeaaaes 8
2.7. Program stacking in HTTP coiiiiiiiiiiiiie i eeeet e e e e e e e et e e e e eeeeeeaaananaeeeseaeeeesnnnnnnaeaaaes 8
3.1. Disabling specific TLS PrOtOCOLScccceeeeieieieie ee e e s 14
3.2. Configuring FTPS SUPPOIT ..ceeeeieieieieieieieieseiesesesesesesssesesesssesesesesasasasasasasasesesasssssssssssssssssesasasesasesns 15
4.1. Controlling the number of MaxX hoPS ..cccivviiiiiiiiiee e, 22
4.2. FTP ProtoCOl SAMIPIEccciiiiiiiiiieeieeeieiiiieee e e e e eeeetieee e e e e e e eetaae e e e eeeeeeessannsaeseeaesnnsnsnnnaeseeeeeesssnnnnnns 26
4.3. Customizing FTP to allow only anonymous SESSIONSceeevuvueiierereeeeriiuenieeesereeererenniaeeseseeeennnns 27
4.4, Configuring FTPS SUPPOIT ..cceeeeieieeeie 28
4.5. Example HTTP tranSaCtiON ...c.cuuuuuiereieiiiiiiiiieeeeeeeetetiietiaeeeeeereertsnnsssesesesesssssnsssesesesssessssnssesessssnenes 37
4.6. ProxXy Style HTTP QUETY ..ccceeeiiiiiiiieeeieeeeeiiiiiee e e e e eeettttteeeeeeeeeeeeaaaasaeeeeeeaesessnnannsesaeasensssnsnnsesseenenes 38
4.7. Data tunneling with connect Methodcooiiiiiiiiiiiiiiie e e e e e e e e e e e e e eeeeaanes 38
4.8. Implementing URL filtering in the HTTP PrOXY ..ccccviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e, 39
4.9. 404 response filtering in HTTP cccvviiiiiiiiiiiirieeiereeeeereeeeererreeeeerrerererereeseerereesrerrre..—. 39
4.10. Header filtering in HTTP ..ccciiiiiiiii e e e 40
4.11. URL redirection in HTTP PIOXY ..ccceiieiiiiiiiiieeeeeeeiiiiieaeeeeeeeeetttaiseeeeeeeessssensnaeesesasessssnnnneesasssesesnns 41
4.12. Redirecting HTTP t0 HTTPSeeeeiiiiie ettt e e e ettt e e e e e e s eeas 41
4.13. Using parent proxies in HTTP ...ttt sttt eeetaee s eeeaae s eeebaasseeaaaeeenaes 42
4.14. URL-iltering eXampleccoiiiiiiiiiiiicc e 45
4.15. URL filtering HTTP PIOXY ciiiiiiiiiiiiiiiiiiiieieceeeeeeeeeee ettt e 61
B ST o O] 2T o) (o] (o TaTo) BE-F: 10110 [P UTPTPPRR 66
4.17. Example for allowing only APOP authentication in POP3ccooiiiiiiiiiiiiiiiiiiieccceeeeeeeeceeeeeeeeee, 68
4.18. Example for converting simple USER/PASS authentication to APOP in POP3ccccccoeviiiiinneen. 68
4.19. Rewriting the banner in POP3 ... e e e et et e e e e s e e eeeeaaaaaeeeeeaeeeneens 69
4.20. SMTP PIrotoCO] SAIMPIE .oeivivuiiiieeiiiiiiiiiiieee e e e ettt eee e e e e eeeettateaaeseeaeeesssnnnaaeesaeessssnsnnasseaeesesssnnnnnns 73
4.21. Example for disabling the Telnet X Display Location optioncccccceiiiiiiiiiii, 83
4.22. Rewriting the DISPLAY environment variablecccoeiiiiiiiiiiiiiieeeeiieeiiiiiieee e eeeeeviiieeeeeeeeeennnns 84
4.23. Example WhoisProxy logging all Whois TEQUESEScceeieiiiiiiiuiiiieeieeieiiiiiieneeeeeeeeereeiesneeeeeeeeenennnes 86
5.1. A simple authentiCation POLICYuvueueueuuuuuurerereiuiuierererereeeeeeeereeeeeeeerereeeeeseserseesesnsssrsssssssssssssnsnnes 92
5.2. Caching authentication dECISIONS ccccceierereiererorereieieiereserereene e nannnnnnnsnsnnnsnnnsnsnsnnnnnnnnnnnnnnnnn 92
STC AN 100 0] (R0 14 1 To) u 2 A (o) 11 50§ Uoh AN 93
5.4. BasiCACCESSLISt BXAIMPIE uuuiuiiiiiieieieieieiereiese e se s e ssssssssssssssssnssssnnssnnnnnsnsnnnn 94
5.5. A simple PairAuthorization POLICY ...ccccoeeeieieiiieieieici e s e s s s e s e s e s e e e e e s e e e s e e e e e e e ee e e e as 97
5.6. A simple PermitGroup POLICYucieieieiiieieieieieiesesesesese s e e s nnnnn 97
5.7. PermitTime €XaIMPLEcccceiiieieiiieieicieseseseses e s es e s e s e s e s e s e s e s e e e s e s e s e s e s e s e s e s e s e s e sesesesesesssesasasasasesasasasssesasenes 98
5.8. A simple PermitUSEr POLICY uuuvvuviiuuuriiuiiiuiiiuiirutuuuueuerereeereereeeererereseseresesereressresssssssssssesssssssssnsnnes 99
5.9. Outband authentication eXampleccoiiiiiiiiiiiiii 100
5.10. A sample authentication ProVIAETccciiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeere e e e e e e e e e e e e e e e e e e eeeeeeeeeeeeees 102
5.11. A DirectedRouter using AvailabilityChainerccccccciiiiiiiiiiiii, 105
5.12. A sample ConnectChaiNerccoiiiiiiiiiiii 106
5.13. A DirectedRouter using FailoverChainerccccccciiiiiiiiiiiiiiiiieeeeeeee e, 107

www.balasys.hu X

5.14. A DirectedRouter using RoundRobinAvailabilityChainerccccccccciiiiiiii, 109
5.15. A DirectedRouter using RoundRobinChainerccooviviiiiiiiiiiiiiiiiieeeeeeeeeeee e, 110
ST (ST 7<) wd B (T wi0) d o 10101) L 113
ST VA 5 1100 BT eTal o) i =1 1113] [114
5.18. SNIDeteCtor eXaAMPLE ...ccciiiiiiiiiiiiiiiiieiee et e aaaaaaaeas 115
5.19. SShDetector EXaIMPLE coeieeeieieeeeeeeeeeeee e 116
5.20. L0ading a COTtfICAE ..iviiiiiieieiiiiieeee e eee et e e e ettt e e e e e e sttt e e e e e e e sesnnsneeeaeeeeeesannnsneaeeeeens 123
5.21. Loading DH ParaMeterSccceeeeieeiiiieieieiiieieieie e e eeeeeeeeeeeeeeeeeeeeeeeeeeseseeeseeeeeaesesesaaasasasasasasasasanns 135
5.22. L0ading @ PIiVAte KBY ...ciiiiiiiiiiiiiiiiiiiiiiititiiieetee ettt ettt et ettt e ettt ettt et te et e et ettt ettt ettt et ettt e e ettt e e e e e e eeeaeaes 144
5.23. Whitelisting e-mail TeCIPIENLS ...cceeiiiiiiiiiiiiiiii 164
5.24. DNSMatcher eXampPlecooiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeee ettt eaeaeaaaaaeeas 165
5.25. RegexpFileMatcher eXampleoooooiiiiiiiiiiiieee e 166
5.26. RegexpMatcher eXampleooooiiiiiiiiiiiiii 167
5.27. SmtpInvalidMatcher eXampleoooiiiiiiiiiiiiii 168
5.28. WindowsUpdateMatcher eXampleccooiiiiiiiiiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeee e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 170
5.29. GenerallNat eXaIMPIEcuiiiiiiiiiiiiiiiiiiiiiititie e et ettt ettt ee et e et e ettt et t ettt ttttttttttatatataettaeraaeaeae 172
SR R U 1o T AF: 11570) LT (<] 175
5.31. A simple DNSRESOIVET POLICY oeeiiiiiiiiiiiiiiiieieeeee e 184
5.32. A simple HashReSOIVET POLICY ..cceiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeee ettt ettt e e e e e e e e e e e e eeeees 185
5.33. DirectedROULET EXAIMPIE oeiiiieiiieeeeeieeiiiieie e e e e e e eeeiti i eeeeeeeeeeeeraeaeaaeeeeeasessssnnnaaeesassesssnnnnaaaseeeeees 188
5.34. InbandROULEr €XAIMIPIE ...cceiiiiiiiiie e e e et ree e e e e e e eeeat e e e e eeeeeeaaernaaaeeeeaaeessnnnaaaaeaeeenes 189
5.35. TransparentROULET @XAIMPIE uuiieiiiiiiiiiiiieee e e e eeeeeiit i eeieeeeeeeeetaree e aeeeeeeeessennanaaeeeeeeesssnnnnnaeaeaaees 190
5.36. Sample rule defiNitionNSevieiiiiiiiiiiiiiieiirieieereeererererererrrererereee——rererer——————.rr—.—.————————.—..——.————. 193
5.37. TAB@ING TUIES .ceeiiiiiiiiiiiiiiiiiiiieeeee ettt ettt ettt et ettt et et et et ettt et et ete e et e eeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeeeeees 194
5.38. A SIMPIE DENYSEIVICE ..ceiiiiiiiiiiiiiiiiiiiiiititititttitttit ettt ettt ettt et e ettt et ettt ettt e ettt teeeaeeeeeeeeeeeeeeaaeee 199
5.39. PEFSEIVICE EXAIMPIE ...uuiiiiiiiiiiiiiiiee e e e et e e e e e e ettt e e e e eeeeeeatsaaaaeeeeeeseessnnnnaeeeaesssssnnnnnaeseeeenes 201
5.40. SEIVICe eXAMPIE ..iiiitiiiieieiiiiiiiiiiie e e e e eee et ree e e e e e e et tat i eaeeeeeeeettta aaaeeeeeaattan e aaaeeerrtrnnaaaaaaaes 202
5.41. SOCKAAAIINet @XAMPIE ...cceeviieiiiieeeeeieeiiiicie e e e e e e eeeti e e e eeeeeeestaeeaaaeeeeeerersssnnnsasesassssssnnnnnaeeeaennes 210
5.42. SOCKAAAIINet @XAMPIE ...cceiviieiiiieeieeieeiiicie e e e e e et ettt eeeeeeeeeeeataneaaaeeeeeesersssnnnsasesessssssnnnnseeeeanenes 211
5.43. SockAddrInetHoStName eXamMPIeccuuuuiieeeieriiiiiiiiiiieeeeeeeeretreareeeeeeeereerennaaeeeeerersrsnnnaaasaeaeees 212
5.44. SOCKAAArUniX eXamPIeccoovuuiiiieiiiiiiiiiiiiie e e e e eeeetesee e e e eeeeeeate e e eeeeeeraasssnnnaeeeessrssssnnnnaaeseeseenes 213
5.45. A simple StackingProvider Classcccoiiiiiiiiiiiiiiiiiii e 215
5.46. Using a StackingProvider in an FTP ProXY ...ccooiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 215
5.47. FINAING IP NEIWOTKS eeiiiiiiiiiiiiiiiiiiiiiiiitieieeeee ettt ettt ettt et et e e et et ettt e e e teeeeeeeeeeeeeeeeeeeeeeeeeeees 216
5.48. ZONE EXAIMPIES oiiiiiiiiiieieeeeiieiiiiiee e e e e eeeettte i aaeeeeeeteattenaaaeaeeersantssnaaaeeeeesssssnnnaeeeeerersssnnnnseeeeeeees 216
5.49. Determining the zone of an TP addressccccueiiiiieiiiieeeeee et e e e e e e e e e e 217
6.1. CSZoneDispatCher EXAIMPIE ccciiiiiiiiiiiiiieee e e e e eeeiiiieeeeeeeeeerrteeaeeeeeeereaassnnnaaaeeeeesesssnnnnnaesaaeeees 220
6.2. DiSpatCher EXAIMPIEcciiiieiiiiiie e e eeeeeiie e e e e e e e ee e e e e eeeeeeeeareeaaeeeeeeereassnnnaaaeeeaesenssnnnnnaeeeeeeens 221

www.balasys.hu xi

List of Procedures

1.1. Zorp startup and initialiZAtiON ccceeeeeiiiiiiiiieee e ecceiieee e e e e e et eeee e e e eeeeeraaa e e e e eeeeeeabanaaeaaaeerraeas 1
1.2.1. Handling packet filtering SeIrviCescciiiiiiiiiiiiiiii 2
1.2.2. Handling application-1€Vel SEIVICESuuuieeriiiiiiiiiiiieie e e e eeeeeiiieee e e e eeeeeretaeeeeeeeeeeassnnnaeeeasaeeesees 2
1.3. Proxy startup and the server-side CONMMNECHION ccuuuuiieerieieeiiiiiiieeeeeeeeereeiereeeeeeeeererennaeeeeeeeeesennns 3
3.1.1. The SSL handshakeccooiiiiiiiiiiiiiiiiiiiiiiiieeetete ettt ettt et e eeeeeeeeeeee e e eeeeeeeees 9
3.2.7.1. Configuring KeYDIridGingcccccoeeeieioiiiiiiieieieieieieresesesesesese s s e nnnnn 16
B.1. Setting global OPtioNS Of ZOIPuuvvuviiiiiiiiiiiiiiiiiiiiiiiiitieieitieteteeerereeeeaeereeereneaeneeenenennnnnnnnnnnnnnnnnnnes 232

www.balasys.hu xii

Summary of contents e

Preface

Welcome to the Zorp GPL Reference Guide. This book contains reference documentation on the available Zorp
proxies and their working environment, the Python framework.

This book contains information about the low-level proxy attributes available to customize proxy behavior and
the low-level classes comprising Zorp's access control and service framework. Basic introduction to the various
protocols is also provided for reference, but the detailed discussion of the protocols is beyond the scope of this
book.

1. Summary of contents

Chapter 1, How Zorp works (p. 1) provides an overview of the internal working of Zorp, for example, how
a connection is received.

Chapter 2, Configuring Zorp proxies (p. 4) describes the general concepts of configuring Zorp proxies.
Chapter 3, The Zorp SSL framework (p. 9) explains how to handle SSL-encrypted connections with Zorp.

Chapter 4, Proxies (p. 19) is a complete reference of the Zorp proxies, including their special features and
options.

Chapter 5, Core (p. 88) is the reference of Zorp core modules which are directly used by gateway administrators,
forming the access control and authentication framework.

Appendix C, Zorp manual pages (p. 237) is a collection of the command-line Zorp utilities.

Appendix B, Global options of Zorp (p. 232) is a reference the global options of Zorp.

2. Terminology
The following terms used throughout this documentation might require a brief explanation:

B class: A class is a set of attribute and method definitions performing certain specific functionality.
Classes can inherit methods and attributes from one or more parent classes. Classes do not contain
actual values for attributes; they only describe them.

B instance: An instance is a set of attribute values (as described by the class) and associated methods.
Instances are also called objects. Instances are created from classes by "calling" the class, with
arguments required by the constructor. For example, to create an instance of a class named "class"
one would write class(argl, arg2 [,.. argN]) where argl and arg2 are arguments of the
constructor.

® method: A function working in the context of an instance. It automatically receives a "self" argument
which can be used to fetch or set attributes stored in the associated instance.

W type: Variables in Python are not strongly typed, meaning that it is possible to assign any kind of
values to a variable; typing is assigned to the value.

www.balasys.hu xiii

Target audience and prerequisites e

m attribute: An attribute of an object is a variable holding some value, interpreted and manipulated by
object methods. Although Python is not strongly typed, types were assigned to the variables in Zorp
to indicate what kind of values they are supposed to hold.

m actiontuple: A tuple is a simple Python type defined as a list of values. An actiontuple is a special
tuple defined by Zorp where the first value must be a value specifying what action to take, and trailing
items specify arguments to the action. For example (HTTP_REQ_REJECT, "We don't like this
request") is a tuple for rejecting HTTP requests and returning the message specified in the second
value.

3. Target audience and prerequisites

This guide is intended for use by system administrators and consultants responsible for network security and
whose task is the configuration and maintenance of Zorp firewalls. Zorp gives them a powerful and versatile
tool to create full control over their network traffic and enables them to protect their clients against
Internet-delinquency.

This guide is also useful for IT decision makers evaluating different firewall products because apart from the
practical side of everyday Zorp administration, it introduces the philosophy behind Zorp without the marketing
side of the issue.

The following skills and knowledge are necessary for a successful Zorp administrator.

Skill Level/Description
Linux At least a power user's knowledge is required.
Experience in system administration Experience in system administration is certainly an

advantage, but not absolutely necessary.

Programming language knowledge It is not an explicit requirement to know any
programming languages though being familiar with
the basics of Python may be an advantage, especially
in evaluating advanced firewall configurations or in
troubleshooting misconfigured firewalls.

General knowledge on firewalls A general understanding of firewalls, their roles in the
enterprise IT infrastructure and the main concepts and
tasks associated with firewall administration is
essential. To fulfill this requirement a significant part
of Chapter 3, Architectural overview in the Zorp
Administrator's Guide is devoted to the introduction
to general firewall concepts.

Knowledge on Netfilter concepts and IPTables In-depth knowledge is strongly recommended; while
it is not strictly required definitely helps understanding
the underlying operations and also helps in shortening
the learning curve.

www.balasys.hu Xiv

Products covered in this guide e

Skill Level/Description

Knowledge on TCP/IP protocol High level knowledge of the TCP/IP protocol suite is
a must, no successful firewall administration is
possible without this knowledge.

Table 1. Prerequisites

4. Products covered in this guide
The Zorp Distribution DVD-ROM contains the following software packages:

m Current version of Zorp 7 packages.
m Current version of () 7.

m Current version of () 7 (GUI) for both Linux and Windows operating systems, and all the necessary
software packages.

® Current version of () 7.
m Current version of the () 7, the client for both Linux and Windows operating systems.
For a detailed description of hardware requirements of Zorp, see .

For additional information on Zorp and its components visit the Zorp website containing white papers, tutorials,
and online documentations on the above products.

5. Contact and support information
This product is developed and maintained by Balasys IT Zrt..

Contact:

Balasys IT Zrt.

4 Aliz Street

H-1117 Budapest, Hungary
Tel: +36 1 646 4740

E-mail: <info@balasys.hu>
Web: http://balasys.hu/

5.1. Sales contact

You can directly contact us with sales related topics at the e-mail address <sales@balasys.hu>, or leave us
your contact information and we call you back.

5.2. Support contact

To access the Balasys Support System, sign up for an account at the Balasys Support System page. Online
support is available 24 hours a day.

www.balasys.hu XV

https://www.balasys.hu/en/network-security/zorp-gateway
http://balasys.hu/
https://www.balabit.com/contact-sales
https://www.balabit.com/contact-sales
https://support.balasys.hu/

Balasys Support System is available only for registered users with a valid support package.

Support e-mail address: <support@balasys.hu>.

5.3. Training

Balasys IT Zrt. holds courses on using its products for new and experienced users. For dates, details, and
application forms, visit the https://www.balasys.hu/en/services#training webpage.

6. About this document
This guide is a work-in-progress document with new versions appearing periodically.

The latest version of this document can be downloaded from https://docs.balasys.hu/.

6.1. Feedback

Any feedback is greatly appreciated, especially on what else this document should cover, including protocols
and network setups. General comments, errors found in the text, and any suggestions about how to improve
the documentation is welcome at <support@balasys.hu>.

www.balasys.hu XVi

https://www.balasys.hu/en/services#training
https://docs.balasys.hu/

Handling incoming connections e

Chapter 1. How Zorp works

This chapter describes how Zorp works, and provides information about the core Zorp modules, explaining
how they interoperate. For a detailed reference of the core modules, see the description of the particular in
Chapter 5, Core (p. 88).

B Zorp startup and initialization: The main Zorp thread is started, and the rules listening for incoming
connections are initialized.

B Handling incoming connections: The client-side connection is established and the service to proxy
the connection is selected.

B Proxy startup and server-side connections: The proxy instance inspecting the traffic is created and
connection to the server is established.

1.1. Procedure - Zorp startup and initialization

Step 1. The zorpctl utility loads the instances.conf file and starts the main zorp program. The
instances.conf file stores the parameters of the configured Zorp instances.

Step 2. zorp performs the following initialization steps:
m Sets the stack limit.
m Creates its PID file.
m Changes the running user to the user and group specified for the instance.
m Initializes the handling of dynamic capabilities and sets the chroot directory.

m [oads the firewall policy from the policy. py file.

Step 3. The init () of Zorp initializes the ruleset defined for the Zorp instance.

Step 4. The kzorp kernel module uploads packet filtering services, rules, and zones into the kernel.

Note
@ Zorp creates four sockets (one for each type of traffic: TCP IPv6, TCP IPv4, UDP IPv6, UDP IPv4); the kzorp module directs
the incoming connections to the appropriate socket.

1.2. Handling incoming connections

Incoming connections are first received by the kzorp kernel module, which is actually a netfilter table. The
kzorp module determines the source and destination zones of the connection, and then tries to find a suitable
firewall rule. If the rule points to a packet filtering service, the connection is processed according to Procedure
1.2.1, Handling packet filtering services (p. 2); if it points to an application-level service, the connection is
processed according to Procedure 1.2.2, Handling application-level services (p. 2). If no suitable rule is found,
the connection is rejected.

www.balasys.hu 1

Handling incoming connections e

1.2.1. Procedure - Handling packet filtering services

Step 1.

Step 2.
Step 3.

Step 4.

Step 5.

Zorp generates a session ID and creates a CONNTRACK entry for the connection. This ID is based
on all relevant information about the connection, including the protocol (TCP/UDP) and the client's
address.

The session ID uniquely identifies the connection and is included in every log message related to this
particular connection.

Based on the parameters of the connection, the Rule selects the service that will inspect the connection.
The Router defined in the service determines the destination address of the server.
The Router performs the following actions:

m Determines the destination address of the server.

m Sets the source address of the server-side connection, according to the forge _address

settings of the router.

If the client is permitted to access the selected service, the packet filter is instructed to let the connection
pass Zorp.

The kzorp module performs network address translation (NAT) on the connection, if needed.

1.2.2. Procedure — Handling application-level services

Step 1.

Step 2.

Step 3.

Step 4.
Step 5.

Step 6.

For incoming connection requests that are processed on the application level, the main Zorp thread
establishes the connection with the client. The connection is further processed in a separate thread; the
main thread is listening for new connections.

The Dispatcher creates the MasterSession object of the connection and generates the base session ID.
This object stores all relevant information of the connection, including the protocol (TCP/UDP) and
the client's address.

The session ID uniquely identifies the connection and is included in every log message related to this
particular connection. Other components of Zorp add further digits to the session ID.

For TCP-based connections, Zorp copies the Type of Service (ToS) value of the client-Zorp connection
in the Zorp-client connection.

The Rule selects the service that will inspect the connection.
The Router defined in the service determines the destination address of the server. The result is stored
in the Session object, where the Chainer can access it later.
The Router performs the following actions:
m Determines the destination address of the server.

m Sets the source address of the server-side connection (according to the forge_port,
forge_address settings of the router).

m Sets the ToS value of the server-side connection.

If the client is permitted to access the selected service, the startInstance() method of the service
is started. The startInstance() method performs the following actions:

www.balasys.hu 2

Handling incoming connections e

m Verifies that the new instance does not exceed the number of instances permitted for the
service (max_1instances parameter).

m Creates the final session ID.

m Creates an instance of the proxy class associated with the service. This proxy instance is
associated with a StackedSession object. The startup of the proxy is detailed in Procedure
1.3, Proxy startup and the server-side connection (p. 3).

1.3. Procedure - Proxy startup and the server-side connection

Step 1. To create an instance of the application-level proxy, the __init__ constructor of the proxy class calls
the Proxy.__init__ function of the Proxy module. The proxy instance is created into a new thread
from the ZorpProxy ancestor class.

Step 2. From the new thread, the proxy loads its configuration.

Step 3. The proxy initiates connection to the server.

®

Step 4. The Proxy.connectServer () method creates the server-side connection using the Chainer assigned
to the service. The Chainer performs the following actions:

Note
Some proxies connect the server only after receiving the first client request.

m Reads the parameters related to the server-side connection from the Session object. These
parameters were set by the Router and the Proxy.

m Performs source and destination network address translation. This may modify the addresses
set by the Router and the Proxy.

m Verifies that access to the server is permitted.

m Establishes the connection using the Attach subsystem, and passes to the proxy the stream
that represents the connection.

Note
The Proxy.connectServer () method connects stacked proxies with their parent proxies.

®

www.balasys.hu 3

Policies for requests and responses e

Chapter 2. Configuring Zorp proxies

This chapter describes how Zorp proxies work in general, and how to configure them.

m For the details on configuring TLS/SSL connections, see Chapter 2, Configuring Zorp proxies (p. 4).

m For a complete reference of the available Zorp proxies, see Chapter 4, Proxies (p. 19).

2.1. Policies for requests and responses

Zorp offers great flexibility in proxy customization. Requests and commands, responses, headers, etc. can be
managed individually in Zorp. This means that it is not only possible to enable/disable them one-by-one, but
custom actions can be assigned to them as well. The available options are listed in the description of each proxy,
but the general guidelines are discussed here.

All important events of a protocol have an associated policy hash: usually there is one for the requests or
commands and one for the responses. Where applicable for a protocol, there are other policy hashes defined as
well (e.g., for controlling the capabilities available in the IMAP protocol, etc.). The entries of the hash are the
possible events of the protocol (e.g., the request hash of the FTP protocol contains the possible commands -
RMD, DELE, etc.) and an action associated with the event - what Zorp should do when this event occurs. The
available actions may slightly vary depending on the exact protocol and the hash, but usually they are the
following:

Action Description

ACCEPT Enable the event; the command/response/etc. can be
used and is allowed through the firewall.

REJECT Reject the event and send an error message. The event
is blocked and the client notified. The communication
can continue, the connection is not closed.

DROP Reject the event without sending an error message.
The event is blocked but the client is not notified. The
communication can continue, the connection is not
closed. In some cases (depending on the protocol) this
action is able to remove only a part of the message
(e.g., a particular header in HTTP traffic) without
rejecting the entire message.

ABORT Reject the event and terminate the connection.

POLICY Call a Python function to make a decision about the
event. The final decision must be one of the above
actions (i.e. POLICY is not allowed). The parameters
received by the function are listed in the module

www.balasys.hu 4

Default actions e

Action Description

descriptions. See the examples below and in the
module descriptions for details.

Table 2.1. Action codes for protocol events

The use of the policy hashes and the action codes is illustrated in the following examples.

— Example 2.1. Customizing FTP commands
— In this example the 'RMD' command is rejected, and the connection is terminated if the user attempts to delete a file.

class MyFtp(FtpProxy):

def config(self):
self.request["RMD"] = (FTP_REQ_REJECT)
self.request["DELE"] = (FTP_REQ_ABORT)

— Example 2.2. Using the POLICY action

—— | This example calls a function called pUser (defined in the example) whenever a USER command is received within an FTP session. All
| w— other commands are accepted. The parameter of the USER command (i.e. the username) is examined: if it is 'userl' or 'user2', the
connection is accepted, otherwise it is rejected.

class MyFtp(FtpProxy):

def config(self):
self.request["USER"] = (FTP_REQ_POLICY, self.pUser)
self.request["*"] = (FTP_REQ_ACCEPT)

def pUser(self,command):

if self.request_parameter == "userl" or self.request_parameter == "user2":
return FTP_REQ_ACCEPT

return FTP_REQ_REJECT

It must be noted that there is a difference between how Zorp processes the POLICY actions and all the other
ones (e.g., ACCEPT, DROP, etc.). POLICY actions are evaluated on the policy (or Python) level of Zorp, while
the other ones on the proxy (or C) level. Since the proxies of Zorp are written in C, and operate on the proxy
level, the evaluation of POLICY actions is slightly slower, but this can be an issue only in very high-throughput
environments with complex policy settings.

2.1.1. Default actions

Default actions for all events of a hash (e.g., all requests) can be set using the '*' wildcard as the event. (Most
hashes have default actions configured by default, these can be found in the description of the proxy classes.)
It is important to note that setting the action using the "*' wildcard does NOT override an action explicitly
defined for an event, even if the explicit setting precedes the general one in the Python code. This feature is
illustrated in the example below.

— Example 2.3. Default and explicit actions
— | The following two proxy classes have the same effect, even though the order of the code lines is switched. The 'APPE' command is
| w—1 rejected, while all other commands are accepted.

class MyFtpl(FtpProxy):

def config(self):
self.request["APPE"] = (FTP_REQ_REJECT)
self.request["*"] = (FTP_REQ_ACCEPT)

www.balasys.hu 5

Response codes e

class MyFtp2(FtpProxy):

def config(self):
self.request["*"] = (FTP_REQ_ACCEPT)
self.request["APPE"] = (FTP_REQ_REJECT)

‘Warning
A If the relevant hash does not contain a received request or response, the '*' entry is used which matches to every request/response. If
there is no '*' entry in the given hash, the request/response is denied.

2.1.2. Response codes

Responses in certain protocols include numeric response codes, e.g., in the FTP protocol responses start with
a three-digit code. In Zorp it is possible to filter these codes as well, furthermore, to filter them based on the
command to which the response arrives to. In these cases the hash contains both the command and the answer,
and an action as well. The '*' wildcard character can be used to match for every command or response code.

— Example 2.4. Customizing response codes
—— | The following example accepts the response 250" only to the DELE' command, but allows any response code to the 'LIST' command.

class MyFtpl(FtpProxy):

def config(self):
self.response["DELE", "250"] = (FTP_RSP_ACCEPT)
self.response["*", "250"] = (FTP_RSP_REJECT)
self.response["LIST", "*"] = (FTP_RSP_ACCEPT)

It is not necessary to specify the full response code, it is also possible to specify only the first, or the first two
digits.

For example, all three response codes presented below are valid, but have different effects:

. "PWD","200”
Match exactly the answer 200 coming in a reply to a PWD command.

. IIPWDII’HZH
Match every answer starting with '2' in a reply to a PWD command.

. H*"’HZOH
Match every answer between 200 and 209 in a reply to any command.

This kind of response code lookup is available in the following proxies: FTP, HTTP, NNTP, and SMTP. The
precedence how the hash table entries are processed is the following:

1. Exact match. ("PWD","200")

2. Exact command match, partial response matches ("PWD","20"; "PWD","2"; "PWD","*")

3. Wildcard command, with answer codes repeated as above. ("*","200"; "*","20"; "*","2")

4. Wildcard for both indexes. ("*","*")

www.balasys.hu 6

Secondary sessions e

2.2. Secondary sessions

Certain proxies support the use of secondary sessions, i.e. several sessions using the same proxy instance (the
same thread), effectively reusing proxy instances. As new sessions enter the proxy via a fastpath, using secondary
sessions can significantly decrease the load on the firewall.

When a new connection is accepted, Zorp looks for the appropriate proxy instance which is willing to accept
secondary sessions. If there is none, a new proxy instance is started. An already running proxy instance is
appropriate if it is willing to accept secondary channels and the criteria about secondary sessions are met. (The
criteria can be specified in the configuration of the proxy class.)

The criteria are set via the secondary_mask attribute, while the number of secondary sessions allowed within
the same instance is controlled by the secondary_sessions attribute. The secondary_mask attribute is an
integer specifying which properties of an established session are considered to be important. If all important
properties match, the connection can be handled as a secondary session by a proxy instance accepting secondary
sessions, provided the new session does not exceed the limit set in secondary sessions. The
secondary_mask attribute is actually a bitfield interpreted as follows: bit 0 means source address; bit 1 means
source port; bit 2 means destination address; bit 3 means destination port.

Currently the Plug supports the use of secondary sessions.

— Example 2.5. Example PlugProxy allowing secondary sessions
— | This example allows 100 parallel sessions in one proxy thread if the IP address and Port of the targets are the same.

class MyPlugProxy(PlugProxy):
def config(self):
PlugProxy.config(self)
self.secondary_mask = OxC
self.secondary_sessions = 100

2.3. Embedded protocol analysis

Each protocol proxy available in Zorp inspects the traffic for conformance to the given protocol. Often further
analysis of the data transferred via the protocol is required, this can be accomplished via stacking. Stacking is
a method when the data transferred in the protocol is passed to another proxy or program. After performing the
inspection, the stacked proxy or program returns the data to the original proxy, which resumes its transmission.

2.3.1. Proxy stacking

Proxy stacking is mainly used to inspect embedded protocols, or perform virus filtering: e.g., to inspect HTTPS
traffic, the external SSL protocol is examined with a Pssl proxy, and then a HTTP proxy is stacked to inspect
the internal protocol. It is possible to stack several layers of proxies into each other if needed, e.g., in the above
example, a further virus filtering solution (like a module) could be stacked into the HTTP proxy.

redundant. This feature greatly decreases the need of proxy stacking, making it needed only in special cases, for example, to inspect

Note
@ Starting with Zorp version 3.3FR1, every proxy is able to handle SSL/TLS-encypted connection on its own, making the Pssl proxy
HTTP traffic tunneled in SSH.

www.balasys.hu 7

Program stacking e

Stacking a proxy to inspect the embedded protocol is possible via the self.request_stack attribute; if
another attribute has to be used, it is noted in the description of the given proxy. The HTTP proxy is special in
the sense that it is possible to stack different proxies into the requests and the responses.

The parameters of the stack attribute has to specify the following:

m The protocol elements for which embedded inspection is required. This parameter can be used to
specify if all received data should be passed to the stacked proxy ("*"), or only the data related (sent
or received) to specific protocol elements (e.g., only the data received with a GET request in HTTP).

®m The mode how the data is passed to the stacked proxy. This parameter governs if only the data part
should be passed to the stacked proxy (XXXX_STK_DATA, where XXXX depends on the protocol),
or (if applicable) MIME header information should be included as well (XXXX_STK_MIME) to
make it possible to process the data body as a MIME envelope. Please note that while it is possible
to change the data part in the stacked proxy, it is not possible to change the MIME headers - they
can be modified only by the upper level proxy. The available constants are listed in the respective
protocol descriptions. The default value for this argument is XXXX_STK_NONE, meaning that no
data is transferred to the stacked proxy. In some proxies it is also possible to call a function (using
the XXXX_STK_POLICY action) to decide which part (if any) of the traffic should be passed to
the stacked proxy.

m The proxy class that will perform inspection of the embedded protocol.

The use of proxy stacking is illustrated in the following example:

— Example 2.6. HTTP proxy stacked into an HTTPS connection
% The following proxy class stacks an Http proxy into a Pssl Proxy to inspect HTTPS traffic.

| w—]
class HttpsPsslProxy(PsslProxy):

def config(self):
Pss1Proxy.config(self)
self.stack_proxy=(Z_STACK_PROXY, HttpProxy)

For additional information on proxy stacking, see , and the various tutorials available at the Balasys
Documentation Page.

2.3.2. Program stacking

When stacking a program, the data received by a proxy within a protocol is directed to the standard input.
Arbitrary commands (including command line scripts, or applications) working from the standard input can be
run on this data stream. The original proxy obtains the processed data back from the standard output. When
stacking a command, the command to be called has to be included in the proper stack attribute of the proxy
between double-quotes. This is illustrated in the following example.

— Example 2.7. Program stacking in HTTP

% In this example a simple 'sed' (stream editor) command is stacked into the HTTP proxy to replace all occurrences of 'http' to 'https', thus
| w— securing the HTTP connections on one side of the firewall.

class MyHttp(HttpProxy):
def config(self):
HttpProxy.config(self)
self.response_stack["GET"] = /
(HTTP_STK_DATA, (Z_STACK_PROGRAM, "/bin/sed '/http:/s//https:/g'"))

www.balasys.hu 8

https://www.balasys.hu/hu/dokumentacio
https://www.balasys.hu/hu/dokumentacio

The SSL protocol e

Chapter 3. The Zorp SSL framework

This chapter describes the SSL protocol and the SSL framework available for every Zorp proxy.

3.1. The SSL protocol

Secure Socket Layer v3 (SSL) and Transport Layer Security vl (TLS) are widely used crypto protocols
guaranteeing data integrity and confidentiality in many PKI and e-commerce systems. They allow both the
client and the server to authenticate each other. SSL/TLS use reliable TCP connection for data transmission
and cooperate with any application level protocol. SSL/TLS guarantee that:

® Communication in the channel is private, only the other communicating party can decrypt the
messages.

®m The channel is authenticated, so the client can make sure that it communicates with the right server.
Optionally, the server can also authenticate the client. Authentication is performed via certificates
issued by a Certificate Authority (CA). Certificates identify the owner of an encryption keypair used
in encrypted communication.

m The channel is reliable, which is ensured by message integrity verification using MAC.

SSL/TLS is almost never used in itself: it is used as a secure channel to transfer other, less secure protocols.
The protocols most commonly embedded into SSL/TLS are HTTP and POP3 (i.e. these are the HTTPS and
POP3S protocols).

3.1.1. Procedure — The SSL handshake
As an initial step, both the client and the server collect information to start the encrypted communication.

Step 1. The client sends a CLIENT-HELLO message.

Step 2. The server answers with a SERVER-HELLO message containing the certificate of the server. At this
point the parties determine if a new master key is needed.

cache. Clients that have contacted a particular server previously can request to continue a session (by identifying its session
ID); this can be used to accelerate the initialization of the connection. Zorp currently does not support this feature, but this

Note
@ The server stores information (including the session ID and other parameters) about past SSL/TLS sessions in its session
does not cause any noticeable difference to the clients.

Step 3. The client verifies the server's certificate. If the certificate is invalid the client sends an ERROR message
to the server.

Note
@ If anew master key is needed the client gets the server certificate from the SERVER-HELLO message and generates a master
key, sending it to the server in a CLIENT-MASTER-KEY message.

www.balasys.hu 9

Configuring TLS and SSL encrypted connections e

Step 4. The server sends a SERVER-VERIFY message, which authenticates the server itself.

Step 5. Optionally, the server can also authenticate the client by requesting the client's certificate with a
REQUEST-CERTIFICATE message.

Step 6. The server verifies the certificate received from the client and finishes the handshake with a
SERVER-FINISH message.

and another key for incoming communication. These are known as SERVER/CLIENT-READ-KEY and

Note
@ In SSL two separate session keys are used, one for outgoing communication (which is of course incoming at the other end),
SERVER/CLIENT-WRITE-KEY.

3.2. Configuring TLS and SSL encrypted connections

Zorp version 3.3FR1 introduces a common framework that allows every Zorp proxy to use SSL/TLS encryption,
and also to support STARTTLS.

®

3.2.1. Behavior of the SSL framework

A\

The SSL framework was built for inspecting SSL/TLS connections, and also any other connections embedded
into the encrypted SSL/TLS channel. SSL/TLS connections initiated from the client are terminated on the Zorp
firewall; and two separate SSL/TLS connections are built: one between the client and the firewall, and one
between the firewall and the server. If both connections are accepted by the local security policy (the certificates
are valid, and only the allowed encryption algorithms are used), Zorp inspects the protocol embedded into the
secure channel as well.

Note
In Zorp 7, the following proxies support STARTTLS: Ftp proxy (to start FTPS sessions), Smtp proxy.

‘Warning
For the details of the attributes related to the SSL framework, see Section 5.10.4, Class Proxy (p. 181).

Several configuration examples and considerations are discussed in the Technical White Paper and Tutorial
Proxying secure channels - the Secure Socket Layer, available at the Balasys Documentation Page.

3.2.1.1. General behavior

The SSL framework starts its operation by inspecting the values set in the ss1.handshake_seq attribute.
When this attribute is set to SSL_HSO_CLIENT SERVER the client side, otherwise
(SSL_HSO_SERVER_CLIENT) the server side handshake is performed first.

As part of the handshake process the proxy checks if SSL is enabled on the given side
(ssl.client_connection_security and ssl.server_connection_security attributes). It is not
necessary for SSL to be enabled on both sides - Zorp can handle one-sided SSL. connections as well (e.g., the

www.balasys.hu 10

https://www.balasys.hu/hu/dokumentacio

Handshake callbacks (;

firewall communicates in an unencrypted channel with the client, but in a secure channel with the server). If
SSL is not enabled, the handshake is skipped for that side.

When SSL is needed, the proxy will cooperate with the policy layer to have all required parameters (keys,
certificates, etc.) set up. This is achieved using decision points in the hash named ssl.handshake_hash
which is explained later in detail.

The SSL handshake is slightly different for the client (in this case Zorp behaves as an SSL server) and the server
(when Zorp behaves as an SSL client).

3.2.1.2. Client-side (SSL server) behavior

As an SSL server the first thing to present to an SSL client is a certificate/key pair, thus a call to the 'setup_key'
callback is made. It is expected that by the time this callback returns the attributes
ssl.client_local_privatekey and ssl.client_local certificate are filled appropriately.

If peer authentication is enabled (by setting the attribute ss1.client_verify_type) a list of trusted CA
certificates must be set up (stored in the hash ss1.client_local_ca_list). The list can be set up by the
'setup_ca_list' function call. Peer certificates are verified against the trusted CA list and their associated revocation
lists. Revocations can be set up in the 'setup_crl_list' callback.

At the end of the verification another callback named 'verify_cert' is called which can either ACCEPT or DENY
the certificate possibly overriding the verification against the local CA database.

3.2.1.3. Server-side (SSL client) behavior

The server-side handshake is similar to the client-side handshake previously described. The difference is the
order of certificate verification. On the server side Zorp verifies the server's certificate first and then sends its
own certificate for verification. This is unlike the client side where the local certificate is sent first, and then
the peer's certificate is verified.

So the callbacks are called in this order: 'setup_ca_list' and 'setup_crl_list' to set up CA and CRL information,
'verify_cert' to finalize certificate validation, and 'setup_key' to optionally provide a local certificate/key pair.

3.2.2. Handshake callbacks

As described earlier, the SSL framework provides a way to customize the SSL handshake process. This is done
using the ss1.client_handshake and ssl.server_handshake hashes. These hashes are indexed by the
keywords listed below.

The tuple can be separated to two parts: 1) tuple type, 2) parameters for the given type. For now only
SSL_HS_POLICY is valid as tuple type, and it requires a function reference as parameter.

The following keys are accepted as indexes:

setup_key This function is called when the proxy needs the private
key/certificate pair to be set up. All attributes filled in the earlier
phases can be used to decide which key/certificate to use. The
function expects two parameters: self, side.

www.balasys.hu 11

X.509 Certificates (;

setup_ca_list This function is called when the proxy needs the trusted CA list
to be set up. The function expects two parameters: self, side.

setup_crl_list This function is called when the proxy needs the CRL list to be
set up. This function gets a single string parameter which
contains the name of the CA whose CRL is to be filled up. The
function expects three parameters: self, side, ca_name.

verify_cert This function is called to finalize the verification process. The
function expects two parameters: self, side.

The function arguments as referenced above are defined as:

self The proxy instance.
side The side where handshake is being performed.
ca_name Name of an X.509 certificate.

The functions returns one of the SSL_HS_ * constants. Generally if the function returns SSL_HS_ACCEPT the
handshake continues, otherwise the handshake is aborted. As an exception, verify cert may return
SSL_HS_VERIFIED in which case the certificate is accepted without further verification.

Name Value
SSL._HS_ACCEPT 0
SSL._HS_REJECT 1
SSL_HS_POLICY 6
SSL_HS_VERIFIED 10

Table 3.1. Handshake policy decisions

3.2.3. X.509 Certificates

An X.5009 certificate is a public key with a subject name specified as an X.500 DN (distinguished name) signed
by a certificate issuing authority (CA). X.509 certificates are represented as Python policy objects having the
following attributes:

subject Subject of the certificate.

issuer Issuer of the certificate (i.e. the CA that signed it).
serial Serial number of the certificate.

blob The certificate itself as a string in PEM format.

Zorp uses X.509 certificates to provide a convenient and efficient way to manage and distribute certificates and
keys used by the various components and proxies of the managed firewall hosts. It is mainly aimed at providing
certificates required for the secure communication between the different parts of the firewall system, e.g. firewall
hosts and engine (the actual communication is realized by agents).

Certificates of trusted CAs (and their accompanying CRLs) are used in Zorp to validate the certificates of
servers accessed by the clients. The hashes and structures below are used by the various certificate-related
attributes of the Zorp Pssl proxy, particularly the ones of certificate type.

www.balasys.hu 12

X.509 Certificates 3

3.2.3.1. X.509 Certificate Names

A certificate name behaves as a string, and contains a DN in the following format (also known as one-line
format):

/RDN=value/RDN=value/.../RDN=value/

The word RDN stands for relative distinguished name. For example, the DN cn=Root CA, ou=CA Group,
o=Foo Ltd, 1=Bar, st=Foobar State, c=US becomes /C=US/ST=Foobar State/L=Bar/0=Foo
Ltd/0OU=CA Group/CN=Root CA/

A

3.2.3.2. X.509 Certificate Revocation List

Warning
The format and representation of certificate names may change in future releases.

A certifying authority may revoke the issued certificates. A revocation means that the serial number and the
revocation date is added to the list of revoked certificates. Revocations are published on a regular basis. This
list is called the Certificate Revocation List, also known as CRL. A CRL always has an issuer, a date when the
list was published, and the expected date of its next update.

3.2.3.3. X.509 Certificate hash

The proxy stores trusted CA certificates in a Certificate hash. This hash can be indexed by two different types.
If an integer index is used, the slot specified by this value is looked up; if a string index is used, it is interpreted
as a one-line DN value, and the appropriate certificate is looked up. Each slot in this hash contains an X.509
certificate.

3.2.3.4. X.509 CRL hash

Similarly to the certificate hash, a separate hash for storing Certificate Revocation Lists was defined. A CRL
contains revocation lists associated to CAs.

3.2.3.5. Certificate verification options

Zorp is able to automatically verify the certificates received. The types of accepted certificates can be controlled
separately on the client and the server side using the ssl.client_verify type and the
ssl.server_verify_type attributes. These attributes offer an easy way to restrict encrypted access only to
sites having trustworthy certificates. The available options are summarized in the following table.

Name Value
TLS_TRUST_LEVEL_NONE Accept invalid for example, expired certificates.
TLS_TRUST_LEVEL_UNTRUSTED Both trusted and untrusted certificates are accepted.

www.balasys.hu 13

Setting the allowed TLS protocol e

Name Value
TLS_TRUST LEVEL_FULL Only valid certificates signed by a trusted CA are
accepted.

Table 3.2. Constants for trust level selection.

The ss1.server_check_subject can be used to compare the domain name provided in the Subject field
of the server certificate to application level information about the server. Currently it can compare the Subject
field to the domain name of the HTTP request in HTTPS communication. If the ss1. server_check_subject
is set to TRUE and ssl.server_verify type is SSL_VERIFY_REQUIRED_UNTRUSTED or
SSL_VERIFY_REQUIRED_TRUSTED, the HTTP proxy using the SSL framework will deny access to the page
and return an error if the Subject field does not match the domain name of the URL.

3.2.4. Setting the allowed TLS protocol

There are different and sometimes incompatible releases of the TLS protocol. TLS protocols can be set via the
ClientSSLOptions and ServerSSLOptions classes, enabling all supported protocols by default. Set the appropriate
'disable tls* parameters to disable the selected TLS protocols. Zorp currently supports the TLS v1, TLS v1.1,
TLS v1.2 protocols.

— Example 3.1. Disabling specific TLS protocols
—— | The following example disables the TLSv1 protocol on the client and the server side.

EncryptionPolicy(
name="MyTLSEncryption",
encryption=TwoSidedEncryption(
client_verify=None,
server_verify=ServerCertificateVerifier(
ca_directory="/etc/ca.d/certs/",
crl_directory="/etc/ca.d/crls/",

)
client_ssl_options=ServerSSLOptions(disable_proto_tlsvl=TRUE),
server_ssl_options=ServerSSLOptions(disable_proto_t1lsvl=TRUE),

)
)

3.2.5. SSL cipher selection

The cipher algorithms used for key exchange and mass symmetric encryption are specified by the attributes
ssl.client_ssl ciphersandssl.server_ssl_ciphers. These attributes contain a cipher specification
as specified by the OpenSSL manuals, see the manual page ciphers(ssl) for further details.

The default set of ciphers can be set by using the following predefined variables.

Name Value
SSL_CIPHERS_HIGH n/a
SSL_CIPHERS_MEDIUM n/a
SSL_CIPHERS_LOW n/a
SSL_CIPHERS_ALL n/a

www.balasys.hu 14

Enabling STARTTLS (37

Name Value

SSL_CIPHERS_CUSTOM n/a

Table 3.3. Constants for cipher selection

Cipher specifications, as defined above, are sorted by key length. The cipher providing the best key length will
be the most preferred one.

3.2.6. Enabling STARTTLS

Starting with version 3.3FR1, Zorp supports the STARTTLS method for encrypting connections. STARTTLS
support can be configured separately for the client- and server side using the
ssl.client_connection_securityandssl.server_connection_security parameters, respectively.
The parameters have the following possible values:

Name Value

SSL_NONE Disable encryption between Zorp and the peer.

SSL_FORCE_SSL Require encrypted communication between Zorp and
the peer.

SSL_ACCEPT_STARTTLS Permit STARTTLS sessions. Currently supported only
in the Ftp, Smtp and Pop3 proxies.

Table 3.4. Client connection security type.

Name Value

SSL_NONE Disable encryption between Zorp and the peer.

SSL_FORCE_SSL Require encrypted communication between Zorp and
the peer.

SSL._ FORWARD_STARTTLS Forward STARTTLS requests to the server. Currently

supported only in the Ftp, Smtp and Pop3 proxies.

Table 3.5. Server connection security type.
Note
In Zorp 7, the following proxies support STARTTLS: Ftp proxy (to start FTPS sessions), Smtp proxy.

— Example 3.2. Configuring FTPS support
——— | This example is a standard FtpProxy with FTPS support enabled.

class FtpsProxy(FtpProxy):
def config(self):
FtpProxy.config(self)
self.max_password_length=64

EncryptionPolicy(name="ForwardSTARTTLS",
encryption=ForwardStartTLSEncryption(client_verify=ClientCertificateVerifier(),
client_ssl_options=ClientSSLOptions(), server_verify=ServerCertificateVerifier(),
server_ssl_options=ServerSSLOptions(),
client_certificate generator=DynamicCertificate(private key=Privatekey.fromFile(key file path="/etc/key.d/ZMS Engine/key.pem"),

trusted_ca=Certificate.fromFile(certificate_file_path="/etc/ca.d/certs/my-trusted-ca-cert.pem",

www.balasys.hu 15

Keybrigding certificates e

proto=6,

)

private_key=PrivateKey.fromFile("/etc/ca.d/keys/my-trusted-ca-cert.pem")),
untrusted_ca=
private_key=PrivateKey.fromFile("/etc/ca.d/keys/my-untrusted-ca-cert.pem")))))

Certificate.fromFile(certificate_file_path="/etc/ca.d/certs/my-untrusted-ca-cert.pem",

def demo()
Service(name="'demo/MyFTPSService', router=TransparentRouter(), chainer=ConnectChainer(),
proxy_class=FtpsProxy, max_instances=0, max_sessions=0, keepalive=Z_ KEEPALIVE_NONE,
encryption_policy="ForwardSTARTTLS")

Rule(rule_id=2,

service='demo/MyFTPSService'

3.2.7. Keybrigding certificates

Keybridging is a method to let the client see a copy of the server's certificate (or vice versa), allowing it to
inspect it and decide about its trustworthiness. Because of proxying the SSL/TLS connection, the client is not
able to inspect the certificate of the server directly, therefore Zorp generates a certificate based on the server's
certificate on-the-fly. This generated certificate is presented to the client.

3.2.7.1. Procedure

Purpose:

- Configuring keybridging

To configure keybridging in a proxy, complete the following steps.

Steps:

Step 1. Create the required keys and CAs.

Step a.

Step b.

Step c.

www.balasys.hu

Generate two local CA certificates. One of them will be used to sign bridging certificates
for servers having trusted certificates, the other one for servers with untrusted or
self-signed certificates. It is useful to reflect this difference somewhere in the CA's
certificates, for example, in their common name (CA_for Untrusted_certs;
CA_for_Trusted_certs). These CA certificates can either be self-signed or signed by
a local root CA. The certificate of the CA signing the trusted certificates should be
imported to your clients to make the generated certificates 'trusted'. The other CA
certificate should not be imported to the clients.

Warning
A IMPORTANT: Do NOT set a password for these CAs, as they have to be accessible automatically by
Zorp.

Generate a new certificate. The private key of this keypair will be used in the on-the-fly
generated certificates, the public part (DN and similar information) will not be used.

Copy the generated certificate, the CA certificates, and the keys to the firewall, for
example, into /etc/zorp/sslbridge/. This directory will be used in the
ssl.client_ca_directory option.

16

Keybrigding certificates e

Note
@ If you want to send the root CA of the CA certificates to the clients, also copy the root CA (and any
intermediate CA certificates) to this directory.

Step d. Create a cache directory to store the keybridged certificates generated by Zorp, for
example, /var/1ib/zorp/sslbridge/, and make it writable for the zorp user.

from the cache, do NOT delete this file. If you accidentally delete it, recreate it, and make sure that it

Note
@ Zorp automatically creates a file called serial. txt in the cache directory. If you delete the certificates
is writable for the zorp user.

Step 2. Set up a proxy class (for example, a class derived from the HttpProxy class) and set the following
attributes with the following values:

m Instruct Zorp to perform the handshake with the server first:
self.ssl.handshake_seq=SSL_HSO_SERVER_CLIENT

class KeybrideHttpsProxy(HttpProxy):
def config(self):
self.ssl.handshake_seq=SSL_HSO_SERVER_CLIENT

m Enable keybridging. Depending on the direction the keybridging is performed, add the
self.ssl.client_keypair_generateortheself.ssl.server_keypair_generate
parameter, and set it to TRUE. When the generated certificates are shown to the clients, the
self.ssl.client_keypair_generate parameter has to be used. (Actually, if a
keypair_generate parameter is set, the proxy will request a keypair from the key _generator
class. This class — discussed a bit later — returns either a newly generated keypair, or if
its key_f1ile parameter is set, a pregenerated keypair. In this example this latter option
will be used.)

class KeybrideHttpsProxy(HttpProxy):
def config(self):
self.ssl.handshake_seq=SSL_HSO_SERVER_CLIENT
self.ssl.client_keypair_generate = TRUE

m Configure the key_generator class. Note that the parameters of this class must be added
to the proxy as a single line, for example:

class KeybrideHttpsProxy(HttpProxy):
def config(self):
self.ssl.handshake_seq=SSL_HSO_SERVER_CLIENT
self.ssl.client_keypair_generate = TRUE
self.ssl.key_generator=X509KeyBridge(\
key_file="/etc/key.d/Keybridging_cert/key.pem", \
key_passphrase="", cache_directory="/var/lib/zorp/sslbridge", \

trusted_ca_files=("/etc/ca.d/certs/0000000070.pem",\

www.balasys.hu 17

Related standards e

Step 3.

Step 4.

"/etc/ca.d/keys/0000000070.pem"), \
untrusted_ca_files=("/etc/ca.d/certs/0000000069.pem", \
"/etc/ca.d/keys/0000000069.pem"))

Create a service and a rule using the modified proxy class. Use the previously defined proxy class in
your Service definition, set up service and access control properties as usual.

Restart Zorp.
Expected result:

Every time the client connects to a previously unknown host, a new certificate will be generated, signed
by one of the CAs specified above. This new certificate will be stored under
/var/lib/zorp/sslbridge under a filename based on the original server certificate. It will also
be shown to the client as the server certificate, and assuming the signer CA is trusted, the client (browser
or other application) will not warn about untrusted certificates in any way. If the certificate is signed
by the CA for untrusted certificates, the application will not recognize the issuer CA (since its certificate
has not been imported to the client) and give a warning to the user. The user can then decide whether
the certificate can be accepted or not.

(Actually, two files are stored on the firewall for each certificate: the original certificate received from
the server, and the generated certificate. When a client connects to the server, the certificate provided
by the server is compared to the stored one: if the two does not match, a new certificate is generated.
This happens for example if the server certificate has been expired and refreshed.)

3.3. Related standards

m The SSL protocol is defined by Netscape Ltd. at http://wp.netscape.com/eng/ssl3/ssl-toc.html
m The TLS protocol is defined in RFC 2246.

3.4. SSL options reference

The SSL options are described in detail in the documentation of the Proxy class. See Section 5.10.4, Class
Proxy (p. 181).

www.balasys.hu 18

General information on the proxy modules e

Chapter 4. Proxies

This chapter contains reference information on all the available Zorp proxies.

4.1. General information on the proxy modules

The sections discussing the available proxies are organized as follows. Overall introduction is followed by
proxy class descriptions. Each module has an abstract class which is an interface between the policy and the
proxy itself. Abstract classes are the point where the low-level attributes implemented by the proxy appear.

Each Python module contains an abstract proxy class (e.g., AbstractFtpProxy) and one or more preconfigured
proxy classes derived from the abstract class (e.g., FtpProxy, FtpProxyRO, etc.). These abstract proxies are
very low level classes which always require customization to operate at all, thus they are not directly usable.
The preconfigured classes customize the base abstract proxy to perform actually useful functionality. These
derived classes inherit all their attributes from the class they were derived from, but have some of their parameters
set to default values. Consequently, they can be used for certain tasks without any (or only minimal) modification.
Most default classes were derived directly from the abstract classes, but it is possible to derive a class from
another derived class. In this case this new class inherits the attributes from its parent class and the abstract
class as well. Abstract classes should not be used directly for configuring services in Zorp, always derive an
own class and modify its attributes to suit the requirements.

4.2, Attribute values

The description of each abstract class includes a detailed list and definition of the attributes of the proxy class.
The type and default value of the attribute is also provided. Most types of the attributes (e.g., integer, string,
boolean, etc.) are self-explanatory; more complicated attributes (listed as complex type) are explained in their
respective description or in the general proxy behavior section of the module.

Proxy attributes can be available and modified during configuration time, run time, or both. Configuration time
attributes are set and modified when the proxy is configured, that is, when the session starts. Run time attributes
are available when the connection is active, for example, information about the HTTP header being processed
is available only when the header is processed. Access to the attributes is indicated in the header of the description
of the attribute in the following format: availability during configuration time : availability
during run time. The type of availability can be read (r) access, write (w) access, both, or not available
(n/a). An attribute that is available for reading and writing during both configuration and run time is indicated
as rw: rw, an attribute that is available only for reading during run time is indicated as n/a: r.

Note
@ Unless noted otherwise, default values related to lengths (e.g., line length, etc.) are in bytes.

Timeout values are always given in milliseconds. Setting a timeout to -1 disables the timeout (i.e. it becomes unlimited).

The description of every proxy class includes a list or textual description of the attributes modified relative to
their parent class. The values of the other attributes are inherited from the parent class.

www.balasys.hu 19

4.3. Examples

A number of Python code samples is provided for the proxies to illustrate both their general operation and their
capabilities. Most of the proxy configurations shown in the examples can be easily reproduced using the graphical
interface. However, some of them utilize the advanced flexibility of Zorp and therefore require the use of
configuration scripts written in Python. From these can be implemented, maintained and edited using the Class
editor. (The Class editor is available under the Proxies tab of the Zorp component. When creating a new class,
click on the Class editor button under the list of available classes.)

4.4. Module AnyPy

This module defines an interface to the AnyPy proxy implementation. AnyPy is basically a Python proxy which
means that the proxy behaviour is defined in Python by the administrator.

4.4.1. Related standards

4.4.2. Classes in the AnyPy module

Class Description
AbstractAnyPyProxy Class encapsulating an AnyPy proxy.
AnyPyProxy Class encapsulating the default AnyPy proxy.

Table 4.1. Classes of the AnyPy module

4.4.3. Class AbstractAnyPyProxy

This class encapsulates AnyPy, a proxy module calling a Python function to do all of its work. It can be used
for defining proxies for protocols not directly supported.

as its parent, and implement the proxyThread method to handle the traffic.

Your code will be running as the proxy to transmit protocol elements. When writing your code, take care and be security conscious: do

Warning
A This proxy class is a basis for creating a custom proxy, and cannot be used on its own. Create a new proxy class using the AnyPyProxy
not make security vulnerabilities.

4.4.3.1. Attributes of AbstractAnyPyProxy

client_max_line_length (integer)

Default: 4096

Size of the line buffer in the client stream in bytes. Default value: 4096

server_max_line_length (integer)

Default: 4096

www.balasys.hu 20

Class AnyPyProxy e

server_max_line_length (integer)

Size of the line buffer in the server stream in bytes. Default value: 4096

4.4.3.2. AbstractAnyPyProxy methods

Method Description
init _(self, session) Constructor to initialize an AnyPy instance.
proxyThread(self) Function called by the low-level proxy core to transfer
requests.

Table 4.2. Method summary

Method __init__(self, session)

This constructor initializes a new AnyPy instance based on its arguments, and calls the inherited constructor.

Arguments of __init__

session (unknown)

Default: n/a

The session to be inspected with the proxy instance.

Method proxyThread(self)

This function is called by the proxy module to transfer requests. It can use the 'self.session.client_stream' and
'self.session.server_stream' streams to read data from and write data to.

4.4.4. Class AnyPyProxy

This class encapsulates AnyPy, a proxy module calling a Python function to do all of its work. It can be used
for defining proxies for protocols not directly supported.

4.4.4.1. Note

This proxy class can only be used as a basis for creating a custom proxy and cannot be used on its own. Please
create a new proxy class with the AnyPyProxy as its parent and implement the proxyThread method for handling
traffic.

Your code will be running as the proxy to transmit protocol elements, you'll have to take care and be security
conscious not to make security vulnerabilities.

4.5. Module Finger

The Finger module defines the classes constituting the proxy for the Finger protocol.

www.balasys.hu 21

The Finger protocol e

4.5.1. The Finger protocol

Finger is a request/response based User Information Protocol using port TCP/79. The client opens a connection
to the remote machine to initiate a request. The client sends a one line query based on the Finger query
specification and waits for the answer. A remote user information program (RUIP) processes the query, returns
the result and closes the connection. The response is a series of lines consisting of printable ASCII closed
carriage return-line feed (CRLF, ASCII13, ASCII10). After receiving the answer the client closes the connection
as well.

The following queries can be used:
m <CRLF> This is a simple query listing all users logged in to the remote machine.
m USERNAME<CRLF> A query to request all available information about the user USERNAME.

® USERNAME@HOST1<CRLF> Request the RUIP to forward the query to HOST1. The response
to this query is all information about the user USERNAME available at the remote computer HOST1.

m USERNAME@HOST1@HOST2<CRLF> Request HOST1 to forward the query to HOST2. The
response to this query is all information about the user USERNAME available at the remote computer
HOST?2.

4.5.2. Proxy behavior

Finger is a module built for parsing messages of the Finger protocol. It reads the QUERY at the client side,
parses it and - if the local security policy permits - sends it to the server. When the RESPONSE arrives it
processes the RESPONSE and sends it back to the client. It is possible to prepend and/or append a string to the
response. Requests can also be manipulated in various ways using the fingerRequest function, which is called
by the proxy if it is defined.

Length of the username, the line and the hostname can be limited by setting various attributes. Finger proxy
also has the capability of limiting the number of hosts in a request, e.g.: finger user@domain@server
normally results in fingering 'user@domain' performed by the host 'server'. By default, the proxy removes
everything after and including the first'@' character. This behavior can be modified by setting the max_hop_count
attribute to a non-zero value.

— Example 4.1. Controlling the number of max hops
| —

%‘ def MyFingerProxy(FingerProxy):

def config(self):
FingerProxy.config(self)
self.max_hop_count = 2
self.timeout = 30

4.5.3. Related standards

m The Finger User Information Protocol is described in RFC 1288.

www.balasys.hu 22

Classes in the Finger module e

4.5.4. Classes in the Finger module

Class Description
AbstractFingerProxy Class encapsulating the abstract Finger proxy.
FingerProxy Class encapsulating the default Finger proxy.

Table 4.3. Classes of the Finger module

4.5.5. Class AbstractFingerProxy

This proxy implements the Finger protocol as specified in RFC 1288.

4.5.5.1. Attributes of AbstractFingerProxy

max_hop_count (integer, rw:r)

Default: 0

Maximum number of '@' characters in the request. Any text after the last allowed '@' character is stripped
from the request.

max_hostname_length (integer, rw:r)

Default: 30

Maximum number of characters in a single name of the hostname chain.

max_line_length (integer, rw:r)

Default: 132

Maximum number of characters in a single line in requests and responses.

max_username_length (integer, rw:r)

Default: 8

Maximum length of the username in a request.

request_detailed (integer, n/a:rw)

Default: n/a

Indicates if multi-line formatting request (/W prefix) was sent by the client (-1 parameter). Request for multi-line
formatting can be added/removed by the proxy during the fingerRequest event.

request_hostnames (string, n/a:rw)

Default: n/a

The hostname chain. The hostname chain can be modified by the proxy during the fingerRequest event.

www.balasys.hu 23

Class AbstractFingerProxy e

request_username (string, n/a:rw)

Default: n/a

The username to be queried. The username can be modified by the proxy during the fingerRequest event.

response_footer (string, rw:rw)

Default:

String to be appended by the proxy to each finger response.

response_header (string, n/a:rw)

Default: ""

String to be prepended by the proxy to each finger response.

strict_username_check (boolean, rw:r)

Default: TRUE

If enabled (TRUE), only requests for usernames containing alphanumeric characters and underscore
[a-zA-Z0-9_] are allowed.

timeout (integer, rw:r)

Default: n/a

Timeout value for the request in milliseconds.

4.5.5.2. AbstractFingerProxy methods

Method Description

fingerRequest(self, username, hostname) Function processing finger requests.

Table 4.4. Method summary

Method fingerRequest(self, username, hostname)

This function is called by the Finger proxy to process requests. It can also modify request-specific attributes.

Arguments of fingerRequest

hostname (unknown, n/a:n/a)

Default: n/a

Destination hosts of the finger request.

www.balasys.hu 24

Class FingerProxy e

username (unknown, n/a:n/a)

Default: n/a

Username to be fingered.

4.5.6. Class FingerProxy

Simple FingerProxy based on AbstractFingerProxy.

4.6. Module Ftp

The Ftp module defines the classes constituting the proxy for the File Transfer Protocol (FTP).

4.6.1. The FTP protocol

File Transfer Protocol (FTP) is a protocol to transport files via a reliable TCP connection between a client and
a server. FTP uses two reliable TCP connections to transfer files: a simple TCP connection (usually referred
to as the Control Channel) to transfer control information and a secondary TCP connection (usually referred
to as the Data Channel) to perform the data transfer. It uses a command/response based approach, i.e. the client
issues a command and the server responds with a 3-digit status code and associated status information in text
format. The Data Channel can be initiated either from the client or the server; the Control Channel is always
started from the client.

The client is required to authenticate itself before other commands can be issued. This is performed using the
USER and PASS commands specifying username and password, respectively.

4.6.1.1. Protocol elements

The basic protocol is as follows: the client issues a request (also called command in FTP terminology) and the
server responds with the result. Both commands and responses are line based: commands are sent as complete
lines starting with a keyword identifying the operation to be performed. A response spans one or more lines,
each specifying the same 3-digit status code and possible explanation.

4.6.1.2. Data transfer

Certain commands (for example RETR, STOR or LIST) also have a data attachment which is transferred to
the peer. Data attachments are transferred in a separate TCP connection. This connection is established on-demand
on a random, unprivileged port when a data transfer command is issued.

Endpoint information of this data channel is exchanged via the PASV and PORT commands, or their newer
equivalents (EPSV and EPRT).

The data connection can either be initiated by the client (passive mode) or the server (active mode). In passive
mode (PASV or EPSV command) the server opens a listening socket and sends back the endpoint information
in the PASV response. In active mode (PORT or EPRT command) the client opens a listening socket and sends
its endpoint information as the argument of the PORT command. The source port of the server is usually either
20, or the port number of the Command Channel minus one.

www.balasys.hu 25

Proxy behavior e

— Example 4.2. FTP protocol sample

— 220 FTP server ready
USER account

331 Password required.
PASS password

230 User logged in.

SYST

215 UNIX Type: L8

PASV

227 Entering passive mode (192,168,1,1,4,0)
LIST

150 Opening ASCII mode data connection for file list
226-Transferring data in separate connection complete.
226 Quotas off

QUIT

221 Goodbye

4.6.2. Proxy behavior

FtpProxy is a module built for parsing commands of the Control Channel in the FTP protocol. It reads the
REQUEST at the client side, parses it and - if the local security policy permits - sends it to the server. The proxy
parses the arriving RESPONSES and sends them to the client if the policy permits that. FtpProxy uses a
PlugProxy to transfer the data arriving in the Data Channel. The proxy is capable of manipulating commands
and stacking further proxies into the Data Channel. Both transparent and non-transparent modes are supported.

The default low-level proxy implementation (AbstractFtpProxy) denies all requests by default. Different
commands and/or responses can be enabled by using one of the several predefined proxy classes which are
suitable for most tasks. Alternatively, use of the commands can be permitted individually using different
attributes. This is detailed in the following two sections.

4.6.2.1. Configuring policies for FTP commands and responses

Changing the default behavior of commands can be done by using the hash attribute request, indexed by the
command name (e.g.: USER or PWD). There is a similar attribute for responses called response, indexed by
the command name and the response code. The possible values of these hashes are shown in the tables below.
See Section 2.1, Policies for requests and responses (p. 4) for details. When looking up entries of the response
attribute hash, the lookup precedence described in Section 2.1.2, Response codes (p. 6) is used.

Action Description

FTP_REQ_ACCEPT Allow the request to pass.

FTP_REQ_REJECT Reject the request with the error message specified in
the second optional parameter.

FTP_REQ_ABORT Terminate the connection.

Table 4.5. Action codes for commands in FTP

Action Description

FTP_RSP_ACCEPT Allow the response to pass.

FTP_RSP_REJECT Modify the response to a general failure with error
message specified in the optional second parameter.

www.balasys.hu 26

Proxy behavior e

Action Description
FTP_RSP_ABORT Terminate the connection.
Table 4.6. Action codes for responses in FTP
— Example 4.3. Customizing FTP to allow only anonymous sessions

—— | This example calls a function called pUser (defined in the example) whenever a USER command is received. All other commands are
| —] accepted. The parameter of the USER command (i.e. the username) is examined: if it is 'anonymous' or 'Anonymous', the connection is
accepted, otherwise it is rejected.

class AnonFtp(FtpProxy):
def config(self):
self.request["USER"] = (FTP_REQ_POLICY, self.pUser)
self.request["*"] = (FTP_REQ_ACCEPT)

def pUser(self,command):
if self.request_parameter == "anonymous" or self.request_parameter == "Anonymous":
return FTP_REQ_ACCEPT
return FTP_REQ_REJECT

4.6.2.2. Configuring policies for FTP features and FTPS support

FTP servers send the list of supported features to the clients. For example, ProFTPD supports the following
features: LANG en, MDTM, UTF8, AUTH TLS, PBSZ, PROT, REST STREAM, SIZE.The defaultbehavior
of FTP features can be changed using the hash attribute features, indexed by the name of the feature (e.g.:
UTF8 or AUTH TLS). The possible actions are shown in the table below. See Section 2.1, Policies for requests
and responses (p. 4) for details.

The built-in FTP proxies permit the use of every feature by default.

Action Description

FTP_FEATURE_ACCEPT Forward the availability of the feature from the server
to the client.

FTP_FEATURE_DROP Remove the feature from the feature list sent by the
server.

FTP_FEATURE_INSERT Add the feature into the list of available features.

Table 4.7. Policy about enabling FTP features.

Enabling FTPS connections

For FTPS connections to operate correctly, the FTP server and client applications must comply to the FTP
Security Extensions (RFC 2228) and Securing FTP with TLS (RFC 4217) RFCs.

For FTPS connections, the AUTH TLS, PBSZ, PROT features must be accepted. Also, STARTTLS support

must be properly configured. See Section 3.2, Configuring TLS and SSL encrypted connections (p. 10) for
details.

If the proxy is configured to disable encryption between Zorp and the client, the proxy automatically removes
the AUTH TLS, PBSZ, PROT features from the list sent by the server.

www.balasys.hu 27

Proxy behavior e

If STARTTLS connections are accepted on the client side
(self.ssl.client_security=SSL_ACCEPT_STARTTLS), but TLS-forwarding is disabled on the server
side, the proxy automatically inserts the AUTH TLS, PBSZ, PROT features into the list sent by the server.
These features are inserted even if encryption is explicitly disabled on the server side or the server does not
support the FEAT command, making one-sided STARTTLS support feasible.

Warning
A When using inband routing with the FTPS protocol, the server's certificate is compared to its hostname. The subject_alt_name parameter
(or the Common Name parameter if the subject_alt_name parameter is empty) of the server's certificate must contain the hostname or
the IP address (as resolved from the Zorp host) of the server (e.g., ftp.example. com).

Alternatively, the Common Name or the subject_alt_name parameter can contain a generic hostname, e.g., *. example.com.

Note that if the Common Name of the certificate contains a generic hostname, do not specify a specific hostname or an IP address in the
subject_alt_name parameter.

Note
@ m The FTP proxy does not support the following FTPS-related commands: REIN, CCC, CDC.

m STARTTLS is supported in nontransparent scenarios as well.

— Example 4.4. Configuring FTPS support
——— | This example is a standard FtpProxy with FTPS support enabled.

class FtpsProxy(FtpProxy):
def config(self):
FtpProxy.config(self)
self.max_password_length=64

EncryptionPolicy(name="ForwardSTARTTLS",
encryption=ForwardStartTLSEncryption(client_verify=ClientCertificateVerifier(),
client_ssl_options=ClientSSLOptions(), server_verify=ServerCertificateVerifier(),
server_ssl_options=ServerSSLOptions(),
client_certificate generator=DynamicCertificate(private key=Privatekey.fromFile(key file path="/etc/key.d/ZMS Engine/key.pem"),

trusted_ca=Certificate.fromFile(certificate_file_path="/etc/ca.d/certs/my-trusted-ca-cert.pem",
private_key=PrivateKey.fromFile("/etc/ca.d/keys/my-trusted-ca-cert.pem")),
untrusted_ca=Certificate.fromFile(certificate_file_path="/etc/ca.d/certs/my-untrusted-ca-cert.pem",
private_key=PrivateKey.fromFile("/etc/ca.d/keys/my-untrusted-ca-cert.pem")))))

def demo()
Service(name='demo/MyFTPSService', router=TransparentRouter(), chainer=ConnectChainer(),
proxy_class=FtpsProxy, max_instances=0, max_sessions=0, keepalive=Z_KEEPALIVE_NONE,
encryption_policy="ForwardSTARTTLS")

Rule(rule_id=2,
proto=6,
service="'demo/MyFTPSService'

)

4.6.2.3. Stacking

The available stacking modes for this proxy module are listed in the following table. For additional information
on stacking, see Section 2.3.1, Proxy stacking (p. 7).

Action Description

FTP_STK_DATA Pass the data to the stacked proxy or program.

www.balasys.hu 28

Related standards e

Action Description

FTP_STK_NONE No proxy stacked.

Table 4.8. Stacking policy.

4.6.2.4. Configuring inband authentication

The Ftp proxy supports inband authentication as well to use the built-in authentication method of the FTP and
FTPS protocols to authenticate the client. The authentication itself is performed by the backend configured for
the service.

If the client uses different usernames on and the remote server (e.g., he uses his own username to authenticate
to , but anonymous on the target FTP server), the client must specify the usernames and passwords in the
following format:

Username:

<ftp user>@<proxy user>@<remote site>[:<port>]

Password:

<ftp password>@<proxy password>

Alternatively, all the above information can be specified as the username:

<ftp user>@<proxy user>@<remote site>[:<port>]:<ftp password>@<proxy password>

Warning
A When using inband routing with the FTPS protocol, the server's certificate is compared to its hostname. The subject_alt_name parameter
(or the Common Name parameter if the subject_alt_name parameter is empty) of the server's certificate must contain the hostname or
the IP address (as resolved from the Zorp host) of the server (e.g., ftp.example.com).

Alternatively, the Common Name or the subject_alt_name parameter can contain a generic hostname, e.g., *. example.com.

Note that if the Common Name of the certificate contains a generic hostname, do not specify a specific hostname or an IP address in the
subject_alt_name parameter.

4.6.3. Related standards

m The File Transfer Protocol is described in RFC 959.

m FTP Security Extensions including the FTPS protocol and securing FTP with TLS are described in
RFC 2228 and RFC 4217.

4.6.4. Classes in the Ftp module

Class Description
AbstractFtpProxy Class encapsulating the abstract FTP proxy.
FtpProxy Default Ftp proxy based on AbstractFtpProxy.

www.balasys.hu 29

Class AbstractFtpProxy e

Class Description

EtpProxyAnonRO FTP proxy based on AbstractFtpProxy, only allowing
read-only access to anonymous users.

FtpProxyAnonRW FTP proxy based on AbstractFtpProxy, allowing full
read-write access, but only to anonymous users.

FtpProxyRO FTP proxy based on AbstractFtpProxy, allowing
read-only access to any user.

FtpProxyRW FTP proxy based on AbstractFtpProxy, allowing full
read-write access to any user.

Table 4.9. Classes of the Ftp module

4.6.5. Class AbstractFtpProxy

This proxy implements the FTP protocol as specified in RFC 959. All traffic and commands are denied by
default. Consequently, either customized Ftp proxy classes derived from the abstract class should be used, or
one of the predefined classes (e.g.: FtpProxy, FtpProxyRO, etc.).

4.6.5.1. Attributes of AbstractFtpProxy

active_connection_mode (enum, rw:r)

Default: FTP_ACTIVE_MINUSONE

In active mode the server connects the client. By default this must be from Command Channel port minus
one (FTP_ACTIVE_MINUSONE). Alternatively, connection can also be performed either from port number
20 (FTP_ACTIVE_TWENTY) or from a random port (FTP_ACTIVE_RANDOM).

auth_tls_ok_client (boolean, n/a:r)

Default: ""

Shows whether the client-side authentication was performed over a secure channel.

auth_tls_ok_server (boolean, n/a:r)

Default: ""

Shows whether the server-side authentication was performed over a secure channel.

buffer_size (integer, rw:r)

Default: 4096

Buffer size for data transfer in bytes.

data_mode (enum, rw:r)

Default: FTP_DATA_KEEP

www.balasys.hu 30

Class AbstractFtpProxy e

data_mode (enum, rw:r)

The type of the FTP connection on the server side can be manipulated: leave it as the client requested
(FTP_DATA_KEEP), or force passive (FTP_DATA_PASSIVE) or active (FTP_DATA_ACTIVE) connection.

data_port_max (integer, rw:r)

Default: 41000

On the proxy side, ports equal to or below the value of data_port_max can be allocated as the data channel.

data_port_min (integer, rw:r)

Default: 40000

On the proxy side, ports equal to or above the value of data_port_min can be allocated as the data channel.

data_protection_enabled_client (boolean, n/a:r)

Default: ""

Shows whether the data channel is encrypted or not on the client-side.

data_protection_enabled_server (boolean, n/a:r)

Default: ""

Shows whether the data channel is encrypted or not on the server-side.

features (complex, rw:rw)

Default:

Hash containing the filtering policy for FTP features.

hostname (string, n/a:rw)

Default:

The hostname of the FTP server to connect to, when inband routing is used.

hostport (integer, n/a:rw)

Default:

The port of the FTP server to connect to, when inband routing is used.

masq_address_client (string, rw:r)

Default: ""

www.balasys.hu 31

Class AbstractFtpProxy e

masq_address_client (string, rw:r)

IP address of the firewall appearing on the client side. If its value is set, this IP is sent regardless of its true
IP (where it is binded). This attribute may be used when network address translation is performed before
Zorp.

masq_address_server (string, rw:r)

Default: ""

IP address of the firewall appearing on the server side. If its value is set, this IP is sent regardless of its true
IP (where it is binded). This attribute may be used when network address translation is performed before
Zorp.

max_continuous_line (integer, rw:r)

Default: 100

Maximum number of answer lines for a command.

max_hostname_length (integer, rw:r)

Default: 128

Maximum length of hostname. Used only in non-transparent mode.

max_line_length (integer, rw:r)

Default: 255

Maximum length of a line that the proxy is allowed to transfer. Requests/responses exceeding this limit are
dropped.

max_password_length (integer, rw:r)

Default: 64

Maximum length of the password.

max_username_length (integer, rw:r)

Default: 32

Maximum length of the username.

password (string, n/a:rw)

Default:

The password to be sent to the server.

www.balasys.hu 32

Class AbstractFtpProxy e

permit_client_bounce_attack (boolean, rw:rw)

Default: FALSE

If enabled the IP addresses of data channels will not need to match with the IP address of the control channel,
permitting the use of FXP while increasing the security risks.

permit_empty_command (boolean, rw:r)

Default: TRUE

Enable transmission of lines without commands.

permit_server_bounce_attack (boolean, rw:rw)

Default: FALSE

If enabled the IP addresses of data channels will not need to match with the IP address of the control channel,
permitting the use of FXP while increasing the security risks.

permit_unknown_command (boolean, rw:r)

Default: FALSE

Enable the transmission of unknown commands.

proxy_password (string, n/a:rw)

Default:

The password to be used for proxy authentication given by the user, when inband authentication is used.

proxy_username (string, n/a:rw)

Default:

The username to be used for proxy authentication given by the user, when inband authentication is used.

request (complex, rw:rw)

Default:

Normative policy hash for FTP requests indexed by command name (e.g.: "USER", "PWD" etc.). See also
Section 2.1, Policies for requests and responses (p. 4).

request_command (string, n/a:rw)

Default: n/a

When a request is evaluated on the policy level, this variable contains the requested command.

www.balasys.hu 33

Class AbstractFtpProxy e

request_parameter (string, n/a:rw)

Default: n/a

When a request is evaluated on the policy level, this variable contains the parameters of the requested command.

request_stack (complex, rw:rw)

Default:

Hash containing the stacking policy for the FTP commands. The hash is indexed by the FTP command (e.g.
RETR, STOR). See also Section 2.3.1, Proxy stacking (p. 7).

response (complex, rw:rw)

Default:

Normative policy hash for FTP responses indexed by command name and answer code (e.g.: "USER","331";
"PWD","200" etc.). See also Section 2.1, Policies for requests and responses (p. 4).

response_parameter (string, n/a:rw)

Default:

When a response is evaluated on the policy level, this variable contains answer parameters.

response_status (string, n/a:rw)

Default:

When a response is evaluated on the policy level, this variable contains the answer code.

response_strip_msg (boolean, rw:r)

Default: FALSE

Strip the response message and only send the response code.

strict_port_checking (boolean, rw:rw)

Default: TRUE

If enabled the foreign port is strictly checked: in active mode the server must be connected on port 20, while
in any other situation the foreign port must be above 1023.

target_port_range (string, rw:r)

Default: "21"

The port where the client can connect through a non-transparent FtpProxy.

www.balasys.hu 34

Class FtpProxy e

timeout (integer, rw:r)

Default: 300000

General I/0 timeout in milliseconds. When there is no specific timeout for a given operation, this value is
used.

transparent_mode (boolean, rw:r)

Default: TRUE

Specifies if the proxy works in transparent (TRUE) or non-transparent (FALSE) mode.

username (string, n/a:rw)

Default:

The username authenticated to the server.

valid_chars_username (string, rw:r)

Default: "a-zA-Z0-9._@"

List of the characters accepted in usernames.

4.6.6. Class FtpProxy

A permitting Ftp proxy based on the AbstractFtpProxy, allowing all commands, responses, and features,
including unknown ones. The connection is terminated if a response with the answer code 421 is received.

4.6.7. Class FtpProxyAnonRO

FTP proxy based on AbstractFtpProxy, enabling read-only access (i.e. only downloading) to anonymous users
(uploads and usernames other than 'anonymous' or 'ftp' are disabled). Commands and return codes are strictly
checked, unknown commands and responses are rejected. Every feature is accepted.

The ABOR; ACCT; AUTH; CDUP; CWD; EPRT; EPSV; FEAT; LIST; MODE; MDTM; NLST; NOOP;
OPTS; PASV; PASS; PORT; PWD; QUIT; REST; RETR; SIZE; STAT; STRU,; SYST; TYPE; and USER
commands are permitted, the CLNT; XPWD; MACB commands are rejected.

4.6.8. Class FtpProxyAnonRW

FTP proxy based on AbstractFtpProxy, enabling full read-write access to anonymous users (the 'anonymous'
and 'ftp' usernames are permitted). Commands and return codes are strictly checked, unknown commands and
responses are rejected. Every feature is accepted.

The ABOR; ACCT; APPE; CDUP; CWD; DELE; EPRT; EPSV; LIST; MKD; MODE; MDTM; NLST; NOOP;
OPTS; PASV; PASS; PORT; PWD; QUIT; RMD; RNFR; RNTO; REST; RETR; SIZE; STAT; STOR; STOU;
STRU; SYST; TYPE; USER and FEAT commands are permitted, the AUTH; CLNT; XPWD; MACB commands
are rejected.

www.balasys.hu 35

Class FtpProxyRO e

4.6.9. Class FtpProxyRO

FTP proxy based on AbstractFtpProxy, enabling read-only access to any user. Commands and return codes are
strictly checked, unknown commands and responses are rejected. Every feature is accepted.

The ABOR; ACCT; AUTH; CDUP; CWD; EPRT; EPSV; FEAT; LIST; MODE; MDTM; NLST; NOOP;
OPTS; PASV; PASS; PORT; PWD; QUIT; REST; RETR; SIZE; STAT; STRU; SYST; TYPE; and USER
commands are permitted, the CLNT; XPWD; MACB commands are rejected.

4.6.10. Class FtpProxyRW

FTP proxy based on AbstractFtpProxy, enabling full read-write access to any user. Commands and return codes
are strictly checked, unknown commands and responses are rejected. Every feature is accepted.

The ABOR; ACCT; AUTH; CDUP; CWD; EPRT; EPSV; FEAT; LIST; MODE; MDTM; NLST; NOOP;
OPTS; PASV; PASS; PORT; PWD; QUIT; REST; RETR; SIZE; STAT; STRU; SYST; TYPE; and USER
commands are permitted, the CLNT; XPWD; MACB commands are rejected.

4.7. Module Http

The Http module defines the classes constituting the proxy for the HyperText Transfer Protocol (HTTP). HTTP
is the protocol the Web is based on, therefore it is the most frequently used protocol on the Internet. It is used
to access different kinds of content from the Web. The type of content retrieved via HTTP is not restricted, it
can range from simple text files to hypertext files and multimedia formats like pictures, videos or audio files.

4.7.1. The HTTP protocol

HTTP is an open application layer protocol for hypermedia information systems. It basically allows an open-ended
set of methods to be applied to resources identified by Uniform Resource Identifiers (URIs).

4.7.1.1. Protocol elements

HTTP is a text based protocol where a client sends a request comprising of a METHOD, an URI and associated
meta information represented as MIME-like headers, and possibly a data attachment. The server responds with
a status code, a set of headers, and possibly a data attachment. Earlier protocol versions perform a single
transaction in a single TCP connection, HTTP/1.1 introduces persistency where a single TCP connection can
be reused to perform multiple transactions.

An HTTP method is a single word - usually spelled in capitals - instructing the server to apply a function to
the resource specified by the URI. Commonly used HTTP methods are "GET", "POST" and "HEAD". HTTP
method names are not restricted in any way, other HTTP based protocols (such as WebDAV) add new methods
to the protocol while keeping the general syntax intact.

Headers are part of both the requests and the responses. Each header consists of a name followed by a colon
(:") and a field value. These headers are used to specify content-specific and protocol control information.

The response to an HTTP request starts with an HTTP status line informing the client about the result of the
operation and an associated message. The result is represented by three decimal digits, the possible values are
defined in the HTTP RFCs.

www.balasys.hu 36

Proxy behavior e

4.7.1.2. Protocol versions

The protocol has three variants, differentiated by their version number. Version 0.9 is a very simple protocol
which allows a simple octet-stream to be transferred without any meta information (e.g.: no headers are associated
with requests or responses).

Version 1.0 introduces MIME-like headers in both requests and responses; headers are used to control both the
protocol (e.g.: the "Connection" header) and to give information about the content being transferred (e.g.: the
"Content-Type" header). This version has also introduced the concept of name-based virtual hosts.

Building on the success of HTTP/1.0, version 1.1 of the protocol adds persistent connections (also referred to
as "connection keep-alive") and improved proxy control.

4.7.1.3. Bulk transfer

Both requests and responses might have an associated data blob, also called an entity in HTTP terminology.
The size of the entity is determined using one of three different methods:

1. The complete size of the entity is sent as a header (the Content-Length header).

2. The transport layer connection is terminated when transfer of the blob is completed (used by HTTP/0.9
and might be used in HTTP/1.1 in non-persistent mode).

3. Instead of specifying the complete length, smaller chunks of the complete blob are transferred, and
each chunk is prefixed with the size of that specific chunk. The end of the stream is denoted by a
zero-length chunk. This mode is also called chunked encoding and is specified by the
Transfer-Encoding header.

— Example 4.5. Example HTTP transaction

——5 | GET /index.html HTTP/1.1

Host: www.example.com
Connection: keep-alive
User-Agent: My-Browser-Type 6.0

HTTP/1.1 200 OK
Connection: close
Content-Length: 14

<html>
</html>

4.7.2. Proxy behavior

The default low-level proxy implementation (AbstractHttpProxy) denies all requests by default. Different
requests and/or responses can be enabled by using one of the several predefined proxy classes which are suitable
for most tasks. Alternatively, a custom proxy class can be derived from AbstractHttpProxy and the requests
and responses enabled individually using different attributes.

Several examples and considerations on how to enable virus filtering in the HTTP traffic are discussed in the
Technical White Paper and Tutorial Virus filtering in HTTP, available at the BalaSys Documentation Page
http://www.balasys.hu/documentation/.

www.balasys.hu 37

http://www.balasys.hu/documentation/

Proxy behavior e

4.7.2.1. Transparent and non-transparent modes

HttpProxy is able to operate both in transparent and non-transparent mode. In transparent mode, the client does
not notice (or even know) that it is communicating through a proxy. The client communicates using normal
server-style requests.

In non-transparent mode, the address and the port of the proxy server must be set on the client. In this case the
client sends proxy-style requests to the proxy.

— Example 4.6. Proxy style HTTP query

— GET http://www.example.com/index.html HTTP/1.1
Host: www.example.com

Connection: keep-alive

User-Agent: My-Browser-Type 6.0

HTTP/1.1 200 OK
Connection: close
Content-Length: 14

<html>
</html>

In non-transparent mode it is possible to request the use of the SSL protocol through the proxy, which means
the client communicates with the proxy using the HTTP protocol, but the proxy uses HTTPS to communicate
with the server. This technique is called data tunneling.

— Example 4.7. Data tunneling with connect method

— CONNECT www.example.com:443 HTTP/1.1
Host: www.example.com
User-agent: My-Browser-Type 6.0

HTTP/1.0 200 Connection established
Proxy-agent: My-Proxy/1.1

4.7.2.2. Configuring policies for HTTP requests and responses

Changing the default behavior of requests is possible using the request attribute. This hash is indexed by the
HTTP method names (e.g.: GET or POST). The response attribute (indexed by the request method and the
response code) enables the control of HTTP responses. The possible actions are described in the following
tables. See also Section 2.1, Policies for requests and responses (p. 4). When looking up entries of the
response attribute hash, the lookup precedence described in Section 2.1.2, Response codes (p. 6) is used.

Action Description
HTTP_REQ_ACCEPT Allow the request to pass.
HTTP_REQ_REJECT Reject the request. The reason for the rejection can be

specified in the optional second argument.

HTTP_REQ_ABORT Terminate the connection.

www.balasys.hu 38

Proxy behavior e

Action

Description

HTTP_REQ_POLICY

Call the function specified to make a decision about
the event. The function receives four arguments: self,
method, url, version. See Section 2.1, Policies for
requests and responses (p. 4) for details.

Table 4.10. Action codes for HTTP requests

Action

Description

HTTP_RSP_ACCEPT

Allow the response to pass.

HTTP_RSP_DENY Reject the response and return a policy violation page

to the client.

HTTP_RSP_REJECT Reject the response and return a policy violation page

to the client, with error information optionally
specified as the second argument.

HTTP_RSP_POLICY Call the function specified to make a decision about

the event. The function receives five parameters: self,
method, url, version, response. See Section 2.1,
Policies for requests and responses (p. 4) for details.

Table 4.11. Action codes for HTTP responses

Example 4.8. Implementing URL filtering in the HTTP proxy
This example calls the filterURL function (defined in the example) whenever a HTTP GET request is received. If the requested URL is
'http://www.disallowedsite.com', the request is rejected and an error message is sent to the client.

class DmzHTTP(HttpProxy):
def config(self):
HttpProxy.config(self)
self.request["GET"] = (HTTP_REQ_POLICY, self.filterURL)

def filterURL(self, method, url, version):
if (url == "http://www.disallowedsite.com"):
self.error_info = 'Access of this content is denied by the local policy.'
return HTTP_REQ_REJECT
return HTTP_REQ_ACCECT

Example 4.9. 404 response filtering in HTTP
In this example the 404 response code to GET requests is rejected, and a custom error message is returned to the clients instead.

class DmzHTTP(HttpProxy):
def config(self):
HttpProxy.config(self)
self.response["GET", "404"] = (HTTP_RSP_POLICY, self.filter404)

def filter404(self, method, url, version, response):
self.error_status = 404
self.error_info = "Requested page was not accessible."
return HTTP_RSP_REJECT

www.balasys.hu 39

Proxy behavior e

4.7.2.3. Configuring policies for HTTP headers

Both request and response headers can be modified by the proxy during the transfer. New header lines can be
inserted, entries can be modified or deleted. To change headers in the requests and responses use the
request_header hash or the response_header hash, respectively.

Similarly to the request hash, these hashes are indexed by the header name (like "User-Agent") and contain an

actiontuple describing the action to take.

By default, the proxy modifies only the "Host", "Connection", "Proxy-Connection" and "Transfer-Encoding"
headers. "Host" headers need to be changed when the proxy modifies the URL; "(Proxy-)Connection" is changed
when the proxy turns connection keep-alive on/off; "Transfer-Enconding" is changed to enable chunked

encoding.

Action

Description

HTTP_HDR_ABORT

Terminate the connection.

HTTP_HDR_ACCEPT

Accept the header.

HTTP_HDR_DROP

Remove the header.

HTTP_HDR_POLICY

Call the function specified to make a decision about
the event. The function receives three parameters: self,
hdr_name, and hdr_value.

HTTP_HDR_CHANGE_NAME

Rename the header to the name specified in the second
argument.

HTTP_HDR_CHANGE_VALUE

Change the value of the header to the value specified
in the second argument.

HTTP_HDR_CHANGE_BOTH

Change both the name and value of the header to the
values specified in the second and third arguments,
respectively.

HTTP_HDR_INSERT

Insert a new header defined in the second argument.

HTTP_HDR_REPLACE

Remove all existing occurrences of a header and
replace them with the one specified in the second
argument.

— Example 4.10. Header filtering in HTTP

Table 4.12. Action codes for HTTP headers

—— | The following example hides the browser used by the client by replacing the value of the User-Agent header to Lynx in all requests. The

| —] use of cookies is disabled as well.

www.balasys.hu

class MyHttp(HttpProxy):
def config(self):
HttpProxy.config(self)
self.request_header["User-Agent"] = (HTTP_HDR_CHANGE_VALUE, "Lynx 2.4.1")
self.request_header["Cookie"] = (HTTP_HDR_POLICY, self.processCookies)
self.response_header["Set-Cookie"] = (HTTP_HDR_DROP,)

def processCookies(self, name, value):
You could change the current header in self.current_header_name
or self.current_header_value, the current request url is

40

Proxy behavior e

in self.request_url
return HTTP_HDR_DROP

4.7.2.4. Redirecting URLs

URLs or sets of URLs can be easily rejected or redirected to a local mirror by modifying some attributes during
request processing.

When an HTTP request is received, normative policy chains are processed (self.request,
self.request_header). Policy callbacks for certain events can be configured with the HTTP_REQ_ POLICY
or HTTP_HDR_POLICY directives. Any of these callbacks may change the request_ur1 attribute, instructing
the proxy to fetch a page different from the one specified by the browser. Please note that this is transparent to
the user and does not change the URL in the browser.

— Example 4.11. URL redirection in HTTP proxy
— | This example redirects all HTTP GET requests to the 'http://www.example.com/' URL by modifying the value of the requested URL.

class MyHttp(HttpProxy):
def config(self):
HttpProxy.config(self)
self.request["GET"] = (HTTP_REQ_POLICY, self.filterURL)

def filterURL(self, method, url, version):
self.request_url = "http://www.example.com/"
return HTTP_REQ_ACCEPT

— Example 4.12. Redirecting HTTP to HTTPS
—— | This example redirects all incoming HTTP connections to an HTTPS URL.

class HttpProxyHttpsredirect(HttpProxy):
def config(self):
HttpProxy.config(self)
self.error_silent = TRUE
self.request["GET"] = (HTTP_REQ_POLICY, self.regRedirect)

def regRedirect(self, method, url, version):
self.error_status = 301
#self.error_info = 'HTTP/1.0 301 Moved Permanently'
self.error_headers="Location: https://%s/" % self.request_url_host
return HTTP_REQ_REJECT

4.7.2.5. Request types
Zorp differentiates between two request types: server requests and proxy request.

m Server requests are sent by browsers directly communicating with HTTP servers. These requests
include an URL relative to the server root (e.g.: /index.html), and a 'Host' header indicating which
virtual server to use.

m Proxy requests are used when the browser communicates with an HTTP proxy. These requests include
a fully specified URL (e.g.: http://www.example.com/index.html).

Zorp determines the type of the incoming request from the request URL, even if the Proxy-connection header
exist. As there is no clear distinction between the two request types, the type of the request cannot always be
accurately detected automatically, though all common cases are covered.

www.balasys.hu 41

Proxy behavior e

Requests are handled differently in transparent and non-transparent modes.

m A transparent HTTP proxy (transparent_mode attribute is TRUE) is meant to be installed in front
of a network where clients do not know about the presence of the firewall. In this case the proxy
expects to see server type requests only. If clients communicate with a real HTTP proxy through the
firewall, proxy type requests must be explicitly enabled using the permit_proxy_requests
attribute, or transparent mode has to be used.

B The use of non-transparent HTTP proxies (transparent_mode attribute is FALSE) must be
configured in web browsers behind the firewall. In this case Zorp expects proxy requests only, and
emits server requests (assuming parent_proxy is not set).

4.7.2.6. Using parent proxies

Parent proxies are non-transparent HTTP proxies used behind Zorp. Two things have to be set in order to use
parent proxies. First, select a router which makes the proxy connect to the parent proxy, this can be either
InbandRouter() or DirectedRouter(). Second, set the parent_proxy and parent_proxy_port attributes in
the HttpProxy class. Setting these attributes results in proxy requests to be emitted to the target server both in
transparent and non-transparent mode.

The parent proxy attributes can be set both in the configuration phase (e.g.: config() event), or later on a
per-request basis. This is possible because the proxy re-connects.

— Example 4.13. Using parent proxies in HTTP
— | Inthis example the MyHttp proxy class uses a parent proxy. For this the domain name and address of the parent proxy is specified, and
| w—] a service using an InbandRouter is created.

class MyHttp(HttpProxy):
def config(self):
HttpProxy.config(self)
self.parent_proxy = "proxy.example.com"
self.parent_proxy_port = 3128

def instance():
Service("http", MyHttp, router=InbandRouter())
Listener (SockAddrInet('10.0.0.1"', 80), "http")

4.7.2.7. FTP over HTTP

In non-transparent mode it is possible to let Zorp process ftp:// URLs, effectively translating HTTP requests to
FTP requests on the fly. This behaviour can be enabled by setting permit_ftp_over_http to TRUE and
adding port 21 to target_port_range. Zorp currently supports passive mode transfers only.

4.7.2.8. Error messages

There are cases when the HTTP proxy must return an error page to the client to indicate certain error conditions.
These error messages are stored as files in the directory specified by the error_files_directory attribute,
and can be customized by changing the contents of the files in this directory.

Each file contains plain HTML text, but some special macros are provided to dynamically add information to
the error page. The following macros can be used:

B @INFO@ -- further error information as provided by the proxy

www.balasys.hu 42

Proxy behavior e

B @VERSION@ -- Zorp version number
B @DATE@ -- current date
B @HOST@ -- hostname of Zorp

It is generally recommended not to display error messages to untrusted clients, as they may leak confidential
information. To turn error messages off, set the error_silent attribute to TRUE, or strip error files down to
a minimum.

®

4.7.2.9. Stacking

Note
The language of the messages can be set using the config.options.language global option, or individually for every Http proxy
using the language parameter. See Appendix B, Global options of Zorp (p. 232) for details.

HTTP supports stacking proxies for both request and response entities (e.g.: data bodies). This is controlled by
the request_stack and response_stack attribute hashes. See also Section 2.3.1, Proxy stacking (p. 7).

There are two stacking modes available: HTTP_STK_DATA sends only the data portion to the downstream
proxy, while HTTP_STK_MIME also sends all header information to make it possible to process the data body
as a MIME envelope. Please note that while it is possible to change the data part in the stacked proxy, it is not
possible to change the MIME headers - they can be modified only by the HTTP proxy. The possible parameters
are listed in the following tables.

Action Description

HTTP_STK_NONE No additional proxy is stacked into the HTTP proxy.

HTTP_STK_DATA The data part of the HTTP traffic is passed to the
specified stacked proxy.

HTTP_STK_MIME The data part including header information of the
HTTP traffic is passed to the specified stacked proxy.

Table 4.13. Constants for proxy stacking

Please note that stacking is skipped altogether if there is no body in the message.

4.7.2.10. Webservers returning data in 205 responses

Certain webserver applications may return data entities in 205 responses. This is explicitly prohibited by the
RFCs, but Zorp permits such responses for interoperability reasons.

4.7.2.11. Session persistence in load balancing

Zorp’s HTTP proxy offers the ‘session persistence in load balancing’ feature, further enhancing Zorp’s load
balancing capabilities by that.

www.balasys.hu 43

Proxy behavior e

With the help of this feature, the Round Robin chainer can identify connections by their session IDs and make
sure that every connection with the same session ID is always addressed to the same server, so that the session
persists.

For using the ‘session persistence in load balancing’ feature, the administrator has to configure the following
three attributes for the HTTP proxy:

m Enable_session_persistence
You can switch on or off the ‘Session persistence in load balancing’ feature with that parameter.

m Session_persistence_cookie_name
This parameter can only be configured if enable_session_persistence is set to TRUE. The administrator
can provide the name of the cookie here: Zorp directs all incoming requests to a web server and each
web server sends a session ID back to Zorp. The name of this session ID, that is, the cookie name,
can be provided here to ensure that requests with the same session ID are directed to the same web
server.

W Session_persistence_cookie_salt
This parameter can only be configured if enable_session_persistence is set to TRUE. The administrator
can provide the salt here, with which the TP address of the web server can be hashed before the
session ID. With the help of this hashed information Zorp can next time identify to which server the
next connection attempt of this session has to be directed.

4.7.2.12. URL filtering in HTTP
Starting with version 3.3FR1, Zorp supports category-based URL filtering using a regularly updated database.

m To configure URL-filtering, see Section Configuring URL-filtering in HTTP (p. 44).
m For the list of categories available by default, see Section List of URL-filtering categories (p. 45).
m To customize or expand the URL-database, see Section Customizing the URL database (p. 48).

Configuring URL-filtering in HTTP

The URLSs and domains in the database are organized into thematic categories like adult, news, jobsearch,
etc.

To enable url-filtering, set the enable url filter and enable url filter dns options to TRUE. The
enable url_filter_dns option is needed only to ensure that a domain or URL is correctly categorized
even when it is listed in the database using its domain name, but the client tries to access it with its IP address
(or vice-versa).

after purchasing the url-filter license option.

Note
@ URL-filtering is handled by the Zorp Http proxy, without the need of using ZCV. The URL-filtering capability of Zorp is available only
Updates to the URL database are automatically downloaded daily from the BalaSys website using the zavupdate utility.

www.balasys.hu 44

Proxy behavior e

Access to specific categories can be set using the url_category option, which is a hash indexed by the name
of the category. The following actions are possible:

Action Description

HTTP_URL_ACCEPT Permit access to the URL.

HTTP_URL_REJECT Reject the request. The error code and reason for the
rejection are specified in the second and third
arguments. See Section Configuring URL-filtering in
HTTP (p. 44) for details.

HTTP_URL_REDIRECT Redirect the connection to the URL specified in the
second argument.

Table 4.14. Action codes for URL filtering
— Example 4.14. URL-filtering example
% The following example blocks several categories and accepts the rest. For a complete list of categories, see Section List of URL-filtering
| w— categories (p. 45).

class MyHTTPUrlFilter (HttpProxy):
def config(self):

HttpProxy.config(self)
self.enable_url_filter=TRUE
self.enable_url_filter_dns=TRUE
self.url_category['adult']=(HTTP_URL_REJECT, (403, "Adult website",))
self.url_category['porn']=(HTTP_URL_REJECT, (403, "Porn website",))
self.url_category['malware']=(HTTP_URL_REJECT, (403, "Site contains malware",))
self.url_category['phishing']=(HTTP_URL_REJECT, (403, "Phishing site",))
self.url_category['warez']=(HTTP_URL_REJECT, (403, "Warez site",))
self.url_category['*']=(HTTP_URL_ACCEPT,)

The following example redirects access to online gaming sites to a dummy website.

class MyHTTPUrlFilter (HttpProxy):
def config(self):
HttpProxy.config(self)
self.enable_url_filter=TRUE
self.enable_url_filter_dns=TRUE
self.url_category['onlinegames']=(HTTP_URL_REDIRECT, "http://example.com")
self.url_category['*']=(HTTP_URL_ACCEPT,)

List of URL-filtering categories

The Zorp URL database contains the following thematic categories by default.

abortion: Abortion information excluding when related to religion
ads: Advert servers and banned URLs

adult: Sites containing adult material such as swearing but not porn
aggressive: Similar to violence but more promoting than depicting
antispyware: Sites that remove spyware

artnudes: Art sites containing artistic nudity

www.balasys.hu 45

Proxy behavior e

astrology: Astrology websites

audio-video: Sites with audio or video downloads
banking: Banking websites

beerliquorinfo: Sites with information only on beer or liquors
beerliquorsale: Sites with beer or liquors for sale
blog: Journal/Diary websites

cellphones: stuff for mobile/cell phones

chat: Sites with chat rooms etc

childcare: Sites to do with childcare

cleaning: Sites to do with cleaning

clothing: Sites about and selling clothing
contraception: Information about contraception
culinary: Sites about cooking et al

dating: Sites about dating

desktopsillies: Sites containing screen savers, backgrounds, cursers, pointers, desktop themes and
similar timewasting and potentially dangerous content

dialers: Sites with dialers such as those for pornography or trojans
drugs: Drug related sites

ecommerce: Sites that provide online shopping

entertainment: Sites that promote movies, books, magazine, humor
filehosting: Sites to do with filehosting

frencheducation: Sites to do with french education

gambling: Gambling sites including stocks and shares

games: Game related sites

gardening: Gardening sites

government: Military and schools etc

guns: Sites with guns

hacking: Hacking/cracking information

homerepair: Sites about home repair

hygiene: Sites about hygiene and other personal grooming related stuff
instantmessaging: Sites that contain messenger client download and web-based messaging sites
jewelry: Sites about and selling jewelry

jobsearch: Sites for finding jobs

kidstimewasting: Sites kids often waste time on

mail: Webmail and email sites

marketingware: Sites about marketing products

www.balasys.hu 46

Proxy behavior e

medical: Medical websites

mixed_adult: Mixed adult content sites

mobile-phone: Sites to do with mobile phones

naturism: Sites that contain nude pictures and/or promote a nude lifestyle
news: News sites

onlineauctions: Online auctions

onlinegames: Online gaming sites

onlinepayment: Online payment sites

personalfinance: Personal finance sites

pets: Pet sites

phishing: Sites attempting to trick people into giving out private information
porn: Pornography

proxy: Sites with proxies to bypass filters

radio: non-news related radio and television

religion: Sites promoting religion

ringtones: Sites containing ring tones, games, pictures and other
searchengines: Search engines such as google

sect: Sites about religious groups

sexuality: Sites dedicated to sexuality, possibly including adult material
shopping: Shopping sites

socialnetworking: Social networking websites

sportnews: Sport news sites

sports: All sport sites

spyware: Sites who run or have spyware software to download
updatesites: Sites where software updates are downloaded from including virus sigs
vacation: Sites about going on holiday

violence: Sites containing violence

virusinfected: Sites who host virus infected files

warez: Sites with illegal pirate software

weather: Weather news sites and weather related

weapons: Sites detailing or selling weapons

webmail: Just webmail sites

whitelist: Contains site suitable for kids

www.balasys.hu 47

Related standards e

Customizing the URL database

To customize the database, you have to manually edit the relevant files of the database. The URL database is
located on the Zorp hosts under the /etc/zorp/urlfilter/ directory. Every thematic category is subdirectory
containing two files called domains and urls. These files contain the list of domains (e.g., example. com)
and URLs (e.g., example.com/news/) that fall into the specific category. Optionally, the subdirectory may
contain a third file called expressions, where more complex rules can be defined using regular expressions.

m To to allow access (whitelist) to a domain or URL, add it to the domains or urls file of the
whitelist category. Do not forget to configure your Http proxies to permit access to the domains
of the whitelist category.

Warning
A Deleting a domain from a category is not equivalent to whitelisting. Deleted domains will be re-added to their original
category after the next database update.

® To add a new URL or domain to an existing category, create a new subdirectory under
/etc/zorp/urlfilter/, create the domains and urls files for this new category, and add the
domain or URL (without the http://www. prefix) to the domains or urlsfile. Zorp will
automatically add these sites to the specific category after the next daily database update, or when
the zufupdate command is executed.

m To create a new category, create a new subdirectory under /etc/zorp/urlfilter/, create the
domains and urls files for this new category, and add domains and URLs to these files. Do not
forget to configure your Http proxies to actually use the new category.

Warning
A Manual changes to the URL database are not applied automatically, they become effective only after the next daily database update, or
when the zufupdate command is executed.

Note
@ Manual changes are automatically merged with the original database during database updates.

If you are using the URL-filter database on several Zorp hosts and modify the database manually, make sure to copy your changes to
the other hosts as well.

4.7.3. Related standards

m The Hypertext Transfer Protocol -- HTTP/1.1 protocol is described in RFC 2616.
m The Hypertext Transfer Protocol -- HTTP/1.0 protocol is described in RFC 1945.

4.7.4. Classes in the Http module

Class Description

AbstractHttpProxy Class encapsulating the abstract HTTP proxy.

www.balasys.hu 48

Class AbstractHttpProxy e

Class Description

HttpProxy Default HTTP proxy based on AbstractHttpProxy.

HttpProxyNonTransparent HTTP proxy based on HttpProxy, operating in
non-transparent mode.

HttpProxyURIFilter HTTP proxy based on HttpProxy, with URI filtering
capability.

HttpProxyURIFilterNonTransparent HTTP proxy based on HttpProxyURIFilter, with URI
filtering capability and permitting non-transparent
requests.

HttpProxyURL CategoryFilter HTTP proxy based on HttpProxy, with URL filtering
capability based on categories.

HttpWebdavProxy HTTP proxy based on HttpProxy, allowing WebDAV
extensions.

NontransHttpWebdavProxy HTTP proxy based on HttpProxyNonTransparent,
allowing WebDAV extension in non-transparent
requests.

Table 4.15. Classes of the Http module

4.7.5. Class AbstractHttpProxy

This class implements an abstract HTTP proxy - it serves as a starting point for customized proxy classes, but
is itself not directly usable. Service definitions should refer to a customized class derived from AbstractHttpProxy,
or one of the predefined proxy classes, such as HttpProxy or HttpProxyNonTransparent. AbstractHttpProxy
denies all requests by default.

4.7.5.1. Attributes of AbstractHttpProxy

auth_by_cookie (boolean, rw:r)

Default: FALSE

Authentication informations for one-time-password mode is organized by a cookie not the address of the
client.

auth_by_form (boolean, rw:r)

Default: FALSE

When enabled, and the client tries to access an URL that requires authentication, a webpage where users can
enter their authentication information is displayed. If the authentication is successful, the result is cached in
a cookie.

auth_cache_time (integer, rw:r)

Default: 0

www.balasys.hu 49

Class AbstractHttpProxy e

auth_cache_time (integer, rw:r)

Caching authentication information this amount of seconds.

auth_cache_update (boolean, rw:r)

Default: FALSE

Update authentication cache by every connection.

auth_forward (boolean, rw:rw)

Default: FALSE

Controls whether inband authentication information (username and password) should be forwarded to the
upstream server. When a parent proxy is present, the incoming authentication request is put into a
'Proxy-Authorization' header. In other cases the ' WWW-Authorization' header is used.

auth_realm (string, w:r)

Default: "Zorp HTTP auth”

The name of the authentication realm to be presented to the user in the dialog window during inband
authentication.

buffer_size (integer, rw:r)

Default: 1500

Size of the I/0 buffer used to transfer entity bodies.

connect_proxy (class, rw:rw)

Default: PlugProxy

For CONNECT requests the HTTP proxy starts an independent proxy to control the internal protocol. The
connect_proxy attribute specifies which proxy class is used for this purpose.

connection_mode (enum, n/a:rw)

Default: n/a

This value reflects the state of the session. If the value equals to 'HTTP_CONNECTION_CLOSE!, the session
will be closed after serving the current request. Otherwise, if the value is'HTTP_CONNECTION_KEEPALIVE'
another request will be fetched from the client. This attribute can be used to forcibly close a keep-alive
connection.

current_header_name (string, n/a:rw)

Default: n/a

www.balasys.hu 50

Class AbstractHttpProxy e

current_header_name (string, n/a:rw)

Name of the header. It is defined when the header is processed, and can be modified by the proxy to actually
change a header in the request or response.

current_header_value (string, n/a:rw)

Default: n/a

Value of the header. Tt is defined when the header is processed, and can be modified by the proxy to actually
change the value of the header in the request or response.

default_port (integer, rw:rw)

Default: 80

This value is used in non-transparent mode when the requested URL does not contain a port number. The
default should be 80, otherwise the proxy may not function properly.

enable_session_persistence (boolean, rw:rw)

Default: FALSE

Allow persistent load balanced connections when accessing session-aware application servers.

enable_url_filter (boolean, rw:r)
Default: FALSE
Enables URL filtering in HTTP requests. See Section 4.7.2.12, URL filtering in HTTP (p. 44) for details.

enable_url_filter_dns (boolean, rw:r)

Default: FALSE

Enables DNS- and reverse-DNS resolution to ensure that a domain or URL is correctly categorized even
when it is listed in the database using its domain name, but the client tries to access it with its IP address (or
vice-versa). See Section 4.7.2.12, URL filtering in HTTP (p. 44) for details.

error_files_directory (string, rw:rw)

Default: "/usr/share/zorp/http"

Location of HTTP error messages.

error_headers (string, n/a:rw)

Default: n/a

A string included as a header in the error response. The string must be a valid header and must end with a "
" sequence.

www.balasys.hu 51

Class AbstractHttpProxy e

error_info (string, n/a:rw)

Default: n/a

A string to be included in error messages.

error_msg (string, n/a:rw)

Default: n/a

A string used as an error message in the HTTP status line.

error_silent (boolean, rw:rw)

Default: FALSE

Turns off verbose error reporting to the HTTP client (makes firewall fingerprinting more difficult).

error_status (integer, rw:rw)

Default: 500

If an error occurs, this value will be used as the status code of the HTTP response it generates.

keep_persistent (boolean, rw:r)

Default: FALSE

Try to keep the connection to the client persistent even if the server does not support it.

language (string, rw:r)

Default: "en"

Specifies the language of the HTTP error pages displayed to the client. English (en) is the default. Other
supported languages: de (German); hu (Hungarian).

max_auth_time (integer, rw:rw)

Default: 0

Request password authentication from the client, invalidating cached one-time-passwords. If the time specified
(in seconds) in this attribute expires, a new authentication from the client browser is requested even if it still
has a password cached.

max_body_length (integer, rw:rw)

Default: 0

Maximum allowed length of an HTTP request or response body. The default "0" value means that the length
of the body is not limited.

www.balasys.hu 52

Class AbstractHttpProxy e

max_chunk_length (integer, rw:rw)

Default: 0

Maximum allowed length of a single chunk when using chunked transfer-encoding. The default "0" value
means that the length of the chunk is not limited.

max_header_lines (integer, rw:rw)

Default: 50

Maximum number of header lines allowed in a request or response.

max_hostname_length (integer, rw:rw)

Default: 256

Maximum allowed length of the hostname field in URLs.

max_keepalive_requests (integer, rw:rw)

Default: 0

Maximum number of requests allowed in a single session. If the number of requests in the session the reaches
this limit, the connection is terminated. The default "0" value allows unlimited number of requests.

max_line_length (integer, rw:r)

Default: 4096

Maximum allowed length of lines in requests and responses. This value does not affect data transfer, as data
is transmitted in binary mode.

max_url_length (integer, rw:rw)

Default: 4096

Maximum allowed length of an URL in a request. Note that this directly affects forms using the 'GET" method
to pass data to CGI scripts.

parent_proxy (string, rw:rw)

Default: ""

The address or hostname of the parent proxy to be connected. Either DirectedRouter or InbandRouter has to
be used when using parent proxy.

parent_proxy_port (integer, rw:rw)

Default: 3128

The port of the parent proxy to be connected.

www.balasys.hu 53

Class AbstractHttpProxy e

permit_ftp_over_http (boolean, rw:r)

Default: FALSE

Allow processing FTP URLSs in non-transparent mode.

permit_http09_responses (boolean, rw:r)

Default: TRUE

Allow server responses to use the limited HTTP/0.9 protocol. As these responses carry no control information,
verifying the validity of the protocol stream is impossible. This does not pose a threat to web clients, but
exploits might pass undetected if this option is enabled for servers. It is recommended to turn this option off
for protecting servers and only enable it when Zorp is used in front of users.

permit_invalid_hex_escape (boolean, rw:r)

Default: FALSE

Allow invalid hexadecimal escaping in URLs (% must be followed by two hexadecimal digits).

permit_null_response (boolean, rw:r)

Default: TRUE

Permit RFC incompliant responses with headers not terminated by CRLF and not containing entity body.

permit_proxy_requests (boolean, rw:r)

Default: FALSE

Allow proxy-type requests in transparent mode.

permit_server_requests (boolean, rw:r)

Default: TRUE

Allow server-type requests in non-transparent mode.

permit_unicode_url (boolean, rw:r)

Default: FALSE

Allow unicode characters in URLs encoded as %u. This is an IIS extension to HTTP, UNICODE (UTF-7,
UTF-8 etc.) URLs are forbidden by the RFC as default.

request (complex, rw:rw)

Default: empty

Normative policy hash for HTTP requests indexed by the HTTP method (e.g.: "GET", "PUT" etc.). See also
Section 4.7.2.2, Configuring policies for HTTP requests and responses (p. 38).

www.balasys.hu 54

Class AbstractHttpProxy e

request_count (integer, n/a:r)

Default: 0

The number of keepalive requests within the session.

request_header (complex, rw:rw)

Default: empty

Normative policy hash for HTTP header requests indexed by the header names (e.g.: "Set-cookie"). See also
Section 4.7.2.3, Configuring policies for HTTP headers (p. 40).

request_method (string, n/a:r)

Default: n/a

Request method (GET, POST, etc.) sent by the client.

request_mime_type (string, n/a:r)

Default: n/a

The MIME type of the request entity. Its value is only defined when the request is processed.

request_stack (complex, rw:rw)

Default: n/a

Attribute containing the request stacking policy: the hash is indexed based on method names (e.g.: GET). See
Section 4.7.2.9, Stacking (p. 43).

request_url (string, n/a:rw)

Default: n/a

The URL requested by the client. It can be modified to redirect the current request.

request_url_file (string, n/a:r)

Default: n/a

Filename specified in the URL.

request_url_host (string, n/a:r)

Default: n/a

Remote hostname in the URL.

request_url_passwd (string, n/a:r)

Default: n/a

www.balasys.hu 55

Class AbstractHttpProxy e

request_url_passwd (string, n/a:r)

Password in the URL (if specified).

request_url_port (integer, n/a:r)

Default: n/a

Port number as specified in the URL.

request_url_proto (string, n/a:r)

Default: n/a

Protocol specifier of the URL. This attribute is an alias for request_url_scheme.

request_url_scheme (string, n/a:r)

Default: n/a

Protocol specifier of the URL (http://, ftp://, etc.).

request_url_username (string, n/a:r)

Default: n/a

Username in the URL (if specified).

request_version (string, n/a:r)

Default: n/a

Request version (1.0, 1.1, etc.) used by the client.

require_host_header (boolean, rw:r)

Default: TRUE

Require the presence of the Host header. If set to FALSE, the real URL cannot be recovered from certain
requests, which might cause problems with URL filtering.

rerequest_attempts (integer, rw:rw)

Default: 0

Controls the number of attempts the proxy takes to send the request to the server. In case of server failure, a
reconnection is made and the complete request is repeated along with POST data.

reset_on_close (boolean, rw:rw)

Default: FALSE

www.balasys.hu 56

Class AbstractHttpProxy e

reset_on_close (boolean, rw:rw)

Whenever the connection is terminated without a proxy generated error message, send an RST instead of a
normal close. Causes some clients to automatically reconnect.

response (complex, rw:rw)

Default: empty

Normative policy hash for HTTP responses indexed by the HTTP method and the response code (e.g.: "PWD",
"209" etc.). See also Section 4.7.2.2, Configuring policies for HTTP requests and responses (p. 38).

response_header (complex, rw:rw)

Default: empty

Normative policy hash for HTTP header responses indexed by the header names (e.g.: "Set-cookie"). See
also Section 4.7.2.3, Configuring policies for HTTP headers (p. 40).

response_mime_type (string, n/a:r)

Default: n/a

The MIME type of the response entity. Its value is only defined when the response is processed.

response_stack (complex, rw:rw)

Default: n/a

Attribute containing the response stacking policy: the hash is indexed based on method names (e.g.: GET).
See Section 4.7.2.9, Stacking (p. 43).

rewrite_host_header (boolean, rw:rw)

Default: TRUE

Rewrite the Host header in requests when URL redirection is performed.

session_persistence_cookie_name (string, rw:rw)

Default: "JSESSIONID"

The name of the cookie which will be used to persist load balanced connections when accessing session-aware
application servers.

session_persistence_cookie_salt (string, rw:rw)

Default: n/a

The salt to use when hashing the target server addresses in persistent load balanced connections. If session
persistence is enabled, this parameter must be set.

www.balasys.hu 57

Class AbstractHttpProxy e

strict_header_checking (boolean, rw:r)

Default: FALSE

Require RFC conformant HTTP headers.

strict_header_checking_action (enum, rw:r)

Default: HTTP_HDR_DROP

This attribute controls what should happen if a non-rfc conform or unknown header found in the communication.
Only the HTTP_HDR_ACCEPT, HTTP_HDR_DROP and HTTP_HDR_ABORT can be used.

target_port_range (string, rw:rw)

Default: "80,443"

List of ports that non-transparent requests are allowed to use. The default is to allow port 80 and 443 to permit
HTTP and HTTPS traffic. (The latter also requires the CONNECT method to be enabled).

timeout (integer, rw:rw)

Default: 300000

General I/0 timeout in milliseconds. If there is no timeout specified for a given operation, this value is used.

timeout_request (integer, rw:rw)

Default: 10000

Time to wait for a request to arrive from the client.

timeout_response (integer, rw:rw)

Default: 300000

Time to wait for the HTTP status line to arrive from the server.

transparent_mode (boolean, rw:r)

Default: TRUE

Set the operation mode of the proxy to transparent (TRUE) or non-transparent (FALSE).

url_category (complex, rw:rw)

Default: empty

Normative policy hash for category-based URL-filtering. The hash is indexed by the name of the category.

url_filter_uncategorized_action (enum, rw:rw)

Default: HTTP_URL_ACCEPT

www.balasys.hu 58

Class AbstractHttpProxy e

url_filter_uncategorized_action (enum, rw:rw)

The action applied to uncategorized (unknown) URLs when URL filtering is used. By default, uncategorized
URLs are accepted: self.url_filter_uncategorized_action=(HTTP_URL_ACCEPT,). Note that if
you set this option to HTTP_URL_REJECT, you must add every URL on your intranet to a category and set
an HTTP_URL_ACCEPT rule to this category, otherwise your clients will not able to access your intranet sites.
For details, see Section Configuring URL-filtering in HTTP (p. 44).

use_canonicalized_urls (boolean, rw:rw)

Default: TRUE

This attribute enables URL canonicalization, which means to automatically convert URLSs to their canonical
form. This enhances security but might cause interoperability problems with some applications. It is
recommended to disable this setting on a per-destination basis. URL filtering still sees the canonicalized URL,
but at the end the proxy sends the original URL to the server.

use_default_port_in_transparent_mode (boolean, rw:rw)

Default: TRUE

Set the target port to the value of default_port in transparent mode. This ensures that only the ports
specified in target_port_range can be used by the clients, even if InbandRouter is used.

4.7.5.2. AbstractHttpProxy methods

Method Description

getRequestHeader(self, header) Function returning the value of a request header.
getResponseHeader(self, header) Function returning the value of a response header.
setRequestHeader(self, header, new value) Function changing the value of a request header.
setResponseHeader(self, header, new value) Function changing the value of a response header.

Table 4.16. Method summary

Method getRequestHeader(self, header)

This function looks up and returns the value of a header associated with the current request.

Arguments of getRequestHeader

header (unknown, n/a:n/a)

Default: n/a

Name of the header to look up.

www.balasys.hu 59

Class AbstractHttpProxy e

Method getResponseHeader(self, header)

This function looks up and returns the value of a header associated with the current response.

Arguments of getResponseHeader

header (unknown, n/a:n/a)

Default: n/a

Name of the header to look up.

Method setRequestHeader(self, header, new_value)

This function looks up and changes the value of a header associated with the current request.

Arguments of setRequestHeader

header (unknown, n/a:n/a)

Default: n/a

Name of the header to change.

new_value (unknown, n/a:n/a)

Default: n/a

Change the header to this value.

Method setResponseHeader(self, header, new_value)

This function looks up and changes the value of a header associated with the current response.

Arguments of setResponseHeader

header (unknown, n/a:n/a)

Default: n/a

Name of the header to change.

new_value (unknown, n/a:n/a)

Default: n/a

Change the header to this value.

www.balasys.hu 60

Class HttpProxy e

4.7.6. Class HttpProxy

HttpProxy is a default HTTP proxy based on AbstractHttpProxy. It is transparent, and enables the most commonly
used HTTP methods: "GET", "POST" and "HEAD".

4.7.7. Class HttpProxyNonTransparent

HTTP proxy based on HttpProxy. This class is identical to HttpProxy with the only difference being that it is
non-transparent (transparent_mode = FALSE). Consequently, clients must be explicitly configured to
connect to this proxy instead of the target server and issue proxy requests. On the server side this proxy connects
transparently to the target server.

For the correct operation the proxy must be able to set the server address on its own. This can be accomplished
by using InbandRouter.

4.7.8. Class HttpProxyURIFilter

HTTP proxy based on HttpProxy, having URL filtering capability. The matcher attribute should be initialized
to refer to a Matcher object. The initialization should be done in the class body as shown in the next example.

— Example 4.15. URL filtering HTTP proxy
—

%‘ class MyHttp(HttpProxyURIFilter):

matcher = RegexpFileMatcher('/etc/zorp/blacklist.txt’',
'/etc/zorp/whitelist.txt')

4.7.8.1. Attributes of HttpProxyURIFilter

matcher (class, rw:rw)

Default: None

Matcher determining whether access to an URL is permitted or not.

4.7.9. Class HttpProxyURIFilterNonTransparent

HTTP proxy based on HttpProxyURIFilter, but operating in non-transparent mode (transparent_mode =
FALSE).

4.7.10. Class HttpProxyURLCategoryFilter

HTTP proxy based on HttpProxy with enabled URL filtering (with DNS and reverse-DNS resolution) and
preconfigured default category actions.

The following categories have policy action HTTP_URL_REJECT:

W ads

m adult

www.balasys.hu 61

Class HttpWebdavProxy e

m blacklist
m drugs

® gambling
m hacking
m phishing
® porn
sexuality

spyware

[]
]
B violence
[]

virusinfected

B warez

The following categories have policy action HTTP_URL_ACCEPT:

m whitelist

4.7.11. Class HttpWebdavProxy
HTTP proxy based on HttpProxy, also capable of inspecting WebDAV extensions of the HTTP protocol.

The following requests are permitted: PROPFIND; PROPPATCH; MKCOL; COPY; MOVE; LOCK; UNLOCK.

4.7.12. Class NontransHttpWebdavProxy

HTTP proxy based on HttpProxyNonTransparent, operating in non-transparent mode (transparent_mode
= FALSE) and capable of inspecting WebDAV extensions of the HTTP protocol.

The following requests are permitted: PROPFIND; PROPPATCH; MKCOL,; COPY; MOVE; LOCK; UNLOCK.

4.8. Module Plug

This module defines an interface to the Plug proxy. Plug is a simple TCP or UDP circuit, which means that
transmission takes place without protocol verification.

4.8.1. Proxy behavior

This class implements a general plug proxy, and is capable of optionally disabling data transfer in either direction.
Plug proxy reads connection on the client side, then creates another connection at the server side. Arriving
responses are sent back to the client. However, it is not a protocol proxy, therefore PlugProxy does not implement
any protocol analysis. It offers protection to clients and servers from lower level (e.g.: IP) attacks. It is mainly
used to allow traffic pass the firewall for which there is no protocol proxy available.

By default plug copies all data in both directions. To change this behavior, set the copy_to_client or
copy_to_server attribute to FALSE.

Plug supports the use of secondary sessions. For details, see Section 2.2, Secondary sessions (p. 7).

www.balasys.hu 62

Related standards e

Note
Copying of out-of-band data is not supported.

®

4.8.2. Related standards

Plug proxy is not a protocol specific proxy module, therefore it is not specified in standards.

4.8.3. Classes in the Plug module

Class Description
AbstractPlugProxy Class encapsulating the abstract Plug proxy.
PlugProxy Class encapsulating the default Plug proxy.

Table 4.17. Classes of the Plug module

4.8.4. Class AbstractPlugProxy

An abstract proxy class for transferring data.

4.8.4.1. Attributes of AbstractPlugProxy

bandwidth_to_client (integer, n/a:r)

Default: n/a

Read-only variable containing the bandwidth currently used in server->client direction.

bandwidth_to_server (integer, n/a:r)

Default: n/a

Read-only variable containing the bandwidth currently used in client->server direction.

buffer_size (integer, w:r)

Default: 1500

Size of the buffer used for copying data.

copy_to_client (boolean, w:r)

Default: TRUE

Allow data transfer in the server->client direction.

copy_to_server (boolean, w:r)

Default: TRUE

Allow data transfer in the client->server direction.

www.balasys.hu 63

Class AbstractPlugProxy e

packet_stats_interval_packet (integer, w:r)

Default: 0

The number of passing packages between two successive packetStats() events. It can be useful when the
Quality of Service for the connection is influenced dynamically. Set to 0 to turn packetStats() off.

packet_stats_interval_time (integer, w:r)

Default: 0

The time in milliseconds between two successive packetStats() events. It can be useful when the Quality of
Service for the connection is influenced dynamically. Set to 0 to turn packetStats() off.

secondary_mask (secondary_mask, rw:r)

Default: 0xf

Specifies which connections can be handled by the same proxy instance. See Section 2.2, Secondary
sessions (p. 7) for details.

secondary_sessions (integer, rw:r)

Default: 10

Maximum number of allowed secondary sessions within a single proxy instance. See Section 2.2, Secondary
sessions (p. 7) for details.

shutdown_soft (boolean, w:r)

Default: FALSE

If enabled, the two sides of a connection are closed separately. (E.g.: if the server closes the connection the
client side connection is held until it is verified that no further data arrives, for example from a stacked proxy.)
It is automatically enabled when proxies are stacked into the connection.

stack_proxy (enum, w:r)

Default: n/a

Proxy class to stack into the connection. All data is passed to the specified proxy.

timeout (integer, w:r)

Default: 600000

I/0O timeout in milliseconds.

www.balasys.hu 64

Class PlugProxy e

4.8.4.2. AbstractPlugProxy methods

Method

Description

packetStats(self, client_bytes, client pkts, server bytes,

server pkts

Function called when the packet_stats_interval is
elapsed.

Table 4.18. Method summary

Method packetStats(self, client_bytes, client_pkts, server_bytes, server_pkts)

This function is called whenever the time interval set in packet_stats_interval elapses, or a given number of
packets were transmitted. This event receives packet statistics as parameters. It can be used in managing the
Quality of Service of the connections; e.g.: to terminate connections with excessive bandwidth requirements
(for instance to limit the impact of a covert channel opened when using plug instead of a protocol specific

proxy).

Arguments of packetStats

client_bytes (unknown, n/a:n/a)

Default: n/a

Number of bytes transmitted to the client.

client_pkts (unknown, n/a:n/a)

Default: n/a

Number of packets transmitted to the client.

server_bytes (unknown, n/a:n/a)

Default: n/a

Number of bytes transmitted to the server.

server_pkts (unknown, n/a:n/a)

Default: n/a

Number of packets transmitted to the server.

4.8.5. Class PlugProxy

A default PlugProxy based on AbstractPlugProxy.

4.9. Module Pop3

The Pop3 module defines the classes constituting the proxy for the POP3 protocol.

www.balasys.hu

65

The POP3 protocol (37

4.9.1. The POP3 protocol

Post Office Protocol version 3 (POP3) is usually used by mail user agents (MUAs) to download messages from
aremote mailbox. POP3 supports a single mailbox only, it does not support advanced multi-mailbox operations
offered by alternatives such as IMAP.

The POP3 protocol uses a single TCP connection to give access to a single mailbox. It uses a simple
command/response based approach, the client issues a command and a server can respond either positively or
negatively.

4.9.1.1. Protocol elements

The basic protocol is the following: the client issues a request (also called command in POP3 terminology) and
the server responds with the result. Both commands and responses are line based, each command is sent as a
complete line, a response is either a single line or - in case of mail transfer commands - multiple lines.

Commands begin with a case-insensitive keyword possibly followed by one or more arguments (such as RETR
or DELE).

Responses begin with a status indicator ("+OK" or "-ERR") and a possible explanation of the status code (e.g.:
"-ERR Permission denied.").

Responses to certain commands (usually mail transfer commands) also contain a data attachment, such as the
mail body. See the Section 4.9.1.3, Bulk transfers (p. 66) for further details.

4.9.1.2. POP3 states

The protocol begins with the server displaying a greeting message, usually containing information about the
server.

After the greeting message the client takes control and the protocol enters the AUTHORIZATION state where
the user has to pass credentials proving his/her identity.

After successful authentication the protocol enters TRANSACTION state where mail access commands can
be issued.

When the client has finished processing, it issues a QUIT command and the connection is closed.

4.9.1.3. Bulk transfers

Responses to certain commands (such as LIST or RETR) contain a long data stream. This is transferred as a
series of lines, terminated by a "CRLF "' CRLF" sequence, just like in SMTP.

— Example 4.16. POP3 protocol sample

— +0K POP3 server ready

USER account

+0K User name is ok

PASS password

+0K Authentication successful
LIST

+0K Listing follows

1 5758

www.balasys.hu 66

Proxy behavior e

2 232323
3 3434

RETR 1

+0K Mail body follows
From: sender@sender.com
To: account@receiver.com
Subject: sample mail

This is a sample mail message. Lines beginning with
..are escaped, another '.' character is perpended which
is removed when the mail is stored by the client.

DELE 1

+0K Mail deleted
QUIT

+0K Good bye

4.9.2. Proxy behavior

Pop3Proxy is a module built for parsing messages of the POP3 protocol. It reads and parses COMMANDSs on
the client side, and sends them to the server if the local security policy permits. Arriving RESPONSEs are
parsed as well, and sent to the client if the local security policy permits. It is possible to manipulate both the
requests and the responses.

4.9.2.1. Default policy for commands

By default, the proxy accepts all commands recommended in RFC 1939. Additionally, the following optional
commands are also accepted: USER, PASS, AUTH. The proxy understands all the commands specified in RFC
1939 and the AUTH command. These additional commands can be enabled manually.

4.9.2.2. Configuring policies for POP3 commands

Changing the default behavior of commands can be done using the hash named request. The hash is indexed
by the command name (e.g.: USER or AUTH). See Section 2.1, Policies for requests and responses (p. 4)
for details.

Action Description
POP3_REQ_ACCEPT Accept the request without any modification.
POP3_REQ_ACCEPT_MLINE Accept multiline requests without modification. Use

it only if unknown commands has to be enabled (i.e.
commands not specified in RFC 1939 or RFC 1734).

POP3_REQ_REJECT Reject the request. The second parameter contains a
string that is sent back to the client.

POP3_REQ_POLICY Call the function specified to make a decision about
the event. See Section 2.1, Policies for requests and
responses (p. 4) for details. This action uses two
additional tuple items, which must be callable Python

www.balasys.hu 67

Proxy behavior e

Action Description

functions. The first function receives two parameters:
self and command.

The second one is called with an answer, (if the answer
is multiline, it is called with every line) and receives
two parameters: self and response_param.

POP3_REQ_ABORT Reject the request and terminate the connection.

Table 4.19. Action codes for POP3 requests

— Example 4.17. Example for allowing only APOP authentication in POP3
——— | This sample proxy class rejects the USER authentication requests, but allows APOP requests.

class APop3(Pop3Proxy):
def config(self):
Pop3Proxy.config(self)
self.request["USER"] = (POP3_REQ_REJECT)
self.request["APOP"] = (POP3_REQ_ACCEPT)

— Example 4.18. Example for converting simple USER/PASS authentication to APOP in POP3
—— | The above example simply rejected USER/PASS authentication, this one converts USER/PASS authentication to APOP authentication
| — messages.

class UToAPop3(Pop3Proxy):
def config(self):
Pop3Proxy.config(self)
self.request["USER"] = (POP3_REQ_POLICY, self.DropUSER)
self.request["PASS"] = (POP3_REQ_POLICY, self.UToA)

def DropUSER(self,command):
self.response_value = "+0K"
self.response_param = "User ok Send Password"
return POP3_REQ_REJECT

def UToA

=

self,command):

Username is stored in self->username,

password in self->request_param,

and the server timestamp in self->timestamp,
consequently the digest can be calculated.

NOTE: This is only an example, calcdigest must be
implemented separately

digest = calcdigest(self->timestamp+self->request_param)
self->request_command = "APOP"

self->request_param = name + " " + digest

return POP3_REQ_ACCEPT

H W W W

4.9.2.3. Rewriting the banner

As in many other protocols, POP3 also starts with a server banner. This banner contains the protocol version
the server uses, the possible protocol extensions that it supports and, in many situations, the vendor and exact
version number of the POP3 server.

www.balasys.hu 68

Proxy behavior e

This information is useful only if the clients connecting to the POP3 server can be trusted, as it might make
bug hunting somewhat easier. On the other hand, this information is also useful for attackers when targeting

this service.

To prevent this, the banner can be replaced with a neutral one. Use the request hash with the 'GREETING'

keyword as shown in the following example.

— Example 4.19. Rewriting the banner in POP3

— class NeutralPop3(Pop3Proxy):

def config(self):

Pop3Proxy.config(self)

self.request["GREETING"] = (POP3_REQ_POLICY, None, self.rewriteBanner)

def rewriteBanner(self, response)
self.response_param = "Pop3 server ready"
return POP3_RSP_ACCEPT

Note
@ Some protocol extensions (most notably APOP) use random characters in the greeting message as salt in the authentication process, so

4.9.2.4. Stacking

changing the banner when APOP is used effectively prevents APOP from working properly.

The available stacking modes for this proxy module are listed in the following table. For additional information

on stacking, see Section 2.3.1, Proxy stacking (p. 7).

Action

Description

POP3_STK_POLICY

Call the function specified to decide which part (if
any) of the traffic should be passed to the stacked

Proxy.

POP3_STK_NONE

No additional proxy is stacked into the POP3 proxy.

POP3_STK_MIME

The data part of the traffic including the MIME
headers is passed to the specified stacked proxy.

POP3_STK_DATA

Only the data part of the traffic is passed to the
specified stacked proxy.

4.9.2.5. Rejecting viruses and spam

Table 4.20. Action codes for proxy stacking

When filtering messages for viruses or spam, the content vectoring modules reject infected and spam e-mails.
In such cases the POP3 proxy notifies the client about the rejected message in a special e-mail.

www.balasys.hu

69

Related standards e

To reject e-mail messages using the ERR protocol element, set the reject_by mail attribute to FALSE.
However, this is not recommended, because several client applications handle ERR responses incorrectly.

®

4.9.3. Related standards

Note
Infected e-mails are put into the quarantine and deleted from the server.

m Post Office Protocol Version 3 is described in RFC 1939.
m The POP3 AUTHentication command is described in RFC 1734.
m The POP3 STLS extension is described in RFC 2595.

4.9.4. Classes in the Pop3 module

Class Description

AbstractPop3Proxy Class encapsulating the abstract POP3 proxy.
Pop3Proxy Default POP3 proxy based on AbstractPop3Proxy.
Pop3STLSProxy POP3 proxy based on Pop3Proxy allowing Start TLS.

Table 4.21. Classes of the Pop3 module

4.9.5. Class AbstractPop3Proxy

This class implements an abstract POP3 proxy - it serves as a starting point for customized proxy classes, but
is itself not directly usable. Service definitions should refer to a customized class derived from
AbstractPop3Proxy, or a predefined Pop3Proxy proxy class. AbstractPop3Proxy denies all requests by default.

4.9.5.1. Attributes of AbstractPop3Proxy

max_authline_count (integer, rw:r)

Default: 4

Maximum number of lines that can be sent during the authentication conversation. The default value is enough
for password authentication, but might have to be increased for other types of authentication.

max_password_length (integer, rw:r)

Default: 16

Maximum allowed length of passwords.

max_request_line_length (integer, rw:r)

Default: 90

www.balasys.hu 70

Class AbstractPop3Proxy e

max_request_line_length (integer, rw:r)

Maximum allowed line length for client requests, without the CR-LF line ending characters.

max_response_line_length (integer, rw:r)

Default: 512

Maximum allowed line length for server responses, without the CR-LF line ending characters.

max_username_length (integer, rw:r)

Default: 8

Maximum allowed length of usernames.

password (string, n/a:r)

Default:

Password sent to the server (if any).

permit_longline (boolean, rw:r)

Default: FALSE

In multiline answer (especially in downloaded messages) sometimes very long lines can appear. Enabling
this option allows the unlimited long lines in multiline answers.

permit_unknown_command (boolean, rw:r)

Default: FALSE

Enable unknown commands.

reject_by_mail (boolean, rw:r)

Default: TRUE

If the stacked proxy or content vectoring module rejects an e-mail message, reply with a special e-mail message
instead of an ERR response. See Section 4.9.2.5, Rejecting viruses and spam (p. 69) for details.

request (complex, rw:rw)

Default:

Normative policy hash for POP3 requests indexed by the command name (e.g.: "USER", "UIDL", etc.). See
also Section 4.9.2.2, Configuring policies for POP3 commands (p. 67).

request_command (string, n/a:rw)

Default: n/a

www.balasys.hu 71

Class AbstractPop3Proxy e

request_command (string, n/a:rw)

When a command is passed to the policy level, its value can be changed to this value.

request_param (string, n/a:rw)

Default: n/a

When a command is passed to the policy level, the value of its parameters can be changed to this value.

response_multiline (boolean, n/a:rw)

Default: n/a

Enable multiline responses.

response_param (string, n/a:rw)

Default: n/a

When a command or response is passed to the policy level, the value its parameters can be changed to this
value. (It has effect only if the return value is not POP3_*_ACCEPT).

response_stack (complex, rw:rw)

Default:

Hash containing the stacking policy for multiline POP3 responses. The hash is indexed by the POP3 response.
See also Section 4.9.2.4, Stacking (p. 69).

response_value (string, n/a:rw)

Default: n/a

When a command or response is passed to the policy level, its value can be changed to this value. (It has
effect only if the return value is not POP3_*_ACCEPT).

session_timestamp (string, n/a:r)

Default: n/a

If the POP3 server implements the APOP command, with the greeting message it sends a timestamp, which
is stored in this parameter.

timeout (integer, rw:r)

Default: 600000

Timeout in milliseconds. If no packet arrives within this interval, connection is dropped.

www.balasys.hu 72

Class Pop3Proxy e

username (string, n/a:r)

Default: n/a

Username as specified by the client.

4.9.6. Class Pop3Proxy
Pop3Proxy is the default POP3 proxy based on AbstractPop3Proxy, allowing the most commonly used requests.

The following requests are permitted: APOP; DELE; LIST; LAST; NOOP; PASS; QUIT; RETR; RSET; STAT;
TOP; UIDL; USER; GREETING. All other requests (including CAPA) are rejected.

4.9.7. Class Pop3STLSProxy
Pop3STLSProxy is based on Pop3Proxy, allowing the most commonly used requests.

The following requests are permitted: APOP; DELE; LIST; LAST; NOOP; PASS; QUIT; RETR; RSET; STAT;
TOP; UIDL; USER; CAPA; STLS; GREETING. All other requests are rejected. The
self.max_request_line_length is set to 253.

4.10. Module Smtp

Simple Mail Transport Protocol (SMTP) is a protocol for transferring electronic mail messages from Mail User
Agents (MUASs) to Mail Transfer Agents (MTAs). It is also used for exchanging mails between MTAsS.

4.10.1. The SMTP protocol

The main goal of SMTP is to reliably transfer mail objects from the client to the server. A mail transaction
involves exchanging the sender and recipient information and the mail body itself.

4.10.1.1. Protocol elements

SMTP is a traditional command based Internet protocol; the client issues command verbs with one or more
arguments, and the server responds with a 3 digit status code and additional information. The response can span
one or multiple lines, the continuation is indicated by an '-' character between the status code and text.

The communication itself is stateful, the client first specifies the sender via the "MAIL" command, then the
recipients using multiple "RCPT" commands. Finally it sends the mail body using the "DATA" command.
After a transaction finishes the client either closes the connection using the "QUIT" command, or starts a new
transaction with another "MAIL" command.

— Example 4.20. SMTP protocol sample

— 220 mail.example.com ESMTP Postfix (Debian/GNU)
EHLO client.host.name

250-mail.example.com

250-PIPELINING

250-SIZE 50000000

250-VRFY

250-ETRN

250-XVERP

www.balasys.hu 73

Proxy behavior e

250 8BITMIME

MAIL From: <sender@sender.com>
250 Sender ok

RCPT To: <account@recipient.com>
250 Recipient ok

RCPT To: <account2@recipient.com>
250 Recipient ok

DATA

354 Send mail body

From: sender@sender.com

To: account@receiver.com
Subject: sample mail

This is a sample mail message. Lines beginning with
..are escaped, another '.' character is perpended which
is removed when the mail is stored by the client.

250 Ok: queued as BF47618170
QUIT
221 Farewell

4.10.1.2. Extensions

Originally SMTP had a very limited set of commands (HELO, MAIL, RCPT, DATA, RSET, QUIT, NOOP)
but as of RFC 1869, an extension mechanism was introduced. The initial HELO command was replaced by an
EHLO command and the response to an EHLO command contains all the extensions the server supports. These
extensions are identified by an IANA assigned name.

Extensions are used for example to implement inband authentication (AUTH), explicit message size limitation
(SIZE) and explicit queue run initiation (ETRN). Each extension might add new command verbs, but might
also add new arguments to various SMTP commands. The SMTP proxy has built in support for the most
important SMTP extensions, further extensions can be added through customization.

4.10.1.3. Bulk transfer

The mail object is transferred as a series of lines, terminated by the character sequence "CRLF ".' CRLF". When
the . character occurs as the first character of a line, an escaping '.' character is prepended to the line which is
automatically removed by the peer.

4.10.2. Proxy behavior

The Smtp module implements the SMTP protocol as specified in RFC 2821. The proxy supports the basic
SMTP protocol plus five extensions, namely: PIPELINING, SIZE, ETRN, 8BITMIME, and STARTTLS. All
other ESMTP extensions are filtered by dropping the associated token from the EHLO response. If no connection
can be established to the server, the request is rejected with an error message. In this case the proxy tries to
connect the next mail exchange server.

4.10.2.1. Default policy for commands

The abstract SMTP proxy rejects all commands and responses by default. Less restrictive proxies are available
as derived classes (e.g.: SmtpProxy), or can be customized as required.

www.balasys.hu 74

Proxy behavior e

4.10.2.2. Configuring policies for SMTP commands and responses

Changing the default behavior of commands can be done by using the hash attribute request. These hashes
are indexed by the command name (e.g.: MAIL or DATA). Policies for responses can be configured using the
response attribute, which is indexed by the command name and the response code. The possible actions are
shown in the tables below. See Section 2.1, Policies for requests and responses (p. 4) for details. When looking
up entries of the response attribute hash, the lookup precedence described in Section 2.1.2, Response
codes (p. 6) is used.

Action Description
SMTP_REQ_ACCEPT Accept the request without any modification.
SMTP_REQ_REJECT Reject the request. The second parameter contains an

SMTP status code, the third one an associated
parameter which will be sent back to the client.

SMTP_REQ_ABORT Reject the request and terminate the connection.

Table 4.22. Action codes for SMTP requests

Action Description
SMTP_RSP_ACCEPT Accept the response without any modification.
SMTP_RSP_REJECT Reject the response. The second parameter contains

an SMTP status code, the third one an associated
parameter which will be sent back to the client.

SMTP_RSP_ABORT Reject the response and terminate the connection.

Table 4.23. Action codes for SMTP responses

SMTP extensions can be controlled using the extension hash, which is indexed by the extension name. The
supported extensions (SMTP_EXT_PIPELINING; SMTP_EXT_SIZE,; SMTP_EXT ETRN;
SMTP_EXT_8BITMIME) can be accepted or dropped (SMTP_EXT_ACCEPT or SMTP_EXT_DROP)
individually or all at once using the SMTP_EXT_ALL index value.

4.10.2.3. Stacking

The available stacking modes for this proxy module are listed in the following table. For additional information
on stacking, see Section 2.3.1, Proxy stacking (p. 7).

Action Description

SMTP_STK_NONE No additional proxy is stacked into the SMTP proxy.

www.balasys.hu 75

Related standards e

Action Description

SMTP_STK_MIME The data part including header information of the
traffic is passed to the specified stacked proxy.

Table 4.24. Stacking options for SMTP

4.10.3. Related standards

® Simple Mail Transfer Protocol is described in RFC 2821.
m SMTP Service Extensions are described in the obsoleted RFC 1869.
m The STARTTLS extension is described in RFC 3207.

4.10.4. Classes in the Smtp module

Class Description
AbstractSmtpProxy Class encapsulating the abstract SMTP proxy.
SmtpProxy Default SMTP proxy based on AbstractSmtpProxy.

Table 4.25. Classes of the Smtp module

4.10.5. Class AbstractSmtpProxy

This class implements an abstract SMTP proxy - it serves as a starting point for customized proxy classes, but
is itself not directly usable. Service definitions should refer to a customized class derived from
AbstractSmtpProxy, or one of the predefined proxy classes.

The following requests are permitted: HELO; MAIL; RCPT; DATA; RSET; QUIT; NOOP; EHLO; AUTH;
ETRN. The following extensions are permitted: PIPELINING; SIZE; ETRN; 8BITMIME; STARTTLS.

4.10.5.1. Attributes of AbstractSmtpProxy

active_extensions (integer, n/a:r)

Default: n/a

Active extension bitmask, contains bits defined by the constants 'SMTP_EXT_*'

add_received_header (boolean, rw:rw)

Default: FALSE

Add a Received: header into the email messages transferred by the proxy.

append_domain (string, rw:rw)

Default:

www.balasys.hu 76

Class AbstractSmtpProxy e

append_domain (string, rw:rw)

Domain to append to email addresses which do not specify domain name. An address is rejected if it does
not contain a domain and append_domain is empty.

autodetect_domain_from (enum, rw:rw)

Default:

If you want to autodetect the domain name of the firewall and write it to the Received line, then set this. This
attribute either set the method how the mailname should be detected. Only takes effect if add_received_header
is TRUE.

domain_name (string, rw:rw)

Default:

If you want to set a fix domain name into the added Receive line, set this. Only takes effect if
add_received_header is TRUE.

extensions (complex, rw:rw)

Default:

Normative policy hash for ESMTP extension policy, indexed by the extension verb (e.g. ETRN). It contains
an action tuple with the SMTP_EXT_* values as possible actions.

interval_transfer_noop (integer, rw:rw)

Default: 600000

The interval between two NOOP commands sent to the server while waiting for the results of stacked proxies.

max_auth_request_length (integer, rw:r)

Default: 256

Maximum allowed length of a request during SASL style authentication.

max_request_length (integer, rw:r)

Default: 256

Maximum allowed line length of client requests.

max_response_length (integer, rw:r)

Default: 512

Maximum allowed line length of a server response.

www.balasys.hu 77

Class AbstractSmtpProxy e

permit_long_responses (boolean, rw:r)

Default: FALSE

Permit overly long responses, as some MTAs include variable parts in responses which might get very long.
If enabled, responses longer than max_response_length are segmented into separate messages. If disabled,
such responses are rejected.

permit_omission_of_angle_brackets (boolean, rw:r)

Default: FALSE

Permit MAIL From and RCPT To parameters without the normally required angle brackets around them.
They will be added when the message leaves the proxy anyway.

permit_unknown_command (boolean, rw:r)

Default: FALSE

Enable unknown commands.

request (complex, rw:rw)

Default:

Normative policy hash for SMTP requests indexed by the command name (e.g.: "USER", "UIDL", etc.). See
also Section 4.10.2.2, Configuring policies for SMTP commands and responses (p. 75).

request_command (string, n/a:rw)

Default: n/a

When a command is passed to the policy level, its value can be changed to this value.

request_param (string, n/a:rw)

Default: n/a

When a command is passed to the policy level, the value of its parameter can be changed to this value.

request_stack (complex, rw:rw)

Default:

Attribute containing the stacking policy for SMTP commands. See Section 4.10.2.3, Stacking (p. 75).

require_crlf (boolean, rw:r)

Default: TRUE

Specifies whether the proxy should enforce valid CRLF line terminations.

www.balasys.hu 78

Class SmtpProxy e

resolve_host (boolean, rw:rw)

Default: FALSE

Resolve the client host from the IP address and add it to the Received line. Only takes effect if
add_received_header is TRUE.

response (complex, rw:rw)

Default:

Normative policy hash for SMTP responses indexed by the command name and the response code. See also
Section 4.10.2.2, Configuring policies for SMTP commands and responses (p. 75).

response_param (string, n/a:rw)

Default: n/a

When a response is passed to the policy level, the value of its parameter can be changed to this value. (It has
effect only when the return value is not SMTP_*_ACCEPT.)

response_value (string, n/a:rw)

Default: n/a

When a response is passed to the policy level, its value can be changed to this value. (It has effect only when
the return value is not SMTP_*_ACCEPT.)

timeout (integer, rw:r)

Default: 600000

Timeout in milliseconds. If no packet arrives within this in interval, the connection is dropped.

tls_passthrough (boolean, rw:r)

Default: FALSE

Change to passthrough mode after a successful STARTTLS request. The encrypted traffic is not processed
or changed in any way, it is transported intact between the client and server.

unconnected_response_code (integer, rw:rw)

Default: 451

Error code sent to the client if connecting to the server fails.

4.10.6. Class SmtpProxy

SmtpProxy implements a basic SMTP Proxy based on AbstractSmtpProxy, with relay checking and
sender/recipient check restrictions. (Exclamation marks and percent signs are not allowed in the e-mail addresses.)

www.balasys.hu 79

Class SmtpProxy e

4.10.6.1. Attributes of SmtpProxy

error_soft (boolean, rw:rw)

Default: FALSE

Return a soft error condition when recipient filter does not match. If enabled, the proxy will try to re-validate
the recipient and send the mail again. This option is useful when the server used for the recipient matching
is down.

permit_exclamation_mark (boolean, rw:rw)

Default: FALSE

Allow the '"!" sign in the local part of e-mail addresses.

permit_percent_hack (boolean, rw:rw)

Default: FALSE

Allow the "%’ sign in the local part of e-mail addresses.

recipient_matcher (class, rw:rw)

Default:

Matcher class (e.g.: SmtpInvalidRecipientMatcher) used to check and filter recipient e-mail addresses.

relay_check (boolean, rw:rw)

Default: TRUE

Enable/disable relay checking.

relay_domains (complex, rw:r)

Default:

Domains mails are accepted for. Use Postfix style lists. (E.g.: .example.com' allows every subdomain of
example.com, but not example.com. To match example.com use 'example.com'.)

relay_domains_matcher (class, rw:r)

Default:

Domains mails are accepted for based on a matcher (e.g.: RegexpFileMatcher).

relay_zones (complex, rw:r)

Default:

Zones that are relayed. The administrative hierarchy of the zone is also used.

www.balasys.hu 80

Module Telnet e

sender_matcher (class, rw:rw)

Default:

Matcher class (e.g.: SmtpInvalidRecipientMatcher) used to check and filter sender e-mail addresses.

4.11. Module Telnet

The Telnet module defines the classes constituting the proxy for the TELNET protocol.

4.11.1. The Telnet protocol

The Telnet protocol was designed to remotely login to computers via the network. Although its main purpose
is to access a remote standard terminal, it can be used for many other functions as well.

The protocol follows a simple scenario. The client opens a TCP connection to the server at the port 23. The
server authenticates the client and opens a terminal. At the end of the session the server closes the connection.
All data is sent in plain text format whithout any encryption.

4.11.1.1. The network virtual terminal

The communication is based on the network virtual terminal (NVT). Its goal is to map a character terminal so
neither the "server" nor "user" hosts need to keep information about the characteristics of each other's terminals
and terminal handling conventions. NVT uses 7 bit code ASCII characters as the display device. An end of line
is transmitted as a CRLF (carriage return followed by a line feed). NVT ASCII is used by many other protocols
as well.

NVT defines three mandatory control codes which must be understood by the participants: NULL, CR (Carriage
Return), which moves the printer to the left margin of the current line and LF (Line Feed), which moves the
printer to the next line keeping the current horizontal position.

NVT also contains some optional commands which are useful. These are the following:

®m BELL is an audible or visual sign.

m BS (Back Space) moves the printer back one position and deletes a character.
m HT (Horizontal Tab) moves the printer to the next horizontal tabular stop.

m VT Vertical Tab moves the printer to the next vertical tabular stop.

m FF (Form Feed) moves the printer to the top of the next page.

4.11.1.2. Protocol elements

The protocol uses several commands that control the method and various details of the interaction between the
client and the server. These commands can be either mandatory commands or extensions. During the session
initialization the client and the server negotiates the connection parameters with these commands. Sub-negotiation
is a process during the protocol which is for exchanging extra parameters of a command (e.g.: sending the
window size). The commands of the protocol are:

www.balasys.hu 81

Proxy behavior e

Request/Response Description

SE End of sub-negotiation parameters.

NOP No operation.

DM Data mark - Indicates the position of Sync event within

the data stream.

BRK Break - Indicates that a break or attention key was hit.
1P Suspend, interrupt or abort the process.
AO Abort output - Run a command without sending the

output back to the client.

AYT Are you there - Request a visible evidence that the
AYT command has been received.

EC Erase character - Delete the character last received
from the stream.

EL Erase line - Erase a line without a CRLF.

GA Go Ahead - Instruct the other machine to start the
transmission.

SB Sub-negotiation starts here.

WILL Will (option code) - Indicates the desire to begin

performing the indicated option, or confirms that it is
being performed.

WONT Will not (option code) - Indicates the refusal to
perform, or continue performing, the indicated option.

DO Do (option code) - Indicates the request that the other
party perform, or confirmation that the other party is
expected to perform, the indicated option.

DONT Do not (option code) - Indicates the request that the
other party stop performing the indicated option, or
confirmation that its performing is no longer expected.

IAC Interpret as command.

Table 4.26. Telnet protocol commands

4.11.2. Proxy behavior

TelnetProxy is a module built for parsing TELNET protocol commands and the negotiation process. It reads
and parses COMMANDs on the client side, and sends them to the server if the local security policy permits.
Arriving RESPONSESs are parsed as well and sent to the client if the local security policy permits. It is possible
to manipulate options by using TELNET_OPT_POLICY. It is also possible to accept or deny certain options
and suboptions.

www.balasys.hu 82

Proxy behavior e

The Telnet shell itself cannot be controlled, thus the commands issued by the users cannot be monitored or
modified.

4.11.2.1. Default policy

The low level abstract Telnet proxy denies every option and suboption negotiation sequences by default. The
different options can be enabled either manually in a derived proxy class, or the predefined TelnetProxy class
can be used.

4.11.2.2. Configuring policies for the TELNET protocol

The Telnet proxy can enable/disable the use of the options and their suboptions within the session. Changing
the default policy can be done using the opt ion multi-dimensional hash, indexed by the option and the suboption
(optional). If the suboption is specified, the lookup precedence described in Section 2.1.2, Response codes (p. 6)
is used. The possible action codes are listed in the table below.

Action Description

TELNET_OPT_ACCEPT Allow the option.

TELNET_OPT_DROP Reject the option.

TELNET_OPT_ABORT Reject the option and terminate the Telnet session.

TELNET_OPT_POLICY Call the function specified to make a decision about
the event. The function receives two parameters: self,
and option (an integer). See Section 2.1, Policies for
requests and responses (p. 4) for details.

Table 4.27. Action codes for Telnet options

— Example 4.21. Example for disabling the Telnet X Display Location option
%‘ class MyTelnetProxy(TelnetProxy):
def config(self):
TelnetProxy.config(self)
self.option[TELNET_X_DISPLAY_LOCATION] = (TELNET_OPT_REJECT)

Constants have been defined for the easier use of TELNET options and suboptions. These are listed in Table
A.1, TELNET options and suboptions (p. 225).

Policy callback functions

Policy callback functions can be used to make decisions based on the content of the suboption negotiation
sequence. For example, the suboption negotiation sequences of the Telnet Environment option transfer
environment variables. The low level proxy implementation parses these variables, and passes their name and
value to the callback function one-by-one. These values can also be manipulated during transfer, by changing
the current_var_name and current_var_value attributes of the proxy class.

www.balasys.hu 83

Related standards e

— Example 4.22. Rewriting the DISPLAY environment variable

— class MyRewritingTelnetProxy(TelnetProxy):
def config(self):
TelnetProxy.config()
self.option[TELNET_ENVIRONMENT, TELNET_SB_IS] = (TELNET_OPTION_POLICY, self.rewritevar)

def rewritevar(self, option, name, value):
if name == "DISPLAY":
self.current_var_value = "rewritten_value:0"
return TELNET_OPTION_ACCEPT

Option negotiation

In the Telnet protocol, options and the actual commands are represented on one byte. In order to be able to use
a command in a session, the option (and its suboptions if there are any) corresponding to the command has to
be negotiated between the client and the server. Usually the command and the option is represented by the same
value, e.g.: the TELNET_STATUS command and option are both represented by the value "5". However, this is
not always the case. The negotiation hash is indexed by the code of the command, and contains the code of
the option to be negotiated for the given command (or the TELNET_NEG_NONE when no negotation is needed).

Currently the only command where the code of the command differs from the related option is
self.negotiation["239"] = int(TELNET_EOR).

4.11.3. Related standards

The Telnet protocol is described in RFC 854. The different options of the protocol are described in various
other RFCs, listed in Table A.1, TELNET options and suboptions (p. 225).

4.11.4. Classes in the Telnet module

Class Description

AbstractTelnetProxy Class encapsulating the abstract Telnet proxy.

TelnetProxy Default Telnet proxy based on AbstractTelnetProxy.

TelnetProxyStrict Telnet proxy based on AbstractTelnetProxy, allowing
only the minimal command set.

Table 4.28. Classes of the Telnet module

4.11.5. Class AbstractTelnetProxy

This class implements the Telnet protocol (as described in RFC 854) and its most common extensions. Although
not all possible options are checked by the low level proxy, it is possible to filter any option and suboption
negotiation sequences using policy callbacks. AbstractTelnetProxy serves as a starting point for customized
proxy classes, but is itself not directly usable. Service definitions should refer to a customized class derived
from AbstractTelnetProxy, or one of the predefined TelnetProxy proxy classes. AbstractTelnetProxy denies all
options by default.

www.balasys.hu 84

Class TelnetProxy e

4.11.5.1. Attributes of AbstractTelnetProxy

current_var_name (string, n/a:rw)

Default: n/a

Name of the variable being negotiated.

current_var_value (string, n/a:rw)

Default: n/a

Value of the variable being negotiated (e.g.: value of an environment variable, an X display location value,
etc.).

enable_audit (boolean, w:r)

Default: FALSE

Enable session auditing.

negotiation (complex, rw:rw)

Default:

Normative hash listing which options must be negotiated for a given command. See Section Option negotiation
(p. 84) for details.

option (complex, rw:rw)

Default: n/a

Normative policy hash for Telnet options indexed by the option and (optionally) the suboption. See also
Section 4.11.2.2, Configuring policies for the TELNET protocol (p. 83).

timeout (integer, rw:r)

Default: 600000

I/0O timeout in milliseconds.

4.11.6. Class TelnetProxy

TelnetProxy is a proxy class based on AbstractTelnetProxy, allowing the use of all Telnet options.

4.11.7. Class TelnetProxyStrict

TelnetProxyStrict is a proxy class based on AbstractTelnetProxy, allowing the use of the options minimally
required for a useful Telnet session.

The following options are permitted: ECHO; SUPPRESS_GO_AHEAD; TERMINAL_TYPE; NAWS; EOR;
TERMINAL_SPEED; X_DISPLAY_LOCATION; ENVIRONMENT. All other options are rejected.

www.balasys.hu 85

Module Whois e

4.12. Module Whois

WHOIS is a protocol providing information about domain and IP owners.

4.12.1. The Whois protocol
Whois is a netwide service to the Internet users maintained by DDN Network Information Center (NIC).

The protocol follows a very simple method. First the client opens a TCP connection to the server at the port 43
and sends a one line REQUEST closed with <CRLF>. This request can contain only ASCII characters. The
server sends the result back and closes the connection.

4.12.2. Proxy behavior

WhoisProxy is a module build for parsing messages of the WHOIS protocol. It reads and parses the REQUESTSs
on the client side and sends them to the server if the local security policy permits. Arriving RESPONSESs are
not parsed as they do not have any fixed structure or syntax.

— Example 4.23. Example WhoisProxy logging all whois requests
%‘ class MyWhoisProxy(AbstractWhoisProxy):
def whoisRequest(self, request):
log(None, CORE_DEBUG, 3, "Whois request: '%s'" % (request))
return zZV_ACCEPT

4.12.3. Related standards

® The NICNAME/WHOIS protocol is described in RFC 954.

4.12.4. Classes in the Whois module

Class Description
AbstractWhoisProxy Class encapsulating the abstract Whois proxy.
WhoisProxy Default proxy class based on AbstractWhoisProxy.

Table 4.29. Classes of the Whois module

4.12.5. Class AbstractWhoisProxy

This class implements the WHOIS protocol as specified in RFC 954.

4.12.5.1. Attributes of AbstractWhoisProxy

max_line_length (integer, rw:r)

Default: 132

Maximum number of characters allowed in a single line.

www.balasys.hu 86

Class WhoisProxy e

max_request_length (integer, rw:r)

Default: 128

Maximum allowed length of a Whois request.

request (string, n/a:rw)

Default:

The Whois request.

response_footer (string, rw:rw)

Default:

Append this string to each Whois response.

response_header (string, rw:rw)

Default:

Prepend this string to each Whois response.

timeout (integer, rw:r)

Default: 30000

I/0 timeout in milliseconds.

4.12.5.2. AbstractWhoisProxy methods

Method Description

whoisRequest(self, request) Function to process whois requests.

Table 4.30. Method summary

Method whoisRequest(self, request)

This function is called by the Whois proxy to process the requests. It can also be used to change specific attributes
of the request.

4.12.6. Class WhoisProxy

A default proxy class based on AbstractWhoisProxy.

www.balasys.hu 87

Module Auth e

Chapter 5. Core

This chapter provides detailed description for the core modules of Zorp.

5.1. Module Auth

This module contains classes related to authentication and authorization. Together with the AuthDB module it
implements the Authentication and Authorization framework.

User authentication verifies the identity of the user trying to access a particular network service. When performed
on the connection level, that enables the full auditing of the network traffic. Authentication is often used in
conjunction with authorization, allowing access to a service only to clients who have the right to do so.

5.1.1. Authentication and authorization basics

Authentication is a method to ensure that certain services (access to a server, etc.) can be used only by the
clients allowed to access the service. The process generally called as authentication actually consists of three
distinct steps:

m [dentification: Determining the clients identity (e.g.: requesting a username).

m Authentication: Verifying the clients identity (e.g.: requesting a password that only the real client
knows).

m Authorization: Granting access to the service (e.g.: verifying that the authenticated client is allowed
to access the service).

independently. Authentication verifies the identity of the client. There are situations where authentication is sufficient,
because all users are allowed to access the services, only the event and the user's identity has to be logged. On the other
hand, authorization is also possible without authentication, for example if access to a service is time-limited (e.g.: it can

Note
@ It is important to note that although authentication and authorization are usually used together, they can also be used
only be accessed outside the normal work-hours, etc.). In such situations authentication is not needed.

5.1.2. Authentication and authorization in Zorp

Zorp can authenticate and authorize access to the services. The aim of authentication is to identify the user and
the associated group memberships. When the client initiates a connection, it actually tries to use a service. Zorp
checks if an authentication policy is associated to the service. If an authentication policy is present, Zorp contacts
the authentication provider specified in the authentication policy. The type of authentication (the authentication
class used, e.g., InbandAuthentication) is also specified in the authentication policy. The authentication provider
connects to an authentication backend (e.g., a user database) to perform the authentication of the client - Zorp
itself does not directly communicate with the database.

If the authentication is successful, the client is verified if it is allowed to access the service (by evaluating the
authorization policy and the identity and group memberships of the client). If the client is authorized to access

www.balasys.hu 88

Classes in the Auth module e

the service, the server-side connection is built. The client is automatically authorized if no authorization policy
is assigned to the service.

Currently only one authentication provider, the () is available via the ZAS2AuthenticationBackend class.
Authentication providers are actually configured instances of the authentication backends, and it is independent
from the database that the backend connects to. The authentication backend is that ties the authentication
provider to the server storing the user data. For details on using , see the Connection authentication and
authorization chapter of the Zorp Administrator's Guide.

The aim of authentication is to identify the user and resolve group memberships. The results are stored in the
in the auth_user and auth_groups attributes of the session object. Note that apart from the information
required for authentication, Zorp also sends session information (e.g., the IP address of the client) to the
authentication provider.

Zorp provides the following authentication classes:

® InbandAuthentication: Use the built-in authentication of the protocol to authenticate the client on
the Zorp.

m ServerAuthentication: Enable the client to connect to the target server, and extract its authentication
information from the protocol.

m ZAAuthentication: Outband authentication using the .

If the authentication is successful, Zorp verifies that the client is allowed to access the service (by evaluating
the authorization policy). If the client is authorized to access the service, the server-side connection is built.
The client is automatically authorized if no authorization policy is assigned to the service.

Each service can use an authorization policy to determine whether a client is allowed to access the service. If
the authorization is based on the identity of the client, it takes place only after a successful authentication -
identity-based authorization can be performed only if the client's identity is known and has been verified. The
actual authorization is performed by Zorp, based on the authentication information received from or extracted
from the protocol.

Zorp provides the following authorization classes:

B PermitUser: Authorize listed users.

m PermitGroup: Authorize users belonging to the specified groups.

B PermitTime: Authorize connections in a specified time interval.

B BasicAccessList: Combine other authorization policies into a single rule.

B PairAuthorization: Authorize only user pairs.

m NEyesAuthorization: Have another client authorize every connection.

5.1.3. Classes in the Auth module

Class Description
AbstractAuthentication Class encapsulating the abstract authentication
interface.

www.balasys.hu 89

Class AbstractAuthentication e

Class

Description

AbstractAuthorization

Class encapsulating the authorization interface.

AuthCache

Class encapsulating the authentication cache.

AuthenticationPolicy

A policy determining how the user is authenticated to
access the service.

AuthorizationPolicy

A policy determining how the user is authorized to
access the service.

BasicAccessList Class encapsulating the authorization by access list.
InbandAuthentication Class encapsulating the inband authentication
interface.

NEyesAuthorization

Class encapsulating N eyes authorization.

PairAuthorization

Class encapsulating pair-based 4 eyes authorization.

PermitGroup

Class encapsulating the group membership based
authorization.

PermitTime

Class encapsulating time based authorization.

PermitUser

Class encapsulating the user-name based authorization.

SatyrAuthentication

Class encapsulating the outband authentication
interface using the Satyr application.

ServerAuthentication

Class encapsulating the server authentication interface.

ZAAuthentication

Class encapsulating the outband authentication
interface using the Zorp Authentication Agent.

5.1.4. Class AbstractAuthentication

Table 5.1. Classes of the Auth module

This class encapsulates interfaces for inband and outband authentication procedures. Service definitions should
refer to a customized class derived from AbstractAuthentication, or one of the predefined authentication classes,

such as InbandAuthentication or ZAAuthentication.

5.1.4.1. AbstractAuthentication methods

Method

Description

init _(self, authentication provider, auth cache)

Constructor to initialize an AbstractAuthentication
instance.

Table 5.2. Method summary

Method __init__(self, authentication_provider, auth_cache)

This constructor initializes an instance of the AbstractAuthentication class.

www.balasys.hu

90

Class AbstractAuthorization e

5.1.5. Class AbstractAuthorization

This class encapsulates an authorization interface. Authorization determines whether the authenticated entity
is in fact allowed to access a specific service. Service definitions should refer to a customized class derived
from AbstractAuthorization, or one of the predefined authorization classes, such as PermitUser or PermitGroup.

5.1.6. Class AuthCache

This class encapsulates an authentication cache which associates usernames with client IP addresses. The
association between a username and an IP address is valid only until the specified timeout. Caching the
authentication results means that the users do not need to authenticate themselves for every request: it is assumed
that the same user is using the computer within the timeout. E.g.: once authenticated for an HTTP service, the
client can browse the web for Timeout period, but has to authenticate again to use FTP.

To use a single authorization cache for every service request of a client, set the service equiv attribute to
TRUE. That way Zorp does not make difference between the different services (protocols) used by the client:
after a successful authentication the user can use all available services without having to perform another
authentication. E.g.: if this option is enabled in the example above, the client does not have to re-authenticate
for starting an FTP connection.

5.1.6.1. AuthCache methods

Method Description

init _(self, name, timeout, update stamp, | Constructor to initialize an instance of the AuthCache
service equiv, cleanup threshold) class.

Table 5.3. Method summary

Method __init__(self, name, timeout, update_stamp, service_equiv, cleanup_threshold)

This constructor initializes and registers an AuthCache instance that can be referenced in authentication policies.

Arguments of __init__

cleanup_threshold (integer)
Default: 100

When the number of entries in the cache reaches the value of cleanup_threshold, old entries are
automatically deleted.

service_equiv (boolean)

Default: FALSE

If enabled, then a single authentication of a user applies to every service from that client.

www.balasys.hu 91

Class AuthenticationPolicy e

timeout (integer)

Default: 600

Timeout while an authentication is assumed to be valid.

update_stamp (boolean)

Default: TRUE

If set to TRUE, then cached authentications increase the validity period of the authentication cache. Otherwise,
the authentication cache expires according to the timeout value set in attribute timeout (p. 92).

5.1.7. Class AuthenticationPolicy

Authentication policies determine how the wuser is authenticated to access the service. The
authentication_policy attribute of a service can reference an instance of the AuthenticationPolicy class.

— Example 5.1. A simple authentication policy
% The following example defines an authentication policy that can be referenced in service definitions. This policy uses inband authentication
| w—] and references an authentication provider.

AuthenticationPolicy(name="demo_authentication_policy", cache=None,
authentication=InbandAuthentication(), provider="demo_authentication_provider")

To use the authentication policy, include it in the definition of the service:

Service(name="office_http_inter", proxy_class=HttpProxy,
authentication_policy="demo_authentication_policy", authorization_policy="demo_authorization_policy")

Example 5.2. Caching authentication decisions
The following example defines an authentication policy that caches the authentication decisions for ten minutes (600 seconds). For
details on authentication caching, see see Section 5.1.6, Class AuthCache (p. 91)).

(oD

AuthenticationPolicy(name="demo_authentication_policy", cache=AuthCache(timeout=600, update_stamp=TRUE,
service_equiv=TRUE, cleanup_threshold=100), authentication=InbandAuthentication(),
provider="demo_authentication_provider")

www.balasys.hu 92

Class AuthorizationPolicy e

5.1.7.1. AuthenticationPolicy methods

Method Description

init _ (self, name, provider, authentication, cache) | Constructor to initialize an instance of the
AuthenticationPolicy class.

Table 5.4. Method summary

Method __init__(self, name, provider, authentication, cache)

Arguments of __init__

authentication (class)

Default: None

The authentication method used in the authentication process. See Section 5.1.1, Authentication and
authorization basics (p. 88) for details.

cache (class)

Default: None

Caching method used to store authentication results.

name (string)

Default: n/a

Name identifying the AuthenticationPolicy instance.

provider (class)

Default: n/a

The authentication provider object used in the authentication process. See Section 5.1.1, Authentication and
authorization basics (p. 88) for details.

5.1.8. Class AuthorizationPolicy

Authorization policies determine how the user is authorized to access the service. The authorization_policy
attribute of a service can reference an instance of the AuthorizationPolicy class.

— Example 5.3. A simple authorization policy
— | The following example defines an authotization policy that can be referenced in a service definition and permits only the members of
| w— the admin or system groups to access the service.

AuthorizationPolicy(name="demo_authorization_policy", authorization=PermitGroup(grouplist=("admin",
"system")))

To use the authorization policy, include it in the definition of the service:

www.balasys.hu 93

Class BasicAccessList e

Service(name="office_http_inter", proxy_class=HttpProxy,
authentication_policy="demo_authentication_policy", authorization_policy="demo_authorization_policy")

5.1.8.1. AuthorizationPolicy methods

Method Description

init _(self, name, authorization)

Table 5.5. Method summary

Method __init__(self, name, authorization)

Arguments of __init__

authorization (class)

Default: n/a

The authorization method (e.g., PermitGroup) used in the instance. See Section 5.1.8, Class
AuthorizationPolicy (p. 93) for examples.

name (string)

Default: n/a

Name of the AuthorizationPolicy instance. This name can be referenced in service definitions.

5.1.9. Class BasicAccessList

This class encapsulates an access list that uses any class derived from the AbstractAuthorization class.
BasicAccessList allows to combine multiple access control requirements into a single decision.

BasicAccessList uses a list of rules. The rules are evaluated sequentially. Each rule can specify whether matching
the current rule is Sufficient or Required. A connection is authorized if a Sufficient rule matches the
connection, or all Required rules are fulfilled. If a Required rule is not met, the connection is refused.

Rules are represented as a list of Python tuples as the following example shows:

— Example 5.4. BasicAccessList example
— | When referenced in a service definition, the following users can access the service:

® members of the development group;
m anyone with the user1 username;

m anyone with the user2 username.

AuthPolicy('intra',
authentication=ZAAAuthentication
('zas2db', key_file='fwzaa.key',6 cert_file='fwzaa.crt'),
authorization=BasicAccessList(
((Z_BACL_SUFFICIENT, PermitUser('useri')),
(Z_BACL_SUFFICIENT, PermitUser('user2')),
(Z_BACL_REQUIRED, PermitGroup('development')))))

www.balasys.hu 94

Class InbandAuthentication e

5.1.9.1. BasicAccessList methods

Method Description

init _ (self, acl) Constructor to initialize a BasicAccessList instance.

Table 5.6. Method summary

Method __init__(self, acl)

This constructor creates a new BasicAccessList instance which can be referenced in an authentication policy.

Arguments of __init__

acl (complex)

Default: n/a

Access control rules represented as a list of tuple.

5.1.10. Class InbandAuthentication

This class encapsulates inband authentication. Inband authentication is performed by the proxy using the rules
of the application-level protocol. Only the authentication methods supported by the particular protocol can be
used during inband authentication. Authentication policies can refer to instances of the Inband Authentication
class using the auth parameter.

A\

5.1.10.1. InbandAuthentication methods

Warning
Inband authentication is currently supported only for the Http, Ftp, and Socks proxy classes.

Method Description

init _ (self, authentication provider, auth cache) | Constructor to initialize an InbandAuthentication
instance.

Table 5.7. Method summary

Method __init__(self, authentication_provider, auth_cache)

This constructor initializes an instance of the InbandAuthentication class.

5.1.11. Class NEyesAuthorization

This class encapsulates an N-eyes based authorization method, which means that connections are authorized
if other administrators authenticate themselves within the defined timelimits.

www.balasys.hu 95

Class NEyesAuthorization e

When NEyesAuthorization is used, the client trying to access the service has to be authorized by another
(already authorized) client (this authorization chain can be expanded to multiple levels). NEyesAuthorization
can only be used in conjunction with another NEyesAuthorization policy. One of them is the authorizer set
to authorize the authorized policy.

In a simple 4-eyes scenario the authorizer policy points to the authorized policy inits Authorization policy
parameter, and has its wait_authorization parameter disabled. The authorized policy has an empty
Authorization policy parameter (meaning that it is at lower the end of an N-eyes chain), and has its
wait_authorization parameter enabled, meaning that it has to be authorized by another policy.

For examples on using the NEyesAuthorization class, see the Proxying secure channels - SSH tutorial available
from the BalaSys Documentation Page at http://www.balasys.hu/documentation/.

5.1.11.1. NEyesAuthorization methods

Method Description

init _(self. authorize policy, wait authorization, | Constructor to initialize a NEyesAuthorization

wait_timeout) instance.

Table 5.8. Method summary

Method __init__(self, authorize_policy, wait_authorization, wait_timeout)

This constructor initializes an NEyesAuthorization instance.

Arguments of __init__

authorize_policy (class)

Default: None

The authorization policy authorized by the current NEyesAuthorization policy.

wait_authorization (boolean)

Default: FALSE

Specifies whether the current authorization policy must wait for other authorization policies to finish. If this
parameter is set, the client has to be authorized by another client. If set to FALSE, the current client is at the
top of an authorizing chain.

wait_timeout (integer)

Default: 60000

The time (in milliseconds) Zorp will wait for the authorizing user to authorize the one accessing the service.
If the other authorizations are not completed in time, the current authorization will fail.

www.balasys.hu 96

http://www.balasys.hu/documentation/

Class PairAuthorization e

5.1.12. Class PairAuthorization

This class encapsulates pair-based authorization method. Only two users simultaneously accessing the service
are authorized, single users are not permitted to access the service. Set the time (in milliseconds) Zorp will wait
for the second user to access the service using the wait_timeout parameter.

— Example 5.5. A simple PairAuthorization policy
—— | The following example permits access to the service only if two users having different usernames authenticate successfully within one
| w— minute.

AuthorizationPolicy(name="demo_pairauthorization_policy",
authorization=PairAuthorization(wait_timeout=60000))

For more detailed examples, see the Proxying secure channels - SSH tutorial available from the BalaSys Documentation Page at
http://www.balasys.hu/documentation/.

5.1.12.1. PairAuthorization methods

Method Description

init__(self, wait_timeout) Constructor to initialize a PairAuthorization instance.

Table 5.9. Method summary

Method __init__(self, wait_timeout)

This constructor initializes a PairAuthorization instance.

Arguments of __init__

wait_timeout (integer)

Default: 60000

The time (in milliseconds) Zorp will wait for the pair to complete the authorization. If the authorizations are
not completed in time, the current authorization will fail.

5.1.13. Class PermitGroup

This class encapsulates an authorization decision based on group membership. Users who authenticate as a
member of a usergroup specified in the policy receive access to the service. Otherwise access is denied.

— Example 5.6. A simple PermitGroup policy
— | The following example permits only the members of the admin or system groups to access the service.

AuthorizationPolicy(name="demo_authorization_policy", authorization=PermitGroup(grouplist=("admin",
"system")))

www.balasys.hu 97

http://www.balasys.hu/documentation/

Class PermitTime e

5.1.13.1. PermitGroup methods

Method

Description

init _(self, grouplist)

Constructor to initialize a PermitGroup instance.

Method __init__(self, grouplist)

This constructor initilizes a PermitGroup instance.

Arguments of __init__

Table 5.10. Method summary

grouplist (complex)

Default: n/a

The list of authorized groups, represented as group names.

5.1.14. Class PermitTime

This class encapsulates an authorization decision based on the time when the connection is started. The connection
is permitted if it is started in one of the permitted time periods (according to the system time of the host running

Zorp).

Specify the permitted time intervals as a comma-separated list, where each element contains the beginning and

ending time of the permitted interval in HH : MM format.

— Example 5.7. PermitTime example

— | When used in the intervals attribute of a PermitTime instance, the following example permits access only from 07:00 to 09:00 and

| —] from 17:00 to 19:00.

(("7:00", "9:00"), ("17:00", "19:00"))

"9:00"), ("17:00", "19:00"))))

5.1.14.1. PermitTime methods

The following is a complete authorization policy using the above intervals:

AuthorizationPolicy(name="demo_permittime_policy", authorization=PermitTime(intervals=(("7:00",

Method

Description

init _(self, intervals)

Constructor to initialize a PermitTime instance.

Method __init__(self, intervals)

This constructor initilizes a PermitTime instance.

www.balasys.hu

Table 5.11. Method summary

98

Class PermitUser e

Arguments of __init__

intervals (complex)

Default: n/a

List of time intervals when connections are permitted (in HH: MM, HH:MM format).

5.1.15. Class PermitUser

This class encapsulates an authorization decision based on usernames. Users who authenticate using one of the
usernames specified in the policy receive access to the service. Otherwise access is denied.

— Example 5.8. A simple PermitUser policy
% The following example permits only the admin and root users to access the service.

| e—]
AuthorizationPolicy(name="demo_permituser", authorization=PermitUser (userlist=("admin", "root")))

5.1.15.1. PermitUser methods

Method Description

init _ (self, userlist) Constructor to initialize a PermitUser instance.

Table 5.12. Method summary

Method __init__(self, userlist)

This constructor initilizes a PermitUser instance.

Arguments of __init__

userlist (complex)

Default: n/a

Comma-separated list of authorized usernames.

5.1.16. Class SatyrAuthentication

This class encapsulates outband authentication using the Satyr application. Satyr has been renamed to Zorp
Authentication Agent, therefore this class is obsolete. Use ZA Authentication instead. See Section 5.1.18, Class
ZAAuthentication (p. 100) for details.

5.1.17. Class ServerAuthentication

This class encapsulates server authentication: Zorp authenticates the user based on the response of the server
to the user's authentication request. Server authentication is a kind of inband authentication, it is performed
within the application protocol, but the target server checks the credentials of the user instead of Zorp. This

www.balasys.hu 99

Class ZA Authentication e

authentication method is useful when the server can be trusted for authentication purposes, but you need to
include an authorization decision in the service definition.

5.1.17.1. ServerAuthentication methods

Method Description
init_(self) Constructor to initialize a ServerAuthentication
instance.

Table 5.13. Method summary

Method __init__ (self)

This constructor initializes an instance of the ServerAuthentication class.

5.1.18. Class ZAAuthentication

This class encapsulates outband authentication using the Zorp Authentication Agent (ZAA). The Zorp
Authentication Agent is an application that runs on the client computers and provides an interface for the users
to authenticate themselves when Zorp requests authentication for accessing a service. This way any protocol,
even those not supporting authentication can be securely authenticated. All communication between Zorp and
ZAA is SSL-encrypted.

— Example 5.9. Outband authentication example
—— | The following authentication policy defines a class that uses outband authentication.

AuthenticationPolicy(name="demo_outbandauthentication_policy", cache=None,
authentication=ZAAuthentication(port=1316, timeout=60000, connect_timeout=60000,
pki=("/etc/key.d/Zorp_certificate/cert.pem", "/etc/key.d/Zorp_certificate/key.pem")),
provider="demo_authentication_provider")

5.1.18.1. ZAAuthentication methods

Method Description

init__ (self, authentication provider, pki, cert file, | Constructor to initialize an instance of the
key file, port, timeout, connect_timeout, auth cache) | ZA Authentication class.

Table 5.14. Method summary

Method __init__(self, authentication_provider, pki, cert_file, key_file, port, timeout, connect_timeout,
auth_cache)

This constructor initializes an instance of the ZA Authentication authentication class that can be referenced in
authentication policies to perform outband authentication.

www.balasys.hu 100

Module AuthDB (;

Arguments of __init__

connect_timeout (integer)

Default: 60000

Connection timeout (in milliseconds) to the Zorp Authentication Agent.

pki (certificate)

Default: None

A tuple containing the name of a certificate and a key file. Zorp uses this certificate to encrypt the
communication with the Authentication Agents.

port (integer)
Default: 1316

The port number where the Zorp Authentication Agent is listening. Default value: 1316.

timeout (integer)

Default: 60000

Authentication timeout in milliseconds.

5.2. Module AuthDB

This module contains classes related to authentication databases. Together with the Auth module it implements
the Authentication and Authorization framework. See Section 5.1.1, Authentication and authorization
basics (p. 88) and Section 5.1.2, Authentication and authorization in Zorp (p. 88) for details.

5.2.1. Classes in the AuthDB module

Class Description

AbstractAuthenticationBackend Class encapsulating the abstract authentication backend
like ZAS.

AuthenticationProvider A database-independent class used by Zorp to connect

to an authentication backend.

ZAS2AuthenticationBackend Class encapsulating the ZAS authentication backend.

Table 5.15. Classes of the AuthDB module

5.2.2. Class AbstractAuthenticationBackend

This is an abstract class to encapsulate an authentication backend, which is responsible for checking authentication
credentials against a backend database. In actual configurations, use one of the derived classes like
ZAS2AuthenticationBackend.

www.balasys.hu 101

Class AuthenticationProvider e

The interface defined here is used by various authentication methods like ZAAuthentication and

InbandAuthentication.

5.2.3. Class AuthenticationProvider

The authentication provider is an intermediate layer that mediates between Zorp and the authentication backend
(e.g., a user database) during connection authentication - Zorp itself does not directly communicate with the

database.

— Example 5.10. A sample authentication provider

—— | The following example defines an authentication provider that uses the ZAS2AuthenticationBackend backend.

5.2.3.1. AuthenticationProvider methods

AuthenticationProvider (name="demo_authentication_provider",
backend=zZAS2AuthenticationBackend(serveraddr=SockAddrInet('192.168.10.10', 1317), use_ss1=TRUE,
ssl_verify_depth=3, pki_cert=("/etc/key.d/ZAS_certificate/cert.pem",
"/etc/key.d/ZAS_certificate/key.pem"), pki_ca=("/etc/ca.d/groups/demo_trusted_group/certs/",
"/etc/ca.d/groups/demo_trusted_group/crls/")))

Method Description

init__(self, name, backend) Constructor
AbstractAuthorizationBackend instance.

to initialize an

Method __init__(self, name, backend)

This constructor initializes an AbstractAuthorizationBackend instance.

Arguments of __init__

Table 5.16. Method summary

backend (class)

Default: n/a

Type of the database backend used by the ZAS instance.

name (string)

Default: n/a

Name of the ZAS instance.

5.2.4. Class ZAS2AuthenticationBackend

This class encapsulates a Zorp Authentication Server database and provides interface to other authentication
classes to verify against users managed through ZAS. See Section 5.2.3, Class AuthenticationProvider (p. 102)

for examples on using the ZAS2AuthenticationBackend class.

www.balasys.hu

102

Module Chainer e

5.2.4.1. ZAS2AuthenticationBackend methods

Method Description

init _(self, serveraddr, use ssl, pki cert, cert file, | Constructor to initialize a ZAS2AuthenticationProvider
key file, pki ca, ca_dir, crl_dir, ssl verify depth) instance.

Table 5.17. Method summary

Method __init__(self, serveraddr, use_ssl, pki_cert, cert_file, key_file, pki_ca, ca_dir, crl_dir,
ssl_verify_depth)

This constructor creates a new ZAS2AuthenticationProvider instance that can be used in authentication policies.

Arguments of __init__

pki_ca (cagroup)

Default: None

The name of a trusted CA group. When using SSL, ZAS must show a certificate signed by a CA that belongs
to this group.

pki_cert (certificate)

Default: None

A tuple containing the name of a certificate and a key file. Zorp shows this certificate to ZAS when using
SSL.

serveraddr (sockaddr)

Default: n/a

The IP address of this ZAS instance. ZAS accepts connections on this address.

ssl_verify_depth (integer)
Default: 3

Specifies the maximum number of CAs in the trust chain when verifying the certificate of Zorp.

use_ssl (boolean)

Default: FALSE

Enable this option if Zorp communicates with ZAS using SSL.

5.3. Module Chainer

Chainers establish a TCP or UDP connection between a proxy and a selected destination. The destination is
usually a server, but the SideStackChainer connects an additional proxy before connecting the server.

www.balasys.hu 103

Selecting the network protocol e

5.3.1. Selecting the network protocol

The client-side and the server-side connections can use different networking protocols if needed. The protocol
attribute of the chainer classes determines the network protocol used in the server-side connection. By default,
the same protocol is used in both connections. The following options are available:

Name Description

ZD PROTO_AUTO Use the protocol that is used on the client side.
ZD PROTO_TCP Use the TCP protocol on the server side.

ZD _PROTO_UDP Use the UDP protocol on the server side.

Table 5.18. The network protocol used in the server-side connection

5.3.2. Classes in the Chainer module

Class Description
AbstractChainer Class encapsulating the abstract chainer.
AvailabilityChainer This class enables establishing connection with

multiple target addresses and using information from
the Availability Checker daemon. AvailabilityChainer
connects to target hosts in the order they have been

specified.
ConnectChainer Class to establish the server-side TCP/IP connection.
FailoverChainer Class encapsulating the connection establishment with

multiple target addresses and keeping down state
between connects. FailoverChainer prefers connecting
to target hosts in the order they were specified.

MultiTargetChainer Class encapsulating connection establishment with
multiple target addresses.

RoundRobinAvdilabilityChainer This class enables establishing connection with
multiple target addresses and using information from
the Availability Checker daemon.

RoundRobinChainer Class encapsulating the connection establishment with
multiple target addresses and keeping down state
between connects.

SideStackChainer Class to pass the traffic to another proxy.

www.balasys.hu 104

Class AbstractChainer e

Class Description

StateBasedChainer Class encapsulating connection establishment with
multiple target addresses and keeping down state
between connects.

Table 5.19. Classes of the Chainer module

5.3.3. Class AbstractChainer

AbstractChainer implements an abstract chainer that establishes a connection between the parent proxy and the
selected destination. This class serves as a starting point for customized chainer classes, but is itself not directly
usable. Service definitions should refer to a customized class derived from AbstractChainer, or one of the
predefined chainer classes, such as ConnectChainer or FailoverChainer.

5.3.4. Class AvailabilityChainer

This class is based on the MultiTargetChainer class and encapsulates a real TCP/IP connection establishment.
It is used when a top-level proxy wants to perform chaining. In addition to ConnectChainer, this class adds the
capability to perform stateful failover HA functionality across a set of IP addresses.

Note
@ Use AvailabilityChainer if you want to connect to servers, the availability of which have been checked by the Availability Checker
daemon monitoring them. Hosts which are in Up state are attempted to be connected.

— Example 5.11. A DirectedRouter using AvailabilityChainer
—— | The following service definition uses a DirectedRouter class with two possible destination addresses. The firewall uses these destinations
| —] in a failover fashion, targeting the second address only if the first one is marked unavailable by the Availability Checker daemon.

Service(name="intra_HTTP_inter", router=DirectedRouter(dest_addr=(SockAddrInet('192.168.55.55"', 8080),
SockAddrInet('192.168.55.56', 8080)), forge_addr=FALSE, forge_port=Z_PORT_ANY, overrideable=FALSE),
chainer=AvailabilityChainer (protocol=zZD_PROTO_AUTO, timeout_connect=30000), max_instances=0,

proxy_class=HttpProxy,)

5.3.4.1. AvailabilityChainer methods

Method Description

init _(self, protocol, timeout connect) Constructor to initialize a AvailabilityChainer instance.

Table 5.20. Method summary

Method __init__(self, protocol, timeout_connect)

This constructor initializes a AvailabilityChainer class by filling arguments with appropriate values and calling
the inherited constructor.

www.balasys.hu 105

Class ConnectChainer e

Arguments of __init__

protocol (enum)

Default: ZD_PROTO_AUTO

Optional, specifies connection protocol (ZD_PROTO_TCP or ZD_PROTO_UDP), when not specified it defaults
to the protocol used on the client side.

timeout_connect (integer)

Default: 30000

Specifies connection timeout to be used when connecting to the target server.

5.3.5. Class ConnectChainer

ConnectChainer is the default chainer class based on AbstractChainer. This class establishes a TCP or UDP
connection between the proxy and the selected destination address.

ConnectChainer is used by default if no other chainer class is specified in the service definition.

ConnectChainer attempts to connect only a single destination address: if the connection establishment procedure
selects multiple target servers (e.g., a DNSResolver with the multi=TRUE parameter or a DirectedRouter with
multiple addresses), ConnectChainer will use the first address and ignore all other addresses. Use FailoverChainer
to select from the destination from multiple addresses in a failover fashion, and RoundRobinChainer to distribute
connections in a roundrobin fashion.

— Example 5.12. A sample ConnectChainer
—— | The following service uses a ConnectChainer that uses the UDP protocol on the server side.

Service(name="demo_service", proxy_class=HttpProxy, chainer=ConnectChainer(protocol=ZD_PROTO_UDP),
router=TransparentRouter (overrideable=FALSE, forge_addr=FALSE))

5.3.5.1. ConnectChainer methods

Method Description

init _(self, protocol, timeout connect) Constructor to initialize an instance of the
ConnectChainer class.

Table 5.21. Method summary

Method __init__(self, protocol, timeout_connect)

This constructor creates a new ConnectChainer instance which can be associated with a Service.

www.balasys.hu 106

Class FailoverChainer e

Arguments of __init__

protocol (enum)

Default: ZD_PROTO_AUTO

Optional parameter that specifies the network protocol used in the connection protocol. By default, the
server-side communication uses the same protocol that is used on the client side. See Section 5.3.1, Selecting
the network protocol (p. 104) for details.

timeout_connect (integer)

Default: 30000

Specifies connection timeout to be used when connecting to the target server.

5.3.6. Class FailoverChainer

This class is based on the StateBasedChainer class and encapsulates a real TCP/IP connection establishment,
and is used when a top-level proxy wants to perform chaining. In addition to ConnectChainer this class adds
the capability to perform stateful, failover HA functionality across a set of IP addresses.

Note
@ Use FailoverChainer if you want to connect to the servers in a predefined order: i.e., connect to the first server, and only connect to the
second if the first server is unavailable.

If you want to distribute connections between the servers (i.e., direct every new connection to a different server to balance the load) use
RoundRobinChainer .

— Example 5.13. A DirectedRouter using FailoverChainer

% The following service definition uses a DirectedRouter class with two possible destination addresses. These destinations are used in a
| e—] failover fashion, targeting the second address only if the first one is unaccessible.

Service(name="intra_HTTP_inter", router=DirectedRouter(dest_addr=(SockAddrInet('192.168.55.55"', 8080),
SockAddrInet('192.168.55.56', 8080)), forge_addr=FALSE, forge_port=Z_PORT_ANY, overrideable=FALSE),
chainer=FailoverChainer (protocol=ZD_PROTO_AUTO, timeout_state=60000, timeout_connect=30000),

max_instances=0, proxy_class=HttpProxy,)

5.3.6.1. FailoverChainer methods

Method Description

init _(self, protocol, timeout, timeout state, | Constructor to initialize a FailoverChainer instance.
timeout_connect, round_robin)

Table 5.22. Method summary

Method __init__(self, protocol, timeout, timeout_state, timeout_connect, round_robin)

This constructor initializes a FailoverChainer class by filling arguments with appropriate values and calling the
inherited constructor.

www.balasys.hu 107

Class MultiTargetChainer e

Arguments of __init__

protocol (enum)

Default: ZD_PROTO_AUTO

Optional, specifies connection protocol (ZD_PROTO_TCP or ZD_PROTO_UDP), when not specified it defaults
to the protocol used on the client side.

timeout_connect (integer)

Default: 30000

Specifies connection timeout to be used when connecting to the target server.

timeout_state (integer)

Default: 60000

The down state of remote hosts is kept for this interval in milliseconds.

5.3.7. Class MultiTargetChainer

This class encapsulates a real TCP/IP connection establishment, and is used when a top-level proxy wants to
perform chaining. In addition to ConnectChainer, this class adds the capability to perform stateless, simple load
balance server connections among a set of IP addresses.

The same mechanism is used to set multiple server addresses as with a single destination address: the Router
class sets a list of IP addresses in the session. target_address attribute.

5.3.7.1. MultiTargetChainer methods

Method Description

init _(self, protocol, timeout connect) Constructor to initialize a MultiTargetChainer instance.

Table 5.23. Method summary

Method __init__(self, protocol, timeout_connect)

This constructor initializes a MultiTargetChainer class by filling arguments with appropriate values and calling
the inherited constructor.

Arguments of __init__

protocol (enum)
Default: ZD_PROTO_AUTO

Optional, specifies connection protocol (either ZD_PROTO_TCP or ZD_PROTO_UDP), when not specified
defaults to the same protocol as was used on the client side.

www.balasys.hu 108

Class RoundRobinAvailabilityChainer e

self (class)

Default: n/a

this instance

timeout_connect (integer)

Default: 30000

Specifies connection timeout to be used when connecting to the target server.

5.3.8. Class RoundRobinAvailabilityChainer

This class is based on the AvailabilityChainer class.

Note
@ Use RoundRobinAvailabilityChainer if you want to connect to servers, the availability of which have been checked by the Availability
Checker daemon monitoring them. Hosts which are in Up state are attempted to be connected. In addition to AvailabilityChainer, this
class adds the capability to perform stateful load balance server connections among a set of IP addresses.

— Example 5.14. A DirectedRouter using RoundRobinAvailabilityChainer
% The following service definition uses a DirectedRouter class with two possible destination addresses. The firewall uses these destinations
| w—] in a failover fashion, targeting the second address only if the first one is marked unavailable by the Availability Checker daemon.

Service(name="intra_ HTTP_inter", router=DirectedRouter (dest_addr=(SockAddrInet('192.168.55.55"', 8080),
SockAddrInet('192.168.55.56', 8080)), forge_addr=FALSE, forge_port=Z_PORT_ANY, overrideable=FALSE),
chainer=RoundRobinAvailabilityChainer (protocol=zD_PROTO_AUTO, timeout_connect=30000), max_instances=0,
proxy_class=HttpProxy,)

5.3.8.1. RoundRobinAvailabilityChainer methods

Method Description

init __ (self, protocol, timeout connect) Constructor to initialize a
RoundRobinAvailabilityChainer instance.

Table 5.24. Method summary

Method __init__(self, protocol, timeout_connect)

This constructor initializes a RoundRobinAvailabilityChainer class by filling arguments with appropriate values
and calling the inherited constructor.

Arguments of __init__

protocol (enum)

Default: ZD_PROTO_AUTO

www.balasys.hu 109

Class RoundRobinChainer e

protocol (enum)

Optional, specifies connection protocol (ZD_PROTO_TCP or ZD_PROTO_UDP), when not specified it defaults
to the protocol used on the client side.

timeout_connect (integer)

Default: 30000

Specifies connection timeout to be used when connecting to the target server.

5.3.9. Class RoundRobinChainer

This class is based on the StateBasedChainer class and encapsulates a real TCP/IP connection establishment,
and is used when a top-level proxy wants to perform chaining. In addition to ConnectChainer this class adds
the capability to perform stateful, load balance server connections among a set of IP addresses.

— Example 5.15. A DirectedRouter using RoundRobinChainer

% The following service definition uses a RoundRobinChainer class with two possible destination addresses. These destinations are used
| w—] in a roundrobin fashion, alternating between the two destinations.

Service(name="intra_ HTTP_inter", router=DirectedRouter (dest_addr=(SockAddrInet('192.168.55.55"', 8080),
SockAddrInet('192.168.55.56', 8080)), forge_addr=FALSE, forge_port=Z_PORT_ANY, overrideable=FALSE),
chainer=RoundRobinChainer (protocol=zD_PROTO_AUTO, timeout_state=60000, timeout_connect=30000),

max_instances=0, proxy_class=HttpProxy)

5.3.10. Class SideStackChainer

This class encapsulates a special chainer. Instead of establishing a connection to a server, it creates a new proxy
instance and connects the server side of the current (parent) proxy to the client side of the new (child) proxy.
The right_class parameter specifies the child proxy.

It is possible to stack multiple proxies side-by-side. The final step of sidestacking is always to specify a regular
chainer via the right_chainer parameter that connects the last proxy to the destination server.

Tip
Proxy sidestacking is useful for example to create one-sided SSL connections. See the tutorials of the BalaSys Documentation Page
available at http://www.balasys.hu/documentation/ for details.

5.3.10.1. Attributes of SideStackChainer

right_chainer (unknown)

Default: n/a

The chainer used to connect to the destination of the side-stacked proxy class set in the right_class attribute.

www.balasys.hu 110

http://www.balasys.hu/documentation/

Class StateBasedChainer e

right_class (unknown)

Default: n/a

The proxy class to connect to the parent proxy. Both built-in and customized classes can be used.

5.3.10.2. SideStackChainer methods

Method Description

init _ (self, right_class, right chainer) Constructor to initialize an instance of the
SideStackChainer class.

Table 5.25. Method summary

Method __init__(self, right_class, right_chainer)

This constructor creates a new FailoverChainer instance which can be associated with a Service.

Arguments of __init__

right_chainer (class)

Default: None

The chainer used to connect to the destionation of the side-stacked proxy class set in the right_class
attribute.

right_class (class)

Default: n/a

The proxy class to connect to the parent proxy. Both built-in or customized classes can be used.

5.3.11. Class StateBasedChainer

This class encapsulates a real TCP/IP connection establishment, and is used when a top-level proxy wants to
perform chaining. In addition to ConnectChainer, this class adds the capability to perform stateful, load balance
server connections among a set of IP addresses.

®

Note
Both the FailoverChainer and RoundRobinChainer classes are derived from StateBasedChainer.

www.balasys.hu 111

Module Detector e

5.3.11.1. StateBasedChainer methods

Method Description

init _(self, protocol, timeout _connect, | Constructor to initialize a StateBasedChainer instance.

timeout_state)

Table 5.26. Method summary

Method __init__(self, protocol, timeout_connect, timeout_state)

This constructor initializes a StateBasedChainer class by filling arguments with appropriate values and calling
the inherited constructor.

Arguments of __init__

protocol (enum)

Default: ZD_PROTO_AUTO

Optional, specifies connection protocol (ZD_PROTO_TCP or ZD_PROTO_UDP), when not specified it defaults
to the same protocol used on the client side.

timeout_connect (integer)

Default: 30000

Specifies connection timeout to be used when connecting to the target server.

timeout_state (integer)

Default: 60000

The down state of remote hosts is kept for this interval in miliseconds.

5.4. Module Detector

Detectors can be used to determine if the traffic in the incoming connection uses a particular protocol (for
example, HTTP, SSH), or if it has other specific characteristics (for example, it uses SSL encryption with a
specific certificate). Such characteristics of the traffic can be detected, and start a specific service to inspect the
traffic (for example, start a specific HttpProxy for HTTP traffic, and so on).

5.4.1. Classes in the Detector module

Class Description

AbstractDetector Class encapsulating the abstract detector.

CertDetector Class encapsulating a Detector that determines if an
SSL/TLS-encrypted connection uses the specified
certificate

www.balasys.hu 112

Class AbstractDetector e

Class Description
DetectorPolicy Class encapsulating a Detector which can be used by

d name.

HttpDetector

Class encapsulating a Detector that determines if the
traffic uses the HTTP protocol

SniDetector Class encapsulating a Detector that determines whether
a client targets a specific host in a SSL/TLS-encrypted
connection.

SshDetector Class encapsulating a Detector that determines if the

traffic uses the SSHv2 protocol

5.4.2. Class AbstractDetector

Table 5.27. Classes of the Detector module

This abstract class encapsulates a detector that determines whether the traffic in a connection belongs to a
particular protocol.

5.4.3. Class CertDetector

This Detector determines if an SSL/TLS-encrypted connection uses the specified certificate, and rejects any
other protocols and certificates.

Example 5.16. CertDetector example

The following example defines a DetectorPolicy that detects if the traffic is SSL/TLS-encrypted, and uses the certificate specified.

mycertificate="----- BEGIN CERTIFICATE-----

MIIEdjCCA16gAWIBAQIIQ7Xu3Mwnk+4wDQYJKoZIhvcNAQEFBQAWSTELMAKGALUE
BhMCVVMxEzARBgNVBAOTCkdvb2dsZSBIbmMxJTAjBgNVBAMTHEdvb2dsZSBJbnR1
cm51dCBBdXRob3JpdHkgRzZIWHhcNMTQWMTISMTQWNTM3WhcNMTQWNTISMDAWMDAW
W3jBoMQswCQYDVQQGEwWJVUZETMBEGALUECAWKQ2FsaWZvcm5pY TEWMBQGALUEBWWN
TW91bnRhaw4gVml1ldzETMBEGALUECgWKR29vZ2Xx1IE1uYZEXMBUGALUEAWWOd3d3
Lmdvb2dsZS5jb20wggEiMAOGCSqGSIb3DQEBAQUAA4IBDWAWGGEKAOIBAQCKkeHmMM
eYY7uMMRXKg14NPx8zFtD/VmUI2b4FdQYgD8AURLfA+fqvxicEKi7Td1Srz4z1ldn
AjbAS+fC0eQji8foJTosrkXgQgv5ds0+81lU3dooVXogemeIKUihzI/h+7cf1287/
7EbMI5RaDBUPTHMZHeDtk38XUYsSBrS93nICq4VDUAXY2BKSGSS219wRv14fhdDDm
guQ5cRDKNn/pgdYEgAgXFVEjamwjcUWSBsW1gSn37fI9s/MzDCzfMwz6AheFMrRNL
00J2Y3cVdBxibVdqjGS+AG5qIUz/AsVHNL3JEsa550SrMFubCPCzYDMAVLKziqZX
5G25c0e/qh0bSK4/AgMBAAGj ggFBMIIBPTAdBgNVHSUEF jAUBggrBgEFBQCDAQYI
KwYBBQUHAWIWGQYDVRORBBIWEIIOd3d3Lmdvb2dszS5jb20waAYIKwYBBQUHAQEE
XDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtpLmdvb2dsZS5jb20vRO1BRzIuY3J0
MCsSGCCSGAQUFBzABhh90dHRW018vY2xpZW50CczEuZ29vZ2x1LmNvbS9vY3NwMBOG
A1UdDgQWBBR1IOrR+bm3NNXp5DWKruhkxnMrpDAMBgNVHRMBATSEAjAAMB8GA1Ud
IwQYMBaAFErdBhYbvPZotXb1lgba7Yhq6WoEVMBCGA1UdIAQQMA4wWDAYKKwYBBAHW
eQIFATAWBgNVHR8EKTANMCWgI6Ahhh90odHRwWOi8vcGtpLmdvb2dsZzS5jb20vR0O1B
RzIuY3JsSMAOGCSQGSIb3DQEBBQUAA4IBAQA6j90PKESK/FX5sbLY4p7xsnltndHD
N1loyzmb8+cmke6W/eFHsY0g+zUeUBW3zbOEMBNNXWNTCB1aVIcRGe8GUDDANAZzSX
MQBeBisNb69kn2untS7Rb1L83+8H787RsLeXucahr3kCoc610TemIOHEI430DtVI
UFEDNJDE1wgsHkdZecnNS291ZySpK2skr3rH7qUkbP11kzbFvsnFUyp3AJS4ib9+
4xPr656QfUi/8vgoSVvOy5Y3rT/U3CtI9tPoDSZTYGT164LDxJa8dEGYMTKHgjyJ
HmbKzes13N/BN18XUlvTnjEaifQXvJj9ypqcMHUFPjkqwI1HSyb1iRth

----- END CERTIFICATE-----"

DetectorPolicy(name="MyCertDetector", detector=CertDetector(certificate=mycertificate)

www.balasys.hu

113

Class DetectorPolicy e

5.4.3.1. Attributes of CertDetector

certificate (unknown)

Default: n/a

The certificate to detect in PEM format. You can use the certificate directly, or store it in a file and reference
the file with full path, for example, DetectorPolicy(name="MyCertDetector",
detector=CertDetector(certificate=("/etc/key.d/mysite/cert.pem",)))

5.4.3.2. CertDetector methods

Method Description

init__(self, certificate) Constructor to initialize a CertDetector instance.

Table 5.28. Method summary

Method __init__(self, certificate)

This constructor initializes a CertDetector instance

Arguments of __init__

certificate (certificate)

Default: n/a

The certificate in PEM format. This must contain either the certificate as a string, or a full pathname to a file
containing the certificate.

5.4.4. Class DetectorPolicy

DetectorPolicy instances are reusable detectors that contain configured instances of the detector classes (for
example, HttpDetector, SshDetector) that detect if the traffic uses a particular protocol, or a particular certificate
in an SSL/TLS connection. DetectorPolicy instances can be used in the detect option of firewall rules. For
examples, see the specific detector classes.

5.4.5. Class HttpDetector

This Detector determines if the traffic uses the HTTP protocol, and rejects any other protocol.

— Example 5.17. HttpDetector example

% The following example defines a DetectorPolicy that detects HTTP traffic.

| w— .
DetectorPolicy(name="http", detector=HttpDetector ()

www.balasys.hu 114

Class SniDetector e

5.4.5.1. Attributes of HttpDetector

ignore (unknown)

Default: n/a

A list of compiled regular expressions which should be ignored when detecting the traffic type. By default,
this list is empty.

match (unknown)

Default: n/a

A list of compiled regular expressions which result in a positive match. If the traffic matches this regular
expression, it is regarded as HTTP traffic. Default value:
[OPTIONS|GET|HEAD|POST|PUT|DELETE | TRACE |CONNECT] + ".*HTTP/1."

5.4.5.2. HttpDetector methods

Method Description

init _(self, **kw) Constructor to initialize a HttpDetector instance.

Table 5.29. Method summary

Method __init__(self, **kw)

This constructor initializes a HttpDetector instance

5.4.6. Class SniDetector

Class encapsulating a Detector that determines whether a client targets a specific host in a SSL/TLS-encrypted
connection and rejects any other protocols and hostnames.

— Example 5.18. SNIDetector example
— | The following example defines a DetectorPolicy that detects if the traffic is SSL/TLS-encrypted, and uses targets the host
| w—] www.example.com.

DetectorPolicy(name="MySniDetector",
detector=SniDetector (RegexpMatcher (match_list=("www.example.com",))))

5.4.6.1. Attributes of SniDetector

server_name_matcher (class)

Default: n/a

Matcher class (e.g.: RegexpMatcher) used to check and filter hostnames in Server Name Indication TLS
extension, for example, DetectorPolicy(name="MySniDetector",
detector=SniDetector (RegexpMatcher(match_list=("www.example.com",))))

www.balasys.hu 115

Class SshDetector e

5.4.6.2. SniDetector methods

Method Description

init _(self, server name matcher) Constructor to initialize a SNIDetector instance.

Table 5.30. Method summary

Method __init__(self, server_name_matcher)

This constructor initializes a SNIDetector instance

Arguments of __init__

server_name_matcher (class)

Default: n/a

Matcher class (e.g.: RegexpMatcher) used to check and filter hostnames in Server Name Indication TLS
extension.

5.4.7. Class SshDetector

This Detector determines if the traffic uses the SSHv2 protocol, and rejects any other protocol.

— Example 5.19. SshDetector example

% The following example defines a DetectorPolicy that detects SSH traffic.

| e—])
DetectorPolicy(name="ssh", detector=SshDetector()

5.5. Module Encryption

The SSL/TLS framework of the proxies is in a separate entity called Encryption policy. That way, you can
easily share and reuse encryption settings between different services: you have to configure the Encryption
policy once, and you can use it in multiple services. The SSL framework is described in Chapter 3, The Zorp
SSL framework (p. 9).

®

5.5.1. SSL parameter constants

Note
STARTTLS support is currently available only for the Ftp proxy to support FTPS sessions and for the SMTP and the Pop3 proxies.

Name Value
SSL_CIPHERS_HIGH n/a
SSL_CIPHERS_MEDIUM n/a
SSL_CIPHERS_LOW n/a

www.balasys.hu 116

SSL parameter constants e

Name Value
SSL_CIPHERS_ALL n/a
SSL_CIPHERS_CUSTOM n/a
Table 5.31. Constants for cipher selection
Name Value
TLSV1_3_CIPHERS_DEFAULT n/a
TLSV1_3_CIPHERS_CUSTOM n/a
Table 5.32. Constants for TLSv1.3 cipher selection
Name Value
TLS_SHARED_GROUPS_DEFAULT n/a
TLS_SHARED_GROUPS_CUSTOM n/a
Table 5.33. Constants for shared group selection
Name Value

SSL_HSO_CLIENT_SERVER

Perform the SSL-handshake with the client first.

SSL_HSO_SERVER_CLIENT

Perform the SSL-handshake with the server first.

Table 5.34. Handshake order.

Name

Value

SSL_NONE

Disable encryption between Zorp and the peer.

SSL_FORCE_SSL

Require encrypted communication between Zorp and
the peer.

SSL_ACCEPT_STARTTLS

Permit STARTTLS sessions. Currently supported only
in the Ftp, Smtp and Pop3 proxies.

Table 5.35. Client connection security type.

Name

Value

SSL_NONE

Disable encryption between Zorp and the peer.

SSL_FORCE_SSL

Require encrypted communication between Zorp and
the peer.

SSL_FORWARD_STARTTLS

Forward STARTTLS requests to the server. Currently
supported only in the Ftp, Smtp and Pop3 proxies.

Table 5.36. Server connection security type.

Name

Value

TLS_TRUST_LEVEL_NONE

Accept invalid for example, expired certificates.

www.balasys.hu

117

Classes in the Encryption module e

Name

Value

TLS_TRUST_LEVEL_UNTRUSTED

Both trusted and untrusted certificates are accepted.

TLS_TRUST_LEVEL_FULL

Only valid certificates signed by a trusted CA are
accepted.

Table 5.37. Constants for trust level selection.

Name

Value

TLS_INTERMEDIATE_REVOCATION_NONE

Ignore result of CA certificate revocation status check.

TLS_INTERMEDIATE_REVOCATION_SOFT_FAIL

Check every CA certificate revocation state in the
certificate chain. Uncertainty is tolerated.

TLS_INTERMEDIATE_REVOCATION_HARD_FAIL

Check every CA certificate revocation state in the
certificate chain. Uncertainty is not tolerated.

Table 5.38. Constants for intermediate certificates revocation check type.

Name

Value

TLS_LEAF_REVOCATION_NONE

Ignore result of leaf certificate revocation status check.

TLS_LEAF_REVOCATION_SOFT_FAIL

Check the revocation state of the leaf certificate.
Uncertainty is tolerated.

TLS_LEAF_REVOCATION_HARD_FAIL

Check the revocation state of the leaf certificate.
Uncertainty is not tolerated.

Table 5.39. Constants for leaf certificate revocation check type.

Name Value
SSL_ERROR n/a
SSL._DEBUG n/a

Table 5.40. Verbosity level of the log messages
Name Value
SSL_HS_ACCEPT 0
SSL_HS_REJECT 1
SSL_HS_POLICY 6
SSL_HS_VERIFIED 10

Table 5.41. Handshake policy decisions
5.5.2. Classes in the Encryption module

Class Description

AbstractVerifier

Class encapsulating the abstract Certificate verifier.

www.balasys.hu

118

Classes in the Encryption module e

Class

Description

Certificate

Class encapsulating a certificate and its private key,
and optionally the passphrase for the private key.

CertificateCA

Class encapsulating the certificate of a Certificate
Authority (CA certificate) and its private key, and
optionally the passphrase for the private key.

ClientCertificateVerifier

Class that can be used to verify the certificate of the
client-side connection.

ClientNoneVerifier

Disables certificate verification in client-side
connection.

ClientOnlyEncryption

The ClientOnlyEncryption class handles scenarios
when only the client-Zorp connection is encrypted,
the Zorp-server connection is not

ClientOnlyStartTLSEncryption

The client can optionally request STARTTLS
encryption, but the server-side connection is always
unencrypted.

ClientSSLOptions Class encapsulating a set of SSL options used in the
client-side connection.
DHParam Class encapsulating DH parameters.

DynamicCertificate

Class to perform SSL keybridging.

DynamicServerEncryption

The DynamicServerEncryption class handles scenarios
when both the client-firewall and the firewall-server
connections could be encrypted but the server side
encryption parameters set dynamically from proxies.

EncryptionPolicy

Class encapsulating a named set of encryption settings.

FakeStartTLSEncryption

The client can optionally request STARTTLS
encryption, but the server-side connection is always
encrypted.

ForwardStartTLSEncryption

The ForwardStartTLSEncryption class handles
scenarios when the client can optionally request
STARTTLS encryption.

PrivateKey Class encapsulating a private key.
SNIBasedCertificate Class to be used for Server Name Indication (SNT)
SSLOptions Class encapsulating the abstract SSL options.

ServerCertificateVerifier

Class that can be used to verify the certificate of the
server-side connection.

ServerNoneVerifier

Disables certificate verification in server-side
connection.

www.balasys.hu

119

Class AbstractVerifier e

Class

Description

ServerOnlyEncryption

The ServerOnlyEncryption class handles scenarios
when only the Zorp-server connection is encrypted,
the client-Zorp connection is not

ServerSSLOptions

Class encapsulating a set of SSL options used in the
server-side connection.

StaticCertificate

Class encapsulating a static Certificate object.

TwoSidedEncryption

The TwoSidedEncryption class handles scenarios when
both the client-Zorp and the Zorp-server connections
are encrypted.

5.5.3. Class AbstractVerifier

Table 5.42. Classes of the Encryption module

This class includes the settings and options used to verify the certificates of the peers in SSL and TLS connections.
Note that you cannot use this class directly, use an appropriate derived class, for example, ClientCertificateVerifier

or ServerCertificateVerifier instead.

5.5.3.1. Attributes of AbstractVerifier

intermediate_revocation_check_type (enum)

Default: TLS_INTERMEDIATE_REVOCATION_SOFT_FAIL

Specify how intermediate certificates revocation status check should work.

leaf revocation_check_type (enum)

Default: TLS_LEAF_REVOCATION_SOFT_FAIL

Specify how leaf certificate revocation status check should work.

required (boolean)

Default: trusted

If the required is TRUE, a certificate is required from the peer.

trust_level (enum)

Default: TLS_TRUST _LEVEL_FULL

Specify which certificate should be accepted as trusted.

trusted_certs_directory (string)

Default: ""

www.balasys.hu

120

Class AbstractVerifier e

trusted_certs_directory (string)

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP
address shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA.
Each file in the directory should contain a certificate in PEM format. The filename must bethe TP address.

verify_ca_directory (string)

Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when the certificate of the peer is verified.

verify_crl_directory (string)

Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when the certificate of the peer is verified.

verify_depth (integer)

Default: 4

The length of the longest accepted CA verification chain. Longer CA chains are automatically rejected.

5.5.3.2. AbstractVerifier methods

Method Description

init (self, trust level, | Constructor to initialize an AbstractVerifier instance.
intermediate revocation check type,
leaf revocation check type, trusted certs directory,
required, verify_depth, verify ca directory,
verify crl directory)

Table 5.43. Method summary

Method __init__ (self, trust_level, intermediate_revocation_check_type, leaf _revocation_check_type,
trusted_certs_directory, required, verify_depth, verify_ca_directory, verify_crl_directory)

This constructor defines an AbstractVerifier with the specified parameters.

Arguments of __init__

intermediate_revocation_check_type (enum)

Default: TLS_INTERMEDIATE_REVOCATION_SOFT_FAIL

Specify how intermediate certificates revocation status check should work.

www.balasys.hu 121

Class Certificate e

leaf_revocation_check_type (enum)

Default: TLS_LEAF_REVOCATION_SOFT_FAIL

Specify how leaf certificate revocation status check should work.

required (boolean)

Default: TRUE

If the required is TRUE, a certificate is required from the peer.

trust_level (enum)

Default: TLS_TRUST_LEVEL_FULL

Specify which certificate should be accepted as trusted.

trusted_certs_directory (string)

Default: ""

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP
address shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA.
Each file in the directory should contain a certificate in PEM format. The filename must bethe IP address.

verify_ca_directory (string)

Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when the certificate of the peer is verified.

verify_crl_directory (string)

Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when the certificate of the peer is verified.

verify_depth (integer)
Default: 4

The length of the longest accepted CA verification chain. Longer CA chains are automatically rejected.

5.5.4. Class Certificate

The Certificate class stores a certificate, its private key, and optionally a passphrase for the private key. The
certificate must be in PEM format.

www.balasys.hu 122

Class Certificate e

When configuring Zorp manually using its configuration file, use the regular constructor of the Certificate class
to load a certificate from a string. To load a certificate from a file, use the Certificate.fromFile method.

— Example 5.20. Loading a certificate
= | The following example loads a certificate from the configuration file.

my_certificate = "----- BEGIN CERTIFICATE-----
MIICUTCCAfugAwIBAgIBADANBgkqhkiGOwWOBAQQFADBXMQswWCQYDVQQGEWJIDTJEL
MAKGA1UECBMCUE4xCzAJBgNVBACTAKNOMQswCQYDVQQKEWJPTjELMAKGALUECXMC
VU4XFDASBgNVBAMTCOh1lcm9uzZyBZYW5nNMB4XDTALIMDCXNTIXMTKON10XDTAIMDgX
NDIXMTkON1lowVzELMAKGALUEBhMCQO4xCzAJBgNVBAgTA1BOMQSwWCQYDVQQHEWJID
TJELMAKGALUEChMCT04XxCzAJBgNVBASTA1VOMRQWEQYDVQQDEWtIZXJvbmcgWwWFu
ZzBcMAOGCSqGSIb3DQEBAQUAAOSAMEQCQQCP5hnG7ogBht1ynp0S21cBewKE/B7]
V14geyslnr26xZUsSVko36Znhia0/zbMOORCKKOVEcgMtcLFUQTWD13RAgMBAAG]
gbEwga4wHQYDVROOBBYEFFXI70krXeQDxZgbaCQoR4jUDNCEMH8GA1UdIWR4MHaA
FFXI70krXeQDxZgbaCQoR4jUDnCEoOVUKkWTBXMQswCQYDVQQGEwWJIDT jELMAKGALUE
CBMCUE4xCzAJBgNVBACTAKNOMQswWCQYDVQQKEWJPTJjELMAKGALUECXMCVU4XFDAS
BgNVBAMTCOh1lcm9uZyBZYW5nggEAMAWGA1UdEWQFMAMBAT8WDQY JKoZIhvcNAQEE
BQADQQA/ugzBrjjK9jcwWnDVfGH1k3icNRqO0OV7R132z/+HQX67aRfgZu7KwWdI+Ju
Wm7DCfrPNGVWFWUQOmsPue9rzBg0
----- END CERTIFICATE-----"

my_certificate_object = Certificate(my_certificate, 'mypassphrase')

The following example loads a certificate from an external file.

my_certificate_object = Certificate.fromFile("/tmp/my_certificate.pem", 'mypassphrase')

5.5.4.1. Attributes of Certificate

certificate_file_path (certificatechain)

Default: n/a

The path and filename to the certificate file. The certificate must be in PEM format.

private_key_password (string)

Default: None

Passphrase used to access the private key of the certificate specified in certificate file path.

5.5.4.2. Certificate methods

Method Description
init__(self, certificate, private key) Load a certificate from a string, and access it using its
passphrase
fromFile(certificate file path, private key) Load a certificate from a file, and access it using its
passphrase

Table 5.44. Method summary

Method __init__(self, certificate, private_key)

Initializes a Certificate instance by loading a certificate from a string, and accesses it using its passphrase. To
load a certificate from a file, use the Certificate.fromFile method.

www.balasys.hu 123

Class CertificateCA e

Arguments of __init__

certificate_file_path (certificate)

Default: n/a

The path and filename to the certificate file. The certificate must be in PEM format.

private_key_password (string)

Default: None

Passphrase used to access the private key of the certificate specified in certificate_file path.

Method fromFile(certificate_file_path, private_key)

Initializes a Certificate instance by loading a certificate from a file, and accesses it using its passphrase.

Arguments of fromFile

certificate_file_path (certificate)

Default: n/a

The path and filename to the certificate file. The certificate must be in PEM format.

passphrase (string)

Default: None

Passphrase used to access the private key specified in certificate_file_path.

5.5.5. Class CertificateCA

The CertificateCA class stores a CA certificate, its private key, and optionally a passphrase for the private key.
The certificate must be in PEM format.

5.5.5.1. Attributes of CertificateCA

certificate_file_path (certificate)

Default: n/a

The path and filename to the certificate file. The certificate must be in PEM format.

private_key_password (string)

Default: None

Passphrase used to access the private key of the certificate specified in certificate_file path.

www.balasys.hu 124

Class ClientCertificate Verifier e

5.5.5.2. CertificateCA methods

Method Description

init _(self, certificate, private key) Load a CAcertificate from a string, and access it using
its passphrase

Table 5.45. Method summary

Method __init__(self, certificate, private_key)

Initializes a CertificateCA instance by loading a CA certificate, and accesses it using its passphrase.

Arguments of __init__

certificate_file_path (certificate)

Default: n/a

The path and filename to the CA certificate file. The certificate must be in PEM format.

private_key_password (string)

Default: None

Passphrase used to access the private key specified in certificate_file_path.

5.5.6. Class ClientCertificateVerifier

This class includes the settings and options used to verify the certificates of the peers in client-side SSL and
TLS connections.

5.5.6.1. Attributes of ClientCertificateVerifier

ca_hint_directory (string)

Default: ""

Set directory containing certificates to provide the client the list of CA certificates (subject names) that are
used for verifying the client certificate.

intermediate_revocation_check_type (enum)

Default: TLS_INTERMEDIATE_REVOCATION_SOFT_FAIL

Specify how intermediate certificates revocation status check should work.

leaf_revocation_check_type (enum)

Default: TLS_LEAF_REVOCATION_SOFT_FAIL

Specify how leaf certificate revocation status check should work.

www.balasys.hu 125

Class ClientCertificate Verifier e

required (boolean)

Default: TRUE

If the required is TRUE, a certificate is required from the peer.

trust_level (enum)

Default: TLS_TRUST_LEVEL_FULL

Specify which certificate should be accepted as trusted.

trusted_certs_directory (string)

Default: ""

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP
address shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA.
Each file in the directory should contain a certificate in PEM format. The filename must bethe IP address.

verify_ca_directory (string)

Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when the certificate of the peer is verified.

verify_crl_directory (string)

Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when the certificate of the peer is verified.

verify_depth (integer)
Default: 4

The length of the longest accepted CA verification chain. Longer CA chains are automatically rejected.

www.balasys.hu 126

Class ClientCertificate Verifier e

5.5.6.2. ClientCertificateVerifier methods

Method Description

init (self, trust level, | Constructor to initialize a ClientCertificateVerifier
intermediate revocation check type, |instance.
leaf revocation check type, trusted certs directory,
required, verify depth, verify ca_directory,
verify crl directory, ca hint directory)

Table 5.46. Method summary

Method __init__(self, trust_level, intermediate_revocation_check_type, leaf_revocation_check_type,
trusted_certs_directory, required, verify_depth, verify_ca_directory, verify_crl_directory,
ca_hint_directory)

This constructor defines a ClientCertificate Verifier with the specified parameters.

Arguments of __init__

ca_hint_directory (string)

Default: ""

Set directory containing certificates to provide the client the list of CA certificates (subject names) that are
used for verifying the client certificate.

intermediate_revocation_check_type (enum)

Default: TLS_INTERMEDIATE_REVOCATION_SOFT_FAIL

Specify how intermediate certificates revocation status check should work.

leaf revocation_check_type (enum)

Default: TLS_LEAF_REVOCATION_SOFT_FAIL

Specify how leaf certificate revocation status check should work.

required (boolean)

Default: TRUE

If the required is TRUE, a certificate is required from the peer.

trust_level (enum)

Default: TLS_TRUST _LEVEL_FULL

Specify which certificate should be accepted as trusted.

www.balasys.hu 127

Class ClientNone Verifier e

trusted_certs_directory (string)

Default: ""

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP
address shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA.
Each file in the directory should contain a certificate in PEM format. The filename must bethe TP address.

verify_ca_directory (string)

Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when the certificate of the peer is verified.

verify_crl_directory (string)

Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when the certificate of the peer is verified.

verify_depth (integer)
Default: 4

The length of the longest accepted CA verification chain. Longer CA chains are automatically rejected.

5.5.7. Class ClientNoneVerifier

This class disables every certificate verification in client-side SSL. and TLS connections.

5.5.8. Class ClientOnlyEncryption

The ClientOnlyEncryption class handles scenarios when only the client-Zorp connection is encrypted, the
Zorp-server connection is not.

5.5.8.1. Attributes of ClientOnlyEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

www.balasys.hu 128

Class ClientOnlyStartTLSEncryption e

client_verify (class)

Default: ClientCertificate VerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

5.5.8.2. ClientOnlyEncryption methods

Method Description

init _(self, client certificate generator, | Initializes SSL/TLS connection on the client side.
client verify, client ssl options)

Table 5.47. Method summary

Method __init__(self, client_certificate_generator, client_verify, client_ssl_options)

The ClientOnlyEncryption class handles scenarios when only the client-Zorp connection is encrypted, the
Zorp-server connection is not.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

5.5.9. Class ClientOnlyStartTLSEncryption

The ClientOnlyStartTLSEncryption class handles scenarios when the client can optionally request STARTTLS
encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS. The
server-side connection will not be encrypted.

‘Warning
A If the client does not send a STARTTLS request, the client-side communication will not be encrypted at all. The server-side connection
will never be encrypted.

www.balasys.hu 129

Class ClientOnlyStartTLSEncryption e

5.5.9.1. Attributes of ClientOnlyStartTLSEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

5.5.9.2. ClientOnlyStartTLSEncryption methods

Method Description
init _(self, client certificate generator, | The client can optionally request STARTTLS
client verify, client ssl options) encryption, but the server-side connection is always
unencrypted.

Table 5.48. Method summary

Method __init__(self, client_certificate_generator, client_verify, client_ssl_options)

The ClientOnlyStartTLSEncryption class handles scenarios when the client can optionally request STARTTLS
encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS. The
server-side connection will not be encrypted.

Warning
A If the client does not send a STARTTLS request, the client-side communication will not be encrypted at all. The server-side connection
will never be encrypted.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

www.balasys.hu 130

Class ClientSSLOptions (37

client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifier()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

5.5.10. Class ClientSSLOptions

This class (based on the SSLOptions class) collects the TLS and SSL settings directly related to encryption,
for example, the permitted protocol versions, ciphers, session reuse settings, and so on.

5.5.10.1. Attributes of ClientSSLOptions

cipher (enum)

Default: n/a

Specifies the allowed ciphers. For details, see Table 5.31, Constants for cipher selection (p. 116).

cipher_server_preference (boolean)

Default: FALSE

Use server and not client preference order when determining which cipher suite, signature algorithm or elliptic
curve to use for an incoming connection.

ciphers_tlsvl_3 (enum)

Default: n/a

Specifies the allowed ciphers for TLSv1.3 connections. For details, see Table 5.32, Constants for TLSv1.3
cipher selection (p. 117).

dh_params (dhparams)

Default: None

The DH parameter used by ephemeral DH key generarion. Please be mind that this option is ignored in
TLSv1.3 as it does not support custom DH parameters.

disable_compression (boolean)

Default: FALSE

Set this to TRUE to disable support for SSL/TLS compression even if it is supported. Please be mind that
this option is ignored in TLSv1.3 as it does not support compression.

www.balasys.hu 131

Class ClientSSLOptions (37

disable_send_root_ca (boolean)

Default: False

Inhibit sending Root CA to client, even if present in local certificate chain.

disable_session_cache (boolean)

Default: FALSE

Do not store session information in the session cache. Set this option to TRUE to disable SSL session reuse.
Please be mind that this option is ignored in TLSv1.3 as it does not support session IDs.

disable_ticket (boolean)

Default: FALSE

Session tickets are a method for SSL session reuse, described in RFC 5077. Set this option to TRUE to disable
SSL session reuse using session tickets.

disable_tlsv1 (boolean)
Default: TRUE

Do not allow using TLSv1 in the connection.

disable_tlsvl_1 (boolean)
Default: FALSE

Do not allow using TLSv1.1 in the connection.

disable_tlsvl_2 (boolean)
Default: FALSE

Do not allow using TLSv1.2 in the connection.

disable_tlsvl_3 (boolean)
Default: FALSE

Do not allow using TLSv1.3 in the connection.

session_cache_size (integer)

Default: 20480

The number of sessions stored in the session cache for SSL session reuse. Please be mind that this option is
ignored in TLSv1.3 as it does not support session IDs.

www.balasys.hu 132

Class ClientSSLOptions e

shared_groups (enum)

Default: n/a

Specifies the allowed shared groups. For details, see Table 5.33, Constants for shared group selection (p. 117).

5.5.10.2. ClientSSLOptions methods

Method Description

init__(self, method, cipher, ciphers tlsvl 3, | Constructor to initialize a ClientSSLOptions instance.
shared groups, cipher server preference, timeout,
disable sslv2, disable sslv3, disable tlsv1,
disable tlsvl 1, disable tlsvl 2, disable tlsvl 3,
session cache_size, disable session cache,
disable ticket, disable compression, dh params,
disable renegotiation, disable send root ca)

Table 5.49. Method summary

Method __init__(self, method, cipher, ciphers_tlsvl_3, shared_groups, cipher_server_preference,
timeout, disable_sslv2, disable_sslv3, disable_tlsvl, disable_tlsvl_1, disable_tlsvl 2, disable tisvl 3,
session_cache_size, disable_session_cache, disable_ticket, disable_compression, dh_params,
disable_renegotiation, disable_send_root_ca)

This constructor defines a ClientSSLOptions with the specified parameters.

Arguments of __init__

cipher (enum)

Default: n/a

Specifies the allowed ciphers. For details, see Table 5.31, Constants for cipher selection (p. 116).

cipher_server_preference (boolean)

Default: FALSE

Use server and not client preference order when determining which cipher suite, signature algorithm or elliptic
curve to use for an incoming connection.

ciphers_tlsvl_3 (enum)

Default: n/a

Specifies the allowed ciphers for TLSv1.3 connections. For details, see Table 5.32, Constants for TLSv1.3
cipher selection (p. 117).

www.balasys.hu 133

Class ClientSSLOptions (37

dh_param_file_path (string)

Default: None

The path and filename to the DH parameter file. The DH parameter file must be in PEM format. Please be
mind that this option is ignored in TLSv1.3 as it does not support custom DH parameters.

disable_compression (boolean)

Default: FALSE

Set this to TRUE to disable support for SSL/TLS compression even if it is supported. Please be mind that
this option is ignored in TLSv1.3 as it does not support compression.

disable_renegotiation (boolean)

Default: TRUE

Set this to TRUE to disable client initiated renegotiation. Please be mind that this option is ignored in TLSv1.3
as it does not support renegotiation.

disable_send_root_ca (boolean)

Default: FALSE

Set this to TRUE to inhibit sending root ca to client, even if present in local chain.

disable_session_cache (boolean)

Default: FALSE

Do not store session information in the session cache. Set this option to TRUE to disable SSL session reuse.
Please be mind that this option is ignored in TLSv1.3 as it does not support session IDs.

disable_ticket (boolean)
Default: FALSE

Session tickets are a method for SSL session reuse, described in RFC 5077. Set this option to TRUE to disable
SSL session reuse using session tickets.

disable_tlsv1 (boolean)
Default: TRUE

Do not allow using TLSv1 in the connection.

disable_tlsvl_1 (boolean)
Default: FALSE

Do not allow using TLSv1.1 in the connection.

www.balasys.hu 134

Class DHParam e

disable_tlsvl_2 (boolean)
Default: FALSE

Do not allow using TLSv1.2 in the connection.

disable_tlsvl_3 (boolean)
Default: FALSE

Do not allow using TLSv1.3 in the connection.

session_cache_size (integer)

Default: 20480

The number of sessions stored in the session cache for SSL session reuse. Please be mind that this option is
ignored in TLSv1.3 as it does not support session IDs.

shared_groups (enum)

Default: n/a

Specifies the allowed shared groups. For details, see Table 5.33, Constants for shared group selection (p. 117).

timeout (integer)

Default: 300

Drop idle connection if the timeout value (in seconds) expires.

5.5.11. Class DHParam
The DHParam class stores DH parameters. The DH parameters must be in PEM format.

When configuring Zorp manually using its configuration file, use the regular constructor of the DHParam class
to load DH parameters key from a string. To load DH parameters key from a file, use the DHParam.fromFile
method.

— Example 5.21. Loading DH parameters
—— | The following example loads DH parameters from the configuration file.

my_dh_params = "----- BEGIN DH PARAMETERS-----
MIIBCAKCAQEAVVO8WguTNtkDs33qe5ulT7Ij11lmTrRNwFV4z7W4A0DU9j+prdRdD
UAb1HYBrQn30Fsfg/6WDVTmUj8Lvgn9aFjwWYTe6U3Ey7CQt4MBw2BhCO3R19KDW7
Im8UdBBhxuekuqZGifMkEEFzAcbiQepvBXiGMucDwgbLaaTY/FrKgb509DvoenSV
Aj/VNFnsefQTHXGo1Urg8ixawj7kTNhM3x7kj7BhK4ALfBuv/93aet2SQjU207C6
03j3mku8CD93Xsbng6rIzmRd6pCANEFHORg0O10X7+vMwwG5h5YDSF8CVACRroZkxR
dyPdVNzY1z1X3Jx1n3It/6F2yyx/FOXAGWIBAg==
----- END DH PARAMETERS-----"

my_dh_params_object = DHParam(my_dh_params)

The following example loads DH parameters key from an external file.

my_dh_params_object = DHParam.fromFile("/tmp/my_dh_params.pem")

www.balasys.hu 135

Class DynamicCertificate e

5.5.11.1. Attributes of DHParam

params (string)

Default: ""

The path and filename to the DH parameters file. The DH parameters must be in PEM format.

5.5.11.2. DHParam methods

Method Description
init _(self, params) Load DH parameters key from a string
fromFile(file path) Load a DH parameters from a file

Table 5.50. Method summary

Method __init__(self, params)

Initializes a DHParam instance by loading DH parameters key from a string. To load a DH parameters from a
file, use the DHParam.fromFile method.

Arguments of __init__

params (certificate)

Default: n/a

The path and filename to the DH parameters file. The DH parameters must be in PEM format.

Method fromFile(file_path)

Initializes a DHParam instance by loading a DH parameters from a file.

Arguments of fromFile

file_path (dhparam)

Default: n/a

The path and filename to the DH parameters file. The DH parameters must be in PEM format.

5.5.12. Class DynamicCertificate

This class is able to generate certificates mimicking another certificate, primarily used to transfer the information
of a server's certificate to the client in keybridging. Can be used only in TwoSidedEncryption. For details on
configuring keybridging, see Section 3.2.7, Keybrigding certificates (p. 16).

www.balasys.hu 136

Class DynamicServerEncryption e

5.5.12.1. DynamicCertificate methods

Method Description

init _(self, private key, trusted ca, untrusted ca, | Initializes a DynamicCertificate instance to use for
cache directory, extension whitelist) keybridging

Table 5.51. Method summary

Method __init__(self, private_key, trusted_ca, untrusted_ca, cache_directory, extension_whitelist)

Arguments of __init__

cache_directory (string)

Default: None

The cache directory to store the keybridged generated certificates, for example, /var/1ib/zorp/sslbridge/.
The zorp user must have write privileges for this directory.

extension_whitelist (complex)

Default: None

private_key (class)

Default: n/a

The private key of the CA certificate set in trusted_ca

trusted_ca (class)

Default: n/a

The CA certificate that will used to sign the keybridged certificate of trusted peers.

untrusted_ca (class)

Default: n/a

The CA certificate that will used to sign the keybridged certificate of untrusted peers.

5.5.13. Class DynamicServerEncryption

The DynamicServerEncryption class handles scenarios when both the client-firewall and the firewall-server
connections could be encrypted but the server side encryption parameters set dynamically from proxies.

www.balasys.hu 137

Class DynamicServerEncryption e

5.5.13.1. Attributes of DynamicServerEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_security (enum)

Default: n/a

Set security mode.

client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

5.5.13.2. DynamicServerEncryption methods

Method Description

init (self, client security, |Initializes SSL/TLS connection on the client side.
client certificate generator, client_verify,
client ssl options)

Table 5.52. Method summary

Method __init__(self, client_security, client_certificate_generator, client_verify, client_ssl_options)

The DynamicServerEncryption class handles scenarios when both the client-firewall and the firewall-server
connections could be encrypted but the server side encryption parameters set dynamically from proxies.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

www.balasys.hu 138

Class EncryptionPolicy e

client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

5.5.14. Class EncryptionPolicy

This class encapsulates a named set of encryption settings and an associated Encryption policy instance.
Encryption policies provide a way to re-use encryption settings without having to define encryption settings
for each service individually.

5.5.14.1. Attributes of EncryptionPolicy

encryption (class)

Default: n/a

An encryption scenario instance that will be used in the Encryption Policy.
This describes the scenario and the settings how encryption is used in the scenario, for example:

m Both the client-side and the server-side connections are encrypted (IwoSidedEncryption)

® Only the client-side connection is encrypted (ClientOnlyEncryption)

B Only the server-side connection is encrypted (ServerOnlyEncryption)

m STARTTLS is enabled (ClientOnlyStartTLSEncryption, FakeStartTLSEncryption, or
ForwardStartTLSEncryption)

To customize the settings of a scenario (for example, to set the used certificates), derive a class from the
selected scenario, set its parameters as needed for your environment, and use the customized class.

name (string)

Default: n/a

Name identifying the Encryption policy.

www.balasys.hu 139

Class FakeStartTLSEncryption e

5.5.14.2. EncryptionPolicy methods

Method Description

init__(self, name, encryption) Constructor to create an Encryption policy.

Table 5.53. Method summary

Method __init__(self, name, encryption)

This constructor initializes an Encryption policy, based on the settings of the encryption parameter. This
describes the scenario and the settings how encryption is used in the scenario, for example:

m Both the client-side and the server-side connections are encrypted (TwoSidedEncryption)

®m Only the client-side connection is encrypted (ClientOnlyEncryption)

m Only the server-side connection is encrypted (ServerOnlyEncryption)

m STARTTLS is enabled (ClientOnlyStartTLSEncryption, FakeStartTLSEncryption, or
ForwardStartTLSEncryption)

To customize the settings of a scenario (for example, to set the used certificates), derive a class from the selected
scenario, set its parameters as needed for your environment, and use the customized class.

Arguments of __init__

encryption (class)

Default: n/a

An encryption scenario instance that will be used in the Encryption Policy.

name (string)

Default: n/a

Name identifying the Encryption policy.

5.5.15. Class FakeStartTLSEncryption

The FakeStartTLSEncryption class handles scenarios when the client can optionally request STARTTLS
encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS. The
server-side connection will always be encrypted.

‘Warning
A If the client does not send a STARTTLS request, the client-side communication will not be encrypted at all. The server-side connection
will always be encrypted.

www.balasys.hu 140

Class FakeStartTLSEncryption e

5.5.15.1. Attributes of FakeStartTLSEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

server_ssl_options (class)

Default: ServerSSLOptions()

The protocol-level encryption settings used on the server side. This must be a ServerSSLOptions instance.

server_verify (class)

Default: ServerCertificateVerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.15.2. FakeStartTLSEncryption methods

Method Description

init _(self, client certificate generator, | Initializes a FakeStartTLSEncryption instance to
client verify, __server verify, _ client ssl options, | handle scenarios when the client can optionally request
server_ssl options) STARTTLS encryption.

Table 5.54. Method summary

Method __init__(self, client_certificate_generator, client_verify, server_verify, client_ssl_options,
server_ssl_options)

The FakeStartTLSEncryption class handles scenarios when the client can optionally request STARTTLS
encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS. The
server-side connection will always be encrypted.

www.balasys.hu 141

Class ForwardStartTLSEncryption e

‘Warning
A If the client does not send a STARTTLS request, the client-side communication will not be encrypted at all. The server-side connection
will always be encrypted.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

server_ssl_options (class)

Default: ServerSSLOptions()

The protocol-level encryption settings used on the server side. This must be a ServerSSLOptions instance.

server_verify (class)

Default: ServerCertificateVerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.16. Class ForwardStartTLSEncryption

The ForwardStartTLSEncryption class handles scenarios when the client can optionally request STARTTLS
encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS, and the
request will be forwarded to the server. If the server supports STARTTLS, the server-side connection will also
use STARTTLS.

‘Warning
A If the client does not send a STARTTLS request, the communication will not be encrypted at all. Both the client-Zorp and the Zorp-server
connections will be unencrypted.

www.balasys.hu 142

Class ForwardStartTLSEncryption e

5.5.16.1. Attributes of ForwardStartTLSEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

server_ssl_options (class)

Default: ServerSSLOptions()

The protocol-level encryption settings used on the server side. This must be a ServerSSLOptions instance.

server_verify (class)

Default: ServerCertificateVerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.16.2. ForwardStartTLSEncryption methods

Method Description

init _(self, client certificate generator, | Initializes a ForwardStartTLSEncryption instance to
client verify, __server verify, _ client ssl options, | handle scenarios when the client can optionally request
server_ssl options) STARTTLS encryption.

Table 5.55. Method summary

Method __init__(self, client_certificate_generator, client_verify, server_verify, client_ssl_options,
server_ssl_options)

Initializes a ForwardStartTLSEncryption instance to handle scenarios when the client can optionally request
STARTTLS encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS,
and the request will be forwarded to the server. If the server supports STARTTLS, the server-side connection
will also use STARTTLS.

www.balasys.hu 143

Class PrivateKey e

‘Warning
A If the client does not send a STARTTLS request, the communication will not be encrypted at all. Both the client-Zorp and the Zorp-server
connections will be unencrypted.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

server_ssl_options (class)

Default: ServerSSLOptions()

The protocol-level encryption settings used on the server side. This must be a ServerSSLOptions instance.

server_verify (class)

Default: ServerCertificateVerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.17. Class PrivateKey

The PrivateKey class stores a private key and optionally a passphrase for the private key. The private key must
be in PEM format.

When configuring Zorp manually using its configuration file, use the regular constructor of the PrivateKey
class to load a private key from a string. To load a private key from a file, use the PrivateKey.fromFile method.

— Example 5.22. Loading a private key
—— | The following example loads a private key from the configuration file.

my_private_key = "----- BEGIN RSA PRIVATE KEY-----

MIIEpgIBAAKCAQEA9rbxqq+Zi70nRFAZe7SCTB6VgzP1PhkiUmOPmMbwFmMROS1SSyY
yMPSyIzaQqwELYy0SQTZtsT3jhd6MCFPBZntym63/GwDuethGSjE9y8rt/9yr+T31
zz+6ABnZXHJ38tdGYataF1Ndi3CsY5NXGszVFv1Is17P5mbYWQgJ7QzI/a5mPKa+
9pVXsDQthEV3BVUawIEJJInSOTHD5XZQJ/MX6F4RPn+2MC9i/RbcAORVNLPmMt2eiy

www.balasys.hu 144

Class PrivateKey e

NV3+55sKdd7GpdMmEbRVIHZYW2x INyulxYbwU9YIP88dHCgvqoOgkAX2HLXCJO0y6
2gvsS8J7HEbohD98dxPJIX7P8w9juORi6HpSsqOWIDAQABAOIBAQDXStIdJtuRC+GG
RXfXca/61P3j3qV2KSzATRe+CkvAR001CC9T7z6zb+bPI5KkLIblxWvPiJawOnn4l
jj5JFhTvMalagTeaz7yW5d2NR2r1SkZwW7Au2uePSv9ZIzL1IVLzzDnz/PW2Xxv51
bromT/Tr+N9GV8iIwNqu5sryp60FasKB/55LhCcKVYrkdy2WhJc8Y8TXUjF4n8Jn
Xuyd44N6uu5RULIEgN7bPsz01F1T8ujCICWDNNYUw91lwSVVEC2EbTg841u2UcnE4k
grB7rCKLooDpY1KjXx/109Dj9Uv3hwLpSTw2dYR0ZSOKOFIKYACP1QcininrTGeL
COPXyK6BAOGBAPVNBd7/U94Krp9Bp3jjXUEN1Frgf+B7QgRKPG7 tN3RDRIMIVLEZ
mnxvbwWéo4hsq4TzF/ratnRjqp+79TwSwUz36G98FtW1lTUS620BznIkwImDGo+ysv
3QK8XUZ4Wg3EcnE5bG8AMOKoDRazc0g7UxopbHC+SNLRMZA/2dBvVh4zA0GBAP(Q6
UWIfcSnLyFYy7EPh3P7gmotBNPORgcX6aKdwR7pzk6MgTADHXKVIP+eeDEWpPF58T
RYBW7KxN4h6cNMg1RZBbhED3hONJkpYMGSqOhyczN40SIHHr f3iB07p35v7Eee82
2H/rT6BNrQF1fPIbz5spgT+eV5BUTAB7bsbWiuDhAOGBALVAgeT26y21mfhVkVow
5LQA+gp5Jwor J1FYNADtBx3M2StwASqQDazDsIYTVr4dmHvWK3Teb09iaPt50Mz0
3dawWhD+D3VCVv98FtM+r4FKGI/Zmd8Twd8HTr fGIchw/A7mex3efxEhDkwgY28Rhk
N2N3suNcx6GJjIQynVNXCRIpAOGBAOJYIEqUXxyn0iPOBLM30SiXXUP7WN518FA7W
gFCBUecNt4uoCdiyk+fgBf10evT3UQQ07ZKJ71t3RAANAIZTUO6buQjMBFMbAa90
4fP19BLtaQCaHH+HCCuX3I/+9rumS9JHIKX3qoTHYrdsmxo3D/u9MqR4p/EKDLRq
XpQCO9I9BAOGBAPZtxtEKcOXxhYeuor4qIQbtledrO+cfEzaXyUvjleLdg8ru3Yeh3
JLbYgCSNr4rMvEWhuvwbwgWJdjed7TvqjKKEYYSWW2ESwcmAjNIhDBVZzX90hlcY34
Ae/P630Ht89sWbb50G2+fch7xCwH3kYmVgT4/xPvOFQRspwpErKY1Cwg

----- END RSA PRIVATE KEY-----"

my_private_key_object = PrivateKey(my_private_key,

The following example loads a private key from an external file.

my_private_key_object = PrivateKey.fromFile("/tmp/my_private.key",

5.5.17.1. Attributes of PrivateKey

'mypassphrase')

'mypassphrase')

key_file_path (string)

Default: ""

The path and filename to the private key file. The private key must be in PEM format.

passphrase (string)

Default: None

Passphrase used to access the private key specified in key_file path.

5.5.17.2. PrivateKey methods

Method

Description

init

(self, key, passphrase)

its passphrase

Load a private key from a string, and access it using

fromFile(key file path, passphrase)

passphrase

Load a private key from a file, and access it using its

Method __init__(self, key, passphrase)

Table 5.56. Method summary

Initializes a PrivateKey instance by loading a private key from a string, and accesses it using its passphrase.
To load a private key from a file, use the PrivateKey.fromFile method.

www.balasys.hu

145

Class SNIBasedCertificate 3

Arguments of __init__

key_file_path (certificate)

Default: n/a

The path and filename to the private key file. The private key must be in PEM format.

passphrase (string)

Default: None

Passphrase used to access the private key specified in key _file path.

Method fromFile(key_file_path, passphrase)

Initializes a PrivateKey instance by loading a private key from a file, and accesses it using its passphrase.

Arguments of fromFile

key_file_path (certificate)

Default: n/a

The path and filename to the private key file. The private key must be in PEM format.

passphrase (string)

Default: None

Passphrase used to access the private key specified in key_file_path.

5.5.18. Class SNIBasedCertificate

This class adds support for the Server Name Indication (SNI) TLS extension, as described in RFC 6066. It
stores a mapping between hostnames and certificates, and automatically selects the certificate to show to the
peer if the peer has sent an SNI request.

5.5.18.1. Attributes of SNIBasedCertificate

default (complex)

Default: None

The certificate to show to the peer if no matching hostname is found in hostname_certificate_map.

hostname_certificate_map (complex)

Default: n/a

www.balasys.hu 146

http://tools.ietf.org/html/rfc6066

Class SSLOptions (37

hostname_certificate_map (complex)

A hash containing a matcher-certificate map. Each element of the hash contains a matcher and a certificate:
if a matcher matches the hostname in the SNI request, the certificate is showed to the peer. You can use any
matcher policy, though in most cases, RegexpMatcher will be adequate. Different elements of the hash can
use different types of matchers, for example, RegexpMatcher and RegexpFileMatcher. For details on matcher
policies, see Section 5.7, Module Matcher (p. 163).

hostname_certificate_map={
RegexpMatcher (
match_list=("myfirstdomain.example.com",)): StaticCertificate(

certificates=(Certificate.fromFile(
certificate_file_path="/etc/key.d/myfirstdomain/cert.pem",

private_key=PrivateKey.fromFile(
"/etc/key.d/myfirstdomain/key.pem")),)),}

5.5.18.2. SNIBasedCertificate methods

Method Description

init _(self, hostname certificate map, default)

Table 5.57. Method summary

Method __init__(self, hosthame_certificate_map, default)

Arguments of __init__

default (complex)

Default: None

The certificate to show to the peer if no matching hostname is found in hostname_certificate_map.

hostname_certificate_map (complex)

Default: n/a

A matcher-certificate map that describes which certificate will be showed to the peer if the matcher part
matches the hostname in the SNI request. For details on matcher policies, see Section 5.7, Module
Matcher (p. 163).

5.5.19. Class SSLOptions

This class collects the TLS and SSL settings directly related to encryption, for example, the permitted protocol
versions, ciphers, session reuse settings, and so on. Note that you cannot use this class directly, use an appropriate
derived class, for example, ClientSSLOptions or ServerSSLOptions instead.

www.balasys.hu 147

Class SSLOptions (37

5.5.19.1. Attributes of SSLOptions

cipher (complex)

Default: n/a

Specifies the allowed ciphers. For details, see Table 5.31, Constants for cipher selection (p. 116).

ciphers_tlsvl_3 (complex)
Default: n/a

Specifies the allowed ciphers for TLSv1.3 connections. For details, see Table 5.32, Constants for TLSv1.3
cipher selection (p. 117).

disable_compression (boolean)

Default: FALSE

Set this to TRUE to disable support for SSL/TLS compression even if it is supported. Please be mind that
this option is ignored in TLSv1.3 as it does not support compression.

disable_session_cache (boolean)

Default: FALSE

Do not store session information in the session cache. Set this option to TRUE to disable SSL session reuse.
Please be mind that this option is ignored in TLSv1.3 as it does not support session IDs.

disable_ticket (boolean)
Default: FALSE

Session tickets are a method for SSL session reuse, described in RFC 5077. Set this option to TRUE to disable
SSL session reuse using session tickets.

disable_tlsv1 (boolean)
Default: TRUE

Do not allow using TLSv1 in the connection.

disable_tlsvl_1 (boolean)
Default: FALSE

Do not allow using TLSv1.1 in the connection.

disable_tlsv1_2 (boolean)
Defa