
Zorp GPL 7 Reference Guide

Publication date March 04, 2024

Abstract
This document is a detailed reference guide for Zorp GPL administrators.



Balasys

Copyright © 1996-2024 Balasys IT Zrt. (Private Limited Company)

This documentation and the product it describes are considered protected by copyright according to the applicable laws.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/). This product includes
cryptographic software written by Eric Young (eay@cryptsoft.com)

Linux™ is a registered trademark of Linus Torvalds.

Windows™ 10 is registered trademarks of Microsoft Corporation.

The Balasys™ name and the Balasys™ logo are registered trademarks of Balasys IT Zrt.

The Zorp™ name and the Zorp™ logo are registered trademarks of Balasys IT Zrt.

All other product names mentioned herein are the trademarks of their respective owners.

DISCLAIMER

Balasys is not responsible for any third-party websites mentioned in this document. Balasys does not endorse and is not responsible or liable for any
content, advertising, products, or other material on or available from such sites or resources. Balasys will not be responsible or liable for any damage or
loss caused or alleged to be caused by or in connection with use of or reliance on any such content, goods, or services that are available on or through
any such sites or resources.

iiwww.balasys.hu

http://www.openssl.org


Table of Contents
Preface ............................................................................................................................................ xiii

1. Summary of contents ............................................................................................................. xiii
2. Terminology ......................................................................................................................... xiii
3. Target audience and prerequisites ........................................................................................... xiv
4. Products covered in this guide ................................................................................................. xv
5. Contact and support information ............................................................................................. xv

5.1. Sales contact ............................................................................................................... xv
5.2. Support contact ........................................................................................................... xv
5.3. Training ..................................................................................................................... xvi

6. About this document ............................................................................................................. xvi
6.1. Feedback ................................................................................................................... xvi

1. How Zorp works ............................................................................................................................ 1
1.1. Zorp startup and initialization ................................................................................................. 1
1.2. Handling incoming connections ............................................................................................. 1

1.2.1. Handling packet filtering services ................................................................................ 2
1.2.2. Handling application-level services .............................................................................. 2

1.3. Proxy startup and the server-side connection ........................................................................... 3
2. Configuring Zorp proxies ............................................................................................................... 4

2.1. Policies for requests and responses ......................................................................................... 4
2.1.1. Default actions ........................................................................................................... 5
2.1.2. Response codes .......................................................................................................... 6

2.2. Secondary sessions ................................................................................................................ 7
2.3. Embedded protocol analysis ................................................................................................... 7

2.3.1. Proxy stacking ............................................................................................................ 7
2.3.2. Program stacking ........................................................................................................ 8

3. The Zorp SSL framework .............................................................................................................. 9
3.1. The SSL protocol .................................................................................................................. 9

3.1.1. The SSL handshake .................................................................................................... 9
3.2. Configuring TLS and SSL encrypted connections .................................................................. 10

3.2.1. Behavior of the SSL framework ................................................................................. 10
3.2.2. Handshake callbacks ................................................................................................. 11
3.2.3. X.509 Certificates ..................................................................................................... 12
3.2.4. Setting the allowed TLS protocol ............................................................................... 14
3.2.5. SSL cipher selection ................................................................................................. 14
3.2.6. Enabling STARTTLS ................................................................................................ 15
3.2.7. Keybrigding certificates ............................................................................................ 16

3.3. Related standards ................................................................................................................ 18
3.4. SSL options reference .......................................................................................................... 18

4. Proxies .......................................................................................................................................... 19
4.1. General information on the proxy modules ............................................................................ 19
4.2. Attribute values ................................................................................................................... 19
4.3. Examples ............................................................................................................................ 20
4.4. Module AnyPy .................................................................................................................... 20

4.4.1. Related standards ...................................................................................................... 20
4.4.2. Classes in the AnyPy module .................................................................................... 20

iiiwww.balasys.hu



4.4.3. Class AbstractAnyPyProxy ....................................................................................... 20
4.4.4. Class AnyPyProxy .................................................................................................... 21

4.5. Module Finger .................................................................................................................... 21
4.5.1. The Finger protocol .................................................................................................. 22
4.5.2. Proxy behavior ......................................................................................................... 22
4.5.3. Related standards ...................................................................................................... 22
4.5.4. Classes in the Finger module ..................................................................................... 23
4.5.5. Class AbstractFingerProxy ........................................................................................ 23
4.5.6. Class FingerProxy .................................................................................................... 25

4.6. Module Ftp ......................................................................................................................... 25
4.6.1. The FTP protocol ...................................................................................................... 25
4.6.2. Proxy behavior ......................................................................................................... 26
4.6.3. Related standards ...................................................................................................... 29
4.6.4. Classes in the Ftp module .......................................................................................... 29
4.6.5. Class AbstractFtpProxy ............................................................................................. 30
4.6.6. Class FtpProxy ......................................................................................................... 35
4.6.7. Class FtpProxyAnonRO ............................................................................................ 35
4.6.8. Class FtpProxyAnonRW ........................................................................................... 35
4.6.9. Class FtpProxyRO .................................................................................................... 36
4.6.10. Class FtpProxyRW .................................................................................................. 36

4.7. Module Http ........................................................................................................................ 36
4.7.1. The HTTP protocol ................................................................................................... 36
4.7.2. Proxy behavior ......................................................................................................... 37
4.7.3. Related standards ...................................................................................................... 48
4.7.4. Classes in the Http module ........................................................................................ 48
4.7.5. Class AbstractHttpProxy ........................................................................................... 49
4.7.6. Class HttpProxy ........................................................................................................ 61
4.7.7. Class HttpProxyNonTransparent ................................................................................ 61
4.7.8. Class HttpProxyURIFilter ......................................................................................... 61
4.7.9. Class HttpProxyURIFilterNonTransparent .................................................................. 61
4.7.10. Class HttpProxyURLCategoryFilter ......................................................................... 61
4.7.11. Class HttpWebdavProxy .......................................................................................... 62
4.7.12. Class NontransHttpWebdavProxy ............................................................................ 62

4.8. Module Plug ....................................................................................................................... 62
4.8.1. Proxy behavior ......................................................................................................... 62
4.8.2. Related standards ...................................................................................................... 63
4.8.3. Classes in the Plug module ........................................................................................ 63
4.8.4. Class AbstractPlugProxy ........................................................................................... 63
4.8.5. Class PlugProxy ....................................................................................................... 65

4.9. Module Pop3 ....................................................................................................................... 65
4.9.1. The POP3 protocol ................................................................................................... 66
4.9.2. Proxy behavior ......................................................................................................... 67
4.9.3. Related standards ...................................................................................................... 70
4.9.4. Classes in the Pop3 module ....................................................................................... 70
4.9.5. Class AbstractPop3Proxy .......................................................................................... 70
4.9.6. Class Pop3Proxy ...................................................................................................... 73
4.9.7. Class Pop3STLSProxy .............................................................................................. 73

4.10. Module Smtp .................................................................................................................... 73

ivwww.balasys.hu



4.10.1. The SMTP protocol ................................................................................................ 73
4.10.2. Proxy behavior ....................................................................................................... 74
4.10.3. Related standards .................................................................................................... 76
4.10.4. Classes in the Smtp module ..................................................................................... 76
4.10.5. Class AbstractSmtpProxy ........................................................................................ 76
4.10.6. Class SmtpProxy .................................................................................................... 79

4.11. Module Telnet ................................................................................................................... 81
4.11.1. The Telnet protocol ................................................................................................. 81
4.11.2. Proxy behavior ....................................................................................................... 82
4.11.3. Related standards .................................................................................................... 84
4.11.4. Classes in the Telnet module .................................................................................... 84
4.11.5. Class AbstractTelnetProxy ....................................................................................... 84
4.11.6. Class TelnetProxy ................................................................................................... 85
4.11.7. Class TelnetProxyStrict ........................................................................................... 85

4.12. Module Whois ................................................................................................................... 86
4.12.1. The Whois protocol ................................................................................................ 86
4.12.2. Proxy behavior ....................................................................................................... 86
4.12.3. Related standards .................................................................................................... 86
4.12.4. Classes in the Whois module ................................................................................... 86
4.12.5. Class AbstractWhoisProxy ...................................................................................... 86
4.12.6. Class WhoisProxy ................................................................................................... 87

5. Core ............................................................................................................................................. 88
5.1. Module Auth ....................................................................................................................... 88

5.1.1. Authentication and authorization basics ...................................................................... 88
5.1.2. Authentication and authorization in Zorp .................................................................... 88
5.1.3. Classes in the Auth module ....................................................................................... 89
5.1.4. Class AbstractAuthentication ..................................................................................... 90
5.1.5. Class AbstractAuthorization ...................................................................................... 91
5.1.6. Class AuthCache ...................................................................................................... 91
5.1.7. Class AuthenticationPolicy ........................................................................................ 92
5.1.8. Class AuthorizationPolicy ......................................................................................... 93
5.1.9. Class BasicAccessList ............................................................................................... 94
5.1.10. Class InbandAuthentication ..................................................................................... 95
5.1.11. Class NEyesAuthorization ....................................................................................... 95
5.1.12. Class PairAuthorization ........................................................................................... 97
5.1.13. Class PermitGroup .................................................................................................. 97
5.1.14. Class PermitTime .................................................................................................... 98
5.1.15. Class PermitUser .................................................................................................... 99
5.1.16. Class SatyrAuthentication ....................................................................................... 99
5.1.17. Class ServerAuthentication ...................................................................................... 99
5.1.18. Class ZAAuthentication ........................................................................................ 100

5.2. Module AuthDB ................................................................................................................ 101
5.2.1. Classes in the AuthDB module ................................................................................ 101
5.2.2. Class AbstractAuthenticationBackend ...................................................................... 101
5.2.3. Class AuthenticationProvider ................................................................................... 102
5.2.4. Class ZAS2AuthenticationBackend .......................................................................... 102

5.3. Module Chainer ................................................................................................................. 103
5.3.1. Selecting the network protocol ................................................................................. 104

vwww.balasys.hu



5.3.2. Classes in the Chainer module ................................................................................. 104
5.3.3. Class AbstractChainer ............................................................................................. 105
5.3.4. Class AvailabilityChainer ........................................................................................ 105
5.3.5. Class ConnectChainer ............................................................................................. 106
5.3.6. Class FailoverChainer ............................................................................................. 107
5.3.7. Class MultiTargetChainer ........................................................................................ 108
5.3.8. Class RoundRobinAvailabilityChainer ..................................................................... 109
5.3.9. Class RoundRobinChainer ....................................................................................... 110
5.3.10. Class SideStackChainer ......................................................................................... 110
5.3.11. Class StateBasedChainer ....................................................................................... 111

5.4. Module Detector ................................................................................................................ 112
5.4.1. Classes in the Detector module ................................................................................ 112
5.4.2. Class AbstractDetector ............................................................................................ 113
5.4.3. Class CertDetector .................................................................................................. 113
5.4.4. Class DetectorPolicy ............................................................................................... 114
5.4.5. Class HttpDetector .................................................................................................. 114
5.4.6. Class SniDetector ................................................................................................... 115
5.4.7. Class SshDetector ................................................................................................... 116

5.5. Module Encryption ............................................................................................................ 116
5.5.1. SSL parameter constants ......................................................................................... 116
5.5.2. Classes in the Encryption module ............................................................................. 118
5.5.3. Class AbstractVerifier ............................................................................................. 120
5.5.4. Class Certificate ...................................................................................................... 122
5.5.5. Class CertificateCA ................................................................................................ 124
5.5.6. Class ClientCertificateVerifier ................................................................................. 125
5.5.7. Class ClientNoneVerifier ......................................................................................... 128
5.5.8. Class ClientOnlyEncryption .................................................................................... 128
5.5.9. Class ClientOnlyStartTLSEncryption ....................................................................... 129
5.5.10. Class ClientSSLOptions ........................................................................................ 131
5.5.11. Class DHParam ..................................................................................................... 135
5.5.12. Class DynamicCertificate ...................................................................................... 136
5.5.13. Class DynamicServerEncryption ............................................................................ 137
5.5.14. Class EncryptionPolicy ......................................................................................... 139
5.5.15. Class FakeStartTLSEncryption .............................................................................. 140
5.5.16. Class ForwardStartTLSEncryption ......................................................................... 142
5.5.17. Class PrivateKey ................................................................................................... 144
5.5.18. Class SNIBasedCertificate ..................................................................................... 146
5.5.19. Class SSLOptions ................................................................................................. 147
5.5.20. Class ServerCertificateVerifier ............................................................................... 151
5.5.21. Class ServerNoneVerifier ...................................................................................... 153
5.5.22. Class ServerOnlyEncryption .................................................................................. 153
5.5.23. Class ServerSSLOptions ........................................................................................ 155
5.5.24. Class StaticCertificate ........................................................................................... 158
5.5.25. Class TwoSidedEncryption .................................................................................... 159

5.6. Module Keybridge ............................................................................................................. 161
5.6.1. Classes in the Keybridge module ............................................................................. 161
5.6.2. Class X509KeyBridge ............................................................................................. 161

5.7. Module Matcher ................................................................................................................ 163

viwww.balasys.hu



5.7.1. Classes in the Matcher module ................................................................................. 163
5.7.2. Class AbstractMatcher ............................................................................................ 164
5.7.3. Class CombineMatcher ........................................................................................... 164
5.7.4. Class DNSMatcher ................................................................................................. 165
5.7.5. Class MatcherPolicy ............................................................................................... 166
5.7.6. Class RegexpFileMatcher ........................................................................................ 166
5.7.7. Class RegexpMatcher .............................................................................................. 167
5.7.8. Class SmtpInvalidRecipientMatcher ......................................................................... 168
5.7.9. Class WindowsUpdateMatcher ................................................................................ 170

5.8. Module NAT ..................................................................................................................... 170
5.8.1. Classes in the NAT module ...................................................................................... 170
5.8.2. Class AbstractNAT ................................................................................................. 171
5.8.3. Class GeneralNAT .................................................................................................. 172
5.8.4. Class HashNAT ...................................................................................................... 173
5.8.5. Class NAT46 .......................................................................................................... 174
5.8.6. Class NAT64 .......................................................................................................... 174
5.8.7. Class NATPolicy .................................................................................................... 175
5.8.8. Class OneToOneMultiNAT ...................................................................................... 176
5.8.9. Class OneToOneNAT .............................................................................................. 177
5.8.10. Class RandomNAT ................................................................................................ 178
5.8.11. Class StaticNAT .................................................................................................... 178

5.9. Module Notification ........................................................................................................... 179
5.9.1. Classes in the Notification module ........................................................................... 179
5.9.2. Class AbstractNotificationMethod ........................................................................... 179
5.9.3. Class EmailNotificationMethod ............................................................................... 179
5.9.4. Class NotificationPolicy .......................................................................................... 180

5.10. Module Proxy .................................................................................................................. 180
5.10.1. Functions in module Proxy .................................................................................... 180
5.10.2. Classes in the Proxy module .................................................................................. 180
5.10.3. Functions .............................................................................................................. 180
5.10.4. Class Proxy .......................................................................................................... 181

5.11. Module Resolver .............................................................................................................. 184
5.11.1. Classes in the Resolver module .............................................................................. 184
5.11.2. Class AbstractResolver .......................................................................................... 184
5.11.3. Class DNSResolver ............................................................................................... 184
5.11.4. Class HashResolver ............................................................................................... 185

5.12. Module Router ................................................................................................................ 186
5.12.1. The source address used in the server-side connection ............................................. 186
5.12.2. Classes in the Router module ................................................................................. 187
5.12.3. Class AbstractRouter ............................................................................................. 187
5.12.4. Class DirectedRouter ............................................................................................. 188
5.12.5. Class InbandRouter ............................................................................................... 189
5.12.6. Class TransparentRouter ........................................................................................ 190

5.13. Module Rule ................................................................................................................... 191
5.13.1. Evaluating firewall rules ........................................................................................ 191
5.13.2. Sample rules ......................................................................................................... 193
5.13.3. Adding metadata to rules: tags and description ........................................................ 193
5.13.4. Classes in the Rule module .................................................................................... 194

viiwww.balasys.hu



5.13.5. Class PortRange .................................................................................................... 194
5.13.6. Class Rule ............................................................................................................ 195

5.14. Module Service ............................................................................................................... 197
5.14.1. Naming services ................................................................................................... 197
5.14.2. Classes in the Service module ................................................................................ 198
5.14.3. Class AbstractService ............................................................................................ 198
5.14.4. Class DenyService ................................................................................................ 199
5.14.5. Class PFService .................................................................................................... 200
5.14.6. Class Service ........................................................................................................ 202

5.15. Module Session ............................................................................................................... 207
5.15.1. Classes in the Session module ................................................................................ 208
5.15.2. Class StackedSession ............................................................................................ 208

5.16. Module SockAddr ............................................................................................................ 209
5.16.1. Classes in the SockAddr module ............................................................................ 210
5.16.2. Class SockAddrInet ............................................................................................... 210
5.16.3. Class SockAddrInet6 ............................................................................................. 211
5.16.4. Class SockAddrInetHostname ................................................................................ 211
5.16.5. Class SockAddrInetRange ..................................................................................... 212
5.16.6. Class SockAddrUnix ............................................................................................. 213

5.17. Module Stack .................................................................................................................. 213
5.17.1. Classes in the Stack module ................................................................................... 214
5.17.2. Class AbstractStackingBackend ............................................................................. 214
5.17.3. Class RemoteStackingBackend .............................................................................. 214
5.17.4. Class StackingProvider .......................................................................................... 215

5.18. Module Zone ................................................................................................................... 216
5.18.1. Classes in the Zone module ................................................................................... 217
5.18.2. Class Zone ............................................................................................................ 217

5.19. Module Zorp ................................................................................................................... 218
6. Core-internal .............................................................................................................................. 219

6.1. Module Cache ................................................................................................................... 219
6.2. Module Core ..................................................................................................................... 219
6.3. Module Dispatch ............................................................................................................... 219

6.3.1. Zone-based service selection ................................................................................... 219
6.3.2. Classes in the Dispatch module ................................................................................ 220
6.3.3. Class CSZoneDispatcher ......................................................................................... 220
6.3.4. Class Dispatcher ..................................................................................................... 221

6.4. Module Globals ................................................................................................................. 223
6.5. Module Stream .................................................................................................................. 223

6.5.1. Classes in the Stream module .................................................................................. 223
6.5.2. Class Stream ........................................................................................................... 223

Appendix A. Additional proxy information .................................................................................... 225
A.1. TELNET appendix ............................................................................................................ 225

Appendix B. Global options of Zorp ............................................................................................... 232
B.1. Setting global options of Zorp ............................................................................................ 232
blob ........................................................................................................................................ 233
audit ........................................................................................................................................ 234
options .................................................................................................................................... 236

Appendix C. Zorp manual pages .................................................................................................... 237

viiiwww.balasys.hu



instances.conf .......................................................................................................................... 238
policy.py ................................................................................................................................. 240
zorp ........................................................................................................................................ 241
zorpctl ..................................................................................................................................... 243
zorpctl.conf ............................................................................................................................. 245

Appendix D. Zorp GPL End-User License Agreement ................................................................... 247
D.1. 1. SUBJECT OF THE LICENSE CONTRACT .................................................................. 247
D.2. 2. DEFINITIONS ............................................................................................................. 247
D.3. 3. LICENSE GRANTS AND RESTRICTIONS .................................................................. 248
D.4. 4. SUBSIDIARIES ........................................................................................................... 250
D.5. 5. INTELLECTUAL PROPERTY RIGHTS ...................................................................... 250
D.6. 6. TRADE MARKS .......................................................................................................... 250
D.7. 7. NEGLIGENT INFRINGEMENT ................................................................................... 250
D.8. 8. INTELLECTUAL PROPERTY INDEMNIFICATION .................................................... 250
D.9. 9. LICENSE FEE .............................................................................................................. 251
D.10. 10. WARRANTIES ......................................................................................................... 251
D.11. 11. DISCLAIMER OF WARRANTIES ............................................................................ 252
D.12. 12. LIMITATION OF LIABILITY ................................................................................... 252
D.13. 13.DURATION AND TERMINATION ............................................................................ 252
D.14. 14. AMENDMENTS ....................................................................................................... 252
D.15. 15. WAIVER .................................................................................................................. 253
D.16. 16. SEVERABILITY ...................................................................................................... 253
D.17. 17. NOTICES ................................................................................................................. 253
D.18. 18. MISCELLANEOUS .................................................................................................. 253

Appendix E. Creative Commons Attribution Non-commercial No Derivatives (by-nc-nd) License
.......................................................................................................................................................... 254
Index of Proxy attributes .................................................................................................................. 259
Index of Core attributes .................................................................................................................... 262
Index of all attributes ........................................................................................................................ 265

ixwww.balasys.hu



List of Examples
2.1. Customizing FTP commands ......................................................................................................... 5
2.2. Using the POLICY action .............................................................................................................. 5
2.3. Default and explicit actions ............................................................................................................ 5
2.4. Customizing response codes .......................................................................................................... 6
2.5. Example PlugProxy allowing secondary sessions ............................................................................ 7
2.6. HTTP proxy stacked into an HTTPS connection .............................................................................. 8
2.7. Program stacking in HTTP ............................................................................................................. 8
3.1. Disabling specific TLS protocols .................................................................................................. 14
3.2. Configuring FTPS support ........................................................................................................... 15
4.1. Controlling the number of max hops ............................................................................................. 22
4.2. FTP protocol sample .................................................................................................................... 26
4.3. Customizing FTP to allow only anonymous sessions ..................................................................... 27
4.4. Configuring FTPS support ........................................................................................................... 28
4.5. Example HTTP transaction .......................................................................................................... 37
4.6. Proxy style HTTP query .............................................................................................................. 38
4.7. Data tunneling with connect method ............................................................................................. 38
4.8. Implementing URL filtering in the HTTP proxy ............................................................................ 39
4.9. 404 response filtering in HTTP ..................................................................................................... 39
4.10. Header filtering in HTTP ........................................................................................................... 40
4.11. URL redirection in HTTP proxy ................................................................................................. 41
4.12. Redirecting HTTP to HTTPS ...................................................................................................... 41
4.13. Using parent proxies in HTTP .................................................................................................... 42
4.14. URL-filtering example ............................................................................................................... 45
4.15. URL filtering HTTP proxy ......................................................................................................... 61
4.16. POP3 protocol sample ................................................................................................................ 66
4.17. Example for allowing only APOP authentication in POP3 ............................................................ 68
4.18. Example for converting simple USER/PASS authentication to APOP in POP3 .............................. 68
4.19. Rewriting the banner in POP3 .................................................................................................... 69
4.20. SMTP protocol sample ............................................................................................................... 73
4.21. Example for disabling the Telnet X Display Location option ........................................................ 83
4.22. Rewriting the DISPLAY environment variable ............................................................................ 84
4.23. Example WhoisProxy logging all whois requests ......................................................................... 86
5.1. A simple authentication policy ..................................................................................................... 92
5.2. Caching authentication decisions .................................................................................................. 92
5.3. A simple authorization policy ....................................................................................................... 93
5.4. BasicAccessList example ............................................................................................................. 94
5.5. A simple PairAuthorization policy ................................................................................................ 97
5.6. A simple PermitGroup policy ....................................................................................................... 97
5.7. PermitTime example .................................................................................................................... 98
5.8. A simple PermitUser policy ......................................................................................................... 99
5.9. Outband authentication example ................................................................................................. 100
5.10. A sample authentication provider .............................................................................................. 102
5.11. A DirectedRouter using AvailabilityChainer .............................................................................. 105
5.12. A sample ConnectChainer ........................................................................................................ 106
5.13. A DirectedRouter using FailoverChainer ................................................................................... 107

xwww.balasys.hu



5.14. A DirectedRouter using RoundRobinAvailabilityChainer ........................................................... 109
5.15. A DirectedRouter using RoundRobinChainer ............................................................................ 110
5.16. CertDetector example .............................................................................................................. 113
5.17. HttpDetector example .............................................................................................................. 114
5.18. SNIDetector example ............................................................................................................... 115
5.19. SshDetector example ............................................................................................................... 116
5.20. Loading a certificate ................................................................................................................ 123
5.21. Loading DH parameters ........................................................................................................... 135
5.22. Loading a private key ............................................................................................................... 144
5.23. Whitelisting e-mail recipients ................................................................................................... 164
5.24. DNSMatcher example .............................................................................................................. 165
5.25. RegexpFileMatcher example .................................................................................................... 166
5.26. RegexpMatcher example .......................................................................................................... 167
5.27. SmtpInvalidMatcher example ................................................................................................... 168
5.28. WindowsUpdateMatcher example ............................................................................................. 170
5.29. GeneralNat example ................................................................................................................. 172
5.30. Using Natpolicies .................................................................................................................... 175
5.31. A simple DNSResolver policy .................................................................................................. 184
5.32. A simple HashResolver policy .................................................................................................. 185
5.33. DirectedRouter example .......................................................................................................... 188
5.34. InbandRouter example ............................................................................................................ 189
5.35. TransparentRouter example ..................................................................................................... 190
5.36. Sample rule definitions ............................................................................................................. 193
5.37. Tagging rules ........................................................................................................................... 194
5.38. A simple DenyService .............................................................................................................. 199
5.39. PFService example .................................................................................................................. 201
5.40. Service example ...................................................................................................................... 202
5.41. SockAddrInet example ............................................................................................................. 210
5.42. SockAddrInet example ............................................................................................................. 211
5.43. SockAddrInetHostname example .............................................................................................. 212
5.44. SockAddrUnix example ........................................................................................................... 213
5.45. A simple StackingProvider class ............................................................................................... 215
5.46. Using a StackingProvider in an FTP proxy ................................................................................ 215
5.47. Finding IP networks ................................................................................................................. 216
5.48. Zone examples ........................................................................................................................ 216
5.49. Determining the zone of an IP address ....................................................................................... 217
6.1. CSZoneDispatcher example ....................................................................................................... 220
6.2. Dispatcher example ................................................................................................................... 221

xiwww.balasys.hu



List of Procedures
1.1. Zorp startup and initialization ......................................................................................................... 1
1.2.1. Handling packet filtering services ................................................................................................ 2
1.2.2. Handling application-level services .............................................................................................. 2
1.3. Proxy startup and the server-side connection ................................................................................... 3
3.1.1. The SSL handshake .................................................................................................................... 9
3.2.7.1. Configuring keybridging ........................................................................................................ 16
B.1. Setting global options of Zorp .................................................................................................... 232

xiiwww.balasys.hu



Preface

Welcome to the Zorp GPL Reference Guide. This book contains reference documentation on the available Zorp
proxies and their working environment, the Python framework.

This book contains information about the low-level proxy attributes available to customize proxy behavior and
the low-level classes comprising Zorp's access control and service framework. Basic introduction to the various
protocols is also provided for reference, but the detailed discussion of the protocols is beyond the scope of this
book.

1. Summary of contents

Chapter 1, How Zorp works (p. 1) provides an overview of the internal working of Zorp, for example, how
a connection is received.

Chapter 2, Configuring Zorp proxies (p. 4) describes the general concepts of configuring Zorp proxies.

Chapter 3, The Zorp SSL framework (p. 9) explains how to handle SSL-encrypted connections with Zorp.

Chapter 4, Proxies (p. 19) is a complete reference of the Zorp proxies, including their special features and
options.

Chapter 5, Core (p. 88) is the reference of Zorp core modules which are directly used by gateway administrators,
forming the access control and authentication framework.

Appendix C, Zorp manual pages (p. 237) is a collection of the command-line Zorp utilities.

Appendix B, Global options of Zorp (p. 232) is a reference the global options of Zorp.

2. Terminology

The following terms used throughout this documentation might require a brief explanation:

■ class: A class is a set of attribute and method definitions performing certain specific functionality.
Classes can inherit methods and attributes from one or more parent classes. Classes do not contain
actual values for attributes; they only describe them.

■ instance: An instance is a set of attribute values (as described by the class) and associated methods.
Instances are also called objects. Instances are created from classes by "calling" the class, with
arguments required by the constructor. For example, to create an instance of a class named "class"
one would write class(arg1, arg2 [,.. argN]) where arg1 and arg2 are arguments of the
constructor.

■ method: A function working in the context of an instance. It automatically receives a "self" argument
which can be used to fetch or set attributes stored in the associated instance.

■ type: Variables in Python are not strongly typed, meaning that it is possible to assign any kind of
values to a variable; typing is assigned to the value.

xiiiwww.balasys.hu

Summary of contents



■ attribute: An attribute of an object is a variable holding some value, interpreted and manipulated by
object methods. Although Python is not strongly typed, types were assigned to the variables in Zorp
to indicate what kind of values they are supposed to hold.

■ actiontuple: A tuple is a simple Python type defined as a list of values. An actiontuple is a special
tuple defined by Zorp where the first value must be a value specifying what action to take, and trailing
items specify arguments to the action. For example (HTTP_REQ_REJECT, "We don't like this
request") is a tuple for rejecting HTTP requests and returning the message specified in the second
value.

3. Target audience and prerequisites

This guide is intended for use by system administrators and consultants responsible for network security and
whose task is the configuration and maintenance of Zorp firewalls. Zorp gives them a powerful and versatile
tool to create full control over their network traffic and enables them to protect their clients against
Internet-delinquency.

This guide is also useful for IT decision makers evaluating different firewall products because apart from the
practical side of everyday Zorp administration, it introduces the philosophy behind Zorp without the marketing
side of the issue.

The following skills and knowledge are necessary for a successful Zorp administrator.

Level/DescriptionSkill

At least a power user's knowledge is required.Linux

Experience in system administration is certainly an
advantage, but not absolutely necessary.

Experience in system administration

It is not an explicit requirement to know any
programming languages though being familiar with

Programming language knowledge

the basics of Python may be an advantage, especially
in evaluating advanced firewall configurations or in
troubleshooting misconfigured firewalls.

A general understanding of firewalls, their roles in the
enterprise IT infrastructure and the main concepts and

General knowledge on firewalls

tasks associated with firewall administration is
essential. To fulfill this requirement a significant part
of Chapter 3, Architectural overview in the Zorp
Administrator's Guide is devoted to the introduction
to general firewall concepts.

In-depth knowledge is strongly recommended; while
it is not strictly required definitely helps understanding

Knowledge on Netfilter concepts and IPTables

the underlying operations and also helps in shortening
the learning curve.

xivwww.balasys.hu

Target audience and prerequisites



Level/DescriptionSkill

High level knowledge of the TCP/IP protocol suite is
a must, no successful firewall administration is
possible without this knowledge.

Knowledge on TCP/IP protocol

Table 1. Prerequisites

4. Products covered in this guide

The Zorp Distribution DVD-ROM contains the following software packages:

■ Current version of Zorp 7 packages.

■ Current version of () 7.

■ Current version of () 7 (GUI) for both Linux and Windows operating systems, and all the necessary
software packages.

■ Current version of () 7.

■ Current version of the () 7, the client for both Linux and Windows operating systems.

For a detailed description of hardware requirements of Zorp, see .

For additional information on Zorp and its components visit the Zorp website containing white papers, tutorials,
and online documentations on the above products.

5. Contact and support information

This product is developed and maintained by Balasys IT Zrt..

Contact:

Balasys IT Zrt.
4 Alíz Street
H-1117 Budapest, Hungary
Tel: +36 1 646 4740
E-mail: <info@balasys.hu>
Web: http://balasys.hu/

5.1. Sales contact

You can directly contact us with sales related topics at the e-mail address <sales@balasys.hu>, or leave us
your contact information and we call you back.

5.2. Support contact

To access the Balasys Support System, sign up for an account at the Balasys Support System page. Online
support is available 24 hours a day.

xvwww.balasys.hu

Products covered in this guide

https://www.balasys.hu/en/network-security/zorp-gateway
http://balasys.hu/
https://www.balabit.com/contact-sales
https://www.balabit.com/contact-sales
https://support.balasys.hu/


Balasys Support System is available only for registered users with a valid support package.

Support e-mail address: <support@balasys.hu>.

5.3. Training

Balasys IT Zrt. holds courses on using its products for new and experienced users. For dates, details, and
application forms, visit the https://www.balasys.hu/en/services#training webpage.

6. About this document

This guide is a work-in-progress document with new versions appearing periodically.

The latest version of this document can be downloaded from https://docs.balasys.hu/.

6.1. Feedback

Any feedback is greatly appreciated, especially on what else this document should cover, including protocols
and network setups. General comments, errors found in the text, and any suggestions about how to improve
the documentation is welcome at <support@balasys.hu>.

xviwww.balasys.hu

Training

https://www.balasys.hu/en/services#training
https://docs.balasys.hu/


Chapter 1. How Zorp works

This chapter describes how Zorp works, and provides information about the core Zorp modules, explaining
how they interoperate. For a detailed reference of the core modules, see the description of the particular in
Chapter 5, Core (p. 88).

■ Zorp startup and initialization: The main Zorp thread is started, and the rules listening for incoming
connections are initialized.

■ Handling incoming connections: The client-side connection is established and the service to proxy
the connection is selected.

■ Proxy startup and server-side connections: The proxy instance inspecting the traffic is created and
connection to the server is established.

1.1. Procedure – Zorp startup and initialization

Step 1. The zorpctl utility loads the instances.conf file and starts the main zorp program. The
instances.conf file stores the parameters of the configured Zorp instances.

Step 2. zorp performs the following initialization steps:

■ Sets the stack limit.

■ Creates its PID file.

■ Changes the running user to the user and group specified for the instance.

■ Initializes the handling of dynamic capabilities and sets the chroot directory.

■ Loads the firewall policy from the policy.py file.

Step 3. The init() of Zorp initializes the ruleset defined for the Zorp instance.

Step 4. The kzorp kernel module uploads packet filtering services, rules, and zones into the kernel.

Note
Zorp creates four sockets (one for each type of traffic: TCP IPv6, TCP IPv4, UDP IPv6, UDP IPv4); the kzorp module directs
the incoming connections to the appropriate socket.

1.2. Handling incoming connections

Incoming connections are first received by the kzorp kernel module, which is actually a netfilter table. The
kzorp module determines the source and destination zones of the connection, and then tries to find a suitable
firewall rule. If the rule points to a packet filtering service, the connection is processed according to Procedure
1.2.1, Handling packet filtering services (p. 2); if it points to an application-level service, the connection is
processed according to Procedure 1.2.2, Handling application-level services (p. 2). If no suitable rule is found,
the connection is rejected.

1www.balasys.hu

Handling incoming connections



1.2.1. Procedure – Handling packet filtering services

Step 1. Zorp generates a session ID and creates a CONNTRACK entry for the connection. This ID is based
on all relevant information about the connection, including the protocol (TCP/UDP) and the client's
address.
The session ID uniquely identifies the connection and is included in every log message related to this
particular connection.

Step 2. Based on the parameters of the connection, the Rule selects the service that will inspect the connection.

Step 3. The Router defined in the service determines the destination address of the server.
The Router performs the following actions:

■ Determines the destination address of the server.

■ Sets the source address of the server-side connection, according to the forge_address

settings of the router.

Step 4. If the client is permitted to access the selected service, the packet filter is instructed to let the connection
pass Zorp.

Step 5. The kzorp module performs network address translation (NAT) on the connection, if needed.

1.2.2. Procedure – Handling application-level services

Step 1. For incoming connection requests that are processed on the application level, the main Zorp thread
establishes the connection with the client. The connection is further processed in a separate thread; the
main thread is listening for new connections.

Step 2. The Dispatcher creates the MasterSession object of the connection and generates the base session ID.
This object stores all relevant information of the connection, including the protocol (TCP/UDP) and
the client's address.
The session ID uniquely identifies the connection and is included in every log message related to this
particular connection. Other components of Zorp add further digits to the session ID.

Step 3. For TCP-based connections, Zorp copies the Type of Service (ToS) value of the client-Zorp connection
in the Zorp-client connection.

Step 4. The Rule selects the service that will inspect the connection.

Step 5. The Router defined in the service determines the destination address of the server. The result is stored
in the Session object, where the Chainer can access it later.
The Router performs the following actions:

■ Determines the destination address of the server.

■ Sets the source address of the server-side connection (according to the forge_port,
forge_address settings of the router).

■ Sets the ToS value of the server-side connection.

Step 6. If the client is permitted to access the selected service, the startInstance() method of the service
is started. The startInstance() method performs the following actions:

2www.balasys.hu

Handling incoming connections



■ Verifies that the new instance does not exceed the number of instances permitted for the
service (max_instances parameter).

■ Creates the final session ID.

■ Creates an instance of the proxy class associated with the service. This proxy instance is
associated with a StackedSession object. The startup of the proxy is detailed in Procedure
1.3, Proxy startup and the server-side connection (p. 3).

1.3. Procedure – Proxy startup and the server-side connection

Step 1. To create an instance of the application-level proxy, the __init__ constructor of the proxy class calls
the Proxy.__init__ function of the Proxy module. The proxy instance is created into a new thread
from the ZorpProxy ancestor class.

Step 2. From the new thread, the proxy loads its configuration.

Step 3. The proxy initiates connection to the server.

Note
Some proxies connect the server only after receiving the first client request.

Step 4. The Proxy.connectServer() method creates the server-side connection using theChainer assigned
to the service. The Chainer performs the following actions:

■ Reads the parameters related to the server-side connection from the Session object. These
parameters were set by the Router and the Proxy.

■ Performs source and destination network address translation. This may modify the addresses
set by the Router and the Proxy.

■ Verifies that access to the server is permitted.

■ Establishes the connection using the Attach subsystem, and passes to the proxy the stream
that represents the connection.

Note
The Proxy.connectServer() method connects stacked proxies with their parent proxies.

3www.balasys.hu

Handling incoming connections



Chapter 2. Configuring Zorp proxies

This chapter describes how Zorp proxies work in general, and how to configure them.

■ For the details on configuring TLS/SSL connections, seeChapter 2, Configuring Zorp proxies (p. 4).

■ For a complete reference of the available Zorp proxies, see Chapter 4, Proxies (p. 19).

2.1. Policies for requests and responses

Zorp offers great flexibility in proxy customization. Requests and commands, responses, headers, etc. can be
managed individually in Zorp. This means that it is not only possible to enable/disable them one-by-one, but
custom actions can be assigned to them as well. The available options are listed in the description of each proxy,
but the general guidelines are discussed here.

All important events of a protocol have an associated policy hash: usually there is one for the requests or
commands and one for the responses. Where applicable for a protocol, there are other policy hashes defined as
well (e.g., for controlling the capabilities available in the IMAP protocol, etc.). The entries of the hash are the
possible events of the protocol (e.g., the request hash of the FTP protocol contains the possible commands -
RMD, DELE, etc.) and an action associated with the event - what Zorp should do when this event occurs. The
available actions may slightly vary depending on the exact protocol and the hash, but usually they are the
following:

DescriptionAction

Enable the event; the command/response/etc. can be
used and is allowed through the firewall.

ACCEPT

Reject the event and send an error message. The event
is blocked and the client notified. The communication
can continue, the connection is not closed.

REJECT

Reject the event without sending an error message.
The event is blocked but the client is not notified. The

DROP

communication can continue, the connection is not
closed. In some cases (depending on the protocol) this
action is able to remove only a part of the message
(e.g., a particular header in HTTP traffic) without
rejecting the entire message.

Reject the event and terminate the connection.ABORT

Call a Python function to make a decision about the
event. The final decision must be one of the above

POLICY

actions (i.e. POLICY is not allowed). The parameters
received by the function are listed in the module

4www.balasys.hu

Policies for requests and responses



DescriptionAction

descriptions. See the examples below and in the
module descriptions for details.

Table 2.1. Action codes for protocol events

The use of the policy hashes and the action codes is illustrated in the following examples.

Example 2.1. Customizing FTP commands
In this example the 'RMD' command is rejected, and the connection is terminated if the user attempts to delete a file.

class MyFtp(FtpProxy):

def config(self):

self.request["RMD"] = (FTP_REQ_REJECT)

self.request["DELE"] = (FTP_REQ_ABORT)

Example 2.2. Using the POLICY action
This example calls a function called pUser (defined in the example) whenever a USER command is received within an FTP session. All
other commands are accepted. The parameter of the USER command (i.e. the username) is examined: if it is 'user1' or 'user2', the
connection is accepted, otherwise it is rejected.

class MyFtp(FtpProxy):

def config(self):

self.request["USER"] = (FTP_REQ_POLICY, self.pUser)

self.request["*"] = (FTP_REQ_ACCEPT)

def pUser(self,command):

if self.request_parameter == "user1" or self.request_parameter == "user2":

return FTP_REQ_ACCEPT

return FTP_REQ_REJECT

It must be noted that there is a difference between how Zorp processes the POLICY actions and all the other
ones (e.g., ACCEPT, DROP, etc.). POLICY actions are evaluated on the policy (or Python) level of Zorp, while
the other ones on the proxy (or C) level. Since the proxies of Zorp are written in C, and operate on the proxy
level, the evaluation of POLICY actions is slightly slower, but this can be an issue only in very high-throughput
environments with complex policy settings.

2.1.1. Default actions

Default actions for all events of a hash (e.g., all requests) can be set using the '*' wildcard as the event. (Most
hashes have default actions configured by default, these can be found in the description of the proxy classes.)
It is important to note that setting the action using the '*' wildcard does NOT override an action explicitly
defined for an event, even if the explicit setting precedes the general one in the Python code. This feature is
illustrated in the example below.

Example 2.3. Default and explicit actions
The following two proxy classes have the same effect, even though the order of the code lines is switched. The 'APPE' command is
rejected, while all other commands are accepted.

class MyFtp1(FtpProxy):

def config(self):

self.request["APPE"] = (FTP_REQ_REJECT)

self.request["*"] = (FTP_REQ_ACCEPT)

5www.balasys.hu

Default actions



class MyFtp2(FtpProxy):

def config(self):

self.request["*"] = (FTP_REQ_ACCEPT)

self.request["APPE"] = (FTP_REQ_REJECT)

Warning
If the relevant hash does not contain a received request or response, the '*' entry is used which matches to every request/response. If
there is no '*' entry in the given hash, the request/response is denied.

2.1.2. Response codes

Responses in certain protocols include numeric response codes, e.g., in the FTP protocol responses start with
a three-digit code. In Zorp it is possible to filter these codes as well, furthermore, to filter them based on the
command to which the response arrives to. In these cases the hash contains both the command and the answer,
and an action as well. The '*' wildcard character can be used to match for every command or response code.

Example 2.4. Customizing response codes
The following example accepts the response '250' only to the 'DELE' command, but allows any response code to the 'LIST' command.

class MyFtp1(FtpProxy):

def config(self):

self.response["DELE", "250"] = (FTP_RSP_ACCEPT)

self.response["*", "250"] = (FTP_RSP_REJECT)

self.response["LIST", "*"] = (FTP_RSP_ACCEPT)

It is not necessary to specify the full response code, it is also possible to specify only the first, or the first two
digits.

For example, all three response codes presented below are valid, but have different effects:

■ "PWD","200"
Match exactly the answer 200 coming in a reply to a PWD command.

■ "PWD","2"
Match every answer starting with '2' in a reply to a PWD command.

■ "*","20"
Match every answer between 200 and 209 in a reply to any command.

This kind of response code lookup is available in the following proxies: FTP, HTTP, NNTP, and SMTP. The
precedence how the hash table entries are processed is the following:

1. Exact match. ("PWD","200")

2. Exact command match, partial response matches ("PWD","20"; "PWD","2"; "PWD","*")

3. Wildcard command, with answer codes repeated as above. ("*","200"; "*","20"; "*","2")

4. Wildcard for both indexes. ("*","*")

6www.balasys.hu

Response codes



2.2. Secondary sessions

Certain proxies support the use of secondary sessions, i.e. several sessions using the same proxy instance (the
same thread), effectively reusing proxy instances. As new sessions enter the proxy via a fastpath, using secondary
sessions can significantly decrease the load on the firewall.

When a new connection is accepted, Zorp looks for the appropriate proxy instance which is willing to accept
secondary sessions. If there is none, a new proxy instance is started. An already running proxy instance is
appropriate if it is willing to accept secondary channels and the criteria about secondary sessions are met. (The
criteria can be specified in the configuration of the proxy class.)

The criteria are set via the secondary_mask attribute, while the number of secondary sessions allowed within
the same instance is controlled by the secondary_sessions attribute. The secondary_mask attribute is an
integer specifying which properties of an established session are considered to be important. If all important
properties match, the connection can be handled as a secondary session by a proxy instance accepting secondary
sessions, provided the new session does not exceed the limit set in secondary_sessions. The
secondary_mask attribute is actually a bitfield interpreted as follows: bit 0 means source address; bit 1 means
source port; bit 2 means destination address; bit 3 means destination port.

Currently the Plug supports the use of secondary sessions.

Example 2.5. Example PlugProxy allowing secondary sessions
This example allows 100 parallel sessions in one proxy thread if the IP address and Port of the targets are the same.

class MyPlugProxy(PlugProxy):

def config(self):

PlugProxy.config(self)

self.secondary_mask = 0xC

self.secondary_sessions = 100

2.3. Embedded protocol analysis

Each protocol proxy available in Zorp inspects the traffic for conformance to the given protocol. Often further
analysis of the data transferred via the protocol is required, this can be accomplished via stacking. Stacking is
a method when the data transferred in the protocol is passed to another proxy or program. After performing the
inspection, the stacked proxy or program returns the data to the original proxy, which resumes its transmission.

2.3.1. Proxy stacking

Proxy stacking is mainly used to inspect embedded protocols, or perform virus filtering: e.g., to inspect HTTPS
traffic, the external SSL protocol is examined with a Pssl proxy, and then a HTTP proxy is stacked to inspect
the internal protocol. It is possible to stack several layers of proxies into each other if needed, e.g., in the above
example, a further virus filtering solution (like a module) could be stacked into the HTTP proxy.

Note
Starting with Zorp version 3.3FR1, every proxy is able to handle SSL/TLS-encypted connection on its own, making the Pssl proxy
redundant. This feature greatly decreases the need of proxy stacking, making it needed only in special cases, for example, to inspect
HTTP traffic tunneled in SSH.

7www.balasys.hu

Secondary sessions



Stacking a proxy to inspect the embedded protocol is possible via the self.request_stack attribute; if
another attribute has to be used, it is noted in the description of the given proxy. The HTTP proxy is special in
the sense that it is possible to stack different proxies into the requests and the responses.

The parameters of the stack attribute has to specify the following:

■ The protocol elements for which embedded inspection is required. This parameter can be used to
specify if all received data should be passed to the stacked proxy ("*"), or only the data related (sent
or received) to specific protocol elements (e.g., only the data received with a GET request in HTTP).

■ The mode how the data is passed to the stacked proxy. This parameter governs if only the data part
should be passed to the stacked proxy (XXXX_STK_DATA, where XXXX depends on the protocol),
or (if applicable) MIME header information should be included as well (XXXX_STK_MIME) to
make it possible to process the data body as a MIME envelope. Please note that while it is possible
to change the data part in the stacked proxy, it is not possible to change the MIME headers - they
can be modified only by the upper level proxy. The available constants are listed in the respective
protocol descriptions. The default value for this argument is XXXX_STK_NONE, meaning that no
data is transferred to the stacked proxy. In some proxies it is also possible to call a function (using
the XXXX_STK_POLICY action) to decide which part (if any) of the traffic should be passed to
the stacked proxy.

■ The proxy class that will perform inspection of the embedded protocol.

The use of proxy stacking is illustrated in the following example:

Example 2.6. HTTP proxy stacked into an HTTPS connection
The following proxy class stacks an Http proxy into a Pssl Proxy to inspect HTTPS traffic.

class HttpsPsslProxy(PsslProxy):

def config(self):

PsslProxy.config(self)

self.stack_proxy=(Z_STACK_PROXY, HttpProxy)

For additional information on proxy stacking, see , and the various tutorials available at the Balasys
Documentation Page.

2.3.2. Program stacking

When stacking a program, the data received by a proxy within a protocol is directed to the standard input.
Arbitrary commands (including command line scripts, or applications) working from the standard input can be
run on this data stream. The original proxy obtains the processed data back from the standard output. When
stacking a command, the command to be called has to be included in the proper stack attribute of the proxy
between double-quotes. This is illustrated in the following example.

Example 2.7. Program stacking in HTTP
In this example a simple 'sed' (stream editor) command is stacked into the HTTP proxy to replace all occurrences of 'http' to 'https', thus
securing the HTTP connections on one side of the firewall.

class MyHttp(HttpProxy):

def config(self):

HttpProxy.config(self)

self.response_stack["GET"] = /

(HTTP_STK_DATA, (Z_STACK_PROGRAM, "/bin/sed '/http:/s//https:/g'"))

8www.balasys.hu

Program stacking

https://www.balasys.hu/hu/dokumentacio
https://www.balasys.hu/hu/dokumentacio


Chapter 3. The Zorp SSL framework

This chapter describes the SSL protocol and the SSL framework available for every Zorp proxy.

3.1. The SSL protocol

Secure Socket Layer v3 (SSL) and Transport Layer Security v1 (TLS) are widely used crypto protocols
guaranteeing data integrity and confidentiality in many PKI and e-commerce systems. They allow both the
client and the server to authenticate each other. SSL/TLS use reliable TCP connection for data transmission
and cooperate with any application level protocol. SSL/TLS guarantee that:

■ Communication in the channel is private, only the other communicating party can decrypt the
messages.

■ The channel is authenticated, so the client can make sure that it communicates with the right server.
Optionally, the server can also authenticate the client. Authentication is performed via certificates
issued by a Certificate Authority (CA). Certificates identify the owner of an encryption keypair used
in encrypted communication.

■ The channel is reliable, which is ensured by message integrity verification using MAC.

SSL/TLS is almost never used in itself: it is used as a secure channel to transfer other, less secure protocols.
The protocols most commonly embedded into SSL/TLS are HTTP and POP3 (i.e. these are the HTTPS and
POP3S protocols).

3.1.1. Procedure – The SSL handshake

As an initial step, both the client and the server collect information to start the encrypted communication.

Step 1. The client sends a CLIENT-HELLO message.

Step 2. The server answers with a SERVER-HELLO message containing the certificate of the server. At this
point the parties determine if a new master key is needed.

Note
The server stores information (including the session ID and other parameters) about past SSL/TLS sessions in its session
cache. Clients that have contacted a particular server previously can request to continue a session (by identifying its session
ID); this can be used to accelerate the initialization of the connection. Zorp currently does not support this feature, but this
does not cause any noticeable difference to the clients.

Step 3. The client verifies the server's certificate. If the certificate is invalid the client sends an ERROR message
to the server.

Note
If a new master key is needed the client gets the server certificate from the SERVER-HELLO message and generates a master
key, sending it to the server in a CLIENT-MASTER-KEY message.

9www.balasys.hu

The SSL protocol



Step 4. The server sends a SERVER-VERIFY message, which authenticates the server itself.

Step 5. Optionally, the server can also authenticate the client by requesting the client's certificate with a
REQUEST-CERTIFICATE message.

Step 6. The server verifies the certificate received from the client and finishes the handshake with a
SERVER-FINISH message.

Note
In SSL two separate session keys are used, one for outgoing communication (which is of course incoming at the other end),
and another key for incoming communication. These are known as SERVER/CLIENT-READ-KEY and
SERVER/CLIENT-WRITE-KEY.

3.2. Configuring TLS and SSL encrypted connections

Zorp version 3.3FR1 introduces a common framework that allows every Zorp proxy to use SSL/TLS encryption,
and also to support STARTTLS.

Note
In Zorp 7, the following proxies support STARTTLS: Ftp proxy (to start FTPS sessions), Smtp proxy.

3.2.1. Behavior of the SSL framework

Warning
For the details of the attributes related to the SSL framework, see Section 5.10.4, Class Proxy (p. 181).

The SSL framework was built for inspecting SSL/TLS connections, and also any other connections embedded
into the encrypted SSL/TLS channel. SSL/TLS connections initiated from the client are terminated on the Zorp
firewall; and two separate SSL/TLS connections are built: one between the client and the firewall, and one
between the firewall and the server. If both connections are accepted by the local security policy (the certificates
are valid, and only the allowed encryption algorithms are used), Zorp inspects the protocol embedded into the
secure channel as well.

Several configuration examples and considerations are discussed in the Technical White Paper and Tutorial
Proxying secure channels - the Secure Socket Layer, available at the Balasys Documentation Page.

3.2.1.1. General behavior

The SSL framework starts its operation by inspecting the values set in the ssl.handshake_seq attribute.
When this attribute is set to SSL_HSO_CLIENT_SERVER the client side, otherwise
(SSL_HSO_SERVER_CLIENT) the server side handshake is performed first.

As part of the handshake process the proxy checks if SSL is enabled on the given side
(ssl.client_connection_security and ssl.server_connection_security attributes). It is not
necessary for SSL to be enabled on both sides - Zorp can handle one-sided SSL connections as well (e.g., the

10www.balasys.hu

Configuring TLS and SSL encrypted connections

https://www.balasys.hu/hu/dokumentacio


firewall communicates in an unencrypted channel with the client, but in a secure channel with the server). If
SSL is not enabled, the handshake is skipped for that side.

When SSL is needed, the proxy will cooperate with the policy layer to have all required parameters (keys,
certificates, etc.) set up. This is achieved using decision points in the hash named ssl.handshake_hash

which is explained later in detail.

The SSL handshake is slightly different for the client (in this case Zorp behaves as an SSL server) and the server
(when Zorp behaves as an SSL client).

3.2.1.2. Client-side (SSL server) behavior

As an SSL server the first thing to present to an SSL client is a certificate/key pair, thus a call to the 'setup_key'
callback is made. It is expected that by the time this callback returns the attributes
ssl.client_local_privatekey and ssl.client_local_certificate are filled appropriately.

If peer authentication is enabled (by setting the attribute ssl.client_verify_type) a list of trusted CA
certificates must be set up (stored in the hash ssl.client_local_ca_list). The list can be set up by the
'setup_ca_list' function call. Peer certificates are verified against the trusted CA list and their associated revocation
lists. Revocations can be set up in the 'setup_crl_list' callback.

At the end of the verification another callback named 'verify_cert' is called which can either ACCEPT or DENY
the certificate possibly overriding the verification against the local CA database.

3.2.1.3. Server-side (SSL client) behavior

The server-side handshake is similar to the client-side handshake previously described. The difference is the
order of certificate verification. On the server side Zorp verifies the server's certificate first and then sends its
own certificate for verification. This is unlike the client side where the local certificate is sent first, and then
the peer's certificate is verified.

So the callbacks are called in this order: 'setup_ca_list' and 'setup_crl_list' to set up CA and CRL information,
'verify_cert' to finalize certificate validation, and 'setup_key' to optionally provide a local certificate/key pair.

3.2.2. Handshake callbacks

As described earlier, the SSL framework provides a way to customize the SSL handshake process. This is done
using the ssl.client_handshake and ssl.server_handshake hashes. These hashes are indexed by the
keywords listed below.

The tuple can be separated to two parts: 1) tuple type, 2) parameters for the given type. For now only
SSL_HS_POLICY is valid as tuple type, and it requires a function reference as parameter.

The following keys are accepted as indexes:

setup_key This function is called when the proxy needs the private
key/certificate pair to be set up. All attributes filled in the earlier
phases can be used to decide which key/certificate to use. The
function expects two parameters: self, side.

11www.balasys.hu

Handshake callbacks



setup_ca_list This function is called when the proxy needs the trusted CA list
to be set up. The function expects two parameters: self, side.

setup_crl_list This function is called when the proxy needs the CRL list to be
set up. This function gets a single string parameter which
contains the name of the CA whose CRL is to be filled up. The
function expects three parameters: self, side, ca_name.

verify_cert This function is called to finalize the verification process. The
function expects two parameters: self, side.

The function arguments as referenced above are defined as:

self The proxy instance.

side The side where handshake is being performed.

ca_name Name of an X.509 certificate.

The functions returns one of the SSL_HS_* constants. Generally if the function returns SSL_HS_ACCEPT the
handshake continues, otherwise the handshake is aborted. As an exception, verify_cert may return
SSL_HS_VERIFIED in which case the certificate is accepted without further verification.

ValueName

0SSL_HS_ACCEPT

1SSL_HS_REJECT

6SSL_HS_POLICY

10SSL_HS_VERIFIED
Table 3.1. Handshake policy decisions

3.2.3. X.509 Certificates

An X.509 certificate is a public key with a subject name specified as an X.500 DN (distinguished name) signed
by a certificate issuing authority (CA). X.509 certificates are represented as Python policy objects having the
following attributes:

subject Subject of the certificate.

issuer Issuer of the certificate (i.e. the CA that signed it).

serial Serial number of the certificate.

blob The certificate itself as a string in PEM format.

Zorp uses X.509 certificates to provide a convenient and efficient way to manage and distribute certificates and
keys used by the various components and proxies of the managed firewall hosts. It is mainly aimed at providing
certificates required for the secure communication between the different parts of the firewall system, e.g. firewall
hosts and engine (the actual communication is realized by agents).

Certificates of trusted CAs (and their accompanying CRLs) are used in Zorp to validate the certificates of
servers accessed by the clients. The hashes and structures below are used by the various certificate-related
attributes of the Zorp Pssl proxy, particularly the ones of certificate type.

12www.balasys.hu

X.509 Certificates



3.2.3.1. X.509 Certificate Names

A certificate name behaves as a string, and contains a DN in the following format (also known as one-line
format):

/RDN=value/RDN=value/.../RDN=value/

The word RDN stands for relative distinguished name. For example, the DN cn=Root CA, ou=CA Group,

o=Foo Ltd, l=Bar, st=Foobar State, c=US becomes /C=US/ST=Foobar State/L=Bar/O=Foo

Ltd/OU=CA Group/CN=Root CA/

Warning
The format and representation of certificate names may change in future releases.

3.2.3.2. X.509 Certificate Revocation List

A certifying authority may revoke the issued certificates. A revocation means that the serial number and the
revocation date is added to the list of revoked certificates. Revocations are published on a regular basis. This
list is called the Certificate Revocation List, also known as CRL. A CRL always has an issuer, a date when the
list was published, and the expected date of its next update.

3.2.3.3. X.509 Certificate hash

The proxy stores trusted CA certificates in a Certificate hash. This hash can be indexed by two different types.
If an integer index is used, the slot specified by this value is looked up; if a string index is used, it is interpreted
as a one-line DN value, and the appropriate certificate is looked up. Each slot in this hash contains an X.509
certificate.

3.2.3.4. X.509 CRL hash

Similarly to the certificate hash, a separate hash for storing Certificate Revocation Lists was defined. A CRL
contains revocation lists associated to CAs.

3.2.3.5. Certificate verification options

Zorp is able to automatically verify the certificates received. The types of accepted certificates can be controlled
separately on the client and the server side using the ssl.client_verify_type and the
ssl.server_verify_type attributes. These attributes offer an easy way to restrict encrypted access only to
sites having trustworthy certificates. The available options are summarized in the following table.

ValueName

Accept invalid for example, expired certificates.TLS_TRUST_LEVEL_NONE

Both trusted and untrusted certificates are accepted.TLS_TRUST_LEVEL_UNTRUSTED

13www.balasys.hu

X.509 Certificates



ValueName

Only valid certificates signed by a trusted CA are
accepted.

TLS_TRUST_LEVEL_FULL

Table 3.2. Constants for trust level selection.

The ssl.server_check_subject can be used to compare the domain name provided in the Subject field
of the server certificate to application level information about the server. Currently it can compare the Subject
field to the domain name of the HTTP request in HTTPS communication. If the ssl.server_check_subject
is set to TRUE and ssl.server_verify_type is SSL_VERIFY_REQUIRED_UNTRUSTED or
SSL_VERIFY_REQUIRED_TRUSTED, the HTTP proxy using the SSL framework will deny access to the page
and return an error if the Subject field does not match the domain name of the URL.

3.2.4. Setting the allowed TLS protocol

There are different and sometimes incompatible releases of the TLS protocol. TLS protocols can be set via the
ClientSSLOptions and ServerSSLOptions classes, enabling all supported protocols by default. Set the appropriate
'disable_tls*' parameters to disable the selected TLS protocols. Zorp currently supports the TLS v1, TLS v1.1,
TLS v1.2 protocols.

Example 3.1. Disabling specific TLS protocols
The following example disables the TLSv1 protocol on the client and the server side.

EncryptionPolicy(

name="MyTLSEncryption",

encryption=TwoSidedEncryption(

client_verify=None,

server_verify=ServerCertificateVerifier(

ca_directory="/etc/ca.d/certs/",

crl_directory="/etc/ca.d/crls/",

)

client_ssl_options=ServerSSLOptions(disable_proto_tlsv1=TRUE),

server_ssl_options=ServerSSLOptions(disable_proto_tlsv1=TRUE),

)

)

3.2.5. SSL cipher selection

The cipher algorithms used for key exchange and mass symmetric encryption are specified by the attributes
ssl.client_ssl_ciphers and ssl.server_ssl_ciphers. These attributes contain a cipher specification
as specified by the OpenSSL manuals, see the manual page ciphers(ssl) for further details.

The default set of ciphers can be set by using the following predefined variables.

ValueName

n/aSSL_CIPHERS_HIGH

n/aSSL_CIPHERS_MEDIUM

n/aSSL_CIPHERS_LOW

n/aSSL_CIPHERS_ALL

14www.balasys.hu

Setting the allowed TLS protocol



ValueName

n/aSSL_CIPHERS_CUSTOM
Table 3.3. Constants for cipher selection

Cipher specifications, as defined above, are sorted by key length. The cipher providing the best key length will
be the most preferred one.

3.2.6. Enabling STARTTLS

Starting with version 3.3FR1, Zorp supports the STARTTLS method for encrypting connections. STARTTLS
support can be configured separately for the client- and server side using the
ssl.client_connection_security and ssl.server_connection_security parameters, respectively.
The parameters have the following possible values:

ValueName

Disable encryption between Zorp and the peer.SSL_NONE

Require encrypted communication between Zorp and
the peer.

SSL_FORCE_SSL

Permit STARTTLS sessions. Currently supported only
in the Ftp, Smtp and Pop3 proxies.

SSL_ACCEPT_STARTTLS

Table 3.4. Client connection security type.

ValueName

Disable encryption between Zorp and the peer.SSL_NONE

Require encrypted communication between Zorp and
the peer.

SSL_FORCE_SSL

Forward STARTTLS requests to the server. Currently
supported only in the Ftp, Smtp and Pop3 proxies.

SSL_FORWARD_STARTTLS

Table 3.5. Server connection security type.

Note
In Zorp 7, the following proxies support STARTTLS: Ftp proxy (to start FTPS sessions), Smtp proxy.

Example 3.2. Configuring FTPS support
This example is a standard FtpProxy with FTPS support enabled.

class FtpsProxy(FtpProxy):

def config(self):

FtpProxy.config(self)

self.max_password_length=64

EncryptionPolicy(name="ForwardSTARTTLS",

encryption=ForwardStartTLSEncryption(client_verify=ClientCertificateVerifier(),

client_ssl_options=ClientSSLOptions(), server_verify=ServerCertificateVerifier(),

server_ssl_options=ServerSSLOptions(),

client_certificate_generator=DynamicCertificate(private_key=PrivateKey.fromFile(key_file_path="/etc/key.d/ZMS_Engine/key.pem"),

trusted_ca=Certificate.fromFile(certificate_file_path="/etc/ca.d/certs/my-trusted-ca-cert.pem",

15www.balasys.hu

Enabling STARTTLS



private_key=PrivateKey.fromFile("/etc/ca.d/keys/my-trusted-ca-cert.pem")),

untrusted_ca=Certificate.fromFile(certificate_file_path="/etc/ca.d/certs/my-untrusted-ca-cert.pem",

private_key=PrivateKey.fromFile("/etc/ca.d/keys/my-untrusted-ca-cert.pem")))))

def demo() :

Service(name='demo/MyFTPSService', router=TransparentRouter(), chainer=ConnectChainer(),

proxy_class=FtpsProxy, max_instances=0, max_sessions=0, keepalive=Z_KEEPALIVE_NONE,

encryption_policy="ForwardSTARTTLS")

Rule(rule_id=2,

proto=6,

service='demo/MyFTPSService'

)

3.2.7. Keybrigding certificates

Keybridging is a method to let the client see a copy of the server's certificate (or vice versa), allowing it to
inspect it and decide about its trustworthiness. Because of proxying the SSL/TLS connection, the client is not
able to inspect the certificate of the server directly, therefore Zorp generates a certificate based on the server's
certificate on-the-fly. This generated certificate is presented to the client.

3.2.7.1. Procedure – Configuring keybridging

Purpose:

To configure keybridging in a proxy, complete the following steps.

Steps:

Step 1. Create the required keys and CAs.

Step a. Generate two local CA certificates. One of them will be used to sign bridging certificates
for servers having trusted certificates, the other one for servers with untrusted or
self-signed certificates. It is useful to reflect this difference somewhere in the CA's
certificates, for example, in their common name (CA_for_Untrusted_certs;
CA_for_Trusted_certs). These CA certificates can either be self-signed or signed by
a local root CA. The certificate of the CA signing the trusted certificates should be
imported to your clients to make the generated certificates 'trusted'. The other CA
certificate should not be imported to the clients.

Warning
IMPORTANT: Do NOT set a password for these CAs, as they have to be accessible automatically by
Zorp.

Step b. Generate a new certificate. The private key of this keypair will be used in the on-the-fly
generated certificates, the public part (DN and similar information) will not be used.

Step c. Copy the generated certificate, the CA certificates, and the keys to the firewall, for
example, into /etc/zorp/sslbridge/. This directory will be used in the
ssl.client_ca_directory option.

16www.balasys.hu

Keybrigding certificates



Note
If you want to send the root CA of the CA certificates to the clients, also copy the root CA (and any
intermediate CA certificates) to this directory.

Step d. Create a cache directory to store the keybridged certificates generated by Zorp, for
example, /var/lib/zorp/sslbridge/, and make it writable for the zorp user.

Note
Zorp automatically creates a file called serial.txt in the cache directory. If you delete the certificates
from the cache, do NOT delete this file. If you accidentally delete it, recreate it, and make sure that it
is writable for the zorp user.

Step 2. Set up a proxy class (for example, a class derived from the HttpProxy class) and set the following
attributes with the following values:

■ Instruct Zorp to perform the handshake with the server first:
self.ssl.handshake_seq=SSL_HSO_SERVER_CLIENT

class KeybrideHttpsProxy(HttpProxy):

def config(self):

self.ssl.handshake_seq=SSL_HSO_SERVER_CLIENT

■ Enable keybridging. Depending on the direction the keybridging is performed, add the
self.ssl.client_keypair_generate or theself.ssl.server_keypair_generate
parameter, and set it to TRUE. When the generated certificates are shown to the clients, the
self.ssl.client_keypair_generate parameter has to be used. (Actually, if a
keypair_generate parameter is set, the proxy will request a keypair from the key_generator
class. This class — discussed a bit later — returns either a newly generated keypair, or if
its key_file parameter is set, a pregenerated keypair. In this example this latter option
will be used.)

class KeybrideHttpsProxy(HttpProxy):

def config(self):

self.ssl.handshake_seq=SSL_HSO_SERVER_CLIENT

self.ssl.client_keypair_generate = TRUE

■ Configure the key_generator class. Note that the parameters of this class must be added
to the proxy as a single line, for example:

class KeybrideHttpsProxy(HttpProxy):

def config(self):

self.ssl.handshake_seq=SSL_HSO_SERVER_CLIENT

self.ssl.client_keypair_generate = TRUE

self.ssl.key_generator=X509KeyBridge( \

key_file="/etc/key.d/Keybridging_cert/key.pem", \

key_passphrase="", cache_directory="/var/lib/zorp/sslbridge",\

trusted_ca_files=("/etc/ca.d/certs/0000000070.pem",\

17www.balasys.hu

Keybrigding certificates



"/etc/ca.d/keys/0000000070.pem"),\

untrusted_ca_files=("/etc/ca.d/certs/0000000069.pem",\

"/etc/ca.d/keys/0000000069.pem"))

Step 3. Create a service and a rule using the modified proxy class. Use the previously defined proxy class in
your Service definition, set up service and access control properties as usual.

Step 4. Restart Zorp.
Expected result:

Every time the client connects to a previously unknown host, a new certificate will be generated, signed
by one of the CAs specified above. This new certificate will be stored under
/var/lib/zorp/sslbridge under a filename based on the original server certificate. It will also
be shown to the client as the server certificate, and assuming the signer CA is trusted, the client (browser
or other application) will not warn about untrusted certificates in any way. If the certificate is signed
by the CA for untrusted certificates, the application will not recognize the issuer CA (since its certificate
has not been imported to the client) and give a warning to the user. The user can then decide whether
the certificate can be accepted or not.

(Actually, two files are stored on the firewall for each certificate: the original certificate received from
the server, and the generated certificate. When a client connects to the server, the certificate provided
by the server is compared to the stored one: if the two does not match, a new certificate is generated.
This happens for example if the server certificate has been expired and refreshed.)

3.3. Related standards

■ The SSL protocol is defined by Netscape Ltd. at http://wp.netscape.com/eng/ssl3/ssl-toc.html

■ The TLS protocol is defined in RFC 2246.

3.4. SSL options reference

The SSL options are described in detail in the documentation of the Proxy class. See Section 5.10.4, Class
Proxy (p. 181).

18www.balasys.hu

Related standards



Chapter 4. Proxies

This chapter contains reference information on all the available Zorp proxies.

4.1. General information on the proxy modules

The sections discussing the available proxies are organized as follows. Overall introduction is followed by
proxy class descriptions. Each module has an abstract class which is an interface between the policy and the
proxy itself. Abstract classes are the point where the low-level attributes implemented by the proxy appear.

Each Python module contains an abstract proxy class (e.g., AbstractFtpProxy) and one or more preconfigured
proxy classes derived from the abstract class (e.g., FtpProxy, FtpProxyRO, etc.). These abstract proxies are
very low level classes which always require customization to operate at all, thus they are not directly usable.
The preconfigured classes customize the base abstract proxy to perform actually useful functionality. These
derived classes inherit all their attributes from the class they were derived from, but have some of their parameters
set to default values. Consequently, they can be used for certain tasks without any (or only minimal) modification.
Most default classes were derived directly from the abstract classes, but it is possible to derive a class from
another derived class. In this case this new class inherits the attributes from its parent class and the abstract
class as well. Abstract classes should not be used directly for configuring services in Zorp, always derive an
own class and modify its attributes to suit the requirements.

4.2. Attribute values

The description of each abstract class includes a detailed list and definition of the attributes of the proxy class.
The type and default value of the attribute is also provided. Most types of the attributes (e.g., integer, string,
boolean, etc.) are self-explanatory; more complicated attributes (listed as complex type) are explained in their
respective description or in the general proxy behavior section of the module.

Proxy attributes can be available and modified during configuration time, run time, or both. Configuration time
attributes are set and modified when the proxy is configured, that is, when the session starts. Run time attributes
are available when the connection is active, for example, information about the HTTP header being processed
is available only when the header is processed. Access to the attributes is indicated in the header of the description
of the attribute in the following format: availability during configuration time : availability

during run time. The type of availability can be read (r) access, write (w) access, both, or not available
(n/a). An attribute that is available for reading and writing during both configuration and run time is indicated
as rw:rw, an attribute that is available only for reading during run time is indicated as n/a:r.

Note
Unless noted otherwise, default values related to lengths (e.g., line length, etc.) are in bytes.

Timeout values are always given in milliseconds. Setting a timeout to -1 disables the timeout (i.e. it becomes unlimited).

The description of every proxy class includes a list or textual description of the attributes modified relative to
their parent class. The values of the other attributes are inherited from the parent class.

19www.balasys.hu

General information on the proxy modules



4.3. Examples

A number of Python code samples is provided for the proxies to illustrate both their general operation and their
capabilities. Most of the proxy configurations shown in the examples can be easily reproduced using the graphical
interface. However, some of them utilize the advanced flexibility of Zorp and therefore require the use of
configuration scripts written in Python. From these can be implemented, maintained and edited using the Class
editor. (The Class editor is available under the Proxies tab of the Zorp component. When creating a new class,
click on the Class editor button under the list of available classes.)

4.4. Module AnyPy

This module defines an interface to the AnyPy proxy implementation. AnyPy is basically a Python proxy which
means that the proxy behaviour is defined in Python by the administrator.

4.4.1. Related standards

4.4.2. Classes in the AnyPy module

DescriptionClass

Class encapsulating an AnyPy proxy.AbstractAnyPyProxy

Class encapsulating the default AnyPy proxy.AnyPyProxy
Table 4.1. Classes of the AnyPy module

4.4.3. Class AbstractAnyPyProxy

This class encapsulates AnyPy, a proxy module calling a Python function to do all of its work. It can be used
for defining proxies for protocols not directly supported.

Warning
This proxy class is a basis for creating a custom proxy, and cannot be used on its own. Create a new proxy class using the AnyPyProxy
as its parent, and implement the proxyThread method to handle the traffic.

Your code will be running as the proxy to transmit protocol elements. When writing your code, take care and be security conscious: do
not make security vulnerabilities.

4.4.3.1. Attributes of AbstractAnyPyProxy

client_max_line_length (integer)

Default: 4096

Size of the line buffer in the client stream in bytes. Default value: 4096

server_max_line_length (integer)

Default: 4096

20www.balasys.hu

Examples



server_max_line_length (integer)

Size of the line buffer in the server stream in bytes. Default value: 4096

4.4.3.2. AbstractAnyPyProxy methods

DescriptionMethod

Constructor to initialize an AnyPy instance.__init__(self, session)

Function called by the low-level proxy core to transfer
requests.

proxyThread(self)

Table 4.2. Method summary

Method __init__(self, session)

This constructor initializes a new AnyPy instance based on its arguments, and calls the inherited constructor.

Arguments of __init__

session (unknown)

Default: n/a

The session to be inspected with the proxy instance.

Method proxyThread(self)

This function is called by the proxy module to transfer requests. It can use the 'self.session.client_stream' and
'self.session.server_stream' streams to read data from and write data to.

4.4.4. Class AnyPyProxy

This class encapsulates AnyPy, a proxy module calling a Python function to do all of its work. It can be used
for defining proxies for protocols not directly supported.

4.4.4.1. Note

This proxy class can only be used as a basis for creating a custom proxy and cannot be used on its own. Please
create a new proxy class with the AnyPyProxy as its parent and implement the proxyThread method for handling
traffic.

Your code will be running as the proxy to transmit protocol elements, you'll have to take care and be security
conscious not to make security vulnerabilities.

4.5. Module Finger

The Finger module defines the classes constituting the proxy for the Finger protocol.

21www.balasys.hu

Class AnyPyProxy



4.5.1. The Finger protocol

Finger is a request/response based User Information Protocol using port TCP/79. The client opens a connection
to the remote machine to initiate a request. The client sends a one line query based on the Finger query
specification and waits for the answer. A remote user information program (RUIP) processes the query, returns
the result and closes the connection. The response is a series of lines consisting of printable ASCII closed
carriage return-line feed (CRLF, ASCII13, ASCII10). After receiving the answer the client closes the connection
as well.

The following queries can be used:

■ <CRLF> This is a simple query listing all users logged in to the remote machine.

■ USERNAME<CRLF> A query to request all available information about the user USERNAME.

■ USERNAME@HOST1<CRLF> Request the RUIP to forward the query to HOST1. The response
to this query is all information about the user USERNAME available at the remote computer HOST1.

■ USERNAME@HOST1@HOST2<CRLF> Request HOST1 to forward the query to HOST2. The
response to this query is all information about the user USERNAME available at the remote computer
HOST2.

4.5.2. Proxy behavior

Finger is a module built for parsing messages of the Finger protocol. It reads the QUERY at the client side,
parses it and - if the local security policy permits - sends it to the server. When the RESPONSE arrives it
processes the RESPONSE and sends it back to the client. It is possible to prepend and/or append a string to the
response. Requests can also be manipulated in various ways using the fingerRequest function, which is called
by the proxy if it is defined.

Length of the username, the line and the hostname can be limited by setting various attributes. Finger proxy
also has the capability of limiting the number of hosts in a request, e.g.: finger user@domain@server

normally results in fingering 'user@domain' performed by the host 'server'. By default, the proxy removes
everything after and including the first '@' character. This behavior can be modified by setting the max_hop_count
attribute to a non-zero value.

Example 4.1. Controlling the number of max hops

def MyFingerProxy(FingerProxy):

def config(self):

FingerProxy.config(self)

self.max_hop_count = 2

self.timeout = 30

4.5.3. Related standards

■ The Finger User Information Protocol is described in RFC 1288.

22www.balasys.hu

The Finger protocol



4.5.4. Classes in the Finger module

DescriptionClass

Class encapsulating the abstract Finger proxy.AbstractFingerProxy

Class encapsulating the default Finger proxy.FingerProxy
Table 4.3. Classes of the Finger module

4.5.5. Class AbstractFingerProxy

This proxy implements the Finger protocol as specified in RFC 1288.

4.5.5.1. Attributes of AbstractFingerProxy

max_hop_count (integer, rw:r)

Default: 0

Maximum number of '@' characters in the request. Any text after the last allowed '@' character is stripped
from the request.

max_hostname_length (integer, rw:r)

Default: 30

Maximum number of characters in a single name of the hostname chain.

max_line_length (integer, rw:r)

Default: 132

Maximum number of characters in a single line in requests and responses.

max_username_length (integer, rw:r)

Default: 8

Maximum length of the username in a request.

request_detailed (integer, n/a:rw)

Default: n/a

Indicates if multi-line formatting request (/W prefix) was sent by the client (-l parameter). Request for multi-line
formatting can be added/removed by the proxy during the fingerRequest event.

request_hostnames (string, n/a:rw)

Default: n/a

The hostname chain. The hostname chain can be modified by the proxy during the fingerRequest event.

23www.balasys.hu

Classes in the Finger module



request_username (string, n/a:rw)

Default: n/a

The username to be queried. The username can be modified by the proxy during the fingerRequest event.

response_footer (string, rw:rw)

Default:

String to be appended by the proxy to each finger response.

response_header (string, n/a:rw)

Default: ""

String to be prepended by the proxy to each finger response.

strict_username_check (boolean, rw:r)

Default: TRUE

If enabled (TRUE), only requests for usernames containing alphanumeric characters and underscore
[a-zA-Z0-9_] are allowed.

timeout (integer, rw:r)

Default: n/a

Timeout value for the request in milliseconds.

4.5.5.2. AbstractFingerProxy methods

DescriptionMethod

Function processing finger requests.fingerRequest(self, username, hostname)
Table 4.4. Method summary

Method fingerRequest(self, username, hostname)

This function is called by the Finger proxy to process requests. It can also modify request-specific attributes.

Arguments of fingerRequest

hostname (unknown, n/a:n/a)

Default: n/a

Destination hosts of the finger request.

24www.balasys.hu

Class AbstractFingerProxy



username (unknown, n/a:n/a)

Default: n/a

Username to be fingered.

4.5.6. Class FingerProxy

Simple FingerProxy based on AbstractFingerProxy.

4.6. Module Ftp

The Ftp module defines the classes constituting the proxy for the File Transfer Protocol (FTP).

4.6.1. The FTP protocol

File Transfer Protocol (FTP) is a protocol to transport files via a reliable TCP connection between a client and
a server. FTP uses two reliable TCP connections to transfer files: a simple TCP connection (usually referred
to as the Control Channel) to transfer control information and a secondary TCP connection (usually referred
to as the Data Channel) to perform the data transfer. It uses a command/response based approach, i.e. the client
issues a command and the server responds with a 3-digit status code and associated status information in text
format. The Data Channel can be initiated either from the client or the server; the Control Channel is always
started from the client.

The client is required to authenticate itself before other commands can be issued. This is performed using the
USER and PASS commands specifying username and password, respectively.

4.6.1.1. Protocol elements

The basic protocol is as follows: the client issues a request (also called command in FTP terminology) and the
server responds with the result. Both commands and responses are line based: commands are sent as complete
lines starting with a keyword identifying the operation to be performed. A response spans one or more lines,
each specifying the same 3-digit status code and possible explanation.

4.6.1.2. Data transfer

Certain commands (for example RETR, STOR or LIST) also have a data attachment which is transferred to
the peer. Data attachments are transferred in a separate TCP connection. This connection is established on-demand
on a random, unprivileged port when a data transfer command is issued.

Endpoint information of this data channel is exchanged via the PASV and PORT commands, or their newer
equivalents (EPSV and EPRT).

The data connection can either be initiated by the client (passive mode) or the server (active mode). In passive
mode (PASV or EPSV command) the server opens a listening socket and sends back the endpoint information
in the PASV response. In active mode (PORT or EPRT command) the client opens a listening socket and sends
its endpoint information as the argument of the PORT command. The source port of the server is usually either
20, or the port number of the Command Channel minus one.

25www.balasys.hu

Class FingerProxy



Example 4.2. FTP protocol sample

220 FTP server ready

USER account

331 Password required.

PASS password

230 User logged in.

SYST

215 UNIX Type: L8

PASV

227 Entering passive mode (192,168,1,1,4,0)

LIST

150 Opening ASCII mode data connection for file list

226-Transferring data in separate connection complete.

226 Quotas off

QUIT

221 Goodbye

4.6.2. Proxy behavior

FtpProxy is a module built for parsing commands of the Control Channel in the FTP protocol. It reads the
REQUEST at the client side, parses it and - if the local security policy permits - sends it to the server. The proxy
parses the arriving RESPONSES and sends them to the client if the policy permits that. FtpProxy uses a
PlugProxy to transfer the data arriving in the Data Channel. The proxy is capable of manipulating commands
and stacking further proxies into the Data Channel. Both transparent and non-transparent modes are supported.

The default low-level proxy implementation (AbstractFtpProxy) denies all requests by default. Different
commands and/or responses can be enabled by using one of the several predefined proxy classes which are
suitable for most tasks. Alternatively, use of the commands can be permitted individually using different
attributes. This is detailed in the following two sections.

4.6.2.1. Configuring policies for FTP commands and responses

Changing the default behavior of commands can be done by using the hash attribute request, indexed by the
command name (e.g.: USER or PWD). There is a similar attribute for responses called response, indexed by
the command name and the response code. The possible values of these hashes are shown in the tables below.
See Section 2.1, Policies for requests and responses (p. 4) for details. When looking up entries of the response
attribute hash, the lookup precedence described in Section 2.1.2, Response codes (p. 6) is used.

DescriptionAction

Allow the request to pass.FTP_REQ_ACCEPT

Reject the request with the error message specified in
the second optional parameter.

FTP_REQ_REJECT

Terminate the connection.FTP_REQ_ABORT
Table 4.5. Action codes for commands in FTP

DescriptionAction

Allow the response to pass.FTP_RSP_ACCEPT

Modify the response to a general failure with error
message specified in the optional second parameter.

FTP_RSP_REJECT

26www.balasys.hu

Proxy behavior



DescriptionAction

Terminate the connection.FTP_RSP_ABORT
Table 4.6. Action codes for responses in FTP

Example 4.3. Customizing FTP to allow only anonymous sessions
This example calls a function called pUser (defined in the example) whenever a USER command is received. All other commands are
accepted. The parameter of the USER command (i.e. the username) is examined: if it is 'anonymous' or 'Anonymous', the connection is
accepted, otherwise it is rejected.

class AnonFtp(FtpProxy):

def config(self):

self.request["USER"] = (FTP_REQ_POLICY, self.pUser)

self.request["*"] = (FTP_REQ_ACCEPT)

def pUser(self,command):

if self.request_parameter == "anonymous" or self.request_parameter == "Anonymous":

return FTP_REQ_ACCEPT

return FTP_REQ_REJECT

4.6.2.2. Configuring policies for FTP features and FTPS support

FTP servers send the list of supported features to the clients. For example, ProFTPD supports the following
features: LANG en, MDTM, UTF8, AUTH TLS, PBSZ, PROT, REST STREAM, SIZE. The default behavior
of FTP features can be changed using the hash attribute features, indexed by the name of the feature (e.g.:
UTF8 or AUTH TLS). The possible actions are shown in the table below. See Section 2.1, Policies for requests
and responses (p. 4) for details.

The built-in FTP proxies permit the use of every feature by default.

DescriptionAction

Forward the availability of the feature from the server
to the client.

FTP_FEATURE_ACCEPT

Remove the feature from the feature list sent by the
server.

FTP_FEATURE_DROP

Add the feature into the list of available features.FTP_FEATURE_INSERT
Table 4.7. Policy about enabling FTP features.

Enabling FTPS connections

For FTPS connections to operate correctly, the FTP server and client applications must comply to the FTP
Security Extensions (RFC 2228) and Securing FTP with TLS (RFC 4217) RFCs.

For FTPS connections, the AUTH TLS, PBSZ, PROT features must be accepted. Also, STARTTLS support
must be properly configured. See Section 3.2, Configuring TLS and SSL encrypted connections (p. 10) for
details.

If the proxy is configured to disable encryption between Zorp and the client, the proxy automatically removes
the AUTH TLS, PBSZ, PROT features from the list sent by the server.

27www.balasys.hu

Proxy behavior



I f S TA RT T L S c o n n e c t i o n s a r e a c c e p t e d o n t h e c l i e n t s i d e
(self.ssl.client_security=SSL_ACCEPT_STARTTLS), but TLS-forwarding is disabled on the server
side, the proxy automatically inserts the AUTH TLS, PBSZ, PROT features into the list sent by the server.
These features are inserted even if encryption is explicitly disabled on the server side or the server does not
support the FEAT command, making one-sided STARTTLS support feasible.

Warning
When using inband routing with the FTPS protocol, the server's certificate is compared to its hostname. The subject_alt_name parameter
(or the Common Name parameter if the subject_alt_name parameter is empty) of the server's certificate must contain the hostname or
the IP address (as resolved from the Zorp host) of the server (e.g., ftp.example.com).

Alternatively, the Common Name or the subject_alt_name parameter can contain a generic hostname, e.g., *.example.com.

Note that if the Common Name of the certificate contains a generic hostname, do not specify a specific hostname or an IP address in the
subject_alt_name parameter.

Note
The FTP proxy does not support the following FTPS-related commands: REIN, CCC, CDC.■

■ STARTTLS is supported in nontransparent scenarios as well.

Example 4.4. Configuring FTPS support
This example is a standard FtpProxy with FTPS support enabled.

class FtpsProxy(FtpProxy):

def config(self):

FtpProxy.config(self)

self.max_password_length=64

EncryptionPolicy(name="ForwardSTARTTLS",

encryption=ForwardStartTLSEncryption(client_verify=ClientCertificateVerifier(),

client_ssl_options=ClientSSLOptions(), server_verify=ServerCertificateVerifier(),

server_ssl_options=ServerSSLOptions(),

client_certificate_generator=DynamicCertificate(private_key=PrivateKey.fromFile(key_file_path="/etc/key.d/ZMS_Engine/key.pem"),

trusted_ca=Certificate.fromFile(certificate_file_path="/etc/ca.d/certs/my-trusted-ca-cert.pem",

private_key=PrivateKey.fromFile("/etc/ca.d/keys/my-trusted-ca-cert.pem")),

untrusted_ca=Certificate.fromFile(certificate_file_path="/etc/ca.d/certs/my-untrusted-ca-cert.pem",

private_key=PrivateKey.fromFile("/etc/ca.d/keys/my-untrusted-ca-cert.pem")))))

def demo() :

Service(name='demo/MyFTPSService', router=TransparentRouter(), chainer=ConnectChainer(),

proxy_class=FtpsProxy, max_instances=0, max_sessions=0, keepalive=Z_KEEPALIVE_NONE,

encryption_policy="ForwardSTARTTLS")

Rule(rule_id=2,

proto=6,

service='demo/MyFTPSService'

)

4.6.2.3. Stacking

The available stacking modes for this proxy module are listed in the following table. For additional information
on stacking, see Section 2.3.1, Proxy stacking (p. 7).

DescriptionAction

Pass the data to the stacked proxy or program.FTP_STK_DATA

28www.balasys.hu

Proxy behavior



DescriptionAction

No proxy stacked.FTP_STK_NONE
Table 4.8. Stacking policy.

4.6.2.4. Configuring inband authentication

The Ftp proxy supports inband authentication as well to use the built-in authentication method of the FTP and
FTPS protocols to authenticate the client. The authentication itself is performed by the backend configured for
the service.

If the client uses different usernames on and the remote server (e.g., he uses his own username to authenticate
to , but anonymous on the target FTP server), the client must specify the usernames and passwords in the
following format:

Username:

<ftp user>@<proxy user>@<remote site>[:<port>]

Password:

<ftp password>@<proxy password>

Alternatively, all the above information can be specified as the username:

<ftp user>@<proxy user>@<remote site>[:<port>]:<ftp password>@<proxy password>

Warning
When using inband routing with the FTPS protocol, the server's certificate is compared to its hostname. The subject_alt_name parameter
(or the Common Name parameter if the subject_alt_name parameter is empty) of the server's certificate must contain the hostname or
the IP address (as resolved from the Zorp host) of the server (e.g., ftp.example.com).

Alternatively, the Common Name or the subject_alt_name parameter can contain a generic hostname, e.g., *.example.com.

Note that if the Common Name of the certificate contains a generic hostname, do not specify a specific hostname or an IP address in the
subject_alt_name parameter.

4.6.3. Related standards

■ The File Transfer Protocol is described in RFC 959.

■ FTP Security Extensions including the FTPS protocol and securing FTP with TLS are described in
RFC 2228 and RFC 4217.

4.6.4. Classes in the Ftp module

DescriptionClass

Class encapsulating the abstract FTP proxy.AbstractFtpProxy

Default Ftp proxy based on AbstractFtpProxy.FtpProxy

29www.balasys.hu

Related standards



DescriptionClass

FTP proxy based on AbstractFtpProxy, only allowing
read-only access to anonymous users.

FtpProxyAnonRO

FTP proxy based on AbstractFtpProxy, allowing full
read-write access, but only to anonymous users.

FtpProxyAnonRW

FTP proxy based on AbstractFtpProxy, allowing
read-only access to any user.

FtpProxyRO

FTP proxy based on AbstractFtpProxy, allowing full
read-write access to any user.

FtpProxyRW

Table 4.9. Classes of the Ftp module

4.6.5. Class AbstractFtpProxy

This proxy implements the FTP protocol as specified in RFC 959. All traffic and commands are denied by
default. Consequently, either customized Ftp proxy classes derived from the abstract class should be used, or
one of the predefined classes (e.g.: FtpProxy, FtpProxyRO, etc.).

4.6.5.1. Attributes of AbstractFtpProxy

active_connection_mode (enum, rw:r)

Default: FTP_ACTIVE_MINUSONE

In active mode the server connects the client. By default this must be from Command Channel port minus
one (FTP_ACTIVE_MINUSONE). Alternatively, connection can also be performed either from port number
20 (FTP_ACTIVE_TWENTY) or from a random port (FTP_ACTIVE_RANDOM).

auth_tls_ok_client (boolean, n/a:r)

Default: ""

Shows whether the client-side authentication was performed over a secure channel.

auth_tls_ok_server (boolean, n/a:r)

Default: ""

Shows whether the server-side authentication was performed over a secure channel.

buffer_size (integer, rw:r)

Default: 4096

Buffer size for data transfer in bytes.

data_mode (enum, rw:r)

Default: FTP_DATA_KEEP

30www.balasys.hu

Class AbstractFtpProxy



data_mode (enum, rw:r)

The type of the FTP connection on the server side can be manipulated: leave it as the client requested
(FTP_DATA_KEEP), or force passive (FTP_DATA_PASSIVE) or active (FTP_DATA_ACTIVE) connection.

data_port_max (integer, rw:r)

Default: 41000

On the proxy side, ports equal to or below the value of data_port_max can be allocated as the data channel.

data_port_min (integer, rw:r)

Default: 40000

On the proxy side, ports equal to or above the value of data_port_min can be allocated as the data channel.

data_protection_enabled_client (boolean, n/a:r)

Default: ""

Shows whether the data channel is encrypted or not on the client-side.

data_protection_enabled_server (boolean, n/a:r)

Default: ""

Shows whether the data channel is encrypted or not on the server-side.

features (complex, rw:rw)

Default:

Hash containing the filtering policy for FTP features.

hostname (string, n/a:rw)

Default:

The hostname of the FTP server to connect to, when inband routing is used.

hostport (integer, n/a:rw)

Default:

The port of the FTP server to connect to, when inband routing is used.

masq_address_client (string, rw:r)

Default: ""

31www.balasys.hu

Class AbstractFtpProxy



masq_address_client (string, rw:r)

IP address of the firewall appearing on the client side. If its value is set, this IP is sent regardless of its true
IP (where it is binded). This attribute may be used when network address translation is performed before
Zorp.

masq_address_server (string, rw:r)

Default: ""

IP address of the firewall appearing on the server side. If its value is set, this IP is sent regardless of its true
IP (where it is binded). This attribute may be used when network address translation is performed before
Zorp.

max_continuous_line (integer, rw:r)

Default: 100

Maximum number of answer lines for a command.

max_hostname_length (integer, rw:r)

Default: 128

Maximum length of hostname. Used only in non-transparent mode.

max_line_length (integer, rw:r)

Default: 255

Maximum length of a line that the proxy is allowed to transfer. Requests/responses exceeding this limit are
dropped.

max_password_length (integer, rw:r)

Default: 64

Maximum length of the password.

max_username_length (integer, rw:r)

Default: 32

Maximum length of the username.

password (string, n/a:rw)

Default:

The password to be sent to the server.

32www.balasys.hu

Class AbstractFtpProxy



permit_client_bounce_attack (boolean, rw:rw)

Default: FALSE

If enabled the IP addresses of data channels will not need to match with the IP address of the control channel,
permitting the use of FXP while increasing the security risks.

permit_empty_command (boolean, rw:r)

Default: TRUE

Enable transmission of lines without commands.

permit_server_bounce_attack (boolean, rw:rw)

Default: FALSE

If enabled the IP addresses of data channels will not need to match with the IP address of the control channel,
permitting the use of FXP while increasing the security risks.

permit_unknown_command (boolean, rw:r)

Default: FALSE

Enable the transmission of unknown commands.

proxy_password (string, n/a:rw)

Default:

The password to be used for proxy authentication given by the user, when inband authentication is used.

proxy_username (string, n/a:rw)

Default:

The username to be used for proxy authentication given by the user, when inband authentication is used.

request (complex, rw:rw)

Default:

Normative policy hash for FTP requests indexed by command name (e.g.: "USER", "PWD" etc.). See also
Section 2.1, Policies for requests and responses (p. 4).

request_command (string, n/a:rw)

Default: n/a

When a request is evaluated on the policy level, this variable contains the requested command.

33www.balasys.hu

Class AbstractFtpProxy



request_parameter (string, n/a:rw)

Default: n/a

When a request is evaluated on the policy level, this variable contains the parameters of the requested command.

request_stack (complex, rw:rw)

Default:

Hash containing the stacking policy for the FTP commands. The hash is indexed by the FTP command (e.g.
RETR, STOR). See also Section 2.3.1, Proxy stacking (p. 7).

response (complex, rw:rw)

Default:

Normative policy hash for FTP responses indexed by command name and answer code (e.g.: "USER","331";
"PWD","200" etc.). See also Section 2.1, Policies for requests and responses (p. 4).

response_parameter (string, n/a:rw)

Default:

When a response is evaluated on the policy level, this variable contains answer parameters.

response_status (string, n/a:rw)

Default:

When a response is evaluated on the policy level, this variable contains the answer code.

response_strip_msg (boolean, rw:r)

Default: FALSE

Strip the response message and only send the response code.

strict_port_checking (boolean, rw:rw)

Default: TRUE

If enabled the foreign port is strictly checked: in active mode the server must be connected on port 20, while
in any other situation the foreign port must be above 1023.

target_port_range (string, rw:r)

Default: "21"

The port where the client can connect through a non-transparent FtpProxy.

34www.balasys.hu

Class AbstractFtpProxy



timeout (integer, rw:r)

Default: 300000

General I/O timeout in milliseconds. When there is no specific timeout for a given operation, this value is
used.

transparent_mode (boolean, rw:r)

Default: TRUE

Specifies if the proxy works in transparent (TRUE) or non-transparent (FALSE) mode.

username (string, n/a:rw)

Default:

The username authenticated to the server.

valid_chars_username (string, rw:r)

Default: "a-zA-Z0-9._@"

List of the characters accepted in usernames.

4.6.6. Class FtpProxy

A permitting Ftp proxy based on the AbstractFtpProxy, allowing all commands, responses, and features,
including unknown ones. The connection is terminated if a response with the answer code 421 is received.

4.6.7. Class FtpProxyAnonRO

FTP proxy based on AbstractFtpProxy, enabling read-only access (i.e. only downloading) to anonymous users
(uploads and usernames other than 'anonymous' or 'ftp' are disabled). Commands and return codes are strictly
checked, unknown commands and responses are rejected. Every feature is accepted.

The ABOR; ACCT; AUTH; CDUP; CWD; EPRT; EPSV; FEAT; LIST; MODE; MDTM; NLST; NOOP;
OPTS; PASV; PASS; PORT; PWD; QUIT; REST; RETR; SIZE; STAT; STRU; SYST; TYPE; and USER
commands are permitted, the CLNT; XPWD; MACB commands are rejected.

4.6.8. Class FtpProxyAnonRW

FTP proxy based on AbstractFtpProxy, enabling full read-write access to anonymous users (the 'anonymous'
and 'ftp' usernames are permitted). Commands and return codes are strictly checked, unknown commands and
responses are rejected. Every feature is accepted.

The ABOR; ACCT; APPE; CDUP; CWD; DELE; EPRT; EPSV; LIST; MKD; MODE; MDTM; NLST; NOOP;
OPTS; PASV; PASS; PORT; PWD; QUIT; RMD; RNFR; RNTO; REST; RETR; SIZE; STAT; STOR; STOU;
STRU; SYST; TYPE; USER and FEAT commands are permitted, the AUTH; CLNT; XPWD; MACB commands
are rejected.

35www.balasys.hu

Class FtpProxy



4.6.9. Class FtpProxyRO

FTP proxy based on AbstractFtpProxy, enabling read-only access to any user. Commands and return codes are
strictly checked, unknown commands and responses are rejected. Every feature is accepted.

The ABOR; ACCT; AUTH; CDUP; CWD; EPRT; EPSV; FEAT; LIST; MODE; MDTM; NLST; NOOP;
OPTS; PASV; PASS; PORT; PWD; QUIT; REST; RETR; SIZE; STAT; STRU; SYST; TYPE; and USER
commands are permitted, the CLNT; XPWD; MACB commands are rejected.

4.6.10. Class FtpProxyRW

FTP proxy based on AbstractFtpProxy, enabling full read-write access to any user. Commands and return codes
are strictly checked, unknown commands and responses are rejected. Every feature is accepted.

The ABOR; ACCT; AUTH; CDUP; CWD; EPRT; EPSV; FEAT; LIST; MODE; MDTM; NLST; NOOP;
OPTS; PASV; PASS; PORT; PWD; QUIT; REST; RETR; SIZE; STAT; STRU; SYST; TYPE; and USER
commands are permitted, the CLNT; XPWD; MACB commands are rejected.

4.7. Module Http

The Http module defines the classes constituting the proxy for the HyperText Transfer Protocol (HTTP). HTTP
is the protocol the Web is based on, therefore it is the most frequently used protocol on the Internet. It is used
to access different kinds of content from the Web. The type of content retrieved via HTTP is not restricted, it
can range from simple text files to hypertext files and multimedia formats like pictures, videos or audio files.

4.7.1. The HTTP protocol

HTTP is an open application layer protocol for hypermedia information systems. It basically allows an open-ended
set of methods to be applied to resources identified by Uniform Resource Identifiers (URIs).

4.7.1.1. Protocol elements

HTTP is a text based protocol where a client sends a request comprising of a METHOD, an URI and associated
meta information represented as MIME-like headers, and possibly a data attachment. The server responds with
a status code, a set of headers, and possibly a data attachment. Earlier protocol versions perform a single
transaction in a single TCP connection, HTTP/1.1 introduces persistency where a single TCP connection can
be reused to perform multiple transactions.

An HTTP method is a single word - usually spelled in capitals - instructing the server to apply a function to
the resource specified by the URI. Commonly used HTTP methods are "GET", "POST" and "HEAD". HTTP
method names are not restricted in any way, other HTTP based protocols (such as WebDAV) add new methods
to the protocol while keeping the general syntax intact.

Headers are part of both the requests and the responses. Each header consists of a name followed by a colon
(':') and a field value. These headers are used to specify content-specific and protocol control information.

The response to an HTTP request starts with an HTTP status line informing the client about the result of the
operation and an associated message. The result is represented by three decimal digits, the possible values are
defined in the HTTP RFCs.

36www.balasys.hu

Class FtpProxyRO



4.7.1.2. Protocol versions

The protocol has three variants, differentiated by their version number. Version 0.9 is a very simple protocol
which allows a simple octet-stream to be transferred without any meta information (e.g.: no headers are associated
with requests or responses).

Version 1.0 introduces MIME-like headers in both requests and responses; headers are used to control both the
protocol (e.g.: the "Connection" header) and to give information about the content being transferred (e.g.: the
"Content-Type" header). This version has also introduced the concept of name-based virtual hosts.

Building on the success of HTTP/1.0, version 1.1 of the protocol adds persistent connections (also referred to
as "connection keep-alive") and improved proxy control.

4.7.1.3. Bulk transfer

Both requests and responses might have an associated data blob, also called an entity in HTTP terminology.
The size of the entity is determined using one of three different methods:

1. The complete size of the entity is sent as a header (the Content-Length header).

2. The transport layer connection is terminated when transfer of the blob is completed (used by HTTP/0.9
and might be used in HTTP/1.1 in non-persistent mode).

3. Instead of specifying the complete length, smaller chunks of the complete blob are transferred, and
each chunk is prefixed with the size of that specific chunk. The end of the stream is denoted by a
zero-length chunk. This mode is also called chunked encoding and is specified by the
Transfer-Encoding header.

Example 4.5. Example HTTP transaction

GET /index.html HTTP/1.1

Host: www.example.com

Connection: keep-alive

User-Agent: My-Browser-Type 6.0

HTTP/1.1 200 OK

Connection: close

Content-Length: 14

<html>

</html>

4.7.2. Proxy behavior

The default low-level proxy implementation (AbstractHttpProxy) denies all requests by default. Different
requests and/or responses can be enabled by using one of the several predefined proxy classes which are suitable
for most tasks. Alternatively, a custom proxy class can be derived from AbstractHttpProxy and the requests
and responses enabled individually using different attributes.

Several examples and considerations on how to enable virus filtering in the HTTP traffic are discussed in the
Technical White Paper and Tutorial Virus filtering in HTTP, available at the BalaSys Documentation Page
http://www.balasys.hu/documentation/.

37www.balasys.hu

Proxy behavior

http://www.balasys.hu/documentation/


4.7.2.1. Transparent and non-transparent modes

HttpProxy is able to operate both in transparent and non-transparent mode. In transparent mode, the client does
not notice (or even know) that it is communicating through a proxy. The client communicates using normal
server-style requests.

In non-transparent mode, the address and the port of the proxy server must be set on the client. In this case the
client sends proxy-style requests to the proxy.

Example 4.6. Proxy style HTTP query

GET http://www.example.com/index.html HTTP/1.1

Host: www.example.com

Connection: keep-alive

User-Agent: My-Browser-Type 6.0

HTTP/1.1 200 OK

Connection: close

Content-Length: 14

<html>

</html>

In non-transparent mode it is possible to request the use of the SSL protocol through the proxy, which means
the client communicates with the proxy using the HTTP protocol, but the proxy uses HTTPS to communicate
with the server. This technique is called data tunneling.

Example 4.7. Data tunneling with connect method

CONNECT www.example.com:443 HTTP/1.1

Host: www.example.com

User-agent: My-Browser-Type 6.0

HTTP/1.0 200 Connection established

Proxy-agent: My-Proxy/1.1

4.7.2.2. Configuring policies for HTTP requests and responses

Changing the default behavior of requests is possible using the request attribute. This hash is indexed by the
HTTP method names (e.g.: GET or POST). The response attribute (indexed by the request method and the
response code) enables the control of HTTP responses. The possible actions are described in the following
tables. See also Section 2.1, Policies for requests and responses (p. 4). When looking up entries of the
response attribute hash, the lookup precedence described in Section 2.1.2, Response codes (p. 6) is used.

DescriptionAction

Allow the request to pass.HTTP_REQ_ACCEPT

Reject the request. The reason for the rejection can be
specified in the optional second argument.

HTTP_REQ_REJECT

Terminate the connection.HTTP_REQ_ABORT

38www.balasys.hu

Proxy behavior



DescriptionAction

Call the function specified to make a decision about
the event. The function receives four arguments: self,

HTTP_REQ_POLICY

method, url, version. See Section 2.1, Policies for
requests and responses (p. 4) for details.

Table 4.10. Action codes for HTTP requests

DescriptionAction

Allow the response to pass.HTTP_RSP_ACCEPT

Reject the response and return a policy violation page
to the client.

HTTP_RSP_DENY

Reject the response and return a policy violation page
to the client, with error information optionally
specified as the second argument.

HTTP_RSP_REJECT

Call the function specified to make a decision about
the event. The function receives five parameters: self,

HTTP_RSP_POLICY

method, url, version, response. See Section 2.1,
Policies for requests and responses (p. 4) for details.

Table 4.11. Action codes for HTTP responses

Example 4.8. Implementing URL filtering in the HTTP proxy
This example calls the filterURL function (defined in the example) whenever a HTTP GET request is received. If the requested URL is
'http://www.disallowedsite.com', the request is rejected and an error message is sent to the client.

class DmzHTTP(HttpProxy):

def config(self):

HttpProxy.config(self)

self.request["GET"] = (HTTP_REQ_POLICY, self.filterURL)

def filterURL(self, method, url, version):

if (url == "http://www.disallowedsite.com"):

self.error_info = 'Access of this content is denied by the local policy.'

return HTTP_REQ_REJECT

return HTTP_REQ_ACCECT

Example 4.9. 404 response filtering in HTTP
In this example the 404 response code to GET requests is rejected, and a custom error message is returned to the clients instead.

class DmzHTTP(HttpProxy):

def config(self):

HttpProxy.config(self)

self.response["GET", "404"] = (HTTP_RSP_POLICY, self.filter404)

def filter404(self, method, url, version, response):

self.error_status = 404

self.error_info = "Requested page was not accessible."

return HTTP_RSP_REJECT

39www.balasys.hu

Proxy behavior



4.7.2.3. Configuring policies for HTTP headers

Both request and response headers can be modified by the proxy during the transfer. New header lines can be
inserted, entries can be modified or deleted. To change headers in the requests and responses use the
request_header hash or the response_header hash, respectively.

Similarly to the request hash, these hashes are indexed by the header name (like "User-Agent") and contain an
actiontuple describing the action to take.

By default, the proxy modifies only the "Host", "Connection", "Proxy-Connection" and "Transfer-Encoding"
headers. "Host" headers need to be changed when the proxy modifies the URL; "(Proxy-)Connection" is changed
when the proxy turns connection keep-alive on/off; "Transfer-Enconding" is changed to enable chunked
encoding.

DescriptionAction

Terminate the connection.HTTP_HDR_ABORT

Accept the header.HTTP_HDR_ACCEPT

Remove the header.HTTP_HDR_DROP

Call the function specified to make a decision about
the event. The function receives three parameters: self,
hdr_name, and hdr_value.

HTTP_HDR_POLICY

Rename the header to the name specified in the second
argument.

HTTP_HDR_CHANGE_NAME

Change the value of the header to the value specified
in the second argument.

HTTP_HDR_CHANGE_VALUE

Change both the name and value of the header to the
values specified in the second and third arguments,
respectively.

HTTP_HDR_CHANGE_BOTH

Insert a new header defined in the second argument.HTTP_HDR_INSERT

Remove all existing occurrences of a header and
replace them with the one specified in the second
argument.

HTTP_HDR_REPLACE

Table 4.12. Action codes for HTTP headers

Example 4.10. Header filtering in HTTP
The following example hides the browser used by the client by replacing the value of the User-Agent header to Lynx in all requests. The
use of cookies is disabled as well.

class MyHttp(HttpProxy):

def config(self):

HttpProxy.config(self)

self.request_header["User-Agent"] = (HTTP_HDR_CHANGE_VALUE, "Lynx 2.4.1")

self.request_header["Cookie"] = (HTTP_HDR_POLICY, self.processCookies)

self.response_header["Set-Cookie"] = (HTTP_HDR_DROP,)

def processCookies(self, name, value):

# You could change the current header in self.current_header_name

# or self.current_header_value, the current request url is

40www.balasys.hu

Proxy behavior



# in self.request_url

return HTTP_HDR_DROP

4.7.2.4. Redirecting URLs

URLs or sets of URLs can be easily rejected or redirected to a local mirror by modifying some attributes during
request processing.

When an HTTP request is received, normative policy chains are processed (self.request,
self.request_header). Policy callbacks for certain events can be configured with the HTTP_REQ_POLICY
or HTTP_HDR_POLICY directives. Any of these callbacks may change the request_url attribute, instructing
the proxy to fetch a page different from the one specified by the browser. Please note that this is transparent to
the user and does not change the URL in the browser.

Example 4.11. URL redirection in HTTP proxy
This example redirects all HTTP GET requests to the 'http://www.example.com/' URL by modifying the value of the requested URL.

class MyHttp(HttpProxy):

def config(self):

HttpProxy.config(self)

self.request["GET"] = (HTTP_REQ_POLICY, self.filterURL)

def filterURL(self, method, url, version):

self.request_url = "http://www.example.com/"

return HTTP_REQ_ACCEPT

Example 4.12. Redirecting HTTP to HTTPS
This example redirects all incoming HTTP connections to an HTTPS URL.

class HttpProxyHttpsredirect(HttpProxy):

def config(self):

HttpProxy.config(self)

self.error_silent = TRUE

self.request["GET"] = (HTTP_REQ_POLICY, self.reqRedirect)

def reqRedirect(self, method, url, version):

self.error_status = 301

#self.error_info = 'HTTP/1.0 301 Moved Permanently'

self.error_headers="Location: https://%s/" % self.request_url_host

return HTTP_REQ_REJECT

4.7.2.5. Request types

Zorp differentiates between two request types: server requests and proxy request.

■ Server requests are sent by browsers directly communicating with HTTP servers. These requests
include an URL relative to the server root (e.g.: /index.html), and a 'Host' header indicating which
virtual server to use.

■ Proxy requests are used when the browser communicates with an HTTP proxy. These requests include
a fully specified URL (e.g.: http://www.example.com/index.html).

Zorp determines the type of the incoming request from the request URL, even if the Proxy-connection header
exist. As there is no clear distinction between the two request types, the type of the request cannot always be
accurately detected automatically, though all common cases are covered.

41www.balasys.hu

Proxy behavior



Requests are handled differently in transparent and non-transparent modes.

■ A transparent HTTP proxy (transparent_mode attribute is TRUE) is meant to be installed in front
of a network where clients do not know about the presence of the firewall. In this case the proxy
expects to see server type requests only. If clients communicate with a real HTTP proxy through the
firewall, proxy type requests must be explicitly enabled using the permit_proxy_requests

attribute, or transparent mode has to be used.

■ The use of non-transparent HTTP proxies (transparent_mode attribute is FALSE) must be
configured in web browsers behind the firewall. In this case Zorp expects proxy requests only, and
emits server requests (assuming parent_proxy is not set).

4.7.2.6. Using parent proxies

Parent proxies are non-transparent HTTP proxies used behind Zorp. Two things have to be set in order to use
parent proxies. First, select a router which makes the proxy connect to the parent proxy, this can be either
InbandRouter() or DirectedRouter(). Second, set the parent_proxy and parent_proxy_port attributes in
the HttpProxy class. Setting these attributes results in proxy requests to be emitted to the target server both in
transparent and non-transparent mode.

The parent proxy attributes can be set both in the configuration phase (e.g.: config() event), or later on a
per-request basis. This is possible because the proxy re-connects.

Example 4.13. Using parent proxies in HTTP
In this example the MyHttp proxy class uses a parent proxy. For this the domain name and address of the parent proxy is specified, and
a service using an InbandRouter is created.

class MyHttp(HttpProxy):

def config(self):

HttpProxy.config(self)

self.parent_proxy = "proxy.example.com"

self.parent_proxy_port = 3128

def instance():

Service("http", MyHttp, router=InbandRouter())

Listener(SockAddrInet('10.0.0.1', 80), "http")

4.7.2.7. FTP over HTTP

In non-transparent mode it is possible to let Zorp process ftp:// URLs, effectively translating HTTP requests to
FTP requests on the fly. This behaviour can be enabled by setting permit_ftp_over_http to TRUE and
adding port 21 to target_port_range. Zorp currently supports passive mode transfers only.

4.7.2.8. Error messages

There are cases when the HTTP proxy must return an error page to the client to indicate certain error conditions.
These error messages are stored as files in the directory specified by the error_files_directory attribute,
and can be customized by changing the contents of the files in this directory.

Each file contains plain HTML text, but some special macros are provided to dynamically add information to
the error page. The following macros can be used:

■ @INFO@ -- further error information as provided by the proxy

42www.balasys.hu

Proxy behavior



■ @VERSION@ -- Zorp version number

■ @DATE@ -- current date

■ @HOST@ -- hostname of Zorp

It is generally recommended not to display error messages to untrusted clients, as they may leak confidential
information. To turn error messages off, set the error_silent attribute to TRUE, or strip error files down to
a minimum.

Note
The language of the messages can be set using the config.options.language global option, or individually for every Http proxy
using the language parameter. See Appendix B, Global options of Zorp (p. 232) for details.

4.7.2.9. Stacking

HTTP supports stacking proxies for both request and response entities (e.g.: data bodies). This is controlled by
the request_stack and response_stack attribute hashes. See also Section 2.3.1, Proxy stacking (p. 7).

There are two stacking modes available: HTTP_STK_DATA sends only the data portion to the downstream
proxy, while HTTP_STK_MIME also sends all header information to make it possible to process the data body
as a MIME envelope. Please note that while it is possible to change the data part in the stacked proxy, it is not
possible to change the MIME headers - they can be modified only by the HTTP proxy. The possible parameters
are listed in the following tables.

DescriptionAction

No additional proxy is stacked into the HTTP proxy.HTTP_STK_NONE

The data part of the HTTP traffic is passed to the
specified stacked proxy.

HTTP_STK_DATA

The data part including header information of the
HTTP traffic is passed to the specified stacked proxy.

HTTP_STK_MIME

Table 4.13. Constants for proxy stacking

Please note that stacking is skipped altogether if there is no body in the message.

4.7.2.10. Webservers returning data in 205 responses

Certain webserver applications may return data entities in 205 responses. This is explicitly prohibited by the
RFCs, but Zorp permits such responses for interoperability reasons.

4.7.2.11. Session persistence in load balancing

Zorp’s HTTP proxy offers the ‘session persistence in load balancing’ feature, further enhancing Zorp’s load
balancing capabilities by that.

43www.balasys.hu

Proxy behavior



With the help of this feature, the Round Robin chainer can identify connections by their session IDs and make
sure that every connection with the same session ID is always addressed to the same server, so that the session
persists.

For using the ‘session persistence in load balancing’ feature, the administrator has to configure the following
three attributes for the HTTP proxy:

■ Enable_session_persistence
You can switch on or off the ‘Session persistence in load balancing’ feature with that parameter.

■ Session_persistence_cookie_name
This parameter can only be configured if enable_session_persistence is set to TRUE. The administrator
can provide the name of the cookie here: Zorp directs all incoming requests to a web server and each
web server sends a session ID back to Zorp. The name of this session ID, that is, the cookie name,
can be provided here to ensure that requests with the same session ID are directed to the same web
server.

■ Session_persistence_cookie_salt
This parameter can only be configured if enable_session_persistence is set to TRUE. The administrator
can provide the salt here, with which the IP address of the web server can be hashed before the
session ID. With the help of this hashed information Zorp can next time identify to which server the
next connection attempt of this session has to be directed.

4.7.2.12. URL filtering in HTTP

Starting with version 3.3FR1, Zorp supports category-based URL filtering using a regularly updated database.

■ To configure URL-filtering, see Section Configuring URL-filtering in HTTP (p. 44).

■ For the list of categories available by default, see Section List of URL-filtering categories (p. 45).

■ To customize or expand the URL-database, see Section Customizing the URL database (p. 48).

Configuring URL-filtering in HTTP

The URLs and domains in the database are organized into thematic categories like adult, news, jobsearch,
etc.

To enable url-filtering, set the enable_url_filter and enable_url_filter_dns options to TRUE. The
enable_url_filter_dns option is needed only to ensure that a domain or URL is correctly categorized
even when it is listed in the database using its domain name, but the client tries to access it with its IP address
(or vice-versa).

Note
URL-filtering is handled by the Zorp Http proxy, without the need of using ZCV. The URL-filtering capability of Zorp is available only
after purchasing the url-filter license option.

Updates to the URL database are automatically downloaded daily from the BalaSys website using the zavupdate utility.

44www.balasys.hu

Proxy behavior



Access to specific categories can be set using the url_category option, which is a hash indexed by the name
of the category. The following actions are possible:

DescriptionAction

Permit access to the URL.HTTP_URL_ACCEPT

Reject the request. The error code and reason for the
rejection are specified in the second and third

HTTP_URL_REJECT

arguments. See Section Configuring URL-filtering in
HTTP (p. 44) for details.

Redirect the connection to the URL specified in the
second argument.

HTTP_URL_REDIRECT

Table 4.14. Action codes for URL filtering

Example 4.14. URL-filtering example
The following example blocks several categories and accepts the rest. For a complete list of categories, see Section List of URL-filtering
categories (p. 45).

class MyHTTPUrlFilter(HttpProxy):

def config(self):

HttpProxy.config(self)

self.enable_url_filter=TRUE

self.enable_url_filter_dns=TRUE

self.url_category['adult']=(HTTP_URL_REJECT, (403, "Adult website",))

self.url_category['porn']=(HTTP_URL_REJECT, (403, "Porn website",))

self.url_category['malware']=(HTTP_URL_REJECT, (403, "Site contains malware",))

self.url_category['phishing']=(HTTP_URL_REJECT, (403, "Phishing site",))

self.url_category['warez']=(HTTP_URL_REJECT, (403, "Warez site",))

self.url_category['*']=(HTTP_URL_ACCEPT,)

The following example redirects access to online gaming sites to a dummy website.

class MyHTTPUrlFilter(HttpProxy):

def config(self):

HttpProxy.config(self)

self.enable_url_filter=TRUE

self.enable_url_filter_dns=TRUE

self.url_category['onlinegames']=(HTTP_URL_REDIRECT, "http://example.com")

self.url_category['*']=(HTTP_URL_ACCEPT,)

List of URL-filtering categories

The Zorp URL database contains the following thematic categories by default.

■ abortion: Abortion information excluding when related to religion

■ ads: Advert servers and banned URLs

■ adult: Sites containing adult material such as swearing but not porn

■ aggressive: Similar to violence but more promoting than depicting

■ antispyware: Sites that remove spyware

■ artnudes: Art sites containing artistic nudity

45www.balasys.hu

Proxy behavior



■ astrology: Astrology websites

■ audio-video: Sites with audio or video downloads

■ banking: Banking websites

■ beerliquorinfo: Sites with information only on beer or liquors

■ beerliquorsale: Sites with beer or liquors for sale

■ blog: Journal/Diary websites

■ cellphones: stuff for mobile/cell phones

■ chat: Sites with chat rooms etc

■ childcare: Sites to do with childcare

■ cleaning: Sites to do with cleaning

■ clothing: Sites about and selling clothing

■ contraception: Information about contraception

■ culinary: Sites about cooking et al

■ dating: Sites about dating

■ desktopsillies: Sites containing screen savers, backgrounds, cursers, pointers, desktop themes and
similar timewasting and potentially dangerous content

■ dialers: Sites with dialers such as those for pornography or trojans

■ drugs: Drug related sites

■ ecommerce: Sites that provide online shopping

■ entertainment: Sites that promote movies, books, magazine, humor

■ filehosting: Sites to do with filehosting

■ frencheducation: Sites to do with french education

■ gambling: Gambling sites including stocks and shares

■ games: Game related sites

■ gardening: Gardening sites

■ government: Military and schools etc

■ guns: Sites with guns

■ hacking: Hacking/cracking information

■ homerepair: Sites about home repair

■ hygiene: Sites about hygiene and other personal grooming related stuff

■ instantmessaging: Sites that contain messenger client download and web-based messaging sites

■ jewelry: Sites about and selling jewelry

■ jobsearch: Sites for finding jobs

■ kidstimewasting: Sites kids often waste time on

■ mail: Webmail and email sites

■ marketingware: Sites about marketing products

46www.balasys.hu

Proxy behavior



■ medical: Medical websites

■ mixed_adult: Mixed adult content sites

■ mobile-phone: Sites to do with mobile phones

■ naturism: Sites that contain nude pictures and/or promote a nude lifestyle

■ news: News sites

■ onlineauctions: Online auctions

■ onlinegames: Online gaming sites

■ onlinepayment: Online payment sites

■ personalfinance: Personal finance sites

■ pets: Pet sites

■ phishing: Sites attempting to trick people into giving out private information

■ porn: Pornography

■ proxy: Sites with proxies to bypass filters

■ radio: non-news related radio and television

■ religion: Sites promoting religion

■ ringtones: Sites containing ring tones, games, pictures and other

■ searchengines: Search engines such as google

■ sect: Sites about religious groups

■ sexuality: Sites dedicated to sexuality, possibly including adult material

■ shopping: Shopping sites

■ socialnetworking: Social networking websites

■ sportnews: Sport news sites

■ sports: All sport sites

■ spyware: Sites who run or have spyware software to download

■ updatesites: Sites where software updates are downloaded from including virus sigs

■ vacation: Sites about going on holiday

■ violence: Sites containing violence

■ virusinfected: Sites who host virus infected files

■ warez: Sites with illegal pirate software

■ weather: Weather news sites and weather related

■ weapons: Sites detailing or selling weapons

■ webmail: Just webmail sites

■ whitelist: Contains site suitable for kids

47www.balasys.hu

Proxy behavior



Customizing the URL database

To customize the database, you have to manually edit the relevant files of the database. The URL database is
located on the Zorp hosts under the /etc/zorp/urlfilter/ directory. Every thematic category is subdirectory
containing two files called domains and urls. These files contain the list of domains (e.g., example.com)
and URLs (e.g., example.com/news/) that fall into the specific category. Optionally, the subdirectory may
contain a third file called expressions, where more complex rules can be defined using regular expressions.

■ To to allow access (whitelist) to a domain or URL, add it to the domains or urls file of the
whitelist category. Do not forget to configure your Http proxies to permit access to the domains
of the whitelist category.

Warning
Deleting a domain from a category is not equivalent to whitelisting. Deleted domains will be re-added to their original
category after the next database update.

■ To add a new URL or domain to an existing category, create a new subdirectory under
/etc/zorp/urlfilter/, create the domains and urls files for this new category, and add the
domain or URL (without the http://www. prefix) to the domains or urlsfile. Zorp will
automatically add these sites to the specific category after the next daily database update, or when
the zufupdate command is executed.

■ To create a new category, create a new subdirectory under /etc/zorp/urlfilter/, create the
domains and urls files for this new category, and add domains and URLs to these files. Do not
forget to configure your Http proxies to actually use the new category.

Warning
Manual changes to the URL database are not applied automatically, they become effective only after the next daily database update, or
when the zufupdate command is executed.

Note
Manual changes are automatically merged with the original database during database updates.

If you are using the URL-filter database on several Zorp hosts and modify the database manually, make sure to copy your changes to
the other hosts as well.

4.7.3. Related standards

■ The Hypertext Transfer Protocol -- HTTP/1.1 protocol is described in RFC 2616.

■ The Hypertext Transfer Protocol -- HTTP/1.0 protocol is described in RFC 1945.

4.7.4. Classes in the Http module

DescriptionClass

Class encapsulating the abstract HTTP proxy.AbstractHttpProxy

48www.balasys.hu

Related standards



DescriptionClass

Default HTTP proxy based on AbstractHttpProxy.HttpProxy

HTTP proxy based on HttpProxy, operating in
non-transparent mode.

HttpProxyNonTransparent

HTTP proxy based on HttpProxy, with URI filtering
capability.

HttpProxyURIFilter

HTTP proxy based on HttpProxyURIFilter, with URI
filtering capability and permitting non-transparent
requests.

HttpProxyURIFilterNonTransparent

HTTP proxy based on HttpProxy, with URL filtering
capability based on categories.

HttpProxyURLCategoryFilter

HTTP proxy based on HttpProxy, allowing WebDAV
extensions.

HttpWebdavProxy

HTTP proxy based on HttpProxyNonTransparent,
allowing WebDAV extension in non-transparent
requests.

NontransHttpWebdavProxy

Table 4.15. Classes of the Http module

4.7.5. Class AbstractHttpProxy

This class implements an abstract HTTP proxy - it serves as a starting point for customized proxy classes, but
is itself not directly usable. Service definitions should refer to a customized class derived from AbstractHttpProxy,
or one of the predefined proxy classes, such as HttpProxy or HttpProxyNonTransparent. AbstractHttpProxy
denies all requests by default.

4.7.5.1. Attributes of AbstractHttpProxy

auth_by_cookie (boolean, rw:r)

Default: FALSE

Authentication informations for one-time-password mode is organized by a cookie not the address of the
client.

auth_by_form (boolean, rw:r)

Default: FALSE

When enabled, and the client tries to access an URL that requires authentication, a webpage where users can
enter their authentication information is displayed. If the authentication is successful, the result is cached in
a cookie.

auth_cache_time (integer, rw:r)

Default: 0

49www.balasys.hu

Class AbstractHttpProxy



auth_cache_time (integer, rw:r)

Caching authentication information this amount of seconds.

auth_cache_update (boolean, rw:r)

Default: FALSE

Update authentication cache by every connection.

auth_forward (boolean, rw:rw)

Default: FALSE

Controls whether inband authentication information (username and password) should be forwarded to the
upstream server. When a parent proxy is present, the incoming authentication request is put into a
'Proxy-Authorization' header. In other cases the 'WWW-Authorization' header is used.

auth_realm (string, w:r)

Default: "Zorp HTTP auth"

The name of the authentication realm to be presented to the user in the dialog window during inband
authentication.

buffer_size (integer, rw:r)

Default: 1500

Size of the I/O buffer used to transfer entity bodies.

connect_proxy (class, rw:rw)

Default: PlugProxy

For CONNECT requests the HTTP proxy starts an independent proxy to control the internal protocol. The
connect_proxy attribute specifies which proxy class is used for this purpose.

connection_mode (enum, n/a:rw)

Default: n/a

This value reflects the state of the session. If the value equals to 'HTTP_CONNECTION_CLOSE', the session
will be closed after serving the current request. Otherwise, if the value is 'HTTP_CONNECTION_KEEPALIVE'
another request will be fetched from the client. This attribute can be used to forcibly close a keep-alive
connection.

current_header_name (string, n/a:rw)

Default: n/a

50www.balasys.hu

Class AbstractHttpProxy



current_header_name (string, n/a:rw)

Name of the header. It is defined when the header is processed, and can be modified by the proxy to actually
change a header in the request or response.

current_header_value (string, n/a:rw)

Default: n/a

Value of the header. It is defined when the header is processed, and can be modified by the proxy to actually
change the value of the header in the request or response.

default_port (integer, rw:rw)

Default: 80

This value is used in non-transparent mode when the requested URL does not contain a port number. The
default should be 80, otherwise the proxy may not function properly.

enable_session_persistence (boolean, rw:rw)

Default: FALSE

Allow persistent load balanced connections when accessing session-aware application servers.

enable_url_filter (boolean, rw:r)

Default: FALSE

Enables URL filtering in HTTP requests. See Section 4.7.2.12, URL filtering in HTTP (p. 44) for details.

enable_url_filter_dns (boolean, rw:r)

Default: FALSE

Enables DNS- and reverse-DNS resolution to ensure that a domain or URL is correctly categorized even
when it is listed in the database using its domain name, but the client tries to access it with its IP address (or
vice-versa). See Section 4.7.2.12, URL filtering in HTTP (p. 44) for details.

error_files_directory (string, rw:rw)

Default: "/usr/share/zorp/http"

Location of HTTP error messages.

error_headers (string, n/a:rw)

Default: n/a

A string included as a header in the error response. The string must be a valid header and must end with a "
" sequence.

51www.balasys.hu

Class AbstractHttpProxy



error_info (string, n/a:rw)

Default: n/a

A string to be included in error messages.

error_msg (string, n/a:rw)

Default: n/a

A string used as an error message in the HTTP status line.

error_silent (boolean, rw:rw)

Default: FALSE

Turns off verbose error reporting to the HTTP client (makes firewall fingerprinting more difficult).

error_status (integer, rw:rw)

Default: 500

If an error occurs, this value will be used as the status code of the HTTP response it generates.

keep_persistent (boolean, rw:r)

Default: FALSE

Try to keep the connection to the client persistent even if the server does not support it.

language (string, rw:r)

Default: "en"

Specifies the language of the HTTP error pages displayed to the client. English (en) is the default. Other
supported languages: de (German); hu (Hungarian).

max_auth_time (integer, rw:rw)

Default: 0

Request password authentication from the client, invalidating cached one-time-passwords. If the time specified
(in seconds) in this attribute expires, a new authentication from the client browser is requested even if it still
has a password cached.

max_body_length (integer, rw:rw)

Default: 0

Maximum allowed length of an HTTP request or response body. The default "0" value means that the length
of the body is not limited.

52www.balasys.hu

Class AbstractHttpProxy



max_chunk_length (integer, rw:rw)

Default: 0

Maximum allowed length of a single chunk when using chunked transfer-encoding. The default "0" value
means that the length of the chunk is not limited.

max_header_lines (integer, rw:rw)

Default: 50

Maximum number of header lines allowed in a request or response.

max_hostname_length (integer, rw:rw)

Default: 256

Maximum allowed length of the hostname field in URLs.

max_keepalive_requests (integer, rw:rw)

Default: 0

Maximum number of requests allowed in a single session. If the number of requests in the session the reaches
this limit, the connection is terminated. The default "0" value allows unlimited number of requests.

max_line_length (integer, rw:r)

Default: 4096

Maximum allowed length of lines in requests and responses. This value does not affect data transfer, as data
is transmitted in binary mode.

max_url_length (integer, rw:rw)

Default: 4096

Maximum allowed length of an URL in a request. Note that this directly affects forms using the 'GET' method
to pass data to CGI scripts.

parent_proxy (string, rw:rw)

Default: ""

The address or hostname of the parent proxy to be connected. Either DirectedRouter or InbandRouter has to
be used when using parent proxy.

parent_proxy_port (integer, rw:rw)

Default: 3128

The port of the parent proxy to be connected.

53www.balasys.hu

Class AbstractHttpProxy



permit_ftp_over_http (boolean, rw:r)

Default: FALSE

Allow processing FTP URLs in non-transparent mode.

permit_http09_responses (boolean, rw:r)

Default: TRUE

Allow server responses to use the limited HTTP/0.9 protocol. As these responses carry no control information,
verifying the validity of the protocol stream is impossible. This does not pose a threat to web clients, but
exploits might pass undetected if this option is enabled for servers. It is recommended to turn this option off
for protecting servers and only enable it when Zorp is used in front of users.

permit_invalid_hex_escape (boolean, rw:r)

Default: FALSE

Allow invalid hexadecimal escaping in URLs (% must be followed by two hexadecimal digits).

permit_null_response (boolean, rw:r)

Default: TRUE

Permit RFC incompliant responses with headers not terminated by CRLF and not containing entity body.

permit_proxy_requests (boolean, rw:r)

Default: FALSE

Allow proxy-type requests in transparent mode.

permit_server_requests (boolean, rw:r)

Default: TRUE

Allow server-type requests in non-transparent mode.

permit_unicode_url (boolean, rw:r)

Default: FALSE

Allow unicode characters in URLs encoded as %u. This is an IIS extension to HTTP, UNICODE (UTF-7,
UTF-8 etc.) URLs are forbidden by the RFC as default.

request (complex, rw:rw)

Default: empty

Normative policy hash for HTTP requests indexed by the HTTP method (e.g.: "GET", "PUT" etc.). See also
Section 4.7.2.2, Configuring policies for HTTP requests and responses (p. 38).

54www.balasys.hu

Class AbstractHttpProxy



request_count (integer, n/a:r)

Default: 0

The number of keepalive requests within the session.

request_header (complex, rw:rw)

Default: empty

Normative policy hash for HTTP header requests indexed by the header names (e.g.: "Set-cookie"). See also
Section 4.7.2.3, Configuring policies for HTTP headers (p. 40).

request_method (string, n/a:r)

Default: n/a

Request method (GET, POST, etc.) sent by the client.

request_mime_type (string, n/a:r)

Default: n/a

The MIME type of the request entity. Its value is only defined when the request is processed.

request_stack (complex, rw:rw)

Default: n/a

Attribute containing the request stacking policy: the hash is indexed based on method names (e.g.: GET). See
Section 4.7.2.9, Stacking (p. 43).

request_url (string, n/a:rw)

Default: n/a

The URL requested by the client. It can be modified to redirect the current request.

request_url_file (string, n/a:r)

Default: n/a

Filename specified in the URL.

request_url_host (string, n/a:r)

Default: n/a

Remote hostname in the URL.

request_url_passwd (string, n/a:r)

Default: n/a

55www.balasys.hu

Class AbstractHttpProxy



request_url_passwd (string, n/a:r)

Password in the URL (if specified).

request_url_port (integer, n/a:r)

Default: n/a

Port number as specified in the URL.

request_url_proto (string, n/a:r)

Default: n/a

Protocol specifier of the URL. This attribute is an alias for request_url_scheme.

request_url_scheme (string, n/a:r)

Default: n/a

Protocol specifier of the URL (http://, ftp://, etc.).

request_url_username (string, n/a:r)

Default: n/a

Username in the URL (if specified).

request_version (string, n/a:r)

Default: n/a

Request version (1.0, 1.1, etc.) used by the client.

require_host_header (boolean, rw:r)

Default: TRUE

Require the presence of the Host header. If set to FALSE, the real URL cannot be recovered from certain
requests, which might cause problems with URL filtering.

rerequest_attempts (integer, rw:rw)

Default: 0

Controls the number of attempts the proxy takes to send the request to the server. In case of server failure, a
reconnection is made and the complete request is repeated along with POST data.

reset_on_close (boolean, rw:rw)

Default: FALSE

56www.balasys.hu

Class AbstractHttpProxy



reset_on_close (boolean, rw:rw)

Whenever the connection is terminated without a proxy generated error message, send an RST instead of a
normal close. Causes some clients to automatically reconnect.

response (complex, rw:rw)

Default: empty

Normative policy hash for HTTP responses indexed by the HTTP method and the response code (e.g.: "PWD",
"209" etc.). See also Section 4.7.2.2, Configuring policies for HTTP requests and responses (p. 38).

response_header (complex, rw:rw)

Default: empty

Normative policy hash for HTTP header responses indexed by the header names (e.g.: "Set-cookie"). See
also Section 4.7.2.3, Configuring policies for HTTP headers (p. 40).

response_mime_type (string, n/a:r)

Default: n/a

The MIME type of the response entity. Its value is only defined when the response is processed.

response_stack (complex, rw:rw)

Default: n/a

Attribute containing the response stacking policy: the hash is indexed based on method names (e.g.: GET).
See Section 4.7.2.9, Stacking (p. 43).

rewrite_host_header (boolean, rw:rw)

Default: TRUE

Rewrite the Host header in requests when URL redirection is performed.

session_persistence_cookie_name (string, rw:rw)

Default: "JSESSIONID"

The name of the cookie which will be used to persist load balanced connections when accessing session-aware
application servers.

session_persistence_cookie_salt (string, rw:rw)

Default: n/a

The salt to use when hashing the target server addresses in persistent load balanced connections. If session
persistence is enabled, this parameter must be set.

57www.balasys.hu

Class AbstractHttpProxy



strict_header_checking (boolean, rw:r)

Default: FALSE

Require RFC conformant HTTP headers.

strict_header_checking_action (enum, rw:r)

Default: HTTP_HDR_DROP

This attribute controls what should happen if a non-rfc conform or unknown header found in the communication.
Only the HTTP_HDR_ACCEPT, HTTP_HDR_DROP and HTTP_HDR_ABORT can be used.

target_port_range (string, rw:rw)

Default: "80,443"

List of ports that non-transparent requests are allowed to use. The default is to allow port 80 and 443 to permit
HTTP and HTTPS traffic. (The latter also requires the CONNECT method to be enabled).

timeout (integer, rw:rw)

Default: 300000

General I/O timeout in milliseconds. If there is no timeout specified for a given operation, this value is used.

timeout_request (integer, rw:rw)

Default: 10000

Time to wait for a request to arrive from the client.

timeout_response (integer, rw:rw)

Default: 300000

Time to wait for the HTTP status line to arrive from the server.

transparent_mode (boolean, rw:r)

Default: TRUE

Set the operation mode of the proxy to transparent (TRUE) or non-transparent (FALSE).

url_category (complex, rw:rw)

Default: empty

Normative policy hash for category-based URL-filtering. The hash is indexed by the name of the category.

url_filter_uncategorized_action (enum, rw:rw)

Default: HTTP_URL_ACCEPT

58www.balasys.hu

Class AbstractHttpProxy



url_filter_uncategorized_action (enum, rw:rw)

The action applied to uncategorized (unknown) URLs when URL filtering is used. By default, uncategorized
URLs are accepted: self.url_filter_uncategorized_action=(HTTP_URL_ACCEPT,). Note that if
you set this option to HTTP_URL_REJECT, you must add every URL on your intranet to a category and set
an HTTP_URL_ACCEPT rule to this category, otherwise your clients will not able to access your intranet sites.
For details, see Section Configuring URL-filtering in HTTP (p. 44).

use_canonicalized_urls (boolean, rw:rw)

Default: TRUE

This attribute enables URL canonicalization, which means to automatically convert URLs to their canonical
form. This enhances security but might cause interoperability problems with some applications. It is
recommended to disable this setting on a per-destination basis. URL filtering still sees the canonicalized URL,
but at the end the proxy sends the original URL to the server.

use_default_port_in_transparent_mode (boolean, rw:rw)

Default: TRUE

Set the target port to the value of default_port in transparent mode. This ensures that only the ports
specified in target_port_range can be used by the clients, even if InbandRouter is used.

4.7.5.2. AbstractHttpProxy methods

DescriptionMethod

Function returning the value of a request header.getRequestHeader(self, header)

Function returning the value of a response header.getResponseHeader(self, header)

Function changing the value of a request header.setRequestHeader(self, header, new_value)

Function changing the value of a response header.setResponseHeader(self, header, new_value)
Table 4.16. Method summary

Method getRequestHeader(self, header)

This function looks up and returns the value of a header associated with the current request.

Arguments of getRequestHeader

header (unknown, n/a:n/a)

Default: n/a

Name of the header to look up.

59www.balasys.hu

Class AbstractHttpProxy



Method getResponseHeader(self, header)

This function looks up and returns the value of a header associated with the current response.

Arguments of getResponseHeader

header (unknown, n/a:n/a)

Default: n/a

Name of the header to look up.

Method setRequestHeader(self, header, new_value)

This function looks up and changes the value of a header associated with the current request.

Arguments of setRequestHeader

header (unknown, n/a:n/a)

Default: n/a

Name of the header to change.

new_value (unknown, n/a:n/a)

Default: n/a

Change the header to this value.

Method setResponseHeader(self, header, new_value)

This function looks up and changes the value of a header associated with the current response.

Arguments of setResponseHeader

header (unknown, n/a:n/a)

Default: n/a

Name of the header to change.

new_value (unknown, n/a:n/a)

Default: n/a

Change the header to this value.

60www.balasys.hu

Class AbstractHttpProxy



4.7.6. Class HttpProxy

HttpProxy is a default HTTP proxy based on AbstractHttpProxy. It is transparent, and enables the most commonly
used HTTP methods: "GET", "POST" and "HEAD".

4.7.7. Class HttpProxyNonTransparent

HTTP proxy based on HttpProxy. This class is identical to HttpProxy with the only difference being that it is
non-transparent (transparent_mode = FALSE). Consequently, clients must be explicitly configured to
connect to this proxy instead of the target server and issue proxy requests. On the server side this proxy connects
transparently to the target server.

For the correct operation the proxy must be able to set the server address on its own. This can be accomplished
by using InbandRouter.

4.7.8. Class HttpProxyURIFilter

HTTP proxy based on HttpProxy, having URL filtering capability. The matcher attribute should be initialized
to refer to a Matcher object. The initialization should be done in the class body as shown in the next example.

Example 4.15. URL filtering HTTP proxy

class MyHttp(HttpProxyURIFilter):

matcher = RegexpFileMatcher('/etc/zorp/blacklist.txt',

'/etc/zorp/whitelist.txt')

4.7.8.1. Attributes of HttpProxyURIFilter

matcher (class, rw:rw)

Default: None

Matcher determining whether access to an URL is permitted or not.

4.7.9. Class HttpProxyURIFilterNonTransparent

HTTP proxy based on HttpProxyURIFilter, but operating in non-transparent mode (transparent_mode =

FALSE).

4.7.10. Class HttpProxyURLCategoryFilter

HTTP proxy based on HttpProxy with enabled URL filtering (with DNS and reverse-DNS resolution) and
preconfigured default category actions.

The following categories have policy action HTTP_URL_REJECT:

■ ads

■ adult

61www.balasys.hu

Class HttpProxy



■ blacklist

■ drugs

■ gambling

■ hacking

■ phishing

■ porn

■ sexuality

■ spyware

■ violence

■ virusinfected

■ warez

The following categories have policy action HTTP_URL_ACCEPT:

■ whitelist

4.7.11. Class HttpWebdavProxy

HTTP proxy based on HttpProxy, also capable of inspecting WebDAV extensions of the HTTP protocol.

The following requests are permitted: PROPFIND; PROPPATCH; MKCOL; COPY; MOVE; LOCK; UNLOCK.

4.7.12. Class NontransHttpWebdavProxy

HTTP proxy based on HttpProxyNonTransparent, operating in non-transparent mode (transparent_mode
= FALSE) and capable of inspecting WebDAV extensions of the HTTP protocol.

The following requests are permitted: PROPFIND; PROPPATCH; MKCOL; COPY; MOVE; LOCK; UNLOCK.

4.8. Module Plug

This module defines an interface to the Plug proxy. Plug is a simple TCP or UDP circuit, which means that
transmission takes place without protocol verification.

4.8.1. Proxy behavior

This class implements a general plug proxy, and is capable of optionally disabling data transfer in either direction.
Plug proxy reads connection on the client side, then creates another connection at the server side. Arriving
responses are sent back to the client. However, it is not a protocol proxy, therefore PlugProxy does not implement
any protocol analysis. It offers protection to clients and servers from lower level (e.g.: IP) attacks. It is mainly
used to allow traffic pass the firewall for which there is no protocol proxy available.

By default plug copies all data in both directions. To change this behavior, set the copy_to_client or
copy_to_server attribute to FALSE.

Plug supports the use of secondary sessions. For details, see Section 2.2, Secondary sessions (p. 7).

62www.balasys.hu

Class HttpWebdavProxy



Note
Copying of out-of-band data is not supported.

4.8.2. Related standards

Plug proxy is not a protocol specific proxy module, therefore it is not specified in standards.

4.8.3. Classes in the Plug module

DescriptionClass

Class encapsulating the abstract Plug proxy.AbstractPlugProxy

Class encapsulating the default Plug proxy.PlugProxy
Table 4.17. Classes of the Plug module

4.8.4. Class AbstractPlugProxy

An abstract proxy class for transferring data.

4.8.4.1. Attributes of AbstractPlugProxy

bandwidth_to_client (integer, n/a:r)

Default: n/a

Read-only variable containing the bandwidth currently used in server->client direction.

bandwidth_to_server (integer, n/a:r)

Default: n/a

Read-only variable containing the bandwidth currently used in client->server direction.

buffer_size (integer, w:r)

Default: 1500

Size of the buffer used for copying data.

copy_to_client (boolean, w:r)

Default: TRUE

Allow data transfer in the server->client direction.

copy_to_server (boolean, w:r)

Default: TRUE

Allow data transfer in the client->server direction.

63www.balasys.hu

Related standards



packet_stats_interval_packet (integer, w:r)

Default: 0

The number of passing packages between two successive packetStats() events. It can be useful when the
Quality of Service for the connection is influenced dynamically. Set to 0 to turn packetStats() off.

packet_stats_interval_time (integer, w:r)

Default: 0

The time in milliseconds between two successive packetStats() events. It can be useful when the Quality of
Service for the connection is influenced dynamically. Set to 0 to turn packetStats() off.

secondary_mask (secondary_mask, rw:r)

Default: 0xf

Specifies which connections can be handled by the same proxy instance. See Section 2.2, Secondary
sessions (p. 7) for details.

secondary_sessions (integer, rw:r)

Default: 10

Maximum number of allowed secondary sessions within a single proxy instance. See Section 2.2, Secondary
sessions (p. 7) for details.

shutdown_soft (boolean, w:r)

Default: FALSE

If enabled, the two sides of a connection are closed separately. (E.g.: if the server closes the connection the
client side connection is held until it is verified that no further data arrives, for example from a stacked proxy.)
It is automatically enabled when proxies are stacked into the connection.

stack_proxy (enum, w:r)

Default: n/a

Proxy class to stack into the connection. All data is passed to the specified proxy.

timeout (integer, w:r)

Default: 600000

I/O timeout in milliseconds.

64www.balasys.hu

Class AbstractPlugProxy



4.8.4.2. AbstractPlugProxy methods

DescriptionMethod

Function called when the packet_stats_interval is
elapsed.

packetStats(self, client_bytes, client_pkts, server_bytes,
server_pkts)

Table 4.18. Method summary

Method packetStats(self, client_bytes, client_pkts, server_bytes, server_pkts)

This function is called whenever the time interval set in packet_stats_interval elapses, or a given number of
packets were transmitted. This event receives packet statistics as parameters. It can be used in managing the
Quality of Service of the connections; e.g.: to terminate connections with excessive bandwidth requirements
(for instance to limit the impact of a covert channel opened when using plug instead of a protocol specific
proxy).

Arguments of packetStats

client_bytes (unknown, n/a:n/a)

Default: n/a

Number of bytes transmitted to the client.

client_pkts (unknown, n/a:n/a)

Default: n/a

Number of packets transmitted to the client.

server_bytes (unknown, n/a:n/a)

Default: n/a

Number of bytes transmitted to the server.

server_pkts (unknown, n/a:n/a)

Default: n/a

Number of packets transmitted to the server.

4.8.5. Class PlugProxy

A default PlugProxy based on AbstractPlugProxy.

4.9. Module Pop3

The Pop3 module defines the classes constituting the proxy for the POP3 protocol.

65www.balasys.hu

Class PlugProxy



4.9.1. The POP3 protocol

Post Office Protocol version 3 (POP3) is usually used by mail user agents (MUAs) to download messages from
a remote mailbox. POP3 supports a single mailbox only, it does not support advanced multi-mailbox operations
offered by alternatives such as IMAP.

The POP3 protocol uses a single TCP connection to give access to a single mailbox. It uses a simple
command/response based approach, the client issues a command and a server can respond either positively or
negatively.

4.9.1.1. Protocol elements

The basic protocol is the following: the client issues a request (also called command in POP3 terminology) and
the server responds with the result. Both commands and responses are line based, each command is sent as a
complete line, a response is either a single line or - in case of mail transfer commands - multiple lines.

Commands begin with a case-insensitive keyword possibly followed by one or more arguments (such as RETR
or DELE).

Responses begin with a status indicator ("+OK" or "-ERR") and a possible explanation of the status code (e.g.:
"-ERR Permission denied.").

Responses to certain commands (usually mail transfer commands) also contain a data attachment, such as the
mail body. See the Section 4.9.1.3, Bulk transfers (p. 66) for further details.

4.9.1.2. POP3 states

The protocol begins with the server displaying a greeting message, usually containing information about the
server.

After the greeting message the client takes control and the protocol enters the AUTHORIZATION state where
the user has to pass credentials proving his/her identity.

After successful authentication the protocol enters TRANSACTION state where mail access commands can
be issued.

When the client has finished processing, it issues a QUIT command and the connection is closed.

4.9.1.3. Bulk transfers

Responses to certain commands (such as LIST or RETR) contain a long data stream. This is transferred as a
series of lines, terminated by a "CRLF '.' CRLF" sequence, just like in SMTP.

Example 4.16. POP3 protocol sample

+OK POP3 server ready

USER account

+OK User name is ok

PASS password

+OK Authentication successful

LIST

+OK Listing follows

1 5758

66www.balasys.hu

The POP3 protocol



2 232323

3 3434

.

RETR 1

+OK Mail body follows

From: sender@sender.com

To: account@receiver.com

Subject: sample mail

This is a sample mail message. Lines beginning with

..are escaped, another '.' character is perpended which

is removed when the mail is stored by the client.

.

DELE 1

+OK Mail deleted

QUIT

+OK Good bye

4.9.2. Proxy behavior

Pop3Proxy is a module built for parsing messages of the POP3 protocol. It reads and parses COMMANDs on
the client side, and sends them to the server if the local security policy permits. Arriving RESPONSEs are
parsed as well, and sent to the client if the local security policy permits. It is possible to manipulate both the
requests and the responses.

4.9.2.1. Default policy for commands

By default, the proxy accepts all commands recommended in RFC 1939. Additionally, the following optional
commands are also accepted: USER, PASS, AUTH. The proxy understands all the commands specified in RFC
1939 and the AUTH command. These additional commands can be enabled manually.

4.9.2.2. Configuring policies for POP3 commands

Changing the default behavior of commands can be done using the hash named request. The hash is indexed
by the command name (e.g.: USER or AUTH). See Section 2.1, Policies for requests and responses (p. 4)
for details.

DescriptionAction

Accept the request without any modification.POP3_REQ_ACCEPT

Accept multiline requests without modification. Use
it only if unknown commands has to be enabled (i.e.
commands not specified in RFC 1939 or RFC 1734).

POP3_REQ_ACCEPT_MLINE

Reject the request. The second parameter contains a
string that is sent back to the client.

POP3_REQ_REJECT

Call the function specified to make a decision about
the event. See Section 2.1, Policies for requests and

POP3_REQ_POLICY

responses (p. 4) for details. This action uses two
additional tuple items, which must be callable Python

67www.balasys.hu

Proxy behavior



DescriptionAction

functions. The first function receives two parameters:
self and command.

The second one is called with an answer, (if the answer
is multiline, it is called with every line) and receives
two parameters: self and response_param.

Reject the request and terminate the connection.POP3_REQ_ABORT

Table 4.19. Action codes for POP3 requests

Example 4.17. Example for allowing only APOP authentication in POP3
This sample proxy class rejects the USER authentication requests, but allows APOP requests.

class APop3(Pop3Proxy):

def config(self):

Pop3Proxy.config(self)

self.request["USER"] = (POP3_REQ_REJECT)

self.request["APOP"] = (POP3_REQ_ACCEPT)

Example 4.18. Example for converting simple USER/PASS authentication to APOP in POP3
The above example simply rejected USER/PASS authentication, this one converts USER/PASS authentication to APOP authentication
messages.

class UToAPop3(Pop3Proxy):

def config(self):

Pop3Proxy.config(self)

self.request["USER"] = (POP3_REQ_POLICY,self.DropUSER)

self.request["PASS"] = (POP3_REQ_POLICY,self.UToA)

def DropUSER(self,command):

self.response_value = "+OK"

self.response_param = "User ok Send Password"

return POP3_REQ_REJECT

def UToA(self,command):

# Username is stored in self->username,

# password in self->request_param,

# and the server timestamp in self->timestamp,

# consequently the digest can be calculated.

# NOTE: This is only an example, calcdigest must be

# implemented separately

digest = calcdigest(self->timestamp+self->request_param)

self->request_command = "APOP"

self->request_param = name + " " + digest

return POP3_REQ_ACCEPT

4.9.2.3. Rewriting the banner

As in many other protocols, POP3 also starts with a server banner. This banner contains the protocol version
the server uses, the possible protocol extensions that it supports and, in many situations, the vendor and exact
version number of the POP3 server.

68www.balasys.hu

Proxy behavior



This information is useful only if the clients connecting to the POP3 server can be trusted, as it might make
bug hunting somewhat easier. On the other hand, this information is also useful for attackers when targeting
this service.

To prevent this, the banner can be replaced with a neutral one. Use the request hash with the 'GREETING'
keyword as shown in the following example.

Example 4.19. Rewriting the banner in POP3

class NeutralPop3(Pop3Proxy):

def config(self):

Pop3Proxy.config(self)

self.request["GREETING"] = (POP3_REQ_POLICY, None, self.rewriteBanner)

def rewriteBanner(self, response)

self.response_param = "Pop3 server ready"

return POP3_RSP_ACCEPT

Note
Some protocol extensions (most notably APOP) use random characters in the greeting message as salt in the authentication process, so
changing the banner when APOP is used effectively prevents APOP from working properly.

4.9.2.4. Stacking

The available stacking modes for this proxy module are listed in the following table. For additional information
on stacking, see Section 2.3.1, Proxy stacking (p. 7).

DescriptionAction

Call the function specified to decide which part (if
any) of the traffic should be passed to the stacked
proxy.

POP3_STK_POLICY

No additional proxy is stacked into the POP3 proxy.POP3_STK_NONE

The data part of the traffic including the MIME
headers is passed to the specified stacked proxy.

POP3_STK_MIME

Only the data part of the traffic is passed to the
specified stacked proxy.

POP3_STK_DATA

Table 4.20. Action codes for proxy stacking

4.9.2.5. Rejecting viruses and spam

When filtering messages for viruses or spam, the content vectoring modules reject infected and spam e-mails.
In such cases the POP3 proxy notifies the client about the rejected message in a special e-mail.

69www.balasys.hu

Proxy behavior



To reject e-mail messages using the ERR protocol element, set the reject_by_mail attribute to FALSE.
However, this is not recommended, because several client applications handle ERR responses incorrectly.

Note
Infected e-mails are put into the quarantine and deleted from the server.

4.9.3. Related standards

■ Post Office Protocol Version 3 is described in RFC 1939.

■ The POP3 AUTHentication command is described in RFC 1734.

■ The POP3 STLS extension is described in RFC 2595.

4.9.4. Classes in the Pop3 module

DescriptionClass

Class encapsulating the abstract POP3 proxy.AbstractPop3Proxy

Default POP3 proxy based on AbstractPop3Proxy.Pop3Proxy

POP3 proxy based on Pop3Proxy allowing Start TLS.Pop3STLSProxy
Table 4.21. Classes of the Pop3 module

4.9.5. Class AbstractPop3Proxy

This class implements an abstract POP3 proxy - it serves as a starting point for customized proxy classes, but
is itself not directly usable. Service definitions should refer to a customized class derived from
AbstractPop3Proxy, or a predefined Pop3Proxy proxy class. AbstractPop3Proxy denies all requests by default.

4.9.5.1. Attributes of AbstractPop3Proxy

max_authline_count (integer, rw:r)

Default: 4

Maximum number of lines that can be sent during the authentication conversation. The default value is enough
for password authentication, but might have to be increased for other types of authentication.

max_password_length (integer, rw:r)

Default: 16

Maximum allowed length of passwords.

max_request_line_length (integer, rw:r)

Default: 90

70www.balasys.hu

Related standards



max_request_line_length (integer, rw:r)

Maximum allowed line length for client requests, without the CR-LF line ending characters.

max_response_line_length (integer, rw:r)

Default: 512

Maximum allowed line length for server responses, without the CR-LF line ending characters.

max_username_length (integer, rw:r)

Default: 8

Maximum allowed length of usernames.

password (string, n/a:r)

Default:

Password sent to the server (if any).

permit_longline (boolean, rw:r)

Default: FALSE

In multiline answer (especially in downloaded messages) sometimes very long lines can appear. Enabling
this option allows the unlimited long lines in multiline answers.

permit_unknown_command (boolean, rw:r)

Default: FALSE

Enable unknown commands.

reject_by_mail (boolean, rw:r)

Default: TRUE

If the stacked proxy or content vectoring module rejects an e-mail message, reply with a special e-mail message
instead of an ERR response. See Section 4.9.2.5, Rejecting viruses and spam (p. 69) for details.

request (complex, rw:rw)

Default:

Normative policy hash for POP3 requests indexed by the command name (e.g.: "USER", "UIDL", etc.). See
also Section 4.9.2.2, Configuring policies for POP3 commands (p. 67).

request_command (string, n/a:rw)

Default: n/a

71www.balasys.hu

Class AbstractPop3Proxy



request_command (string, n/a:rw)

When a command is passed to the policy level, its value can be changed to this value.

request_param (string, n/a:rw)

Default: n/a

When a command is passed to the policy level, the value of its parameters can be changed to this value.

response_multiline (boolean, n/a:rw)

Default: n/a

Enable multiline responses.

response_param (string, n/a:rw)

Default: n/a

When a command or response is passed to the policy level, the value its parameters can be changed to this
value. (It has effect only if the return value is not POP3_*_ACCEPT).

response_stack (complex, rw:rw)

Default:

Hash containing the stacking policy for multiline POP3 responses. The hash is indexed by the POP3 response.
See also Section 4.9.2.4, Stacking (p. 69).

response_value (string, n/a:rw)

Default: n/a

When a command or response is passed to the policy level, its value can be changed to this value. (It has
effect only if the return value is not POP3_*_ACCEPT).

session_timestamp (string, n/a:r)

Default: n/a

If the POP3 server implements the APOP command, with the greeting message it sends a timestamp, which
is stored in this parameter.

timeout (integer, rw:r)

Default: 600000

Timeout in milliseconds. If no packet arrives within this interval, connection is dropped.

72www.balasys.hu

Class AbstractPop3Proxy



username (string, n/a:r)

Default: n/a

Username as specified by the client.

4.9.6. Class Pop3Proxy

Pop3Proxy is the default POP3 proxy based on AbstractPop3Proxy, allowing the most commonly used requests.

The following requests are permitted: APOP; DELE; LIST; LAST; NOOP; PASS; QUIT; RETR; RSET; STAT;
TOP; UIDL; USER; GREETING. All other requests (including CAPA) are rejected.

4.9.7. Class Pop3STLSProxy

Pop3STLSProxy is based on Pop3Proxy, allowing the most commonly used requests.

The following requests are permitted: APOP; DELE; LIST; LAST; NOOP; PASS; QUIT; RETR; RSET; STAT;
TOP; UIDL; USER; CAPA; STLS; GREETING. All other requests are rejected. The
self.max_request_line_length is set to 253.

4.10. Module Smtp

Simple Mail Transport Protocol (SMTP) is a protocol for transferring electronic mail messages from Mail User
Agents (MUAs) to Mail Transfer Agents (MTAs). It is also used for exchanging mails between MTAs.

4.10.1. The SMTP protocol

The main goal of SMTP is to reliably transfer mail objects from the client to the server. A mail transaction
involves exchanging the sender and recipient information and the mail body itself.

4.10.1.1. Protocol elements

SMTP is a traditional command based Internet protocol; the client issues command verbs with one or more
arguments, and the server responds with a 3 digit status code and additional information. The response can span
one or multiple lines, the continuation is indicated by an '-' character between the status code and text.

The communication itself is stateful, the client first specifies the sender via the "MAIL" command, then the
recipients using multiple "RCPT" commands. Finally it sends the mail body using the "DATA" command.
After a transaction finishes the client either closes the connection using the "QUIT" command, or starts a new
transaction with another "MAIL" command.

Example 4.20. SMTP protocol sample

220 mail.example.com ESMTP Postfix (Debian/GNU)

EHLO client.host.name

250-mail.example.com

250-PIPELINING

250-SIZE 50000000

250-VRFY

250-ETRN

250-XVERP

73www.balasys.hu

Class Pop3Proxy



250 8BITMIME

MAIL From: <sender@sender.com>

250 Sender ok

RCPT To: <account@recipient.com>

250 Recipient ok

RCPT To: <account2@recipient.com>

250 Recipient ok

DATA

354 Send mail body

From: sender@sender.com

To: account@receiver.com

Subject: sample mail

This is a sample mail message. Lines beginning with

..are escaped, another '.' character is perpended which

is removed when the mail is stored by the client.

.

250 Ok: queued as BF47618170

QUIT

221 Farewell

4.10.1.2. Extensions

Originally SMTP had a very limited set of commands (HELO, MAIL, RCPT, DATA, RSET, QUIT, NOOP)
but as of RFC 1869, an extension mechanism was introduced. The initial HELO command was replaced by an
EHLO command and the response to an EHLO command contains all the extensions the server supports. These
extensions are identified by an IANA assigned name.

Extensions are used for example to implement inband authentication (AUTH), explicit message size limitation
(SIZE) and explicit queue run initiation (ETRN). Each extension might add new command verbs, but might
also add new arguments to various SMTP commands. The SMTP proxy has built in support for the most
important SMTP extensions, further extensions can be added through customization.

4.10.1.3. Bulk transfer

The mail object is transferred as a series of lines, terminated by the character sequence "CRLF '.' CRLF". When
the '.' character occurs as the first character of a line, an escaping '.' character is prepended to the line which is
automatically removed by the peer.

4.10.2. Proxy behavior

The Smtp module implements the SMTP protocol as specified in RFC 2821. The proxy supports the basic
SMTP protocol plus five extensions, namely: PIPELINING, SIZE, ETRN, 8BITMIME, and STARTTLS. All
other ESMTP extensions are filtered by dropping the associated token from the EHLO response. If no connection
can be established to the server, the request is rejected with an error message. In this case the proxy tries to
connect the next mail exchange server.

4.10.2.1. Default policy for commands

The abstract SMTP proxy rejects all commands and responses by default. Less restrictive proxies are available
as derived classes (e.g.: SmtpProxy), or can be customized as required.

74www.balasys.hu

Proxy behavior



4.10.2.2. Configuring policies for SMTP commands and responses

Changing the default behavior of commands can be done by using the hash attribute request. These hashes
are indexed by the command name (e.g.: MAIL or DATA). Policies for responses can be configured using the
response attribute, which is indexed by the command name and the response code. The possible actions are
shown in the tables below. See Section 2.1, Policies for requests and responses (p. 4) for details. When looking
up entries of the response attribute hash, the lookup precedence described in Section 2.1.2, Response
codes (p. 6) is used.

DescriptionAction

Accept the request without any modification.SMTP_REQ_ACCEPT

Reject the request. The second parameter contains an
SMTP status code, the third one an associated
parameter which will be sent back to the client.

SMTP_REQ_REJECT

Reject the request and terminate the connection.SMTP_REQ_ABORT
Table 4.22. Action codes for SMTP requests

DescriptionAction

Accept the response without any modification.SMTP_RSP_ACCEPT

Reject the response. The second parameter contains
an SMTP status code, the third one an associated
parameter which will be sent back to the client.

SMTP_RSP_REJECT

Reject the response and terminate the connection.SMTP_RSP_ABORT
Table 4.23. Action codes for SMTP responses

SMTP extensions can be controlled using the extension hash, which is indexed by the extension name. The
supported extensions (SMTP_EXT_PIPELINING; SMTP_EXT_SIZE; SMTP_EXT_ETRN;
SMTP_EXT_8BITMIME) can be accepted or dropped (SMTP_EXT_ACCEPT or SMTP_EXT_DROP)
individually or all at once using the SMTP_EXT_ALL index value.

4.10.2.3. Stacking

The available stacking modes for this proxy module are listed in the following table. For additional information
on stacking, see Section 2.3.1, Proxy stacking (p. 7).

DescriptionAction

No additional proxy is stacked into the SMTP proxy.SMTP_STK_NONE

75www.balasys.hu

Proxy behavior



DescriptionAction

The data part including header information of the
traffic is passed to the specified stacked proxy.

SMTP_STK_MIME

Table 4.24. Stacking options for SMTP

4.10.3. Related standards

■ Simple Mail Transfer Protocol is described in RFC 2821.

■ SMTP Service Extensions are described in the obsoleted RFC 1869.

■ The STARTTLS extension is described in RFC 3207.

4.10.4. Classes in the Smtp module

DescriptionClass

Class encapsulating the abstract SMTP proxy.AbstractSmtpProxy

Default SMTP proxy based on AbstractSmtpProxy.SmtpProxy
Table 4.25. Classes of the Smtp module

4.10.5. Class AbstractSmtpProxy

This class implements an abstract SMTP proxy - it serves as a starting point for customized proxy classes, but
is itself not directly usable. Service definitions should refer to a customized class derived from
AbstractSmtpProxy, or one of the predefined proxy classes.

The following requests are permitted: HELO; MAIL; RCPT; DATA; RSET; QUIT; NOOP; EHLO; AUTH;
ETRN. The following extensions are permitted: PIPELINING; SIZE; ETRN; 8BITMIME; STARTTLS.

4.10.5.1. Attributes of AbstractSmtpProxy

active_extensions (integer, n/a:r)

Default: n/a

Active extension bitmask, contains bits defined by the constants 'SMTP_EXT_*'

add_received_header (boolean, rw:rw)

Default: FALSE

Add a Received: header into the email messages transferred by the proxy.

append_domain (string, rw:rw)

Default:

76www.balasys.hu

Related standards



append_domain (string, rw:rw)

Domain to append to email addresses which do not specify domain name. An address is rejected if it does
not contain a domain and append_domain is empty.

autodetect_domain_from (enum, rw:rw)

Default:

If you want to autodetect the domain name of the firewall and write it to the Received line, then set this. This
attribute either set the method how the mailname should be detected. Only takes effect if add_received_header
is TRUE.

domain_name (string, rw:rw)

Default:

If you want to set a fix domain name into the added Receive line, set this. Only takes effect if
add_received_header is TRUE.

extensions (complex, rw:rw)

Default:

Normative policy hash for ESMTP extension policy, indexed by the extension verb (e.g. ETRN). It contains
an action tuple with the SMTP_EXT_* values as possible actions.

interval_transfer_noop (integer, rw:rw)

Default: 600000

The interval between two NOOP commands sent to the server while waiting for the results of stacked proxies.

max_auth_request_length (integer, rw:r)

Default: 256

Maximum allowed length of a request during SASL style authentication.

max_request_length (integer, rw:r)

Default: 256

Maximum allowed line length of client requests.

max_response_length (integer, rw:r)

Default: 512

Maximum allowed line length of a server response.

77www.balasys.hu

Class AbstractSmtpProxy



permit_long_responses (boolean, rw:r)

Default: FALSE

Permit overly long responses, as some MTAs include variable parts in responses which might get very long.
If enabled, responses longer than max_response_length are segmented into separate messages. If disabled,
such responses are rejected.

permit_omission_of_angle_brackets (boolean, rw:r)

Default: FALSE

Permit MAIL From and RCPT To parameters without the normally required angle brackets around them.
They will be added when the message leaves the proxy anyway.

permit_unknown_command (boolean, rw:r)

Default: FALSE

Enable unknown commands.

request (complex, rw:rw)

Default:

Normative policy hash for SMTP requests indexed by the command name (e.g.: "USER", "UIDL", etc.). See
also Section 4.10.2.2, Configuring policies for SMTP commands and responses (p. 75).

request_command (string, n/a:rw)

Default: n/a

When a command is passed to the policy level, its value can be changed to this value.

request_param (string, n/a:rw)

Default: n/a

When a command is passed to the policy level, the value of its parameter can be changed to this value.

request_stack (complex, rw:rw)

Default:

Attribute containing the stacking policy for SMTP commands. See Section 4.10.2.3, Stacking (p. 75).

require_crlf (boolean, rw:r)

Default: TRUE

Specifies whether the proxy should enforce valid CRLF line terminations.

78www.balasys.hu

Class AbstractSmtpProxy



resolve_host (boolean, rw:rw)

Default: FALSE

Resolve the client host from the IP address and add it to the Received line. Only takes effect if
add_received_header is TRUE.

response (complex, rw:rw)

Default:

Normative policy hash for SMTP responses indexed by the command name and the response code. See also
Section 4.10.2.2, Configuring policies for SMTP commands and responses (p. 75).

response_param (string, n/a:rw)

Default: n/a

When a response is passed to the policy level, the value of its parameter can be changed to this value. (It has
effect only when the return value is not SMTP_*_ACCEPT.)

response_value (string, n/a:rw)

Default: n/a

When a response is passed to the policy level, its value can be changed to this value. (It has effect only when
the return value is not SMTP_*_ACCEPT.)

timeout (integer, rw:r)

Default: 600000

Timeout in milliseconds. If no packet arrives within this in interval, the connection is dropped.

tls_passthrough (boolean, rw:r)

Default: FALSE

Change to passthrough mode after a successful STARTTLS request. The encrypted traffic is not processed
or changed in any way, it is transported intact between the client and server.

unconnected_response_code (integer, rw:rw)

Default: 451

Error code sent to the client if connecting to the server fails.

4.10.6. Class SmtpProxy

SmtpProxy implements a basic SMTP Proxy based on AbstractSmtpProxy, with relay checking and
sender/recipient check restrictions. (Exclamation marks and percent signs are not allowed in the e-mail addresses.)

79www.balasys.hu

Class SmtpProxy



4.10.6.1. Attributes of SmtpProxy

error_soft (boolean, rw:rw)

Default: FALSE

Return a soft error condition when recipient filter does not match. If enabled, the proxy will try to re-validate
the recipient and send the mail again. This option is useful when the server used for the recipient matching
is down.

permit_exclamation_mark (boolean, rw:rw)

Default: FALSE

Allow the '!' sign in the local part of e-mail addresses.

permit_percent_hack (boolean, rw:rw)

Default: FALSE

Allow the '%' sign in the local part of e-mail addresses.

recipient_matcher (class, rw:rw)

Default:

Matcher class (e.g.: SmtpInvalidRecipientMatcher) used to check and filter recipient e-mail addresses.

relay_check (boolean, rw:rw)

Default: TRUE

Enable/disable relay checking.

relay_domains (complex, rw:r)

Default:

Domains mails are accepted for. Use Postfix style lists. (E.g.: '.example.com' allows every subdomain of
example.com, but not example.com. To match example.com use 'example.com'.)

relay_domains_matcher (class, rw:r)

Default:

Domains mails are accepted for based on a matcher (e.g.: RegexpFileMatcher).

relay_zones (complex, rw:r)

Default:

Zones that are relayed. The administrative hierarchy of the zone is also used.

80www.balasys.hu

Class SmtpProxy



sender_matcher (class, rw:rw)

Default:

Matcher class (e.g.: SmtpInvalidRecipientMatcher) used to check and filter sender e-mail addresses.

4.11. Module Telnet

The Telnet module defines the classes constituting the proxy for the TELNET protocol.

4.11.1. The Telnet protocol

The Telnet protocol was designed to remotely login to computers via the network. Although its main purpose
is to access a remote standard terminal, it can be used for many other functions as well.

The protocol follows a simple scenario. The client opens a TCP connection to the server at the port 23. The
server authenticates the client and opens a terminal. At the end of the session the server closes the connection.
All data is sent in plain text format whithout any encryption.

4.11.1.1. The network virtual terminal

The communication is based on the network virtual terminal (NVT). Its goal is to map a character terminal so
neither the "server" nor "user" hosts need to keep information about the characteristics of each other's terminals
and terminal handling conventions. NVT uses 7 bit code ASCII characters as the display device. An end of line
is transmitted as a CRLF (carriage return followed by a line feed). NVT ASCII is used by many other protocols
as well.

NVT defines three mandatory control codes which must be understood by the participants: NULL, CR (Carriage
Return), which moves the printer to the left margin of the current line and LF (Line Feed), which moves the
printer to the next line keeping the current horizontal position.

NVT also contains some optional commands which are useful. These are the following:

■ BELL is an audible or visual sign.

■ BS (Back Space) moves the printer back one position and deletes a character.

■ HT (Horizontal Tab) moves the printer to the next horizontal tabular stop.

■ VT Vertical Tab moves the printer to the next vertical tabular stop.

■ FF (Form Feed) moves the printer to the top of the next page.

4.11.1.2. Protocol elements

The protocol uses several commands that control the method and various details of the interaction between the
client and the server. These commands can be either mandatory commands or extensions. During the session
initialization the client and the server negotiates the connection parameters with these commands. Sub-negotiation
is a process during the protocol which is for exchanging extra parameters of a command (e.g.: sending the
window size). The commands of the protocol are:

81www.balasys.hu

Module Telnet



DescriptionRequest/Response

End of sub-negotiation parameters.SE

No operation.NOP

Data mark - Indicates the position of Sync event within
the data stream.

DM

Break - Indicates that a break or attention key was hit.BRK

Suspend, interrupt or abort the process.IP

Abort output - Run a command without sending the
output back to the client.

AO

Are you there - Request a visible evidence that the
AYT command has been received.

AYT

Erase character - Delete the character last received
from the stream.

EC

Erase line - Erase a line without a CRLF.EL

Go Ahead - Instruct the other machine to start the
transmission.

GA

Sub-negotiation starts here.SB

Will (option code) - Indicates the desire to begin
performing the indicated option, or confirms that it is
being performed.

WILL

Will not (option code) - Indicates the refusal to
perform, or continue performing, the indicated option.

WONT

Do (option code) - Indicates the request that the other
party perform, or confirmation that the other party is
expected to perform, the indicated option.

DO

Do not (option code) - Indicates the request that the
other party stop performing the indicated option, or
confirmation that its performing is no longer expected.

DONT

Interpret as command.IAC
Table 4.26. Telnet protocol commands

4.11.2. Proxy behavior

TelnetProxy is a module built for parsing TELNET protocol commands and the negotiation process. It reads
and parses COMMANDs on the client side, and sends them to the server if the local security policy permits.
Arriving RESPONSEs are parsed as well and sent to the client if the local security policy permits. It is possible
to manipulate options by using TELNET_OPT_POLICY. It is also possible to accept or deny certain options
and suboptions.

82www.balasys.hu

Proxy behavior



The Telnet shell itself cannot be controlled, thus the commands issued by the users cannot be monitored or
modified.

4.11.2.1. Default policy

The low level abstract Telnet proxy denies every option and suboption negotiation sequences by default. The
different options can be enabled either manually in a derived proxy class, or the predefined TelnetProxy class
can be used.

4.11.2.2. Configuring policies for the TELNET protocol

The Telnet proxy can enable/disable the use of the options and their suboptions within the session. Changing
the default policy can be done using the optionmulti-dimensional hash, indexed by the option and the suboption
(optional). If the suboption is specified, the lookup precedence described in Section 2.1.2, Response codes (p. 6)
is used. The possible action codes are listed in the table below.

DescriptionAction

Allow the option.TELNET_OPT_ACCEPT

Reject the option.TELNET_OPT_DROP

Reject the option and terminate the Telnet session.TELNET_OPT_ABORT

Call the function specified to make a decision about
the event. The function receives two parameters: self,

TELNET_OPT_POLICY

and option (an integer). See Section 2.1, Policies for
requests and responses (p. 4) for details.

Table 4.27. Action codes for Telnet options

Example 4.21. Example for disabling the Telnet X Display Location option

class MyTelnetProxy(TelnetProxy):

def config(self):

TelnetProxy.config(self)

self.option[TELNET_X_DISPLAY_LOCATION] = (TELNET_OPT_REJECT)

Constants have been defined for the easier use of TELNET options and suboptions. These are listed in Table
A.1, TELNET options and suboptions (p. 225).

Policy callback functions

Policy callback functions can be used to make decisions based on the content of the suboption negotiation
sequence. For example, the suboption negotiation sequences of the Telnet Environment option transfer
environment variables. The low level proxy implementation parses these variables, and passes their name and
value to the callback function one-by-one. These values can also be manipulated during transfer, by changing
the current_var_name and current_var_value attributes of the proxy class.

83www.balasys.hu

Proxy behavior



Example 4.22. Rewriting the DISPLAY environment variable

class MyRewritingTelnetProxy(TelnetProxy):

def config(self):

TelnetProxy.config()

self.option[TELNET_ENVIRONMENT, TELNET_SB_IS] = (TELNET_OPTION_POLICY, self.rewriteVar)

def rewriteVar(self, option, name, value):

if name == "DISPLAY":

self.current_var_value = "rewritten_value:0"

return TELNET_OPTION_ACCEPT

Option negotiation

In the Telnet protocol, options and the actual commands are represented on one byte. In order to be able to use
a command in a session, the option (and its suboptions if there are any) corresponding to the command has to
be negotiated between the client and the server. Usually the command and the option is represented by the same
value, e.g.: the TELNET_STATUS command and option are both represented by the value "5". However, this is
not always the case. The negotiation hash is indexed by the code of the command, and contains the code of
the option to be negotiated for the given command (or the TELNET_NEG_NONE when no negotation is needed).

Currently the only command where the code of the command differs from the related option is
self.negotiation["239"] = int(TELNET_EOR).

4.11.3. Related standards

The Telnet protocol is described in RFC 854. The different options of the protocol are described in various
other RFCs, listed in Table A.1, TELNET options and suboptions (p. 225).

4.11.4. Classes in the Telnet module

DescriptionClass

Class encapsulating the abstract Telnet proxy.AbstractTelnetProxy

Default Telnet proxy based on AbstractTelnetProxy.TelnetProxy

Telnet proxy based on AbstractTelnetProxy, allowing
only the minimal command set.

TelnetProxyStrict

Table 4.28. Classes of the Telnet module

4.11.5. Class AbstractTelnetProxy

This class implements the Telnet protocol (as described in RFC 854) and its most common extensions. Although
not all possible options are checked by the low level proxy, it is possible to filter any option and suboption
negotiation sequences using policy callbacks. AbstractTelnetProxy serves as a starting point for customized
proxy classes, but is itself not directly usable. Service definitions should refer to a customized class derived
from AbstractTelnetProxy, or one of the predefined TelnetProxy proxy classes. AbstractTelnetProxy denies all
options by default.

84www.balasys.hu

Related standards



4.11.5.1. Attributes of AbstractTelnetProxy

current_var_name (string, n/a:rw)

Default: n/a

Name of the variable being negotiated.

current_var_value (string, n/a:rw)

Default: n/a

Value of the variable being negotiated (e.g.: value of an environment variable, an X display location value,
etc.).

enable_audit (boolean, w:r)

Default: FALSE

Enable session auditing.

negotiation (complex, rw:rw)

Default:

Normative hash listing which options must be negotiated for a given command. See Section Option negotiation
(p. 84) for details.

option (complex, rw:rw)

Default: n/a

Normative policy hash for Telnet options indexed by the option and (optionally) the suboption. See also
Section 4.11.2.2, Configuring policies for the TELNET protocol (p. 83).

timeout (integer, rw:r)

Default: 600000

I/O timeout in milliseconds.

4.11.6. Class TelnetProxy

TelnetProxy is a proxy class based on AbstractTelnetProxy, allowing the use of all Telnet options.

4.11.7. Class TelnetProxyStrict

TelnetProxyStrict is a proxy class based on AbstractTelnetProxy, allowing the use of the options minimally
required for a useful Telnet session.

The following options are permitted: ECHO; SUPPRESS_GO_AHEAD; TERMINAL_TYPE; NAWS; EOR;
TERMINAL_SPEED; X_DISPLAY_LOCATION; ENVIRONMENT. All other options are rejected.

85www.balasys.hu

Class TelnetProxy



4.12. Module Whois

WHOIS is a protocol providing information about domain and IP owners.

4.12.1. The Whois protocol

Whois is a netwide service to the Internet users maintained by DDN Network Information Center (NIC).

The protocol follows a very simple method. First the client opens a TCP connection to the server at the port 43
and sends a one line REQUEST closed with <CRLF>. This request can contain only ASCII characters. The
server sends the result back and closes the connection.

4.12.2. Proxy behavior

WhoisProxy is a module build for parsing messages of the WHOIS protocol. It reads and parses the REQUESTs
on the client side and sends them to the server if the local security policy permits. Arriving RESPONSEs are
not parsed as they do not have any fixed structure or syntax.

Example 4.23. Example WhoisProxy logging all whois requests

class MyWhoisProxy(AbstractWhoisProxy):

def whoisRequest(self, request):

log(None, CORE_DEBUG, 3, "Whois request: '%s'" % (request))

return ZV_ACCEPT

4.12.3. Related standards

■ The NICNAME/WHOIS protocol is described in RFC 954.

4.12.4. Classes in the Whois module

DescriptionClass

Class encapsulating the abstract Whois proxy.AbstractWhoisProxy

Default proxy class based on AbstractWhoisProxy.WhoisProxy
Table 4.29. Classes of the Whois module

4.12.5. Class AbstractWhoisProxy

This class implements the WHOIS protocol as specified in RFC 954.

4.12.5.1. Attributes of AbstractWhoisProxy

max_line_length (integer, rw:r)

Default: 132

Maximum number of characters allowed in a single line.

86www.balasys.hu

Module Whois



max_request_length (integer, rw:r)

Default: 128

Maximum allowed length of a Whois request.

request (string, n/a:rw)

Default:

The Whois request.

response_footer (string, rw:rw)

Default:

Append this string to each Whois response.

response_header (string, rw:rw)

Default:

Prepend this string to each Whois response.

timeout (integer, rw:r)

Default: 30000

I/O timeout in milliseconds.

4.12.5.2. AbstractWhoisProxy methods

DescriptionMethod

Function to process whois requests.whoisRequest(self, request)
Table 4.30. Method summary

Method whoisRequest(self, request)

This function is called by the Whois proxy to process the requests. It can also be used to change specific attributes
of the request.

4.12.6. Class WhoisProxy

A default proxy class based on AbstractWhoisProxy.

87www.balasys.hu

Class WhoisProxy



Chapter 5. Core

This chapter provides detailed description for the core modules of Zorp.

5.1. Module Auth

This module contains classes related to authentication and authorization. Together with the AuthDB module it
implements the Authentication and Authorization framework.

User authentication verifies the identity of the user trying to access a particular network service. When performed
on the connection level, that enables the full auditing of the network traffic. Authentication is often used in
conjunction with authorization, allowing access to a service only to clients who have the right to do so.

5.1.1. Authentication and authorization basics

Authentication is a method to ensure that certain services (access to a server, etc.) can be used only by the
clients allowed to access the service. The process generally called as authentication actually consists of three
distinct steps:

■ Identification: Determining the clients identity (e.g.: requesting a username).

■ Authentication: Verifying the clients identity (e.g.: requesting a password that only the real client
knows).

■ Authorization: Granting access to the service (e.g.: verifying that the authenticated client is allowed
to access the service).

Note
It is important to note that although authentication and authorization are usually used together, they can also be used
independently. Authentication verifies the identity of the client. There are situations where authentication is sufficient,
because all users are allowed to access the services, only the event and the user's identity has to be logged. On the other
hand, authorization is also possible without authentication, for example if access to a service is time-limited (e.g.: it can
only be accessed outside the normal work-hours, etc.). In such situations authentication is not needed.

5.1.2. Authentication and authorization in Zorp

Zorp can authenticate and authorize access to the services. The aim of authentication is to identify the user and
the associated group memberships. When the client initiates a connection, it actually tries to use a service. Zorp
checks if an authentication policy is associated to the service. If an authentication policy is present, Zorp contacts
the authentication provider specified in the authentication policy. The type of authentication (the authentication
class used, e.g., InbandAuthentication) is also specified in the authentication policy. The authentication provider
connects to an authentication backend (e.g., a user database) to perform the authentication of the client - Zorp
itself does not directly communicate with the database.

If the authentication is successful, the client is verified if it is allowed to access the service (by evaluating the
authorization policy and the identity and group memberships of the client). If the client is authorized to access

88www.balasys.hu

Module Auth



the service, the server-side connection is built. The client is automatically authorized if no authorization policy
is assigned to the service.

Currently only one authentication provider, the () is available via the ZAS2AuthenticationBackend class.
Authentication providers are actually configured instances of the authentication backends, and it is independent
from the database that the backend connects to. The authentication backend is that ties the authentication
provider to the server storing the user data. For details on using , see the Connection authentication and
authorization chapter of the Zorp Administrator's Guide.

The aim of authentication is to identify the user and resolve group memberships. The results are stored in the
in the auth_user and auth_groups attributes of the session object. Note that apart from the information
required for authentication, Zorp also sends session information (e.g., the IP address of the client) to the
authentication provider.

Zorp provides the following authentication classes:

■ InbandAuthentication: Use the built-in authentication of the protocol to authenticate the client on
the Zorp.

■ ServerAuthentication: Enable the client to connect to the target server, and extract its authentication
information from the protocol.

■ ZAAuthentication: Outband authentication using the .

If the authentication is successful, Zorp verifies that the client is allowed to access the service (by evaluating
the authorization policy). If the client is authorized to access the service, the server-side connection is built.
The client is automatically authorized if no authorization policy is assigned to the service.

Each service can use an authorization policy to determine whether a client is allowed to access the service. If
the authorization is based on the identity of the client, it takes place only after a successful authentication -
identity-based authorization can be performed only if the client's identity is known and has been verified. The
actual authorization is performed by Zorp, based on the authentication information received from or extracted
from the protocol.

Zorp provides the following authorization classes:

■ PermitUser: Authorize listed users.

■ PermitGroup: Authorize users belonging to the specified groups.

■ PermitTime: Authorize connections in a specified time interval.

■ BasicAccessList: Combine other authorization policies into a single rule.

■ PairAuthorization: Authorize only user pairs.

■ NEyesAuthorization: Have another client authorize every connection.

5.1.3. Classes in the Auth module

DescriptionClass

Class encapsulating the abstract authentication
interface.

AbstractAuthentication

89www.balasys.hu

Classes in the Auth module



DescriptionClass

Class encapsulating the authorization interface.AbstractAuthorization

Class encapsulating the authentication cache.AuthCache

A policy determining how the user is authenticated to
access the service.

AuthenticationPolicy

A policy determining how the user is authorized to
access the service.

AuthorizationPolicy

Class encapsulating the authorization by access list.BasicAccessList

Class encapsulating the inband authentication
interface.

InbandAuthentication

Class encapsulating N eyes authorization.NEyesAuthorization

Class encapsulating pair-based 4 eyes authorization.PairAuthorization

Class encapsulating the group membership based
authorization.

PermitGroup

Class encapsulating time based authorization.PermitTime

Class encapsulating the user-name based authorization.PermitUser

Class encapsulating the outband authentication
interface using the Satyr application.

SatyrAuthentication

Class encapsulating the server authentication interface.ServerAuthentication

Class encapsulating the outband authentication
interface using the Zorp Authentication Agent.

ZAAuthentication

Table 5.1. Classes of the Auth module

5.1.4. Class AbstractAuthentication

This class encapsulates interfaces for inband and outband authentication procedures. Service definitions should
refer to a customized class derived from AbstractAuthentication, or one of the predefined authentication classes,
such as InbandAuthentication or ZAAuthentication.

5.1.4.1. AbstractAuthentication methods

DescriptionMethod

Constructor to initialize an AbstractAuthentication
instance.

__init__(self, authentication_provider, auth_cache)

Table 5.2. Method summary

Method __init__(self, authentication_provider, auth_cache)

This constructor initializes an instance of the AbstractAuthentication class.

90www.balasys.hu

Class AbstractAuthentication



5.1.5. Class AbstractAuthorization

This class encapsulates an authorization interface. Authorization determines whether the authenticated entity
is in fact allowed to access a specific service. Service definitions should refer to a customized class derived
from AbstractAuthorization, or one of the predefined authorization classes, such as PermitUser or PermitGroup.

5.1.6. Class AuthCache

This class encapsulates an authentication cache which associates usernames with client IP addresses. The
association between a username and an IP address is valid only until the specified timeout. Caching the
authentication results means that the users do not need to authenticate themselves for every request: it is assumed
that the same user is using the computer within the timeout. E.g.: once authenticated for an HTTP service, the
client can browse the web for Timeout period, but has to authenticate again to use FTP.

To use a single authorization cache for every service request of a client, set the service_equiv attribute to
TRUE. That way Zorp does not make difference between the different services (protocols) used by the client:
after a successful authentication the user can use all available services without having to perform another
authentication. E.g.: if this option is enabled in the example above, the client does not have to re-authenticate
for starting an FTP connection.

5.1.6.1. AuthCache methods

DescriptionMethod

Constructor to initialize an instance of the AuthCache
class.

__init__(self, name, timeout, update_stamp,
service_equiv, cleanup_threshold)

Table 5.3. Method summary

Method __init__(self, name, timeout, update_stamp, service_equiv, cleanup_threshold)

This constructor initializes and registers an AuthCache instance that can be referenced in authentication policies.

Arguments of __init__

cleanup_threshold (integer)

Default: 100

When the number of entries in the cache reaches the value of cleanup_threshold, old entries are
automatically deleted.

service_equiv (boolean)

Default: FALSE

If enabled, then a single authentication of a user applies to every service from that client.

91www.balasys.hu

Class AbstractAuthorization



timeout (integer)

Default: 600

Timeout while an authentication is assumed to be valid.

update_stamp (boolean)

Default: TRUE

If set to TRUE, then cached authentications increase the validity period of the authentication cache. Otherwise,
the authentication cache expires according to the timeout value set in attribute timeout (p. 92).

5.1.7. Class AuthenticationPolicy

Authentication policies determine how the user is authenticated to access the service. The
authentication_policy attribute of a service can reference an instance of the AuthenticationPolicy class.

Example 5.1. A simple authentication policy
The following example defines an authentication policy that can be referenced in service definitions. This policy uses inband authentication
and references an authentication provider.

AuthenticationPolicy(name="demo_authentication_policy", cache=None,

authentication=InbandAuthentication(), provider="demo_authentication_provider")

To use the authentication policy, include it in the definition of the service:

Service(name="office_http_inter", proxy_class=HttpProxy,

authentication_policy="demo_authentication_policy", authorization_policy="demo_authorization_policy")

Example 5.2. Caching authentication decisions
The following example defines an authentication policy that caches the authentication decisions for ten minutes (600 seconds). For
details on authentication caching, see see Section 5.1.6, Class AuthCache (p. 91)).

AuthenticationPolicy(name="demo_authentication_policy", cache=AuthCache(timeout=600, update_stamp=TRUE,

service_equiv=TRUE, cleanup_threshold=100), authentication=InbandAuthentication(),

provider="demo_authentication_provider")

92www.balasys.hu

Class AuthenticationPolicy



5.1.7.1. AuthenticationPolicy methods

DescriptionMethod

Constructor to initialize an instance of the
AuthenticationPolicy class.

__init__(self, name, provider, authentication, cache)

Table 5.4. Method summary

Method __init__(self, name, provider, authentication, cache)

Arguments of __init__

authentication (class)

Default: None

The authentication method used in the authentication process. See Section 5.1.1, Authentication and
authorization basics (p. 88) for details.

cache (class)

Default: None

Caching method used to store authentication results.

name (string)

Default: n/a

Name identifying the AuthenticationPolicy instance.

provider (class)

Default: n/a

The authentication provider object used in the authentication process. See Section 5.1.1, Authentication and
authorization basics (p. 88) for details.

5.1.8. Class AuthorizationPolicy

Authorization policies determine how the user is authorized to access the service. The authorization_policy
attribute of a service can reference an instance of the AuthorizationPolicy class.

Example 5.3. A simple authorization policy
The following example defines an authotization policy that can be referenced in a service definition and permits only the members of
the admin or system groups to access the service.

AuthorizationPolicy(name="demo_authorization_policy", authorization=PermitGroup(grouplist=("admin",

"system")))

To use the authorization policy, include it in the definition of the service:

93www.balasys.hu

Class AuthorizationPolicy



Service(name="office_http_inter", proxy_class=HttpProxy,

authentication_policy="demo_authentication_policy", authorization_policy="demo_authorization_policy")

5.1.8.1. AuthorizationPolicy methods

DescriptionMethod

__init__(self, name, authorization)
Table 5.5. Method summary

Method __init__(self, name, authorization)

Arguments of __init__

authorization (class)

Default: n/a

The authorization method (e.g., PermitGroup) used in the instance. See Section 5.1.8, Class
AuthorizationPolicy (p. 93) for examples.

name (string)

Default: n/a

Name of the AuthorizationPolicy instance. This name can be referenced in service definitions.

5.1.9. Class BasicAccessList

This class encapsulates an access list that uses any class derived from the AbstractAuthorization class.
BasicAccessList allows to combine multiple access control requirements into a single decision.

BasicAccessList uses a list of rules. The rules are evaluated sequentially. Each rule can specify whether matching
the current rule is Sufficient or Required. A connection is authorized if a Sufficient rule matches the
connection, or all Required rules are fulfilled. If a Required rule is not met, the connection is refused.

Rules are represented as a list of Python tuples as the following example shows:

Example 5.4. BasicAccessList example
When referenced in a service definition, the following users can access the service:

members of the development group;■

■ anyone with the user1 username;

■ anyone with the user2 username.

AuthPolicy('intra',

authentication=ZAAAuthentication

('zas2db', key_file='fwzaa.key', cert_file='fwzaa.crt'),

authorization=BasicAccessList(

((Z_BACL_SUFFICIENT, PermitUser('user1')),

(Z_BACL_SUFFICIENT, PermitUser('user2')),

(Z_BACL_REQUIRED, PermitGroup('development')))))

94www.balasys.hu

Class BasicAccessList



5.1.9.1. BasicAccessList methods

DescriptionMethod

Constructor to initialize a BasicAccessList instance.__init__(self, acl)
Table 5.6. Method summary

Method __init__(self, acl)

This constructor creates a new BasicAccessList instance which can be referenced in an authentication policy.

Arguments of __init__

acl (complex)

Default: n/a

Access control rules represented as a list of tuple.

5.1.10. Class InbandAuthentication

This class encapsulates inband authentication. Inband authentication is performed by the proxy using the rules
of the application-level protocol. Only the authentication methods supported by the particular protocol can be
used during inband authentication. Authentication policies can refer to instances of the InbandAuthentication
class using the auth parameter.

Warning
Inband authentication is currently supported only for the Http, Ftp, and Socks proxy classes.

5.1.10.1. InbandAuthentication methods

DescriptionMethod

Constructor to initialize an InbandAuthentication
instance.

__init__(self, authentication_provider, auth_cache)

Table 5.7. Method summary

Method __init__(self, authentication_provider, auth_cache)

This constructor initializes an instance of the InbandAuthentication class.

5.1.11. Class NEyesAuthorization

This class encapsulates an N-eyes based authorization method, which means that connections are authorized
if other administrators authenticate themselves within the defined timelimits.

95www.balasys.hu

Class InbandAuthentication



When NEyesAuthorization is used, the client trying to access the service has to be authorized by another
(already authorized) client (this authorization chain can be expanded to multiple levels). NEyesAuthorization
can only be used in conjunction with another NEyesAuthorization policy. One of them is the authorizer set
to authorize the authorized policy.

In a simple 4-eyes scenario the authorizer policy points to the authorized policy in its Authorization policy

parameter, and has its wait_authorization parameter disabled. The authorized policy has an empty
Authorization policy parameter (meaning that it is at lower the end of an N-eyes chain), and has its
wait_authorization parameter enabled, meaning that it has to be authorized by another policy.

For examples on using the NEyesAuthorization class, see the Proxying secure channels - SSH tutorial available
from the BalaSys Documentation Page at http://www.balasys.hu/documentation/.

5.1.11.1. NEyesAuthorization methods

DescriptionMethod

Constructor to initialize a NEyesAuthorization
instance.

__init__(self, authorize_policy, wait_authorization,
wait_timeout)

Table 5.8. Method summary

Method __init__(self, authorize_policy, wait_authorization, wait_timeout)

This constructor initializes an NEyesAuthorization instance.

Arguments of __init__

authorize_policy (class)

Default: None

The authorization policy authorized by the current NEyesAuthorization policy.

wait_authorization (boolean)

Default: FALSE

Specifies whether the current authorization policy must wait for other authorization policies to finish. If this
parameter is set, the client has to be authorized by another client. If set to FALSE, the current client is at the
top of an authorizing chain.

wait_timeout (integer)

Default: 60000

The time (in milliseconds) Zorp will wait for the authorizing user to authorize the one accessing the service.
If the other authorizations are not completed in time, the current authorization will fail.

96www.balasys.hu

Class NEyesAuthorization

http://www.balasys.hu/documentation/


5.1.12. Class PairAuthorization

This class encapsulates pair-based authorization method. Only two users simultaneously accessing the service
are authorized, single users are not permitted to access the service. Set the time (in milliseconds) Zorp will wait
for the second user to access the service using the wait_timeout parameter.

Example 5.5. A simple PairAuthorization policy
The following example permits access to the service only if two users having different usernames authenticate successfully within one
minute.

AuthorizationPolicy(name="demo_pairauthorization_policy",

authorization=PairAuthorization(wait_timeout=60000))

For more detailed examples, see the Proxying secure channels - SSH tutorial available from the BalaSys Documentation Page at
http://www.balasys.hu/documentation/.

5.1.12.1. PairAuthorization methods

DescriptionMethod

Constructor to initialize a PairAuthorization instance.__init__(self, wait_timeout)
Table 5.9. Method summary

Method __init__(self, wait_timeout)

This constructor initializes a PairAuthorization instance.

Arguments of __init__

wait_timeout (integer)

Default: 60000

The time (in milliseconds) Zorp will wait for the pair to complete the authorization. If the authorizations are
not completed in time, the current authorization will fail.

5.1.13. Class PermitGroup

This class encapsulates an authorization decision based on group membership. Users who authenticate as a
member of a usergroup specified in the policy receive access to the service. Otherwise access is denied.

Example 5.6. A simple PermitGroup policy
The following example permits only the members of the admin or system groups to access the service.

AuthorizationPolicy(name="demo_authorization_policy", authorization=PermitGroup(grouplist=("admin",

"system")))

97www.balasys.hu

Class PairAuthorization

http://www.balasys.hu/documentation/


5.1.13.1. PermitGroup methods

DescriptionMethod

Constructor to initialize a PermitGroup instance.__init__(self, grouplist)
Table 5.10. Method summary

Method __init__(self, grouplist)

This constructor initilizes a PermitGroup instance.

Arguments of __init__

grouplist (complex)

Default: n/a

The list of authorized groups, represented as group names.

5.1.14. Class PermitTime

This class encapsulates an authorization decision based on the time when the connection is started. The connection
is permitted if it is started in one of the permitted time periods (according to the system time of the host running
Zorp).

Specify the permitted time intervals as a comma-separated list, where each element contains the beginning and
ending time of the permitted interval in HH:MM format.

Example 5.7. PermitTime example
When used in the intervals attribute of a PermitTime instance, the following example permits access only from 07:00 to 09:00 and
from 17:00 to 19:00.

(("7:00", "9:00"), ("17:00", "19:00"))

The following is a complete authorization policy using the above intervals:

AuthorizationPolicy(name="demo_permittime_policy", authorization=PermitTime(intervals=(("7:00",

"9:00"), ("17:00", "19:00"))))

5.1.14.1. PermitTime methods

DescriptionMethod

Constructor to initialize a PermitTime instance.__init__(self, intervals)
Table 5.11. Method summary

Method __init__(self, intervals)

This constructor initilizes a PermitTime instance.

98www.balasys.hu

Class PermitTime



Arguments of __init__

intervals (complex)

Default: n/a

List of time intervals when connections are permitted (in HH:MM, HH:MM format).

5.1.15. Class PermitUser

This class encapsulates an authorization decision based on usernames. Users who authenticate using one of the
usernames specified in the policy receive access to the service. Otherwise access is denied.

Example 5.8. A simple PermitUser policy
The following example permits only the admin and root users to access the service.

AuthorizationPolicy(name="demo_permituser", authorization=PermitUser(userlist=("admin", "root")))

5.1.15.1. PermitUser methods

DescriptionMethod

Constructor to initialize a PermitUser instance.__init__(self, userlist)
Table 5.12. Method summary

Method __init__(self, userlist)

This constructor initilizes a PermitUser instance.

Arguments of __init__

userlist (complex)

Default: n/a

Comma-separated list of authorized usernames.

5.1.16. Class SatyrAuthentication

This class encapsulates outband authentication using the Satyr application. Satyr has been renamed to Zorp
Authentication Agent, therefore this class is obsolete. Use ZAAuthentication instead. See Section 5.1.18, Class
ZAAuthentication (p. 100) for details.

5.1.17. Class ServerAuthentication

This class encapsulates server authentication: Zorp authenticates the user based on the response of the server
to the user's authentication request. Server authentication is a kind of inband authentication, it is performed
within the application protocol, but the target server checks the credentials of the user instead of Zorp. This

99www.balasys.hu

Class PermitUser



authentication method is useful when the server can be trusted for authentication purposes, but you need to
include an authorization decision in the service definition.

5.1.17.1. ServerAuthentication methods

DescriptionMethod

Constructor to initialize a ServerAuthentication
instance.

__init__(self)

Table 5.13. Method summary

Method __init__(self)

This constructor initializes an instance of the ServerAuthentication class.

5.1.18. Class ZAAuthentication

This class encapsulates outband authentication using the Zorp Authentication Agent (ZAA). The Zorp
Authentication Agent is an application that runs on the client computers and provides an interface for the users
to authenticate themselves when Zorp requests authentication for accessing a service. This way any protocol,
even those not supporting authentication can be securely authenticated. All communication between Zorp and
ZAA is SSL-encrypted.

Example 5.9. Outband authentication example
The following authentication policy defines a class that uses outband authentication.

AuthenticationPolicy(name="demo_outbandauthentication_policy", cache=None,

authentication=ZAAuthentication(port=1316, timeout=60000, connect_timeout=60000,

pki=("/etc/key.d/Zorp_certificate/cert.pem", "/etc/key.d/Zorp_certificate/key.pem")),

provider="demo_authentication_provider")

5.1.18.1. ZAAuthentication methods

DescriptionMethod

Constructor to initialize an instance of the
ZAAuthentication class.

__init__(self, authentication_provider, pki, cert_file,
key_file, port, timeout, connect_timeout, auth_cache)

Table 5.14. Method summary

Method __init__(self, authentication_provider, pki, cert_file, key_file, port, timeout, connect_timeout,
auth_cache)

This constructor initializes an instance of the ZAAuthentication authentication class that can be referenced in
authentication policies to perform outband authentication.

100www.balasys.hu

Class ZAAuthentication



Arguments of __init__

connect_timeout (integer)

Default: 60000

Connection timeout (in milliseconds) to the Zorp Authentication Agent.

pki (certificate)

Default: None

A tuple containing the name of a certificate and a key file. Zorp uses this certificate to encrypt the
communication with the Authentication Agents.

port (integer)

Default: 1316

The port number where the Zorp Authentication Agent is listening. Default value: 1316.

timeout (integer)

Default: 60000

Authentication timeout in milliseconds.

5.2. Module AuthDB

This module contains classes related to authentication databases. Together with the Auth module it implements
the Authentication and Authorization framework. See Section 5.1.1, Authentication and authorization
basics (p. 88) and Section 5.1.2, Authentication and authorization in Zorp (p. 88) for details.

5.2.1. Classes in the AuthDB module

DescriptionClass

Class encapsulating the abstract authentication backend
like ZAS.

AbstractAuthenticationBackend

A database-independent class used by Zorp to connect
to an authentication backend.

AuthenticationProvider

Class encapsulating the ZAS authentication backend.ZAS2AuthenticationBackend
Table 5.15. Classes of the AuthDB module

5.2.2. Class AbstractAuthenticationBackend

This is an abstract class to encapsulate an authentication backend, which is responsible for checking authentication
credentials against a backend database. In actual configurations, use one of the derived classes like
ZAS2AuthenticationBackend.

101www.balasys.hu

Module AuthDB



The interface defined here is used by various authentication methods like ZAAuthentication and
InbandAuthentication.

5.2.3. Class AuthenticationProvider

The authentication provider is an intermediate layer that mediates between Zorp and the authentication backend
(e.g., a user database) during connection authentication - Zorp itself does not directly communicate with the
database.

Example 5.10. A sample authentication provider
The following example defines an authentication provider that uses the ZAS2AuthenticationBackend backend.

AuthenticationProvider(name="demo_authentication_provider",

backend=ZAS2AuthenticationBackend(serveraddr=SockAddrInet('192.168.10.10', 1317), use_ssl=TRUE,

ssl_verify_depth=3, pki_cert=("/etc/key.d/ZAS_certificate/cert.pem",

"/etc/key.d/ZAS_certificate/key.pem"), pki_ca=("/etc/ca.d/groups/demo_trusted_group/certs/",

"/etc/ca.d/groups/demo_trusted_group/crls/")))

5.2.3.1. AuthenticationProvider methods

DescriptionMethod

C o n s t r u c t o r t o i n i t i a l i z e a n
AbstractAuthorizationBackend instance.

__init__(self, name, backend)

Table 5.16. Method summary

Method __init__(self, name, backend)

This constructor initializes an AbstractAuthorizationBackend instance.

Arguments of __init__

backend (class)

Default: n/a

Type of the database backend used by the ZAS instance.

name (string)

Default: n/a

Name of the ZAS instance.

5.2.4. Class ZAS2AuthenticationBackend

This class encapsulates a Zorp Authentication Server database and provides interface to other authentication
classes to verify against users managed through ZAS. See Section 5.2.3, Class AuthenticationProvider (p. 102)
for examples on using the ZAS2AuthenticationBackend class.

102www.balasys.hu

Class AuthenticationProvider



5.2.4.1. ZAS2AuthenticationBackend methods

DescriptionMethod

Constructor to initialize a ZAS2AuthenticationProvider
instance.

__init__(self, serveraddr, use_ssl, pki_cert, cert_file,
key_file, pki_ca, ca_dir, crl_dir, ssl_verify_depth)

Table 5.17. Method summary

Method __init__(self, serveraddr, use_ssl, pki_cert, cert_file, key_file, pki_ca, ca_dir, crl_dir,
ssl_verify_depth)

This constructor creates a new ZAS2AuthenticationProvider instance that can be used in authentication policies.

Arguments of __init__

pki_ca (cagroup)

Default: None

The name of a trusted CA group. When using SSL, ZAS must show a certificate signed by a CA that belongs
to this group.

pki_cert (certificate)

Default: None

A tuple containing the name of a certificate and a key file. Zorp shows this certificate to ZAS when using
SSL.

serveraddr (sockaddr)

Default: n/a

The IP address of this ZAS instance. ZAS accepts connections on this address.

ssl_verify_depth (integer)

Default: 3

Specifies the maximum number of CAs in the trust chain when verifying the certificate of Zorp.

use_ssl (boolean)

Default: FALSE

Enable this option if Zorp communicates with ZAS using SSL.

5.3. Module Chainer

Chainers establish a TCP or UDP connection between a proxy and a selected destination. The destination is
usually a server, but the SideStackChainer connects an additional proxy before connecting the server.

103www.balasys.hu

Module Chainer



5.3.1. Selecting the network protocol

The client-side and the server-side connections can use different networking protocols if needed. The protocol
attribute of the chainer classes determines the network protocol used in the server-side connection. By default,
the same protocol is used in both connections. The following options are available:

DescriptionName

Use the protocol that is used on the client side.ZD_PROTO_AUTO

Use the TCP protocol on the server side.ZD_PROTO_TCP

Use the UDP protocol on the server side.ZD_PROTO_UDP
Table 5.18. The network protocol used in the server-side connection

5.3.2. Classes in the Chainer module

DescriptionClass

Class encapsulating the abstract chainer.AbstractChainer

This class enables establishing connection with
multiple target addresses and using information from

AvailabilityChainer

the Availability Checker daemon. AvailabilityChainer
connects to target hosts in the order they have been
specified.

Class to establish the server-side TCP/IP connection.ConnectChainer

Class encapsulating the connection establishment with
multiple target addresses and keeping down state

FailoverChainer

between connects. FailoverChainer prefers connecting
to target hosts in the order they were specified.

Class encapsulating connection establishment with
multiple target addresses.

MultiTargetChainer

This class enables establishing connection with
multiple target addresses and using information from
the Availability Checker daemon.

RoundRobinAvailabilityChainer

Class encapsulating the connection establishment with
multiple target addresses and keeping down state
between connects.

RoundRobinChainer

Class to pass the traffic to another proxy.SideStackChainer

104www.balasys.hu

Selecting the network protocol



DescriptionClass

Class encapsulating connection establishment with
multiple target addresses and keeping down state
between connects.

StateBasedChainer

Table 5.19. Classes of the Chainer module

5.3.3. Class AbstractChainer

AbstractChainer implements an abstract chainer that establishes a connection between the parent proxy and the
selected destination. This class serves as a starting point for customized chainer classes, but is itself not directly
usable. Service definitions should refer to a customized class derived from AbstractChainer, or one of the
predefined chainer classes, such as ConnectChainer or FailoverChainer.

5.3.4. Class AvailabilityChainer

This class is based on the MultiTargetChainer class and encapsulates a real TCP/IP connection establishment.
It is used when a top-level proxy wants to perform chaining. In addition to ConnectChainer, this class adds the
capability to perform stateful failover HA functionality across a set of IP addresses.

Note
Use AvailabilityChainer if you want to connect to servers, the availability of which have been checked by the Availability Checker
daemon monitoring them. Hosts which are in Up state are attempted to be connected.

Example 5.11. A DirectedRouter using AvailabilityChainer
The following service definition uses a DirectedRouter class with two possible destination addresses. The firewall uses these destinations
in a failover fashion, targeting the second address only if the first one is marked unavailable by the Availability Checker daemon.

Service(name="intra_HTTP_inter", router=DirectedRouter(dest_addr=(SockAddrInet('192.168.55.55', 8080),

SockAddrInet('192.168.55.56', 8080)), forge_addr=FALSE, forge_port=Z_PORT_ANY, overrideable=FALSE),

chainer=AvailabilityChainer(protocol=ZD_PROTO_AUTO, timeout_connect=30000), max_instances=0,

proxy_class=HttpProxy,)

5.3.4.1. AvailabilityChainer methods

DescriptionMethod

Constructor to initialize a AvailabilityChainer instance.__init__(self, protocol, timeout_connect)
Table 5.20. Method summary

Method __init__(self, protocol, timeout_connect)

This constructor initializes a AvailabilityChainer class by filling arguments with appropriate values and calling
the inherited constructor.

105www.balasys.hu

Class AbstractChainer



Arguments of __init__

protocol (enum)

Default: ZD_PROTO_AUTO

Optional, specifies connection protocol ( ZD_PROTO_TCP or ZD_PROTO_UDP ), when not specified it defaults
to the protocol used on the client side.

timeout_connect (integer)

Default: 30000

Specifies connection timeout to be used when connecting to the target server.

5.3.5. Class ConnectChainer

ConnectChainer is the default chainer class based on AbstractChainer. This class establishes a TCP or UDP
connection between the proxy and the selected destination address.

ConnectChainer is used by default if no other chainer class is specified in the service definition.

ConnectChainer attempts to connect only a single destination address: if the connection establishment procedure
selects multiple target servers (e.g., a DNSResolver with the multi=TRUE parameter or a DirectedRouter with
multiple addresses), ConnectChainer will use the first address and ignore all other addresses. UseFailoverChainer
to select from the destination from multiple addresses in a failover fashion, and RoundRobinChainer to distribute
connections in a roundrobin fashion.

Example 5.12. A sample ConnectChainer
The following service uses a ConnectChainer that uses the UDP protocol on the server side.

Service(name="demo_service", proxy_class=HttpProxy, chainer=ConnectChainer(protocol=ZD_PROTO_UDP),

router=TransparentRouter(overrideable=FALSE, forge_addr=FALSE))

5.3.5.1. ConnectChainer methods

DescriptionMethod

Constructor to initialize an instance of the
ConnectChainer class.

__init__(self, protocol, timeout_connect)

Table 5.21. Method summary

Method __init__(self, protocol, timeout_connect)

This constructor creates a new ConnectChainer instance which can be associated with a Service.

106www.balasys.hu

Class ConnectChainer



Arguments of __init__

protocol (enum)

Default: ZD_PROTO_AUTO

Optional parameter that specifies the network protocol used in the connection protocol. By default, the
server-side communication uses the same protocol that is used on the client side. See Section 5.3.1, Selecting
the network protocol (p. 104) for details.

timeout_connect (integer)

Default: 30000

Specifies connection timeout to be used when connecting to the target server.

5.3.6. Class FailoverChainer

This class is based on the StateBasedChainer class and encapsulates a real TCP/IP connection establishment,
and is used when a top-level proxy wants to perform chaining. In addition to ConnectChainer this class adds
the capability to perform stateful, failover HA functionality across a set of IP addresses.

Note
Use FailoverChainer if you want to connect to the servers in a predefined order: i.e., connect to the first server, and only connect to the
second if the first server is unavailable.

If you want to distribute connections between the servers (i.e., direct every new connection to a different server to balance the load) use
RoundRobinChainer .

Example 5.13. A DirectedRouter using FailoverChainer
The following service definition uses a DirectedRouter class with two possible destination addresses. These destinations are used in a
failover fashion, targeting the second address only if the first one is unaccessible.

Service(name="intra_HTTP_inter", router=DirectedRouter(dest_addr=(SockAddrInet('192.168.55.55', 8080),

SockAddrInet('192.168.55.56', 8080)), forge_addr=FALSE, forge_port=Z_PORT_ANY, overrideable=FALSE),

chainer=FailoverChainer(protocol=ZD_PROTO_AUTO, timeout_state=60000, timeout_connect=30000),

max_instances=0, proxy_class=HttpProxy,)

5.3.6.1. FailoverChainer methods

DescriptionMethod

Constructor to initialize a FailoverChainer instance.__init__(self, protocol, timeout, timeout_state,
timeout_connect, round_robin)

Table 5.22. Method summary

Method __init__(self, protocol, timeout, timeout_state, timeout_connect, round_robin)

This constructor initializes a FailoverChainer class by filling arguments with appropriate values and calling the
inherited constructor.

107www.balasys.hu

Class FailoverChainer



Arguments of __init__

protocol (enum)

Default: ZD_PROTO_AUTO

Optional, specifies connection protocol ( ZD_PROTO_TCP or ZD_PROTO_UDP ), when not specified it defaults
to the protocol used on the client side.

timeout_connect (integer)

Default: 30000

Specifies connection timeout to be used when connecting to the target server.

timeout_state (integer)

Default: 60000

The down state of remote hosts is kept for this interval in milliseconds.

5.3.7. Class MultiTargetChainer

This class encapsulates a real TCP/IP connection establishment, and is used when a top-level proxy wants to
perform chaining. In addition to ConnectChainer, this class adds the capability to perform stateless, simple load
balance server connections among a set of IP addresses.

The same mechanism is used to set multiple server addresses as with a single destination address: the Router
class sets a list of IP addresses in the session.target_address attribute.

5.3.7.1. MultiTargetChainer methods

DescriptionMethod

Constructor to initialize a MultiTargetChainer instance.__init__(self, protocol, timeout_connect)
Table 5.23. Method summary

Method __init__(self, protocol, timeout_connect)

This constructor initializes a MultiTargetChainer class by filling arguments with appropriate values and calling
the inherited constructor.

Arguments of __init__

protocol (enum)

Default: ZD_PROTO_AUTO

Optional, specifies connection protocol (either ZD_PROTO_TCP or ZD_PROTO_UDP), when not specified
defaults to the same protocol as was used on the client side.

108www.balasys.hu

Class MultiTargetChainer



self (class)

Default: n/a

this instance

timeout_connect (integer)

Default: 30000

Specifies connection timeout to be used when connecting to the target server.

5.3.8. Class RoundRobinAvailabilityChainer

This class is based on the AvailabilityChainer class.

Note
Use RoundRobinAvailabilityChainer if you want to connect to servers, the availability of which have been checked by the Availability
Checker daemon monitoring them. Hosts which are in Up state are attempted to be connected. In addition to AvailabilityChainer, this
class adds the capability to perform stateful load balance server connections among a set of IP addresses.

Example 5.14. A DirectedRouter using RoundRobinAvailabilityChainer
The following service definition uses a DirectedRouter class with two possible destination addresses. The firewall uses these destinations
in a failover fashion, targeting the second address only if the first one is marked unavailable by the Availability Checker daemon.

Service(name="intra_HTTP_inter", router=DirectedRouter(dest_addr=(SockAddrInet('192.168.55.55', 8080),

SockAddrInet('192.168.55.56', 8080)), forge_addr=FALSE, forge_port=Z_PORT_ANY, overrideable=FALSE),

chainer=RoundRobinAvailabilityChainer(protocol=ZD_PROTO_AUTO, timeout_connect=30000), max_instances=0,

proxy_class=HttpProxy,)

5.3.8.1. RoundRobinAvailabilityChainer methods

DescriptionMethod

C o n s t r u c t o r t o i n i t i a l i z e a
RoundRobinAvailabilityChainer instance.

__init__(self, protocol, timeout_connect)

Table 5.24. Method summary

Method __init__(self, protocol, timeout_connect)

This constructor initializes a RoundRobinAvailabilityChainer class by filling arguments with appropriate values
and calling the inherited constructor.

Arguments of __init__

protocol (enum)

Default: ZD_PROTO_AUTO

109www.balasys.hu

Class RoundRobinAvailabilityChainer



protocol (enum)

Optional, specifies connection protocol ( ZD_PROTO_TCP or ZD_PROTO_UDP ), when not specified it defaults
to the protocol used on the client side.

timeout_connect (integer)

Default: 30000

Specifies connection timeout to be used when connecting to the target server.

5.3.9. Class RoundRobinChainer

This class is based on the StateBasedChainer class and encapsulates a real TCP/IP connection establishment,
and is used when a top-level proxy wants to perform chaining. In addition to ConnectChainer this class adds
the capability to perform stateful, load balance server connections among a set of IP addresses.

Example 5.15. A DirectedRouter using RoundRobinChainer
The following service definition uses a RoundRobinChainer class with two possible destination addresses. These destinations are used
in a roundrobin fashion, alternating between the two destinations.

Service(name="intra_HTTP_inter", router=DirectedRouter(dest_addr=(SockAddrInet('192.168.55.55', 8080),

SockAddrInet('192.168.55.56', 8080)), forge_addr=FALSE, forge_port=Z_PORT_ANY, overrideable=FALSE),

chainer=RoundRobinChainer(protocol=ZD_PROTO_AUTO, timeout_state=60000, timeout_connect=30000),

max_instances=0, proxy_class=HttpProxy)

5.3.10. Class SideStackChainer

This class encapsulates a special chainer. Instead of establishing a connection to a server, it creates a new proxy
instance and connects the server side of the current (parent) proxy to the client side of the new (child) proxy.
The right_class parameter specifies the child proxy.

It is possible to stack multiple proxies side-by-side. The final step of sidestacking is always to specify a regular
chainer via the right_chainer parameter that connects the last proxy to the destination server.

Tip
Proxy sidestacking is useful for example to create one-sided SSL connections. See the tutorials of the BalaSys Documentation Page
available at http://www.balasys.hu/documentation/ for details.

5.3.10.1. Attributes of SideStackChainer

right_chainer (unknown)

Default: n/a

The chainer used to connect to the destination of the side-stacked proxy class set in the right_class attribute.

110www.balasys.hu

Class RoundRobinChainer

http://www.balasys.hu/documentation/


right_class (unknown)

Default: n/a

The proxy class to connect to the parent proxy. Both built-in and customized classes can be used.

5.3.10.2. SideStackChainer methods

DescriptionMethod

Constructor to initialize an instance of the
SideStackChainer class.

__init__(self, right_class, right_chainer)

Table 5.25. Method summary

Method __init__(self, right_class, right_chainer)

This constructor creates a new FailoverChainer instance which can be associated with a Service.

Arguments of __init__

right_chainer (class)

Default: None

The chainer used to connect to the destionation of the side-stacked proxy class set in the right_class
attribute.

right_class (class)

Default: n/a

The proxy class to connect to the parent proxy. Both built-in or customized classes can be used.

5.3.11. Class StateBasedChainer

This class encapsulates a real TCP/IP connection establishment, and is used when a top-level proxy wants to
perform chaining. In addition to ConnectChainer, this class adds the capability to perform stateful, load balance
server connections among a set of IP addresses.

Note
Both the FailoverChainer and RoundRobinChainer classes are derived from StateBasedChainer.

111www.balasys.hu

Class StateBasedChainer



5.3.11.1. StateBasedChainer methods

DescriptionMethod

Constructor to initialize a StateBasedChainer instance.__init__(self, protocol, timeout_connect,
timeout_state)

Table 5.26. Method summary

Method __init__(self, protocol, timeout_connect, timeout_state)

This constructor initializes a StateBasedChainer class by filling arguments with appropriate values and calling
the inherited constructor.

Arguments of __init__

protocol (enum)

Default: ZD_PROTO_AUTO

Optional, specifies connection protocol ( ZD_PROTO_TCP or ZD_PROTO_UDP ), when not specified it defaults
to the same protocol used on the client side.

timeout_connect (integer)

Default: 30000

Specifies connection timeout to be used when connecting to the target server.

timeout_state (integer)

Default: 60000

The down state of remote hosts is kept for this interval in miliseconds.

5.4. Module Detector

Detectors can be used to determine if the traffic in the incoming connection uses a particular protocol (for
example, HTTP, SSH), or if it has other specific characteristics (for example, it uses SSL encryption with a
specific certificate). Such characteristics of the traffic can be detected, and start a specific service to inspect the
traffic (for example, start a specific HttpProxy for HTTP traffic, and so on).

5.4.1. Classes in the Detector module

DescriptionClass

Class encapsulating the abstract detector.AbstractDetector

Class encapsulating a Detector that determines if an
SSL/TLS-encrypted connection uses the specified
certificate

CertDetector

112www.balasys.hu

Module Detector



DescriptionClass

Class encapsulating a Detector which can be used by
a name.

DetectorPolicy

Class encapsulating a Detector that determines if the
traffic uses the HTTP protocol

HttpDetector

Class encapsulating a Detector that determines whether
a client targets a specific host in a SSL/TLS-encrypted
connection.

SniDetector

Class encapsulating a Detector that determines if the
traffic uses the SSHv2 protocol

SshDetector

Table 5.27. Classes of the Detector module

5.4.2. Class AbstractDetector

This abstract class encapsulates a detector that determines whether the traffic in a connection belongs to a
particular protocol.

5.4.3. Class CertDetector

This Detector determines if an SSL/TLS-encrypted connection uses the specified certificate, and rejects any
other protocols and certificates.

Example 5.16. CertDetector example
The following example defines a DetectorPolicy that detects if the traffic is SSL/TLS-encrypted, and uses the certificate specified.

mycertificate="-----BEGIN CERTIFICATE-----

MIIEdjCCA16gAwIBAgIIQ7Xu3Mwnk+4wDQYJKoZIhvcNAQEFBQAwSTELMAkGA1UE

BhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMxJTAjBgNVBAMTHEdvb2dsZSBJbnRl

cm5ldCBBdXRob3JpdHkgRzIwHhcNMTQwMTI5MTQwNTM3WhcNMTQwNTI5MDAwMDAw

WjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5pYTEWMBQGA1UEBwwN

TW91bnRhaW4gVmlldzETMBEGA1UECgwKR29vZ2xlIEluYzEXMBUGA1UEAwwOd3d3

Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCkeHmm

eYY7uMMRxKg14NPx8zFtD/VmUI2b4FdQYgD8AuRifA+fqvxicEki7Td1SrZ4zldn

AjbAS+fC0eQji8foJTosrkXgQgv5ds0+8lU3dooVXoqemeJKUihzI/h+7cf1287/

7EbMI5RaDBUPTHmZHeDtk38XUYsBrS93nICq4VDUAxy2BKsGSS2l9wRvl4fhdDDm

guQ5cRDKn/pqdYEqAqxFVEjamwjcUWSBsWlqSn37fI9s/MZDCzfMwz6AheFMrRNL

0oJ2Y3cVdBxiDVdqjGS+AG5qIUz/AsvHNL3JEsa55OSrMFubCPCzYDMAVLKziqZX

5G25c0e/qh0bSK4/AgMBAAGjggFBMIIBPTAdBgNVHSUEFjAUBggrBgEFBQcDAQYI

KwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdvb2dsZS5jb20waAYIKwYBBQUHAQEE

XDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3J0

MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50czEuZ29vZ2xlLmNvbS9vY3NwMB0G

A1UdDgQWBBR1IOrR+bm3NNXp5DWKruhkxnMrpDAMBgNVHRMBAf8EAjAAMB8GA1Ud

IwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEvMBcGA1UdIAQQMA4wDAYKKwYBBAHW

eQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRwOi8vcGtpLmdvb2dsZS5jb20vR0lB

RzIuY3JsMA0GCSqGSIb3DQEBBQUAA4IBAQA6j9oPKE5k/FX5sbLY4p7xsnltndHD

N1oyzmb8+cmke6W/eFHsY0g+zUeUBW3zb0EMBnNXWNTCB1aVIcRGe8GUDDAnAzSX

MQBeBisNb69kn2untS7RblL83+8H787RsLeXucahr3kCoc61oTemI0HEI43ODtVI

uFEDNJDE1wqsHkdZecnNS29IZySpK2skr3rH7qUkbP1lkzbFvsnFUyp3AJS4ib9+

4xPr65GQfUi/8vgoSVvOy5Y3rT/U3CtI9tPoDSZTYGTl64LDxJa8dEGYmTKHgjyJ

HmbKzes13N/BN18XUlvTnjEaifQXvJj9ypqcMHUFPjkqwI1HSyb1iRth

-----END CERTIFICATE-----"

DetectorPolicy(name="MyCertDetector", detector=CertDetector(certificate=mycertificate)

113www.balasys.hu

Class AbstractDetector



5.4.3.1. Attributes of CertDetector

certificate (unknown)

Default: n/a

The certificate to detect in PEM format. You can use the certificate directly, or store it in a file and reference
the file with full path, for example, DetectorPolicy(name="MyCertDetector",
detector=CertDetector(certificate=("/etc/key.d/mysite/cert.pem", )))

5.4.3.2. CertDetector methods

DescriptionMethod

Constructor to initialize a CertDetector instance.__init__(self, certificate)
Table 5.28. Method summary

Method __init__(self, certificate)

This constructor initializes a CertDetector instance

Arguments of __init__

certificate (certificate)

Default: n/a

The certificate in PEM format. This must contain either the certificate as a string, or a full pathname to a file
containing the certificate.

5.4.4. Class DetectorPolicy

DetectorPolicy instances are reusable detectors that contain configured instances of the detector classes (for
example, HttpDetector, SshDetector) that detect if the traffic uses a particular protocol, or a particular certificate
in an SSL/TLS connection. DetectorPolicy instances can be used in the detect option of firewall rules. For
examples, see the specific detector classes.

5.4.5. Class HttpDetector

This Detector determines if the traffic uses the HTTP protocol, and rejects any other protocol.

Example 5.17. HttpDetector example
The following example defines a DetectorPolicy that detects HTTP traffic.

DetectorPolicy(name="http", detector=HttpDetector()

114www.balasys.hu

Class DetectorPolicy



5.4.5.1. Attributes of HttpDetector

ignore (unknown)

Default: n/a

A list of compiled regular expressions which should be ignored when detecting the traffic type. By default,
this list is empty.

match (unknown)

Default: n/a

A list of compiled regular expressions which result in a positive match. If the traffic matches this regular
expression, it is regarded as HTTP traffic. Default value:
[OPTIONS|GET|HEAD|POST|PUT|DELETE|TRACE|CONNECT] + ".*HTTP/1."

5.4.5.2. HttpDetector methods

DescriptionMethod

Constructor to initialize a HttpDetector instance.__init__(self, **kw)
Table 5.29. Method summary

Method __init__(self, **kw)

This constructor initializes a HttpDetector instance

5.4.6. Class SniDetector

Class encapsulating a Detector that determines whether a client targets a specific host in a SSL/TLS-encrypted
connection and rejects any other protocols and hostnames.

Example 5.18. SNIDetector example
The following example defines a DetectorPolicy that detects if the traffic is SSL/TLS-encrypted, and uses targets the host
www.example.com.

DetectorPolicy(name="MySniDetector",

detector=SniDetector(RegexpMatcher(match_list=("www.example.com",))))

5.4.6.1. Attributes of SniDetector

server_name_matcher (class)

Default: n/a

Matcher class (e.g.: RegexpMatcher) used to check and filter hostnames in Server Name Indication TLS
extension, for example, DetectorPolicy(name="MySniDetector",
detector=SniDetector(RegexpMatcher(match_list=("www.example.com",))))

115www.balasys.hu

Class SniDetector



5.4.6.2. SniDetector methods

DescriptionMethod

Constructor to initialize a SNIDetector instance.__init__(self, server_name_matcher)
Table 5.30. Method summary

Method __init__(self, server_name_matcher)

This constructor initializes a SNIDetector instance

Arguments of __init__

server_name_matcher (class)

Default: n/a

Matcher class (e.g.: RegexpMatcher) used to check and filter hostnames in Server Name Indication TLS
extension.

5.4.7. Class SshDetector

This Detector determines if the traffic uses the SSHv2 protocol, and rejects any other protocol.

Example 5.19. SshDetector example
The following example defines a DetectorPolicy that detects SSH traffic.

DetectorPolicy(name="ssh", detector=SshDetector()

5.5. Module Encryption

The SSL/TLS framework of the proxies is in a separate entity called Encryption policy. That way, you can
easily share and reuse encryption settings between different services: you have to configure the Encryption
policy once, and you can use it in multiple services. The SSL framework is described in Chapter 3, The Zorp
SSL framework (p. 9).

Note
STARTTLS support is currently available only for the Ftp proxy to support FTPS sessions and for the SMTP and the Pop3 proxies.

5.5.1. SSL parameter constants

ValueName

n/aSSL_CIPHERS_HIGH

n/aSSL_CIPHERS_MEDIUM

n/aSSL_CIPHERS_LOW

116www.balasys.hu

Class SshDetector



ValueName

n/aSSL_CIPHERS_ALL

n/aSSL_CIPHERS_CUSTOM
Table 5.31. Constants for cipher selection

ValueName

n/aTLSV1_3_CIPHERS_DEFAULT

n/aTLSV1_3_CIPHERS_CUSTOM
Table 5.32. Constants for TLSv1.3 cipher selection

ValueName

n/aTLS_SHARED_GROUPS_DEFAULT

n/aTLS_SHARED_GROUPS_CUSTOM
Table 5.33. Constants for shared group selection

ValueName

Perform the SSL-handshake with the client first.SSL_HSO_CLIENT_SERVER

Perform the SSL-handshake with the server first.SSL_HSO_SERVER_CLIENT
Table 5.34. Handshake order.

ValueName

Disable encryption between Zorp and the peer.SSL_NONE

Require encrypted communication between Zorp and
the peer.

SSL_FORCE_SSL

Permit STARTTLS sessions. Currently supported only
in the Ftp, Smtp and Pop3 proxies.

SSL_ACCEPT_STARTTLS

Table 5.35. Client connection security type.

ValueName

Disable encryption between Zorp and the peer.SSL_NONE

Require encrypted communication between Zorp and
the peer.

SSL_FORCE_SSL

Forward STARTTLS requests to the server. Currently
supported only in the Ftp, Smtp and Pop3 proxies.

SSL_FORWARD_STARTTLS

Table 5.36. Server connection security type.

ValueName

Accept invalid for example, expired certificates.TLS_TRUST_LEVEL_NONE

117www.balasys.hu

SSL parameter constants



ValueName

Both trusted and untrusted certificates are accepted.TLS_TRUST_LEVEL_UNTRUSTED

Only valid certificates signed by a trusted CA are
accepted.

TLS_TRUST_LEVEL_FULL

Table 5.37. Constants for trust level selection.

ValueName

Ignore result of CA certificate revocation status check.TLS_INTERMEDIATE_REVOCATION_NONE

Check every CA certificate revocation state in the
certificate chain. Uncertainty is tolerated.

TLS_INTERMEDIATE_REVOCATION_SOFT_FAIL

Check every CA certificate revocation state in the
certificate chain. Uncertainty is not tolerated.

TLS_INTERMEDIATE_REVOCATION_HARD_FAIL

Table 5.38. Constants for intermediate certificates revocation check type.

ValueName

Ignore result of leaf certificate revocation status check.TLS_LEAF_REVOCATION_NONE

Check the revocation state of the leaf certificate.
Uncertainty is tolerated.

TLS_LEAF_REVOCATION_SOFT_FAIL

Check the revocation state of the leaf certificate.
Uncertainty is not tolerated.

TLS_LEAF_REVOCATION_HARD_FAIL

Table 5.39. Constants for leaf certificate revocation check type.

ValueName

n/aSSL_ERROR

n/aSSL_DEBUG
Table 5.40. Verbosity level of the log messages

ValueName

0SSL_HS_ACCEPT

1SSL_HS_REJECT

6SSL_HS_POLICY

10SSL_HS_VERIFIED
Table 5.41. Handshake policy decisions

5.5.2. Classes in the Encryption module

DescriptionClass

Class encapsulating the abstract Certificate verifier.AbstractVerifier

118www.balasys.hu

Classes in the Encryption module



DescriptionClass

Class encapsulating a certificate and its private key,
and optionally the passphrase for the private key.

Certificate

Class encapsulating the certificate of a Certificate
Authority (CA certificate) and its private key, and
optionally the passphrase for the private key.

CertificateCA

Class that can be used to verify the certificate of the
client-side connection.

ClientCertificateVerifier

Disables certificate verification in client-side
connection.

ClientNoneVerifier

The ClientOnlyEncryption class handles scenarios
when only the client-Zorp connection is encrypted,
the Zorp-server connection is not

ClientOnlyEncryption

The client can optionally request STARTTLS
encryption, but the server-side connection is always
unencrypted.

ClientOnlyStartTLSEncryption

Class encapsulating a set of SSL options used in the
client-side connection.

ClientSSLOptions

Class encapsulating DH parameters.DHParam

Class to perform SSL keybridging.DynamicCertificate

The DynamicServerEncryption class handles scenarios
when both the client-firewall and the firewall-server

DynamicServerEncryption

connections could be encrypted but the server side
encryption parameters set dynamically from proxies.

Class encapsulating a named set of encryption settings.EncryptionPolicy

The client can optionally request STARTTLS
encryption, but the server-side connection is always
encrypted.

FakeStartTLSEncryption

The ForwardStartTLSEncryption class handles
scenarios when the client can optionally request
STARTTLS encryption.

ForwardStartTLSEncryption

Class encapsulating a private key.PrivateKey

Class to be used for Server Name Indication (SNI)SNIBasedCertificate

Class encapsulating the abstract SSL options.SSLOptions

Class that can be used to verify the certificate of the
server-side connection.

ServerCertificateVerifier

Disables certificate verification in server-side
connection.

ServerNoneVerifier

119www.balasys.hu

Classes in the Encryption module



DescriptionClass

The ServerOnlyEncryption class handles scenarios
when only the Zorp-server connection is encrypted,
the client-Zorp connection is not

ServerOnlyEncryption

Class encapsulating a set of SSL options used in the
server-side connection.

ServerSSLOptions

Class encapsulating a static Certificate object.StaticCertificate

The TwoSidedEncryption class handles scenarios when
both the client-Zorp and the Zorp-server connections
are encrypted.

TwoSidedEncryption

Table 5.42. Classes of the Encryption module

5.5.3. Class AbstractVerifier

This class includes the settings and options used to verify the certificates of the peers in SSL and TLS connections.
Note that you cannot use this class directly, use an appropriate derived class, for example,ClientCertificateVerifier
or ServerCertificateVerifier instead.

5.5.3.1. Attributes of AbstractVerifier

intermediate_revocation_check_type (enum)

Default: TLS_INTERMEDIATE_REVOCATION_SOFT_FAIL

Specify how intermediate certificates revocation status check should work.

leaf_revocation_check_type (enum)

Default: TLS_LEAF_REVOCATION_SOFT_FAIL

Specify how leaf certificate revocation status check should work.

required (boolean)

Default: trusted

If the required is TRUE, a certificate is required from the peer.

trust_level (enum)

Default: TLS_TRUST_LEVEL_FULL

Specify which certificate should be accepted as trusted.

trusted_certs_directory (string)

Default: ""

120www.balasys.hu

Class AbstractVerifier



trusted_certs_directory (string)

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP
address shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA.
Each file in the directory should contain a certificate in PEM format. The filename must bethe IP address.

verify_ca_directory (string)

Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when the certificate of the peer is verified.

verify_crl_directory (string)

Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when the certificate of the peer is verified.

verify_depth (integer)

Default: 4

The length of the longest accepted CA verification chain. Longer CA chains are automatically rejected.

5.5.3.2. AbstractVerifier methods

DescriptionMethod

Constructor to initialize an AbstractVerifier instance._ _ i n i t _ _ ( s e l f , t r u s t _ l e v e l ,
i n t e r m e d i a t e _ r e v o c a t i o n _ c h e c k _ t y p e ,
leaf_revocation_check_type, trusted_certs_directory,
required, verify_depth, verify_ca_directory,
verify_crl_directory)

Table 5.43. Method summary

Method __init__(self, trust_level, intermediate_revocation_check_type, leaf_revocation_check_type,
trusted_certs_directory, required, verify_depth, verify_ca_directory, verify_crl_directory)

This constructor defines an AbstractVerifier with the specified parameters.

Arguments of __init__

intermediate_revocation_check_type (enum)

Default: TLS_INTERMEDIATE_REVOCATION_SOFT_FAIL

Specify how intermediate certificates revocation status check should work.

121www.balasys.hu

Class AbstractVerifier



leaf_revocation_check_type (enum)

Default: TLS_LEAF_REVOCATION_SOFT_FAIL

Specify how leaf certificate revocation status check should work.

required (boolean)

Default: TRUE

If the required is TRUE, a certificate is required from the peer.

trust_level (enum)

Default: TLS_TRUST_LEVEL_FULL

Specify which certificate should be accepted as trusted.

trusted_certs_directory (string)

Default: ""

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP
address shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA.
Each file in the directory should contain a certificate in PEM format. The filename must bethe IP address.

verify_ca_directory (string)

Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when the certificate of the peer is verified.

verify_crl_directory (string)

Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when the certificate of the peer is verified.

verify_depth (integer)

Default: 4

The length of the longest accepted CA verification chain. Longer CA chains are automatically rejected.

5.5.4. Class Certificate

The Certificate class stores a certificate, its private key, and optionally a passphrase for the private key. The
certificate must be in PEM format.

122www.balasys.hu

Class Certificate



When configuring Zorp manually using its configuration file, use the regular constructor of the Certificate class
to load a certificate from a string. To load a certificate from a file, use the Certificate.fromFile method.

Example 5.20. Loading a certificate
The following example loads a certificate from the configuration file.

my_certificate = "-----BEGIN CERTIFICATE-----

MIICUTCCAfugAwIBAgIBADANBgkqhkiG9w0BAQQFADBXMQswCQYDVQQGEwJDTjEL

MAkGA1UECBMCUE4xCzAJBgNVBAcTAkNOMQswCQYDVQQKEwJPTjELMAkGA1UECxMC

VU4xFDASBgNVBAMTC0hlcm9uZyBZYW5nMB4XDTA1MDcxNTIxMTk0N1oXDTA1MDgx

NDIxMTk0N1owVzELMAkGA1UEBhMCQ04xCzAJBgNVBAgTAlBOMQswCQYDVQQHEwJD

TjELMAkGA1UEChMCT04xCzAJBgNVBAsTAlVOMRQwEgYDVQQDEwtIZXJvbmcgWWFu

ZzBcMA0GCSqGSIb3DQEBAQUAA0sAMEgCQQCp5hnG7ogBhtlynpOS21cBewKE/B7j

V14qeyslnr26xZUsSVko36ZnhiaO/zbMOoRcKK9vEcgMtcLFuQTWDl3RAgMBAAGj

gbEwga4wHQYDVR0OBBYEFFXI70krXeQDxZgbaCQoR4jUDncEMH8GA1UdIwR4MHaA

FFXI70krXeQDxZgbaCQoR4jUDncEoVukWTBXMQswCQYDVQQGEwJDTjELMAkGA1UE

CBMCUE4xCzAJBgNVBAcTAkNOMQswCQYDVQQKEwJPTjELMAkGA1UECxMCVU4xFDAS

BgNVBAMTC0hlcm9uZyBZYW5nggEAMAwGA1UdEwQFMAMBAf8wDQYJKoZIhvcNAQEE

BQADQQA/ugzBrjjK9jcWnDVfGHlk3icNRq0oV7Ri32z/+HQX67aRfgZu7KWdI+Ju

Wm7DCfrPNGVwFWUQOmsPue9rZBgO

-----END CERTIFICATE-----"

my_certificate_object = Certificate(my_certificate, 'mypassphrase')

The following example loads a certificate from an external file.

my_certificate_object = Certificate.fromFile("/tmp/my_certificate.pem", 'mypassphrase')

5.5.4.1. Attributes of Certificate

certificate_file_path (certificatechain)

Default: n/a

The path and filename to the certificate file. The certificate must be in PEM format.

private_key_password (string)

Default: None

Passphrase used to access the private key of the certificate specified in certificate_file_path.

5.5.4.2. Certificate methods

DescriptionMethod

Load a certificate from a string, and access it using its
passphrase

__init__(self, certificate, private_key)

Load a certificate from a file, and access it using its
passphrase

fromFile(certificate_file_path, private_key)

Table 5.44. Method summary

Method __init__(self, certificate, private_key)

Initializes a Certificate instance by loading a certificate from a string, and accesses it using its passphrase. To
load a certificate from a file, use the Certificate.fromFile method.

123www.balasys.hu

Class Certificate



Arguments of __init__

certificate_file_path (certificate)

Default: n/a

The path and filename to the certificate file. The certificate must be in PEM format.

private_key_password (string)

Default: None

Passphrase used to access the private key of the certificate specified in certificate_file_path.

Method fromFile(certificate_file_path, private_key)

Initializes a Certificate instance by loading a certificate from a file, and accesses it using its passphrase.

Arguments of fromFile

certificate_file_path (certificate)

Default: n/a

The path and filename to the certificate file. The certificate must be in PEM format.

passphrase (string)

Default: None

Passphrase used to access the private key specified in certificate_file_path.

5.5.5. Class CertificateCA

The CertificateCA class stores a CA certificate, its private key, and optionally a passphrase for the private key.
The certificate must be in PEM format.

5.5.5.1. Attributes of CertificateCA

certificate_file_path (certificate)

Default: n/a

The path and filename to the certificate file. The certificate must be in PEM format.

private_key_password (string)

Default: None

Passphrase used to access the private key of the certificate specified in certificate_file_path.

124www.balasys.hu

Class CertificateCA



5.5.5.2. CertificateCA methods

DescriptionMethod

Load a CAcertificate from a string, and access it using
its passphrase

__init__(self, certificate, private_key)

Table 5.45. Method summary

Method __init__(self, certificate, private_key)

Initializes a CertificateCA instance by loading a CA certificate, and accesses it using its passphrase.

Arguments of __init__

certificate_file_path (certificate)

Default: n/a

The path and filename to the CA certificate file. The certificate must be in PEM format.

private_key_password (string)

Default: None

Passphrase used to access the private key specified in certificate_file_path.

5.5.6. Class ClientCertificateVerifier

This class includes the settings and options used to verify the certificates of the peers in client-side SSL and
TLS connections.

5.5.6.1. Attributes of ClientCertificateVerifier

ca_hint_directory (string)

Default: ""

Set directory containing certificates to provide the client the list of CA certificates (subject names) that are
used for verifying the client certificate.

intermediate_revocation_check_type (enum)

Default: TLS_INTERMEDIATE_REVOCATION_SOFT_FAIL

Specify how intermediate certificates revocation status check should work.

leaf_revocation_check_type (enum)

Default: TLS_LEAF_REVOCATION_SOFT_FAIL

Specify how leaf certificate revocation status check should work.

125www.balasys.hu

Class ClientCertificateVerifier



required (boolean)

Default: TRUE

If the required is TRUE, a certificate is required from the peer.

trust_level (enum)

Default: TLS_TRUST_LEVEL_FULL

Specify which certificate should be accepted as trusted.

trusted_certs_directory (string)

Default: ""

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP
address shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA.
Each file in the directory should contain a certificate in PEM format. The filename must bethe IP address.

verify_ca_directory (string)

Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when the certificate of the peer is verified.

verify_crl_directory (string)

Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when the certificate of the peer is verified.

verify_depth (integer)

Default: 4

The length of the longest accepted CA verification chain. Longer CA chains are automatically rejected.

126www.balasys.hu

Class ClientCertificateVerifier



5.5.6.2. ClientCertificateVerifier methods

DescriptionMethod

Constructor to initialize a ClientCertificateVerifier
instance.

_ _ i n i t _ _ ( s e l f , t r u s t _ l e v e l ,
i n t e r m e d i a t e _ r e v o c a t i o n _ c h e c k _ t y p e ,
leaf_revocation_check_type, trusted_certs_directory,
required, verify_depth, verify_ca_directory,
verify_crl_directory, ca_hint_directory)

Table 5.46. Method summary

Method __init__(self, trust_level, intermediate_revocation_check_type, leaf_revocation_check_type,
trusted_certs_directory, required, verify_depth, verify_ca_directory, verify_crl_directory,
ca_hint_directory)

This constructor defines a ClientCertificateVerifier with the specified parameters.

Arguments of __init__

ca_hint_directory (string)

Default: ""

Set directory containing certificates to provide the client the list of CA certificates (subject names) that are
used for verifying the client certificate.

intermediate_revocation_check_type (enum)

Default: TLS_INTERMEDIATE_REVOCATION_SOFT_FAIL

Specify how intermediate certificates revocation status check should work.

leaf_revocation_check_type (enum)

Default: TLS_LEAF_REVOCATION_SOFT_FAIL

Specify how leaf certificate revocation status check should work.

required (boolean)

Default: TRUE

If the required is TRUE, a certificate is required from the peer.

trust_level (enum)

Default: TLS_TRUST_LEVEL_FULL

Specify which certificate should be accepted as trusted.

127www.balasys.hu

Class ClientCertificateVerifier



trusted_certs_directory (string)

Default: ""

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP
address shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA.
Each file in the directory should contain a certificate in PEM format. The filename must bethe IP address.

verify_ca_directory (string)

Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when the certificate of the peer is verified.

verify_crl_directory (string)

Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when the certificate of the peer is verified.

verify_depth (integer)

Default: 4

The length of the longest accepted CA verification chain. Longer CA chains are automatically rejected.

5.5.7. Class ClientNoneVerifier

This class disables every certificate verification in client-side SSL and TLS connections.

5.5.8. Class ClientOnlyEncryption

The ClientOnlyEncryption class handles scenarios when only the client-Zorp connection is encrypted, the
Zorp-server connection is not.

5.5.8.1. Attributes of ClientOnlyEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

128www.balasys.hu

Class ClientNoneVerifier



client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

5.5.8.2. ClientOnlyEncryption methods

DescriptionMethod

Initializes SSL/TLS connection on the client side.__init__(self, client_certificate_generator,
client_verify, client_ssl_options)

Table 5.47. Method summary

Method __init__(self, client_certificate_generator, client_verify, client_ssl_options)

The ClientOnlyEncryption class handles scenarios when only the client-Zorp connection is encrypted, the
Zorp-server connection is not.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

5.5.9. Class ClientOnlyStartTLSEncryption

The ClientOnlyStartTLSEncryption class handles scenarios when the client can optionally request STARTTLS
encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS. The
server-side connection will not be encrypted.

Warning
If the client does not send a STARTTLS request, the client-side communication will not be encrypted at all. The server-side connection
will never be encrypted.

129www.balasys.hu

Class ClientOnlyStartTLSEncryption



5.5.9.1. Attributes of ClientOnlyStartTLSEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

5.5.9.2. ClientOnlyStartTLSEncryption methods

DescriptionMethod

The client can optionally request STARTTLS
encryption, but the server-side connection is always
unencrypted.

__init__(self, client_certificate_generator,
client_verify, client_ssl_options)

Table 5.48. Method summary

Method __init__(self, client_certificate_generator, client_verify, client_ssl_options)

The ClientOnlyStartTLSEncryption class handles scenarios when the client can optionally request STARTTLS
encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS. The
server-side connection will not be encrypted.

Warning
If the client does not send a STARTTLS request, the client-side communication will not be encrypted at all. The server-side connection
will never be encrypted.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

130www.balasys.hu

Class ClientOnlyStartTLSEncryption



client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifier()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

5.5.10. Class ClientSSLOptions

This class (based on the SSLOptions class) collects the TLS and SSL settings directly related to encryption,
for example, the permitted protocol versions, ciphers, session reuse settings, and so on.

5.5.10.1. Attributes of ClientSSLOptions

cipher (enum)

Default: n/a

Specifies the allowed ciphers. For details, see Table 5.31, Constants for cipher selection (p. 116).

cipher_server_preference (boolean)

Default: FALSE

Use server and not client preference order when determining which cipher suite, signature algorithm or elliptic
curve to use for an incoming connection.

ciphers_tlsv1_3 (enum)

Default: n/a

Specifies the allowed ciphers for TLSv1.3 connections. For details, see Table 5.32, Constants for TLSv1.3
cipher selection (p. 117).

dh_params (dhparams)

Default: None

The DH parameter used by ephemeral DH key generarion. Please be mind that this option is ignored in
TLSv1.3 as it does not support custom DH parameters.

disable_compression (boolean)

Default: FALSE

Set this to TRUE to disable support for SSL/TLS compression even if it is supported. Please be mind that
this option is ignored in TLSv1.3 as it does not support compression.

131www.balasys.hu

Class ClientSSLOptions



disable_send_root_ca (boolean)

Default: False

Inhibit sending Root CA to client, even if present in local certificate chain.

disable_session_cache (boolean)

Default: FALSE

Do not store session information in the session cache. Set this option to TRUE to disable SSL session reuse.
Please be mind that this option is ignored in TLSv1.3 as it does not support session IDs.

disable_ticket (boolean)

Default: FALSE

Session tickets are a method for SSL session reuse, described in RFC 5077. Set this option to TRUE to disable
SSL session reuse using session tickets.

disable_tlsv1 (boolean)

Default: TRUE

Do not allow using TLSv1 in the connection.

disable_tlsv1_1 (boolean)

Default: FALSE

Do not allow using TLSv1.1 in the connection.

disable_tlsv1_2 (boolean)

Default: FALSE

Do not allow using TLSv1.2 in the connection.

disable_tlsv1_3 (boolean)

Default: FALSE

Do not allow using TLSv1.3 in the connection.

session_cache_size (integer)

Default: 20480

The number of sessions stored in the session cache for SSL session reuse. Please be mind that this option is
ignored in TLSv1.3 as it does not support session IDs.

132www.balasys.hu

Class ClientSSLOptions



shared_groups (enum)

Default: n/a

Specifies the allowed shared groups. For details, see Table 5.33, Constants for shared group selection (p. 117).

5.5.10.2. ClientSSLOptions methods

DescriptionMethod

Constructor to initialize a ClientSSLOptions instance.__init__(self, method, cipher, ciphers_tlsv1_3,
shared_groups, cipher_server_preference, timeout,
disable_sslv2, disable_sslv3, disable_tlsv1,
disable_tlsv1_1, disable_tlsv1_2, disable_tlsv1_3,
session_cache_size, disable_session_cache,
disable_ticket, disable_compression, dh_params,
disable_renegotiation, disable_send_root_ca)

Table 5.49. Method summary

Method __init__(self, method, cipher, ciphers_tlsv1_3, shared_groups, cipher_server_preference,
timeout, disable_sslv2, disable_sslv3, disable_tlsv1, disable_tlsv1_1, disable_tlsv1_2, disable_tlsv1_3,
session_cache_size, disable_session_cache, disable_ticket, disable_compression, dh_params,
disable_renegotiation, disable_send_root_ca)

This constructor defines a ClientSSLOptions with the specified parameters.

Arguments of __init__

cipher (enum)

Default: n/a

Specifies the allowed ciphers. For details, see Table 5.31, Constants for cipher selection (p. 116).

cipher_server_preference (boolean)

Default: FALSE

Use server and not client preference order when determining which cipher suite, signature algorithm or elliptic
curve to use for an incoming connection.

ciphers_tlsv1_3 (enum)

Default: n/a

Specifies the allowed ciphers for TLSv1.3 connections. For details, see Table 5.32, Constants for TLSv1.3
cipher selection (p. 117).

133www.balasys.hu

Class ClientSSLOptions



dh_param_file_path (string)

Default: None

The path and filename to the DH parameter file. The DH parameter file must be in PEM format. Please be
mind that this option is ignored in TLSv1.3 as it does not support custom DH parameters.

disable_compression (boolean)

Default: FALSE

Set this to TRUE to disable support for SSL/TLS compression even if it is supported. Please be mind that
this option is ignored in TLSv1.3 as it does not support compression.

disable_renegotiation (boolean)

Default: TRUE

Set this to TRUE to disable client initiated renegotiation. Please be mind that this option is ignored in TLSv1.3
as it does not support renegotiation.

disable_send_root_ca (boolean)

Default: FALSE

Set this to TRUE to inhibit sending root ca to client, even if present in local chain.

disable_session_cache (boolean)

Default: FALSE

Do not store session information in the session cache. Set this option to TRUE to disable SSL session reuse.
Please be mind that this option is ignored in TLSv1.3 as it does not support session IDs.

disable_ticket (boolean)

Default: FALSE

Session tickets are a method for SSL session reuse, described in RFC 5077. Set this option to TRUE to disable
SSL session reuse using session tickets.

disable_tlsv1 (boolean)

Default: TRUE

Do not allow using TLSv1 in the connection.

disable_tlsv1_1 (boolean)

Default: FALSE

Do not allow using TLSv1.1 in the connection.

134www.balasys.hu

Class ClientSSLOptions



disable_tlsv1_2 (boolean)

Default: FALSE

Do not allow using TLSv1.2 in the connection.

disable_tlsv1_3 (boolean)

Default: FALSE

Do not allow using TLSv1.3 in the connection.

session_cache_size (integer)

Default: 20480

The number of sessions stored in the session cache for SSL session reuse. Please be mind that this option is
ignored in TLSv1.3 as it does not support session IDs.

shared_groups (enum)

Default: n/a

Specifies the allowed shared groups. For details, see Table 5.33, Constants for shared group selection (p. 117).

timeout (integer)

Default: 300

Drop idle connection if the timeout value (in seconds) expires.

5.5.11. Class DHParam

The DHParam class stores DH parameters. The DH parameters must be in PEM format.

When configuring Zorp manually using its configuration file, use the regular constructor of the DHParam class
to load DH parameters key from a string. To load DH parameters key from a file, use the DHParam.fromFile
method.

Example 5.21. Loading DH parameters
The following example loads DH parameters from the configuration file.

my_dh_params = "-----BEGIN DH PARAMETERS-----

MIIBCAKCAQEAvvO8WguTNtkDs33qe5u1T7IjllmTrRnwFV4z7W4A0Du9j+prdRdD

UAblHYBrQn30Fsfg/6WDVTmUj8Lvgn9aFjWYTe6U3Ey7CQt4MBw2BhCO3Rl9KDw7

Im8UdBBhxuekuqZGifMkEEFzAcbiQepvBXiGMucDWgbLaaTY/FrKqb5O9DvoenSV

Aj/VNFnsefQTHXGo1Urg8ixaWj7kTNhM3x7kj7BhK4ALfBuv/93aet2SQjU207C6

0j3mku8CD93Xsbng6rIzmRd6pCANEFH0Rgo1OX7+vMwwG5h5YDsF8cVAcRroZkxR

dyPdVNzYlz1X3Jxln3It/6F2yyx/FOXAGwIBAg==

-----END DH PARAMETERS-----"

my_dh_params_object = DHParam(my_dh_params)

The following example loads DH parameters key from an external file.

my_dh_params_object = DHParam.fromFile("/tmp/my_dh_params.pem")

135www.balasys.hu

Class DHParam



5.5.11.1. Attributes of DHParam

params (string)

Default: ""

The path and filename to the DH parameters file. The DH parameters must be in PEM format.

5.5.11.2. DHParam methods

DescriptionMethod

Load DH parameters key from a string__init__(self, params)

Load a DH parameters from a filefromFile(file_path)
Table 5.50. Method summary

Method __init__(self, params)

Initializes a DHParam instance by loading DH parameters key from a string. To load a DH parameters from a
file, use the DHParam.fromFile method.

Arguments of __init__

params (certificate)

Default: n/a

The path and filename to the DH parameters file. The DH parameters must be in PEM format.

Method fromFile(file_path)

Initializes a DHParam instance by loading a DH parameters from a file.

Arguments of fromFile

file_path (dhparam)

Default: n/a

The path and filename to the DH parameters file. The DH parameters must be in PEM format.

5.5.12. Class DynamicCertificate

This class is able to generate certificates mimicking another certificate, primarily used to transfer the information
of a server's certificate to the client in keybridging. Can be used only in TwoSidedEncryption. For details on
configuring keybridging, see Section 3.2.7, Keybrigding certificates (p. 16).

136www.balasys.hu

Class DynamicCertificate



5.5.12.1. DynamicCertificate methods

DescriptionMethod

Initializes a DynamicCertificate instance to use for
keybridging

__init__(self, private_key, trusted_ca, untrusted_ca,
cache_directory, extension_whitelist)

Table 5.51. Method summary

Method __init__(self, private_key, trusted_ca, untrusted_ca, cache_directory, extension_whitelist)

Arguments of __init__

cache_directory (string)

Default: None

The cache directory to store the keybridged generated certificates, for example, /var/lib/zorp/sslbridge/.
The zorp user must have write privileges for this directory.

extension_whitelist (complex)

Default: None

private_key (class)

Default: n/a

The private key of the CA certificate set in trusted_ca

trusted_ca (class)

Default: n/a

The CA certificate that will used to sign the keybridged certificate of trusted peers.

untrusted_ca (class)

Default: n/a

The CA certificate that will used to sign the keybridged certificate of untrusted peers.

5.5.13. Class DynamicServerEncryption

The DynamicServerEncryption class handles scenarios when both the client-firewall and the firewall-server
connections could be encrypted but the server side encryption parameters set dynamically from proxies.

137www.balasys.hu

Class DynamicServerEncryption



5.5.13.1. Attributes of DynamicServerEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_security (enum)

Default: n/a

Set security mode.

client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

5.5.13.2. DynamicServerEncryption methods

DescriptionMethod

Initializes SSL/TLS connection on the client side.__ i n i t __ ( s e l f , c l i e n t _ s e cu r i t y,
client_certificate_generator, client_verify,
client_ssl_options)

Table 5.52. Method summary

Method __init__(self, client_security, client_certificate_generator, client_verify, client_ssl_options)

The DynamicServerEncryption class handles scenarios when both the client-firewall and the firewall-server
connections could be encrypted but the server side encryption parameters set dynamically from proxies.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

138www.balasys.hu

Class DynamicServerEncryption



client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

5.5.14. Class EncryptionPolicy

This class encapsulates a named set of encryption settings and an associated Encryption policy instance.
Encryption policies provide a way to re-use encryption settings without having to define encryption settings
for each service individually.

5.5.14.1. Attributes of EncryptionPolicy

encryption (class)

Default: n/a

An encryption scenario instance that will be used in the Encryption Policy.
This describes the scenario and the settings how encryption is used in the scenario, for example:

■ Both the client-side and the server-side connections are encrypted (TwoSidedEncryption)

■ Only the client-side connection is encrypted (ClientOnlyEncryption)

■ Only the server-side connection is encrypted (ServerOnlyEncryption)

■ STARTTLS is enabled (ClientOnlyStartTLSEncryption, FakeStartTLSEncryption, or
ForwardStartTLSEncryption)

To customize the settings of a scenario (for example, to set the used certificates), derive a class from the
selected scenario, set its parameters as needed for your environment, and use the customized class.

name (string)

Default: n/a

Name identifying the Encryption policy.

139www.balasys.hu

Class EncryptionPolicy



5.5.14.2. EncryptionPolicy methods

DescriptionMethod

Constructor to create an Encryption policy.__init__(self, name, encryption)
Table 5.53. Method summary

Method __init__(self, name, encryption)

This constructor initializes an Encryption policy, based on the settings of the encryption parameter. This
describes the scenario and the settings how encryption is used in the scenario, for example:

■ Both the client-side and the server-side connections are encrypted (TwoSidedEncryption)

■ Only the client-side connection is encrypted (ClientOnlyEncryption)

■ Only the server-side connection is encrypted (ServerOnlyEncryption)

■ STARTTLS is enabled (ClientOnlyStartTLSEncryption, FakeStartTLSEncryption, or
ForwardStartTLSEncryption)

To customize the settings of a scenario (for example, to set the used certificates), derive a class from the selected
scenario, set its parameters as needed for your environment, and use the customized class.

Arguments of __init__

encryption (class)

Default: n/a

An encryption scenario instance that will be used in the Encryption Policy.

name (string)

Default: n/a

Name identifying the Encryption policy.

5.5.15. Class FakeStartTLSEncryption

The FakeStartTLSEncryption class handles scenarios when the client can optionally request STARTTLS
encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS. The
server-side connection will always be encrypted.

Warning
If the client does not send a STARTTLS request, the client-side communication will not be encrypted at all. The server-side connection
will always be encrypted.

140www.balasys.hu

Class FakeStartTLSEncryption



5.5.15.1. Attributes of FakeStartTLSEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

server_ssl_options (class)

Default: ServerSSLOptions()

The protocol-level encryption settings used on the server side. This must be a ServerSSLOptions instance.

server_verify (class)

Default: ServerCertificateVerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.15.2. FakeStartTLSEncryption methods

DescriptionMethod

Initializes a FakeStartTLSEncryption instance to
handle scenarios when the client can optionally request
STARTTLS encryption.

__init__(self, client_certificate_generator,
client_verify, server_verify, client_ssl_options,
server_ssl_options)

Table 5.54. Method summary

Method __init__(self, client_certificate_generator, client_verify, server_verify, client_ssl_options,
server_ssl_options)

The FakeStartTLSEncryption class handles scenarios when the client can optionally request STARTTLS
encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS. The
server-side connection will always be encrypted.

141www.balasys.hu

Class FakeStartTLSEncryption



Warning
If the client does not send a STARTTLS request, the client-side communication will not be encrypted at all. The server-side connection
will always be encrypted.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

server_ssl_options (class)

Default: ServerSSLOptions()

The protocol-level encryption settings used on the server side. This must be a ServerSSLOptions instance.

server_verify (class)

Default: ServerCertificateVerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.16. Class ForwardStartTLSEncryption

The ForwardStartTLSEncryption class handles scenarios when the client can optionally request STARTTLS
encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS, and the
request will be forwarded to the server. If the server supports STARTTLS, the server-side connection will also
use STARTTLS.

Warning
If the client does not send a STARTTLS request, the communication will not be encrypted at all. Both the client-Zorp and the Zorp-server
connections will be unencrypted.

142www.balasys.hu

Class ForwardStartTLSEncryption



5.5.16.1. Attributes of ForwardStartTLSEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

server_ssl_options (class)

Default: ServerSSLOptions()

The protocol-level encryption settings used on the server side. This must be a ServerSSLOptions instance.

server_verify (class)

Default: ServerCertificateVerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.16.2. ForwardStartTLSEncryption methods

DescriptionMethod

Initializes a ForwardStartTLSEncryption instance to
handle scenarios when the client can optionally request
STARTTLS encryption.

__init__(self, client_certificate_generator,
client_verify, server_verify, client_ssl_options,
server_ssl_options)

Table 5.55. Method summary

Method __init__(self, client_certificate_generator, client_verify, server_verify, client_ssl_options,
server_ssl_options)

Initializes a ForwardStartTLSEncryption instance to handle scenarios when the client can optionally request
STARTTLS encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS,
and the request will be forwarded to the server. If the server supports STARTTLS, the server-side connection
will also use STARTTLS.

143www.balasys.hu

Class ForwardStartTLSEncryption



Warning
If the client does not send a STARTTLS request, the communication will not be encrypted at all. Both the client-Zorp and the Zorp-server
connections will be unencrypted.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

server_ssl_options (class)

Default: ServerSSLOptions()

The protocol-level encryption settings used on the server side. This must be a ServerSSLOptions instance.

server_verify (class)

Default: ServerCertificateVerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.17. Class PrivateKey

The PrivateKey class stores a private key and optionally a passphrase for the private key. The private key must
be in PEM format.

When configuring Zorp manually using its configuration file, use the regular constructor of the PrivateKey
class to load a private key from a string. To load a private key from a file, use the PrivateKey.fromFile method.

Example 5.22. Loading a private key
The following example loads a private key from the configuration file.

my_private_key = "-----BEGIN RSA PRIVATE KEY-----

MIIEpgIBAAKCAQEA9rbxqq+Zi70nRFAZe7SCTB6VgzP1PhkiUm0PmbwFmROSlSSy

yMPSyIzaQqwELyOSQTZtsT3jhd6MCFPBZntym63/GwDuethGSjE9y8rt/9yr+T3I

zz+6ABnZXHJ38tdGYataF1Ndi3CsY5NXGszVFv1Is17P5mbYWQgJ7QzI/a5mPKa+

9pVXsDQthEV3BVUawIEJJnS0THD5XZQJ/MX6F4RPn+2MC9i/RbcA0RVnLPmt2eiy

144www.balasys.hu

Class PrivateKey



NV3+55sKdd7GpdMmEbRv9HZyW2xJNyu1xYbwU9YIP88dHCgvqoOgkAX2HLxCJOy6

2gvsS8J7HEbohD98dxPJX7P8w9juORi6Hpsq0wIDAQABAoIBAQDXStIdJtuRC+GG

RXfXca/6iP3j3qV2KSzATRe+CkvAR0o1CC9T7z6zb+bPI5kLIblxWvPiJaW0nn4I

jj5JFhTvMalagTeaz7yW5d2NR2rlSkZwW7Au2uePSv9ZIzL1IVLzzDnz/PW2xv5I

br0mT/Tr+N9GV8iIwNqu5sryp6OFasKB/55LhCcKVYrkdy2WhJc8Y8TXUjF4n8Jn

Xuyd44N6uu5RUiEgN7bPszO1F1T8ujCICwDNnYUw9lwSVvEC2EbTg84lu2UcnE4k

grB7rCKLooDpYlKjXx/1o9Dj9Uv3hwLpSTw2dYRoZS0kOFIKYACP1QcininrTGeL

cOPXyK6BAoGBAPvnBd7/U94Krp9Bp3jjxUEnlFrgf+B7QgRKpG7tN3RDRJmIVL8Z

mnxvbW6o4hsq4TzF/ratnRjqp+79Tw5wUz36G98ftWlTUs62OBznIkwImDGo+ysv

3QK8XUZ4Wg3EcnE5bG8AmOKoDRazc0g7UxopbHC+SNLRMZA/2dBvVh4zAoGBAPq6

UWIfcSnLyFYy7EPh3P7qmotBNPORgcX6aKdwR7pzk6MqTADHxKvIP+eeDEWpF58T

RYBW7KxN4h6cNMglRZBbhED3hONJkpYMGSq0hyczN40SIHHrf3iBO7p35v7Eee82

2H/rT6BNrQF1fPIbz5spgT+eV5BuTAB7bsbWiuDhAoGBALVAgeT26y21mfhVkV9W

5LQA+qp5JworJlFYNADtBx3M2StwASqQDazDsIYTVr4dmHvWK3Teb09iaPt5oMzO

3daWhD+D3VCv98FtM+r4FKGI/Zmd8Twd8HTrfGIcbw/A7mex3efxEhDkwqY28Rhk

N2N3suNcx6GJjJQynVNxCRIpAoGBAOJyIEqUxynOiPOBLm3osiXxUP7wN5i8FA7w

qFCBUecNt4uoCdiyk+fqBf10evT3UQQ07ZKJ71t3RAANaIZTU06buQjMBFMbAa9O

4fP19BLtaQCaHH+HCCuX3I/+9rumS9JHIKX3qoTHYrdsmxo3D/u9MqR4p/EkDLRq

xpQC9I9BAoGBAPZtxtEKc0xhYeuor4qIQbt1edrO+cfEzaXyUvjleLdg8rU3Yeh3

JLbYgcSNr4rMvEwhuvwbwgWJjed7TvqjKKEYYSWW2ESwcmAjNIhDBVzX9oh1cY34

Ae/P63OHt89sWbb5oG2+fcb7xCwH3kYmVgT4/xPv0FQRspwpErKYlCWg

-----END RSA PRIVATE KEY-----"

my_private_key_object = PrivateKey(my_private_key, 'mypassphrase')

The following example loads a private key from an external file.

my_private_key_object = PrivateKey.fromFile("/tmp/my_private.key", 'mypassphrase')

5.5.17.1. Attributes of PrivateKey

key_file_path (string)

Default: ""

The path and filename to the private key file. The private key must be in PEM format.

passphrase (string)

Default: None

Passphrase used to access the private key specified in key_file_path.

5.5.17.2. PrivateKey methods

DescriptionMethod

Load a private key from a string, and access it using
its passphrase

__init__(self, key, passphrase)

Load a private key from a file, and access it using its
passphrase

fromFile(key_file_path, passphrase)

Table 5.56. Method summary

Method __init__(self, key, passphrase)

Initializes a PrivateKey instance by loading a private key from a string, and accesses it using its passphrase.
To load a private key from a file, use the PrivateKey.fromFile method.

145www.balasys.hu

Class PrivateKey



Arguments of __init__

key_file_path (certificate)

Default: n/a

The path and filename to the private key file. The private key must be in PEM format.

passphrase (string)

Default: None

Passphrase used to access the private key specified in key_file_path.

Method fromFile(key_file_path, passphrase)

Initializes a PrivateKey instance by loading a private key from a file, and accesses it using its passphrase.

Arguments of fromFile

key_file_path (certificate)

Default: n/a

The path and filename to the private key file. The private key must be in PEM format.

passphrase (string)

Default: None

Passphrase used to access the private key specified in key_file_path.

5.5.18. Class SNIBasedCertificate

This class adds support for the Server Name Indication (SNI) TLS extension, as described in RFC 6066. It
stores a mapping between hostnames and certificates, and automatically selects the certificate to show to the
peer if the peer has sent an SNI request.

5.5.18.1. Attributes of SNIBasedCertificate

default (complex)

Default: None

The certificate to show to the peer if no matching hostname is found in hostname_certificate_map.

hostname_certificate_map (complex)

Default: n/a

146www.balasys.hu

Class SNIBasedCertificate

http://tools.ietf.org/html/rfc6066


hostname_certificate_map (complex)

A hash containing a matcher-certificate map. Each element of the hash contains a matcher and a certificate:
if a matcher matches the hostname in the SNI request, the certificate is showed to the peer. You can use any
matcher policy, though in most cases, RegexpMatcher will be adequate. Different elements of the hash can
use different types of matchers, for example, RegexpMatcher and RegexpFileMatcher. For details on matcher
policies, see Section 5.7, Module Matcher (p. 163).

hostname_certificate_map={

RegexpMatcher(

match_list=("myfirstdomain.example.com", )): StaticCertificate(

certificates=(Certificate.fromFile(

certificate_file_path="/etc/key.d/myfirstdomain/cert.pem",

private_key=PrivateKey.fromFile(

"/etc/key.d/myfirstdomain/key.pem")),)),}

5.5.18.2. SNIBasedCertificate methods

DescriptionMethod

__init__(self, hostname_certificate_map, default)
Table 5.57. Method summary

Method __init__(self, hostname_certificate_map, default)

Arguments of __init__

default (complex)

Default: None

The certificate to show to the peer if no matching hostname is found in hostname_certificate_map.

hostname_certificate_map (complex)

Default: n/a

A matcher-certificate map that describes which certificate will be showed to the peer if the matcher part
matches the hostname in the SNI request. For details on matcher policies, see Section 5.7, Module
Matcher (p. 163).

5.5.19. Class SSLOptions

This class collects the TLS and SSL settings directly related to encryption, for example, the permitted protocol
versions, ciphers, session reuse settings, and so on. Note that you cannot use this class directly, use an appropriate
derived class, for example, ClientSSLOptions or ServerSSLOptions instead.

147www.balasys.hu

Class SSLOptions



5.5.19.1. Attributes of SSLOptions

cipher (complex)

Default: n/a

Specifies the allowed ciphers. For details, see Table 5.31, Constants for cipher selection (p. 116).

ciphers_tlsv1_3 (complex)

Default: n/a

Specifies the allowed ciphers for TLSv1.3 connections. For details, see Table 5.32, Constants for TLSv1.3
cipher selection (p. 117).

disable_compression (boolean)

Default: FALSE

Set this to TRUE to disable support for SSL/TLS compression even if it is supported. Please be mind that
this option is ignored in TLSv1.3 as it does not support compression.

disable_session_cache (boolean)

Default: FALSE

Do not store session information in the session cache. Set this option to TRUE to disable SSL session reuse.
Please be mind that this option is ignored in TLSv1.3 as it does not support session IDs.

disable_ticket (boolean)

Default: FALSE

Session tickets are a method for SSL session reuse, described in RFC 5077. Set this option to TRUE to disable
SSL session reuse using session tickets.

disable_tlsv1 (boolean)

Default: TRUE

Do not allow using TLSv1 in the connection.

disable_tlsv1_1 (boolean)

Default: FALSE

Do not allow using TLSv1.1 in the connection.

disable_tlsv1_2 (boolean)

Default: FALSE

Do not allow using TLSv1.2 in the connection.

148www.balasys.hu

Class SSLOptions



disable_tlsv1_3 (boolean)

Default: FALSE

Do not allow using TLSv1.3 in the connection.

session_cache_size (integer)

Default: 20480

The number of sessions stored in the session cache for SSL session reuse. Please be mind that this option is
ignored in TLSv1.3 as it does not support session IDs.

shared_groups (complex)

Default: n/a

Specifies the allowed shared groups. For details, see Table 5.33, Constants for shared group selection (p. 117).

5.5.19.2. SSLOptions methods

DescriptionMethod

Constructor to initialize an SSLOptions instance.__init__(self, cipher, ciphers_tlsv1_3, shared_groups,
timeout, disable_tlsv1, disable_tlsv1_1,
disable_tlsv1_2, disable_tlsv1_3, session_cache_size,
disable_session_cache, disable_ticket,
disable_compression)

Table 5.58. Method summary

Method __init__(self, cipher, ciphers_tlsv1_3, shared_groups, timeout, disable_tlsv1, disable_tlsv1_1,
disable_tlsv1_2, disable_tlsv1_3, session_cache_size, disable_session_cache, disable_ticket,
disable_compression)

This constructor defines an SSLOptions with the specified parameters.

Arguments of __init__

cipher (enum)

Default: n/a

Specifies the allowed ciphers. For details, see Table 5.31, Constants for cipher selection (p. 116).

ciphers_tlsv1_3 (enum)

Default: n/a

Specifies the allowed ciphers for TLSv1.3 connections. For details, see Table 5.32, Constants for TLSv1.3
cipher selection (p. 117).

149www.balasys.hu

Class SSLOptions



disable_compression (boolean)

Default: FALSE

Set this to TRUE to disable support for SSL/TLS compression even if it is supported. Please be mind that
this option is ignored in TLSv1.3 as it does not support compression.

disable_session_cache (boolean)

Default: FALSE

Do not store session information in the session cache. Set this option to TRUE to disable SSL session reuse.
Please be mind that this option is ignored in TLSv1.3 as it does not support session IDs.

disable_ticket (boolean)

Default: FALSE

Session tickets are a method for SSL session reuse, described in RFC 5077. Set this option to TRUE to disable
SSL session reuse using session tickets.

disable_tlsv1 (boolean)

Default: TRUE

Do not allow using TLSv1 in the connection.

disable_tlsv1_1 (boolean)

Default: FALSE

Do not allow using TLSv1.1 in the connection.

disable_tlsv1_2 (boolean)

Default: FALSE

Do not allow using TLSv1.2 in the connection.

disable_tlsv1_3 (boolean)

Default: FALSE

Do not allow using TLSv1.3 in the connection.

session_cache_size (integer)

Default: 20480

The number of sessions stored in the session cache for SSL session reuse. Please be mind that this option is
ignored in TLSv1.3 as it does not support session IDs.

150www.balasys.hu

Class SSLOptions



shared_groups (enum)

Default: n/a

Specifies the allowed shared groups. For details, see Table 5.33, Constants for shared group selection (p. 117).

timeout (integer)

Default: 300

Drop idle connection if the timeout value (in seconds) expires.

5.5.20. Class ServerCertificateVerifier

This class includes the settings and options used to verify the certificates of the peers in server-side SSL and
TLS connections. Note that the ServerCertificateVerifier class always requests a certificate from the server.

5.5.20.1. Attributes of ServerCertificateVerifier

check_subject (boolean)

Default: TRUE

If the check_subject parameter is TRUE, the Subject of the server-side certificate is compared with
application-layer information (for example, it checks whether the Subject matches the hostname in the URL).
For details, see Section 3.2.3.5, Certificate verification options (p. 13).

intermediate_revocation_check_type (enum)

Default: TLS_INTERMEDIATE_REVOCATION_SOFT_FAIL

Specify how intermediate certificates revocation status check should work.

leaf_revocation_check_type (enum)

Default: TLS_LEAF_REVOCATION_SOFT_FAIL

Specify how leaf certificate revocation status check should work.

trust_level (enum)

Default: TLS_TRUST_LEVEL_FULL

Specify which certificate should be accepted as trusted.

trusted_certs_directory (string)

Default: ""

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP
address shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA.
Each file in the directory should contain a certificate in PEM format. The filename must bethe IP address.

151www.balasys.hu

Class ServerCertificateVerifier



verify_ca_directory (string)

Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when the certificate of the peer is verified.

verify_crl_directory (string)

Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when the certificate of the peer is verified.

verify_depth (integer)

Default: 4

The length of the longest accepted CA verification chain. Longer CA chains are automatically rejected.

5.5.20.2. ServerCertificateVerifier methods

DescriptionMethod

Constructor to initialize a ServerCertificateVerifier
instance.

_ _ i n i t _ _ ( s e l f , t r u s t _ l e v e l ,
i n t e r m e d i a t e _ r e v o c a t i o n _ c h e c k _ t y p e ,
leaf_revocation_check_type, trusted_certs_directory,
verify_depth, verify_ca_directory, verify_crl_directory,
check_subject)

Table 5.59. Method summary

Method __init__(self, trust_level, intermediate_revocation_check_type, leaf_revocation_check_type,
trusted_certs_directory, verify_depth, verify_ca_directory, verify_crl_directory, check_subject)

This constructor defines a ServerCertificateVerifier with the specified parameters.

Arguments of __init__

check_subject (boolean)

Default: TRUE

If the check_subject parameter is TRUE, the Subject of the server-side certificate is compared with
application-layer information (for example, it checks whether the Subject matches the hostname in the URL).
For details, see Section 3.2.3.5, Certificate verification options (p. 13).

intermediate_revocation_check_type (enum)

Default: TLS_INTERMEDIATE_REVOCATION_SOFT_FAIL

Specify how intermediate certificates revocation status check should work.

152www.balasys.hu

Class ServerCertificateVerifier



leaf_revocation_check_type (enum)

Default: TLS_LEAF_REVOCATION_SOFT_FAIL

Specify how leaf certificate revocation status check should work.

trust_level (enum)

Default: TLS_TRUST_LEVEL_FULL

Specify which certificate should be accepted as trusted.

trusted_certs_directory (string)

Default: ""

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP
address shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA.
Each file in the directory should contain a certificate in PEM format. The filename must bethe IP address.

verify_ca_directory (string)

Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when the certificate of the peer is verified.

verify_crl_directory (string)

Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when the certificate of the peer is verified.

verify_depth (integer)

Default: 4

The length of the longest accepted CA verification chain. Longer CA chains are automatically rejected.

5.5.21. Class ServerNoneVerifier

This class disables every certificate verification in server-side SSL and TLS connections.

5.5.22. Class ServerOnlyEncryption

The ServerOnlyEncryption class handles scenarios when only the Zorp-server connection is encrypted, the
client-Zorp connection is not.

153www.balasys.hu

Class ServerNoneVerifier



5.5.22.1. Attributes of ServerOnlyEncryption

server_certificate_generator (class)

Default: None

The class that will generate the certificate that will be showed to the server. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

server_ssl_options (class)

Default: ServerSSLOptions()

The protocol-level encryption settings used on the server side. This must be a ServerSSLOptions instance.

server_verify (class)

Default: ServerCertificateVerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.22.2. ServerOnlyEncryption methods

DescriptionMethod

Initializes SSL/TLS connection on the server side.__init__(self, server_certificate_generator,
server_verify, server_ssl_options)

Table 5.60. Method summary

Method __init__(self, server_certificate_generator, server_verify, server_ssl_options)

The ServerOnlyEncryption class handles scenarios when only the Zorp-server connection is encrypted, the
client-Zorp connection is not.

Arguments of __init__

server_certificate_generator (class)

Default: None

The class that will generate the certificate that will be showed to the server. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

server_ssl_options (class)

Default: ServerSSLOptions()

The protocol-level encryption settings used on the server side. This must be a ServerSSLOptions instance.

154www.balasys.hu

Class ServerOnlyEncryption



server_verify (class)

Default: ServerCertificateVerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.23. Class ServerSSLOptions

This class (based on the SSLOptions class) collects the TLS and SSL settings directly related to encryption,
for example, the permitted protocol versions, ciphers, session reuse settings, and so on.

5.5.23.1. Attributes of ServerSSLOptions

cipher (enum)

Default: n/a

Specifies the allowed ciphers. For details, see Table 5.31, Constants for cipher selection (p. 116).

ciphers_tlsv1_3 (enum)

Default: n/a

Specifies the allowed ciphers for TLSv1.3 connections. For details, see Table 5.32, Constants for TLSv1.3
cipher selection (p. 117).

disable_compression (boolean)

Default: FALSE

Set this to TRUE to disable support for SSL/TLS compression even if it is supported. Please be mind that
this option is ignored in TLSv1.3 as it does not support compression.

disable_session_cache (boolean)

Default: FALSE

Do not store session information in the session cache. Set this option to TRUE to disable SSL session reuse.
Please be mind that this option is ignored in TLSv1.3 as it does not support session IDs.

disable_ticket (boolean)

Default: FALSE

Session tickets are a method for SSL session reuse, described in RFC 5077. Set this option to TRUE to disable
SSL session reuse using session tickets.

disable_tlsv1 (boolean)

Default: TRUE

Do not allow using TLSv1 in the connection.

155www.balasys.hu

Class ServerSSLOptions



disable_tlsv1_1 (boolean)

Default: FALSE

Do not allow using TLSv1.1 in the connection.

disable_tlsv1_2 (boolean)

Default: FALSE

Do not allow using TLSv1.2 in the connection.

disable_tlsv1_3 (boolean)

Default: FALSE

Do not allow using TLSv1.3 in the connection.

session_cache_size (integer)

Default: 20480

The number of sessions stored in the session cache for SSL session reuse. Please be mind that this option is
ignored in TLSv1.3 as it does not support session IDs.

shared_groups (enum)

Default: n/a

Specifies the allowed shared groups. For details, see Table 5.33, Constants for shared group selection (p. 117).

5.5.23.2. ServerSSLOptions methods

DescriptionMethod

Constructor to initialize a ServerSSLOptions instance.__init__(self, method, cipher, ciphers_tlsv1_3,
shared_groups, timeout, disable_sslv2, disable_sslv3,
disable_tlsv1, disable_tlsv1_1, disable_tlsv1_2,
disable_tlsv1_3, session_cache_size,
disable_session_cache, disable_ticket,
disable_compression)

Table 5.61. Method summary

Method __init__(self, method, cipher, ciphers_tlsv1_3, shared_groups, timeout, disable_sslv2,
disable_sslv3, disable_tlsv1, disable_tlsv1_1, disable_tlsv1_2, disable_tlsv1_3, session_cache_size,
disable_session_cache, disable_ticket, disable_compression)

This constructor defines a ServerSSLOptions with the specified parameters.

156www.balasys.hu

Class ServerSSLOptions



Arguments of __init__

cipher (enum)

Default: n/a

Specifies the allowed ciphers. For details, see Table 5.31, Constants for cipher selection (p. 116).

ciphers_tlsv1_3 (enum)

Default: n/a

Specifies the allowed ciphers for TLSv1.3 connections. For details, see Table 5.32, Constants for TLSv1.3
cipher selection (p. 117).

disable_compression (boolean)

Default: FALSE

Set this to TRUE to disable support for SSL/TLS compression even if it is supported. Please be mind that
this option is ignored in TLSv1.3 as it does not support compression.

disable_session_cache (boolean)

Default: FALSE

Do not store session information in the session cache. Set this option to TRUE to disable SSL session reuse.
Please be mind that this option is ignored in TLSv1.3 as it does not support session IDs.

disable_ticket (boolean)

Default: FALSE

Session tickets are a method for SSL session reuse, described in RFC 5077. Set this option to TRUE to disable
SSL session reuse using session tickets.

disable_tlsv1 (boolean)

Default: TRUE

Do not allow using TLSv1 in the connection.

disable_tlsv1_1 (boolean)

Default: FALSE

Do not allow using TLSv1.1 in the connection.

disable_tlsv1_2 (boolean)

Default: FALSE

Do not allow using TLSv1.2 in the connection.

157www.balasys.hu

Class ServerSSLOptions



disable_tlsv1_3 (boolean)

Default: FALSE

Do not allow using TLSv1.3 in the connection.

session_cache_size (integer)

Default: 20480

The number of sessions stored in the session cache for SSL session reuse. Please be mind that this option is
ignored in TLSv1.3 as it does not support session IDs.

shared_groups (enum)

Default: n/a

Specifies the allowed shared groups. For details, see Table 5.33, Constants for shared group selection (p. 117).

timeout (integer)

Default: 300

Drop idle connection if the timeout value (in seconds) expires.

5.5.24. Class StaticCertificate

This class encapsulates a static Certificate that can be used in SSL/TLS connections.

5.5.24.1. Attributes of StaticCertificate

certificates (complex)

Default: n/a

List of certificate instances to show to the peer.

5.5.24.2. StaticCertificate methods

DescriptionMethod

Initializes a static Certificate object.__init__(self, certificates, certificate)
Table 5.62. Method summary

Method __init__(self, certificates, certificate)

A static Certificate that can be used in SSL/TLS connections.

158www.balasys.hu

Class StaticCertificate



Arguments of __init__

certificates (complex)

Default: n/a

List of certificate instances to show to the peer.

5.5.25. Class TwoSidedEncryption

The TwoSidedEncryption class handles scenarios when both the client-Zorp and the Zorp-server connections
are encrypted. If you do not need encryption on the client- or the server-side, use the ServerOnlyEncryption or
ClientOnlyEncryption classes, respectively. For a detailed example on keybridging, see Section 3.2.7, Keybrigding
certificates (p. 16).

5.5.25.1. Attributes of TwoSidedEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

server_certificate_generator (class)

Default: None

The class that will generate the certificate that will be showed to the server. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

server_ssl_options (class)

Default: ServerSSLOptions()

The protocol-level encryption settings used on the server side. This must be a ServerSSLOptions instance.

server_verify (class)

Default: ServerCertificateVerifierGroup()

159www.balasys.hu

Class TwoSidedEncryption



server_verify (class)

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.25.2. TwoSidedEncryption methods

DescriptionMethod

Initializes SSL/TLS connection with both peers.__init__(self, client_certificate_generator,
server_certificate_generator, client_verify,
server_verify, client_ssl_options, server_ssl_options)

Table 5.63. Method summary

Method __init__(self, client_certificate_generator, server_certificate_generator, client_verify,
server_verify, client_ssl_options, server_ssl_options)

The TwoSidedEncryption class handles scenarios when both the client-Zorp and the Zorp-server connections
are encrypted.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)

Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

server_certificate_generator (class)

Default: None

The class that will generate the certificate that will be showed to the server. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

server_ssl_options (class)

Default: ServerSSLOptions()

160www.balasys.hu

Class TwoSidedEncryption



server_ssl_options (class)

The protocol-level encryption settings used on the server side. This must be a ServerSSLOptions instance.

server_verify (class)

Default: ServerCertificateVerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.6. Module Keybridge

Keybridging is a method to let the client see a copy of the server's certificate (or vice versa), allowing it to
inspect it and decide about its trustworthiness. Because of proxying the SSL/TLS connection, the client is not
able to inspect the certificate of the server directly, therefore a certificate based on the server's certificate is
generated on-the-fly. This generated certificate is presented to the client.

For details on configuring keybridging, see Section 3.2.7, Keybrigding certificates (p. 16).

5.6.1. Classes in the Keybridge module

DescriptionClass

Class to perform SSL keybridging.X509KeyBridge
Table 5.64. Classes of the Keybridge module

5.6.2. Class X509KeyBridge

This class is able to generate certificates mimicking another certificate, primarily used to transfer the information
of a server's certificate to the client in keybridging. For details on configuring keybridging, see Section 3.2.7,
Keybrigding certificates (p. 16).

5.6.2.1. Attributes of X509KeyBridge

cache_directory (string)

Default: ""

The directory where all automatically generated certificates are cached.

key_file (string)

Default: ""

Name of the private key to be used for the newly generated certificates.

key_passphrase (string)

Default: ""

161www.balasys.hu

Module Keybridge



key_passphrase (string)

Passphrase required to access the private key stored in key_file.

trusted_ca_files (certificate)

Default: None

A tuple of cert_file, key_file, passphrase) for the CA used for keybridging trusted certificates.

untrusted_ca_files (certificate)

Default: None

A tuple of cert_file, key_file, passphrase) for the CA used for keybridging untrusted certificates.

5.6.2.2. X509KeyBridge methods

DescriptionMethod

None_old_init(self, key_file, cache_directory,
trusted_ca_files, untrusted_ca_files, key_passphrase,
extension_whitelist)

Table 5.65. Method summary

Method _old_init(self, key_file, cache_directory, trusted_ca_files, untrusted_ca_files, key_passphrase,
extension_whitelist)

n/a

Arguments of _old_init

cache_directory (string)

Default: "/var/lib/zorp/keybridge-cache"

The directory where all automatically generated certificates are cached.

extension_whitelist (complex)

Default: None

The following certificate extensions are transfered to the client side: Key Usage, Subject Alternative

Name, Extended Key Usage. Other extensions will be automatically deleted during keybridging. This is
needed because some certificate extensions contain references to the Issuer CA, which references become
invalid for keybridged certificates. To transfer other extensions, list them in the extension_whitelist
parameter. Note that modifying this parameter replaces the default values, so to extend the list of transferred
extensions, include the 'keyUsage', 'subjectAltName', 'extendedKeyUsage' list as well. For
example:

162www.balasys.hu

Class X509KeyBridge



extension_whitelist (complex)

self.extension_whitelist = ('keyUsage', 'subjectAltName', 'extendedKeyUsage',

'customExtension')

key_file (certificate)

Default: n/a

Name of the private key to be used for the newly generated certificates.

key_passphrase (string)

Default: ""

Passphrase required to access the private key stored in key_file.

trusted_ca_files (certificate)

Default: n/a

A tuple of cert_file, key_file, passphrase) for the CA used for keybridging trusted certificates.

untrusted_ca_files (certificate)

Default: None

A tuple of cert_file, key_file, passphrase) for the CA used for keybridging untrusted certificates.

5.7. Module Matcher

In general, matcher policies can be used to find out if a parameter is included in a list (or which elements of a
list correspond to a certain parameter), and influence the behavior of the proxy class based on the results.
Matchers can be used for a wide range of tasks, for example, to determine if the particular IP address or URL
that a client is trying to access is on a black or whitelist, or to verify that a particular e-mail address is valid.

5.7.1. Classes in the Matcher module

DescriptionClass

Class encapsulating the abstract string matcher.AbstractMatcher

Matcher for implementing logical expressions based
on other matchers.

CombineMatcher

DNS matcherDNSMatcher

Class encapsulating a Matcher which can be used by
a name.

MatcherPolicy

Class encapsulating Matcher which uses regular
expressions stored in files for string matching.

RegexpFileMatcher

163www.balasys.hu

Module Matcher



DescriptionClass

Class encapsulating a Matcher which uses regular
expressions for string matching.

RegexpMatcher

Class verifying the validity of the recipient addresses
in E-mails.

SmtpInvalidRecipientMatcher

Windows Update matcherWindowsUpdateMatcher
Table 5.66. Classes of the Matcher module

5.7.2. Class AbstractMatcher

This abstract class encapsulates a string matcher that determines whether a given string is found in a backend
database.

Specialized subclasses of AbstractMatcher exist such as 'RegexpFileMatcher' which use regular expressions
stored in flat files to find matches.

5.7.3. Class CombineMatcher

This matcher makes it possible to combine the results of several matchers using logical operations.
CombineMatcher uses prefix-notation in its expressions and uses the following format: the operand, a comma,
first argument, a comma, second argument. For example, an AND expression should be formatted the following
way: (Z_AND, matcher1, matcher2). Expressions using more than one operands should be bracketed,
e.g., (Z_OR (Z_AND, matcher1, matcher2), matcher3). The following oprations are available:

■ Z_AND : Logical AND operation.

■ Z_OR : Logical OR operation.

■ Z_XOR : Logical XOR operation.

■ Z_NOT : Logical negation.

■ Z_EQ : Logical equation.

Example 5.23. Whitelisting e-mail recipients
A simple use for CombineMatcher is to filter the recipients of e-mail addresses using the following process:

An SmtpInvalidMatcher (called SmtpCheckrecipient) verifies that the recipient exists.1.

2. A RegexpMatcher (called SmtpWhitelist) or RegexpFileMatcher is used to check if the address is on a predefined list
(list of permitted addresses).

3. A CombineMatcher (called SmtpCombineMatcher) sums up the results of the matchers with a logical AND operation.

4. An SmtpProxy (called SmtpRecipientMatcherProxy) references SmtpCombineMatcher in its recipient_matcher
attribute.

Python:

class SmtpRecipientMatcherProxy(SmtpProxy):

recipient_matcher="SmtpCombineMatcher"

def config(self):

super(SmtpRecipientMatcherProxy, self).config()

MatcherPolicy(name="SmtpCombineMatcher", matcher=CombineMatcher (expr=(Z_AND, "SmtpCheckrecipient",

"SmtpWhitelist")))

MatcherPolicy(name="SmtpWhitelist", matcher=RegexpMatcher (match_list=("info@example.com",),

ignore_list=None))

164www.balasys.hu

Class AbstractMatcher



MatcherPolicy(name="SmtpCheckrecipient", matcher=SmtpInvalidRecipientMatcher (server_port=25,

cache_timeout=60, attempt_delivery=FALSE, force_delivery_attempt=FALSE,

server_name="recipientcheck.example.com"))

5.7.4. Class DNSMatcher

DNSMatcher retrieves the IP addresses of domain names. This can be used in domain name based policy
decisions, for example to allow encrypted connections only to trusted e-banking sites.

DNSMatcher operates as follows: it resolves the IP addresses stored in the list of domain names using the
specified Domain Name Server, and compares the results to the IP address of the connection (i.e., the IP address
of the server or the client). The matcher returns a true value if the IP addresses resolved from the list of domain
names include the IP address of the connection.

Example 5.24. DNSMatcher example
The following DNSMatcher class uses the dns.example.com name server to resolve the example2.com and example3.com domain
names.

MatcherPolicy(name="ExampleDomainMatcher", matcher=DNSMatcher(server="dns.example.com",

hosts=("example2.com", "example3.com")))

5.7.4.1. DNSMatcher methods

DescriptionMethod

Constructor to initialize an instance of the
DNSMatcher class.

__init__(self, hosts, server, resolve_on_init)

Table 5.67. Method summary

Method __init__(self, hosts, server, resolve_on_init)

This constructor initializes an instance of the DNSMatcher class.

Arguments of __init__

hosts (complex)

Default: n/a

Hostnames to resolve.

resolve_on_init (boolean)

Default: FALSE

Resolve all hostnames on startup time. Otherwise, names will be resolved on-demand.

server (string)

Default: None

165www.balasys.hu

Class DNSMatcher



server (string)

IP address of the DNS server to query. Defaults to the servers set in the resolv.conf file.

5.7.5. Class MatcherPolicy

Matcher policies can be used to find out if a parameter is included in a list, or which elements of a list correspond
to a certain parameter), and influence the behavior of the proxy class based on the results. Matchers can be used
for a wide range of tasks, for example, to determine if the particular IP address or URL that a client is trying
to access is on a black or whitelist, or to verify that a particular e-mail address is valid.

MatcherPolicy instances are reusable matchers that contain configured instances of the matcher classes (e.g.,
DNSMatcher, RegexpMatcher). For examples, see the specific matcher classes.

5.7.6. Class RegexpFileMatcher

This class is similar to RegexpMatcher, but stores the regular expressions to match and ignore in files. For
example, this class can be used for URL filtering. The matcher itself stores only the paths and the filenames to
the lists. The file is automatically monitored and reloaded when it is modified. Searches are case-insensitive.

Example 5.25. RegexpFileMatcher example

MatcherPolicy(name="demo_regexpfilematcher",

matcher=RegexpFileMatcher(match_fname="/tmp/match_list.txt", ignore_fname="/tmp/ignore_list.txt"))

5.7.6.1. Attributes of RegexpFileMatcher

ignore_date (unknown)

Default: n/a

Date (in unix timestamp format) when the ignore_file was loaded.

ignore_file (unknown)

Default: n/a

Name of the file storing the patterns to ignore.

match_date (unknown)

Default: n/a

Date (in unix timestamp format) when the match_file was loaded.

match_file (unknown)

Default: n/a

Name of the file storing the patterns for positive matches.

166www.balasys.hu

Class MatcherPolicy



5.7.6.2. RegexpFileMatcher methods

DescriptionMethod

Constructor to initialize a RegexpFileMatcher instance.__init__(self, match_fname, ignore_fname)
Table 5.68. Method summary

Method __init__(self, match_fname, ignore_fname)

This constructor initializes an instance of the RegexpFileMatcher class.

Arguments of __init__

ignore_fname (filename)

Default: None

Name of the file storing the patterns to ignore.

match_fname (filename)

Default: None

Name of the file storing the patterns for positive matches.

5.7.7. Class RegexpMatcher

A simple regular expression based matcher with a match and an ignore list. Searches are case-insensitive.

Example 5.26. RegexpMatcher example
The following RegexpMatcher matches only the smtp.example.com string.

MatcherPolicy(name="Smtpdomains", matcher=RegexpMatcher (match_list=("smtp.example.com",),

ignore_list=None))

5.7.7.1. Attributes of RegexpMatcher

ignore (unknown)

Default: n/a

A list of compiled regular expressions defining the strings to be ignored even if match resulted in a positive
match.

match (unknown)

Default: n/a

A list of compiled regular expressions which result in a positive match.

167www.balasys.hu

Class RegexpMatcher



5.7.7.2. RegexpMatcher methods

DescriptionMethod

Constructor to initialize a RegexpMatcher instance.__init__(self, match_list, ignore_list, ignore_case)
Table 5.69. Method summary

Method __init__(self, match_list, ignore_list, ignore_case)

This constructor initializes a RegexpMatcher instance by setting the match and ignore attributes to an empty
list.

Arguments of __init__

ignore_list (filename)

Default: None

The list of regular expressions to ignore.

match_list (filename)

Default: None

The list of regular expressions to match.

5.7.8. Class SmtpInvalidRecipientMatcher

This class encapsulates a VRFY/RCPT based validity checker to transparently verify the existance of E-mail
addresses. Instead of immediately sending the e-mail to the recipient SMTP server, an independent SMTP
server is queuried about the existance of the recipient e-mail address.

Instances of this class can be referred to in the recipient_matcher attribute of the SmtpProxy class. The
SmtpProxy will automatically reject unknown recipients even if the recipient SMTP server would accept them.

Example 5.27. SmtpInvalidMatcher example

Python:

class SmtpRecipientMatcherProxy(SmtpProxy):

recipient_matcher="SmtpCheckrecipient"

def config(self):

super(SmtpRecipientMatcherProxy, self).config()

MatcherPolicy(name="SmtpCheckrecipient", matcher=SmtpInvalidRecipientMatcher (server_port=25,

cache_timeout=60, attempt_delivery=FALSE, force_delivery_attempt=FALSE,

server_name="recipientcheck.example.com"))

168www.balasys.hu

Class SmtpInvalidRecipientMatcher



5.7.8.1. SmtpInvalidRecipientMatcher methods

DescriptionMethod

__init__(self, server_name, server_port,
cache_timeout, attempt_delivery,
force_delivery_attempt, sender_address, bind_name)

Table 5.70. Method summary

Method __init__(self, server_name, server_port, cache_timeout, attempt_delivery, force_delivery_attempt,
sender_address, bind_name)

Arguments of __init__

bind_name (string)

Default: ""

Specifies the hostname to bind to before initiating the connection to the SMTP server.

cache_timeout (integer)

Default: 60

How long will the result of an address verification be retained (in seconds).

force_delivery_attempt (boolean)

Default: FALSE

Force a delivery attempt even if the autodetection code otherwise would use VRFY. Useful if the server
always returns success for VRFY.

sender_address (string)

Default: "<>"

This value will be used as the mail sender for the attempted mail delivery. Mail delivery is attempted if the
force_delivery_attempt is TRUE, or the recipient server does not support the VRFY command.

server_name (string)

Default: n/a

Domain name of the SMTP server that will verify the addresses.

server_port (integer)

Default: 25

Port of the target server.

169www.balasys.hu

Class SmtpInvalidRecipientMatcher



5.7.9. Class WindowsUpdateMatcher

WindowsUpdateMatcher is actually a DNSMatcher used to retrieve the IP addresses currently associated with
the v5.windowsupdate.microsoft.nsatc.net, v4.windowsupdate.microsoft.nsatc.net, and
update.microsoft.nsatc.net domain names from the specified name server. Windows Update is running
on a distributed server farm, using the DNS round robin method and a short TTL to constantly change the set
of servers currently visible, consequently the IP addresses of the servers are constantly changing.

Example 5.28. WindowsUpdateMatcher example

MatcherPolicy(name="demo_windowsupdatematcher", matcher=WindowsUpdateMatcher())

5.7.9.1. WindowsUpdateMatcher methods

DescriptionMethod

Constructor to initialize an instance of the
WindowsUpdateMatcher class.

__init__(self, server)

Table 5.71. Method summary

Method __init__(self, server)

This constructor initializes an instance of the WindowsUpdateMatcher class.

Arguments of __init__

server (string)

Default: None

The IP address of the name server to query.

5.8. Module NAT

Network Address Translation (NAT) is a technology that can be used to change source or destination addresses
in a connection from one IP address to another one. This module defines the classes performing the translation
for IP addresses.

Several different NAT methods are supported using different NAT classes, like GeneralNAT or StaticNAT. To
actually perform network address translation in a service, you have to use a NATPolicy instance that contains
a configured NAT class. NAT policies provide a way to re-use NAT instances whithout having to define NAT
mappings for each service individually.

5.8.1. Classes in the NAT module

DescriptionClass

Class encapsulating the abstract NAT interface.AbstractNAT

170www.balasys.hu

Class WindowsUpdateMatcher



DescriptionClass

Class encapsulating a general subnet-to-subnet NAT.GeneralNAT

Class which sets the address from a hash table.HashNAT

Class that performs translation from IPv4 to IPv6
addresses (NAT46)

NAT46

Class that performs translation from IPv6 to IPv4
addresses (NAT64)

NAT64

Class encapsulating named NAT instances.NATPolicy

Class translating addresses between two IP ranges.OneToOneMultiNAT

Class translating addresses between two IP ranges.OneToOneNAT

Class generating a random IP address.RandomNAT

Class that replaces the source or destination address
with a predefined address.

StaticNAT

Table 5.72. Classes of the NAT module

5.8.2. Class AbstractNAT

This class encapsulates an interface for application level network address translation (NAT). This NAT is
different from the NAT used by packet filters: it modifies the outgoing source/destination addresses just before
Zorp connects to the server.

Source and destination NATs can be specified when a Service is created.

The NAT settings are used by the ConnectChainer class just before connecting to the server.

5.8.2.1. AbstractNAT methods

DescriptionMethod

Constructor to initialize an AbstractNAT instance.__init__(self)

Function that performs the address translation.performTranslation(self, session, addrs, nat_type)
Table 5.73. Method summary

Method __init__(self)

This constructor initializes an AbstractNAT instance. Currently it does nothing, but serves as a placeholder for
future extensions.

Method performTranslation(self, session, addrs, nat_type)

This function is called before connecting a session to the destination server. The function returns the address
(a SockAddr instance) to bind to before establishing the connection.

171www.balasys.hu

Class AbstractNAT



Arguments of performTranslation

addrs (unknown)

Default: n/a

tuple of (source, destination) address, any of them can be none in case of the other translation

nat_type (unknown)

Default: n/a

translation type, either NAT_SNAT or NAT_DNAT

session (unknown)

Default: n/a

Session which is about to connect the server.

5.8.3. Class GeneralNAT

This class encapsulates a general subnet-to-subnet NAT. It requires a list of from, to, translated to

parameters:

■ from: the source address of the connection.

■ to: the destination address of the connection.

■ translated to: the translated address.

If the NAT policy is used as SNAT, the translated address is used to translate the source address of the connection;
if the NAT policy is used as DNAT, the translated address is used to translate the destination address of the
connection. The translation occurs according to the first matching rule.

Example 5.29. GeneralNat example
The following example defines a simple GeneralNAT policy that maps connections coming from the 192.168.1.0/24 subnet and
targeting the 192.168.10.0/24 subnet into the 10.70.0.0/24 subnet.

NATPolicy(name="Demo_GeneralNAT", nat=GeneralNAT(mapping=((InetSubnet("192.168.1.0/24"),

InetSubnet("192.168.10.0/24"), InetSubnet("10.70.0.0/24")),)))

If the policy is used as SNAT, the 192.168.1.0/24 subnet is translated into the 10.70.0.0/24 subnet and used as the source address
of the connection. If the policy is used as DNAT, the 192.168.10.0/24 subnet is translated into the 10.70.0.0/24 subnet and used
as the target address of the connection.

172www.balasys.hu

Class GeneralNAT



5.8.3.1. GeneralNAT methods

DescriptionMethod

Constructor to initialize a GeneralNAT instance.__init__(self, mapping)
Table 5.74. Method summary

Method __init__(self, mapping)

This constructor initializes a GeneralNAT instance.

Arguments of __init__

mapping (complex)

Default: n/a

List of tuples of InetSubnets in (source domain, destination domain, mapped domain) format.

5.8.4. Class HashNAT

HashNAT statically maps an IP address to another using a hash table. The table is indexed by the source IP
address, and the value is the translated IP address. Both IP addresses are stored in string format.

5.8.4.1. HashNAT methods

DescriptionMethod

Constructor to initialize a HashNAT instance.__init__(self, ip_hash, default_reject)
Table 5.75. Method summary

Method __init__(self, ip_hash, default_reject)

This constructor initializes a HashNAT instance.

Arguments of __init__

default_reject (boolean)

Default: TRUE

Enable this parameter to reject all connections outside the specific source range.

ip_hash (complex)

Default: n/a

The hash storing the IP address.

173www.balasys.hu

Class HashNAT



5.8.5. Class NAT46

NAT46 embeds and IPv4 address into a specific portion of the IPv6 address according to the NAT46 specification
as described in RFC6052 (http://tools.ietf.org/html/rfc6052#section-2.2).

5.8.5.1. NAT46 methods

DescriptionMethod

Constructor to initialize a NAT46 instance.__init__(self, prefix, prefix_mask, suffix)
Table 5.76. Method summary

Method __init__(self, prefix, prefix_mask, suffix)

This constructor initializes a NAT46 instance.

Arguments of __init__

prefix (string)

Default: "64:ff9b::"

This parameter specifies the common leading part of the IPv6 address that the IPv4 address should map into.
Bits that exceed the mask will be overwritten by the mapping.

prefix_mask (integer)

Default: 96

This parameter specifies the position to embed the IPv4 address to and must be one of 32, 40, 48, 56, 64, or
96.

suffix (string)

Default: "::"

This parameter specifies the common trailing part of the IPv6 address that the IPv4 address should map into.
The length of the suffix must not exceed the empty bit count determined by the configured prefix mask.

5.8.6. Class NAT64

NAT64 maps specific bits of the IPv6 address to IPv4 addresses according to the NAT64 specification as
described in RFC6052 (http://tools.ietf.org/html/rfc6052#section-2.2).

174www.balasys.hu

Class NAT46



5.8.6.1. NAT64 methods

DescriptionMethod

Constructor to initialize a NAT64 instance.__init__(self, prefix_mask)
Table 5.77. Method summary

Method __init__(self, prefix_mask)

This constructor initializes a NAT64 instance.

Arguments of __init__

prefix_mask (integer)

Default: 96

This parameter specifies the length of the IPv6 address to consider and must be one of 32, 40, 48, 56, 64, or
96.

5.8.7. Class NATPolicy

This class encapsulates a name and an associated NAT instance. NAT policies provide a way to re-use NAT
instances whithout having to define NAT mappings for each service individually.

Example 5.30. Using Natpolicies
The following example defines a simple NAT policy, and uses this policy for SNAT in a service.

NATPolicy(name="demo_natpolicy", nat=GeneralNAT(mapping=((InetSubnet(addr="10.0.1.0/24"),

InetSubnet(addr="192.168.1.0/24")),)))

Service(name="office_http_inter", proxy_class=HttpProxy, snat_policy="demo_natpolicy")

5.8.7.1. NATPolicy methods

DescriptionMethod

Constructor to initialize a NAT policy.__init__(self, name, nat, cacheable)
Table 5.78. Method summary

Method __init__(self, name, nat, cacheable)

This contructor initializes a NAT policy.

Arguments of __init__

cacheable (boolean)

Default: TRUE

175www.balasys.hu

Class NATPolicy



cacheable (boolean)

Enable this parameter to cache the NAT decisions.

name (string)

Default: n/a

Name identifying the NAT policy.

nat (class)

Default: n/a

NAT object which performs address translation.

5.8.8. Class OneToOneMultiNAT

Note
This class is obsolete, use GeneralNAT instead.

This class is similar to OneToOneNAT as it 1:1 address translation between the source and destination subnets.
The difference is that the OneToOneMultiNAT class supports multiple mappings by using a list of mapping
pairs.

If the source address is outside the given source address range, a DACException is raised. The source and
destination subnets must have the same size.

5.8.8.1. OneToOneMultiNAT methods

DescriptionMethod

Constructor to initialize a OneToOneMultiNAT
instance.

__init__(self, mapping, default_reject)

Table 5.79. Method summary

Method __init__(self, mapping, default_reject)

This constructor initializes an instance of the OneToOneMultiNAT class. Arguments must be Subnet instances
specifying two non-overlapping IP subnets with the same size.

Arguments of __init__

default_reject (boolean)

Default: TRUE

Enable this parameter to reject all connections outside the specific source range.

176www.balasys.hu

Class OneToOneMultiNAT



mapping (complex)

Default: n/a

List of Subnet pairs in the from, to format.

5.8.9. Class OneToOneNAT

Note
This class is obsolete, use GeneralNAT instead.

This class performs 1:1 address translation between the source and destination subnets. If the source address
is outside the given source address range, a DACException is raised. The source and destination subnets must
have the same size.

Tip
Use OneToOneNAT to redirect a a block of IP addresses to another block, for example, when the webservers located in the DMZ have
dedicated IP aliases on the firewall.

5.8.9.1. OneToOneNAT methods

DescriptionMethod

Constructor to initialize a OneToOneNAT instance.__init__(self, from_domain, to_domain, default_reject)
Table 5.80. Method summary

Method __init__(self, from_domain, to_domain, default_reject)

This constructor initializes a OneToOneNAT instance. Arguments must be Subnet instances specifying two
non-overlapping IP subnets with the same size.

Arguments of __init__

default_reject (boolean)

Default: TRUE

Enable this parameter to reject all connections outside the specific source range.

from_domain (class)

Default: n/a

The source subnet (Subnet instance).

177www.balasys.hu

Class OneToOneNAT



to_domain (class)

Default: n/a

The destination subnet (Subnet instance).

5.8.10. Class RandomNAT

This class randomly selects an address from a list of IP addresses. This can be used for load-balancing several
lines by binding each session to a different interface.

5.8.10.1. RandomNAT methods

DescriptionMethod

Constructor to initialize a RandomNAT instance.__init__(self, addresses)
Table 5.81. Method summary

Method __init__(self, addresses)

This constructor initializes a RandomNAT instance.

Arguments of __init__

addresses (complex)

Default: n/a

List of the available interfaces. Each item of the list must be am instance of the SockAddr (or a derived)
class.

5.8.11. Class StaticNAT

This class assigns a predefined value to the address of the connection.

5.8.11.1. StaticNAT methods

DescriptionMethod

Constructor to initialize a StaticNAT instance.__init__(self, addr)
Table 5.82. Method summary

Method __init__(self, addr)

This constructor initializes a StaticNAT instance.

178www.balasys.hu

Class RandomNAT



Arguments of __init__

addr (sockaddr)

Default: n/a

The address that replaces all addresses.

5.9. Module Notification

5.9.1. Classes in the Notification module

DescriptionClass

Class encapsulating the abstract notification method.AbstractNotificationMethod

Class sending out notifications in e-mail.EmailNotificationMethod

Class encapsulating a NotificationPolicy which
describes how to send out notifications.

NotificationPolicy

Table 5.83. Classes of the Notification module

5.9.2. Class AbstractNotificationMethod

This abstract class encapsulates a notification that is performed when a certain event occurs.

Specialized classes can be derived from AbstractNotification, such as the EmailNotificationMethod class.

5.9.3. Class EmailNotificationMethod

This class encapsulates a notification handler that sends an e-mail with the given mail properties.

5.9.3.1. Attributes of EmailNotificationMethod

recipient (string)

Default: n/a

The e-mail address of the recipient.

5.9.3.2. EmailNotificationMethod methods

DescriptionMethod

Constructor to initialize an EmailNotification instance.__init__(self, recipient)
Table 5.84. Method summary

Method __init__(self, recipient)

This constructor initializes an EmailNotification instance and sets the attributes of the outgoing e-mail.

179www.balasys.hu

Module Notification



Arguments of __init__

recipient (string)

Default: n/a

The e-mail address of the recipient.

5.9.4. Class NotificationPolicy

5.10. Module Proxy

This module encapsulates the Proxy component. The Proxy module provides a common framework for
protocol-specific proxies, implementing the functions that are used by all proxies. Protocol-specific proxy
modules are derived from the Proxy module, and are described in Chapter 4, Proxies (p. 19).

5.10.1. Functions in module Proxy

DescriptionFunction

Function to send a proxy-specific message to the
system log.

proxyLog

Table 5.85. Function summary

5.10.2. Classes in the Proxy module

DescriptionClass

Class encapsulating the abstract proxy.Proxy
Table 5.86. Classes of the Proxy module

5.10.3. Functions

5.10.3.1. Function proxyLog(self, type, level, msg, args)

This function sends a message into the system log. All messages start with the session_id that uniquely
identifies the connection.

Arguments of proxyLog

level (integer)

Default: n/a

Verbosity level of the log message.

180www.balasys.hu

Class NotificationPolicy



msg (string)

Default: n/a

The text of the log message.

type (string)

Default: n/a

The class of the log message.

5.10.4. Class Proxy

This class serves as the abstact base class for all proxies. When an instance of the Proxy class is created, it loads
and starts a protocol-specific proxy. Proxies operate in their own threads, so this constructor returns immediately.

5.10.4.1. Attributes of Proxy

encryption_policy (class)

Default: None

Name of the Encryption policy instance used to encrypt the sessions and verify the certificates used. For
details, see Section 5.5, Module Encryption (p. 116).

language (string)

Default: "en"

Determines the language used for user-visible error messages. Supported languages: en - English; de -
German; hu - Hungarian.

5.10.4.2. Proxy methods

DescriptionMethod

Function called by the proxy core when an abort has
been occured.

closedByAbort(self)

Function called by the proxy core to initialize the
proxy instance.

config(self)

Function called by the proxy instance to establish the
server-side connection.

connectServer(self)

Function called when proxy requires credentials for
server side authentication.

getCredentials(self, method, username, domain, target,
port)

Invalid policy function called.invalidPolicyCall(self)

181www.balasys.hu

Class Proxy



DescriptionMethod

Function called by the proxy instance to set the address
of the destination server.

setServerAddress(self, host, port)

Function called by the proxy instance to set up the
server side encryption parameters dynamically.

setServerSideEncryption(self)

Function called when inband authentication is
successful.

userAuthenticated(self, entity, groups, auth_info)

Table 5.87. Method summary

Method closedByAbort(self)

This function is called when a callback gives abort or no result. It simply sets a flag that will be used for logging
the reason of the proxy's ending.

Method config(self)

This function is called during proxy startup. It sets the attributes of the proxy instance according to the
configuration of the proxy.

Method connectServer(self)

This function is called to establish the server-side connection. The function either connects a proxy to the
destination server, or an embedded proxy to its parent proxy. The proxy may set the address of the destination
server using the setServerAddress function.

The connectServer function calls the chainer specified in the service definition to connect to the remote
server using the host name and port parameters.

The connectServer function returns the descriptor of the server-side data stream.

Method getCredentials(self, method, username, domain, target, port)

The proxy instance calls this function to retrieve authentication credentials for authentication method method

and the target user username.

Arguments of getCredentials

domain (string)

Default: n/a

Domain the user name belongs to.

method (string)

Default: n/a

Method that will be used for authentication on target server.

182www.balasys.hu

Class Proxy



port (integer)

Default: n/a

Target server port.

target (string)

Default: n/a

Target server hostname.

username (string)

Default: n/a

Username that will be used for authentication on target server.

Method invalidPolicyCall(self)

This function is called when invalid policy function has been called.

Method setServerAddress(self, host, port)

The proxy instance calls this function to set the address of the destination server. This function attempts to
resolve the hostname of the server using the DNS; the result is stored in the session.server_address

parameter. The address of the server may be modified later by the router of the service. See Section 5.12, Module
Router (p. 186) for details.

Note
The setServerAddress function has effect only when InbandRouter is used.

Arguments of setServerAddress

host (string)

Default: n/a

The host name of the server.

port (integer)

Default: n/a

The Port number of the server.

183www.balasys.hu

Class Proxy



Method setServerSideEncryption(self)

Function called by the proxy instance when the encryption scenario is dynamic (eg.: DynamicServerEncryption)
to set up the server side encryption parameters. It should return with a DynamicServerEncryptionServerParams
if DynamicServerEncryption scenario used otherwise with None.

This method unconditionally raises a NotImplementedError exception to indicate that it must be overridden by
descendant classes like 'Proxy'.

Method userAuthenticated(self, entity, groups, auth_info)

The proxy instance calls this function to indicate that the inband authentication was successfully performed.
The name of the client is stored in the entity parameter.

Arguments of userAuthenticated

entity (unknown)

Default: n/a

Username of the authenticated client.

5.11. Module Resolver

This module defines the AbstractResolver interface and various derived classes to perform name lookups.

5.11.1. Classes in the Resolver module

DescriptionClass

Class encapsulating the abstract Resolver interface.AbstractResolver

Class encapsulating DNS-based name resolution.DNSResolver

Class encapsulating hash-based name resolution.HashResolver
Table 5.88. Classes of the Resolver module

5.11.2. Class AbstractResolver

This class encapsulates an interface for application level name resolution.

5.11.3. Class DNSResolver

DNSResolver policies query the domain name server to resolve domain names.

Example 5.31. A simple DNSResolver policy
Below is a simple DNSResolver policy enabled to return multiple 'A' and 'AAAA' records from the nameserver 1.1.1.1 with 2s timeout.

ResolverPolicy(name="Mailservers", resolver=DNSResolver(name_server='1.1.1.1', timeout=2))

184www.balasys.hu

Module Resolver



5.11.3.1. DNSResolver methods

DescriptionMethod

Constructor to initialize a DNSResolver instance.__init__(self, name_server, timeout,
use_search_domain)

Table 5.89. Method summary

Method __init__(self, name_server, timeout, use_search_domain)

This constructor initializes a DNSResolver instance.

Arguments of __init__

name_server (string)

Default: None

IP address of the DNS server to query. Defaults to the servers set in the resolv.conf file.

timeout (integer)

Default: 2

Seconds to wait a response from a server.

use_search_domain (boolean)

Default: FALSE

Append the host's search domain to the query.

5.11.4. Class HashResolver

HashResolver policies are used to locally store the IP addresses belonging to a domain name. A domain name
(Hostname) and one or more corresponding IP addresses (Addresses) can be stored in a hash. If the domain
name to be resolved is not included in the hash, the name resolution will fail. The HashResolver can be used
to direct incoming connections to specific servers based on the target domain name.

Example 5.32. A simple HashResolver policy
The resolver policy below associates the IP addresses 192.168.1.12 and 192.168.1.13with the mail.example.com domain name.

ResolverPolicy(name="DMZ", resolver=HashResolver(mapping={"mail.example.com": ("192.168.1.12",

"192.168.1.13")}))

185www.balasys.hu

Class HashResolver



5.11.4.1. HashResolver methods

DescriptionMethod

Constructor to initialize a HashResolver instance.__init__(self, mapping)
Table 5.90. Method summary

Method __init__(self, mapping)

This constructor initializes a HashResolver instance.

Arguments of __init__

mapping (complex)

Default: n/a

Mapping that describes hostname->IP address pairs.

5.12. Module Router

Routers define the target IP address and port of the destination server, based on information that is available
before started. The simplest router (DirectedRouter) selects a preset destination as the server address, while the
most commonly used TransparentRouter connects to the IP address requested by the client. Other routers may
make more complex decisions. The destination address selected by the router may be overridden by the proxy
and the DNAT classes used in the service.

5.12.1. The source address used in the server-side connection

Routers also define source address and port of the server-side connection. This is the IP address that is used to
connect the server. The server sees that the connection originates from this address. The following two parameters
determine the source address used in the server-side connection:

forge_addr: If set to TRUE, the client's source address is used as the source of the server-side connection.
Otherwise, the IP address of the interface connected to the server is used.

forge_port: This parameter defines the source port that is used in the server-side connection. Specify a port
number as an integer value, or use one of the following options:

DescriptionName

Selected a random port between 1024 and 65535.
This is the default behavior of every router.

Z_PORT_ANY

Select a random port in the same group as the port
used by the client. The following groups are defined:
0-513, 514-1024, 1025-.

Z_PORT_GROUP

Use the same port as the client.Z_PORT_EXACT

186www.balasys.hu

Module Router



DescriptionName

Select a random port using a cryptographically secure
function.

Z_PORT_RANDOM

Table 5.91. Options defining the source port of the server-side connection

5.12.2. Classes in the Router module

DescriptionClass

Class encapsulating the abstract router.AbstractRouter

Class encapsulating a Router which explicitly defines
the target address.

DirectedRouter

Class encapsulating the Router which extracts the
destination address from the application-level protocol.

InbandRouter

Class encapsulating a Router which provides
transparent services.

TransparentRouter

Table 5.92. Classes of the Router module

5.12.3. Class AbstractRouter

AbstractRouter implements an abstract router that determines the destination address of the server-side connection.
Service definitions should refer to a customized class derived from AbstractRouter, or one of the predefined
router classes, such as TransparentRouter orDirectedRouter. Different implementations of this interface perform
Transparent routing (directing the client to its original destination), and Directed routing (directing the client
to a given destination).

A proxy can override the destination selected by the router using the the setServerAddress method.

5.12.3.1. Attributes of AbstractRouter

forge_addr (boolean)

Default: n/a

If set to TRUE, the client's source address is used as the source of the server-side connection.

forge_port (unknown)

Default: n/a

Defines the source port that is used in the server-side connection. See Section 5.12.1, The source address
used in the server-side connection (p. 186) for details.

187www.balasys.hu

Classes in the Router module



5.12.4. Class DirectedRouter

This class implements directed routing, which means that the destination address is a preset address for each
session.

Example 5.33. DirectedRouter example
The following service uses a DirectedRouter that redirects every connection to the /var/sample.socket Unix domain socket.

Service(name="demo_service", proxy_class=HttpProxy,

router=DirectedRouter(dest_addr=SockAddrUnix('/var/sample.socket'), overrideable=FALSE,

forge_addr=FALSE))

The following service uses a DirectedRouter that redirects every connection to the 192.168.2.24:8080 IP address.

Service(name="demo_service", proxy_class=HttpProxy,

router=DirectedRouter(dest_addr=SockAddrInet('192.168.2.24', 8080), overrideable=FALSE,

forge_addr=FALSE))

5.12.4.1. Attributes of DirectedRouter

dest_addr (unknown)

Default: n/a

The destination address to connect to.

5.12.4.2. DirectedRouter methods

DescriptionMethod

Constructor to initialize a DirectedRouter.__init__(self, dest_addr, forge_addr, overrideable,
forge_port)

Table 5.93. Method summary

Method __init__(self, dest_addr, forge_addr, overrideable, forge_port)

This constructor initializes an instance of the DirectedRouter class.

Arguments of __init__

dest_addr (complex)

Default: n/a

The destination address to connect to.

forge_addr (boolean)

Default: FALSE

If set to TRUE, the client's source address is used as the source of the server-side connection.

188www.balasys.hu

Class DirectedRouter



forge_port (complex)

Default: Z_PORT_ANY

Defines the source port that is used in the server-side connection. See Section 5.12.1, The source address
used in the server-side connection (p. 186) for details.

overrideable (boolean)

Default: FALSE

If set to TRUE, the proxy may override the selected destination. Enable this option when the proxy builds
multiple connections to the destination server, and the proxy knows the address of the destination server, for
example, because it receives a redirect request. This situation is typical for the SQLNet proxy.

5.12.5. Class InbandRouter

This class implements inband routing, which means that the destination address will be determined by the
protocol. Inband routing works only for protocols that can send routing information within the protocol, and is
mainly used for non-transparent proxying. The InbandRouter class currently supports only the HTTP and FTP
protocols.

Example 5.34. InbandRouter example
The following service uses an InbandRouter to extract the destination from the protocol.

Service(name="demo_service", proxy_class=HttpProxy, router=InbandRouter(forge_addr=FALSE))

5.12.5.1. InbandRouter methods

DescriptionMethod

Constructor to initialize a InbandRouter.__init__(self, forge_addr, forge_port)
Table 5.94. Method summary

Method __init__(self, forge_addr, forge_port)

This constructor initializes an instance of the InbandRouter class.

Arguments of __init__

forge_addr (boolean)

Default: FALSE

If set to TRUE, the client's source address is used as the source of the server-side connection.

189www.balasys.hu

Class InbandRouter



forge_port (complex)

Default: Z_PORT_ANY

Defines the source port that is used in the server-side connection. See Section 5.12.1, The source address
used in the server-side connection (p. 186) for details.

5.12.6. Class TransparentRouter

This class implements transparent routing, which means that the destination server is the original destination
requested by the client.

Example 5.35. TransparentRouter example
The following service uses a TransparentRouter that connects to the 8080 port of the server and uses the client's IP address as the source
of the server-side connection.

Service(name="demo_service", proxy_class=HttpProxy, router=TransparentRouter(forced_port=8080,

overrideable=FALSE, forge_addr=TRUE))

5.12.6.1. Attributes of TransparentRouter

forced_port (unknown)

Default: n/a

Defines the source port that is used in the server-side connection. See Section 5.12.1, The source address
used in the server-side connection (p. 186) for details.

forge_addr (unknown)

Default: n/a

If set to TRUE, the client's source address is used as the source of the server-side connection.

5.12.6.2. TransparentRouter methods

DescriptionMethod

Constructor to initialize an instance of the
TransparentRouter class.

__init__(self, forced_port, forge_addr, overrideable,
forge_port)

Table 5.95. Method summary

Method __init__(self, forced_port, forge_addr, overrideable, forge_port)

This constructor creates a new TransparentRouter instance which can be associated with a Service.

190www.balasys.hu

Class TransparentRouter



Arguments of __init__

forced_port (integer)

Default: 0

Modify the destination port to this value. Default value: 0 (do not modify the target port)

forge_addr (boolean)

Default: FALSE

If set to TRUE, the client's source address is used as the source of the server-side connection.

forge_port (complex)

Default: Z_PORT_ANY

Defines the source port that is used in the server-side connection. See Section 5.12.1, The source address
used in the server-side connection (p. 186) for details.

overrideable (boolean)

Default: FALSE

If set to TRUE, the proxy may override the selected destination. Enable this option when the proxy builds
multiple connections to the destination server, and the proxy knows the address of the destination server, for
example, because it receives a redirect request. This situation is typical for the SQLNet proxy.

5.13. Module Rule

The Rule module defines the classes needed to create firewall rules.

5.13.1. Evaluating firewall rules

When Zorp receives a connection request from a client, it tries to select a rule matching the parameters of the
connection. The following parameters are considered.

Name in policy.pyName in

reqidVPN

src_ifaceSource Interface

src_ifgroupSource Interface Group

protoProtocol

src_portSource Port

dst_portDestination Port

src_subnetSource Subnet

191www.balasys.hu

Module Rule



Name in policy.pyName in

src_zoneSource Zone

dst_subnetDestination Subnet

dst_ifaceDestination Interface

dst_ifgroupDestination Interface Group

dst_zoneDestination Zone
Table 5.96. Evaluated Rule parameters

Zorp selects the rule that most specifically matches the connection. Selecting the most specific rule is based on
the following method.

■ The order of the rules is not important.

■ The parameters of the connection act as filters: if you do not set any parameters, the rule will match
any connection.

■ If multiple connections would match a connection, the rule with the most-specific match is selected.
For example, you have configured two rules: the first has the Source Zone parameter set as the
office (which is a zone covering all of your client IP addresses), the second has the Source

Subnet parameter set as 192.168.15.15/32. The other parameters of the rules are the same. If a
connection request arrives from the 192.168.15.15/32 address, Zorp will select the second rule.
The first rule will match every other client request.

■ Zorp considers the parameters of a connection in groups. The first group is the least-specific, the
last one is the most-specific. The parameter groups are listed below.

■ The parameter groups are linked with a logical AND operator: if parameters of multiple groups are
set in a rule, the connection request must match a parameter of every group. For example, if both
the Source Interface and Destination Port are set, the connection must match both
parameters.

■ Parameters within the same group are linked with a logical OR operator: if multiple parameters of
a group are set for a rule, the connection must match any one of the parameters. If there are multiple
similar rules, the rule with the most specific parameter match for the connection will be selected.

Note
In general, avoid using multiple parameters of the same group in one rule, as it may lead to undesired side-effects. Use
only the most specific parameter matching your requirements.

For example, suppose that you have a rule with the Destination Zone parameter set, and you want to create a similar
rule for a specific subnet of this zone. In this case, create a new rule with the Destination Subnet parameter set, do
not set the Destination Zone parameter in both rules. Setting the Destination Zone parameter in both rules and
setting the Destination Subnet parameter in the second rule would work for connections targeting the specified subnet,
but it would cause Zorp to reject the connections that target other subnets of the specified destination zone, because both
rules would match for the connection.

■ The parameter groups are the following from the least specific to the most specific ones. Parameters
within each group are listed from left to right from the least specific to the most specific ones.

192www.balasys.hu

Evaluating firewall rules



1. Destination Zone > Destination Interface Group > Destination Interface >
Destination Subnet

2. Source Zone > Source Subnet

3. Destination Port (Note that port is more specific than port range.)

4. Source Port (Note that port is more specific than port range.)

5. Protocol

6. Source Interface Group > Source Interface > VPN

■ If no matching rule is found, Zorp rejects the connection.

Note
It is possible to create rules that are very similar, making debugging difficult.

5.13.2. Sample rules

Example 5.36. Sample rule definitions
The following rule starts the service called MyPFService for every incoming TCP connection (proto=6).

Rule(proto=6,

service='MyPFService'

)

The following rule starts a service for TCP or UDP connections from the office zone.

Rule(proto=(6,17),

src_zone='office',

service='MyService'

)

The following rule permits connections from the 192.168.0.0/16 IPv4 and the 2001:db8:c001:ba80::/58 IPv6 subnets. Note
that since the src_subnet parameter has two values, they are specified as a Python tuple: ('value1','value2').

Rule(proto=6,

src_subnet=('192.168.0.0/16', '2001:db8:c001:ba80::/58'),

service='MyService'

)

The following rule has almost every parameter set:

Rule(src_iface=('eth0', ),

proto=6,

dst_port=443,

src_subnet=('192.168.10.0/24', ),

src_zone=('office', ),

dst_subnet=('192.168.50.50/32', ),

dst_zone=('finance', ),

service='MyHttpsService'

)

5.13.3. Adding metadata to rules: tags and description

To make the configuration file more readable and informative, you can add descriptions and tags to the rules.
Descriptions can be longer texts, while tags are simple labels, for example, to identify rules that belong to the

193www.balasys.hu

Sample rules



same type of traffic. Adding metadata to rules is not necessary, but can be a great help when maintaining large
configurations.

■ To add a description to a rule, add the text of the description before the rule, enclosed between three
double-quotes:

"""This rule is ..."""

■ To tag a rule, add a comment line before the rule that contains the list of tags applicable to the rule,
separated with commas.

#Tags: tag1, tag2

Example 5.37. Tagging rules
The following rule has two tags, marking the traffic type and the source zone: http and office.

#Tags: http, office

"""Description"""

Rule(proto=(6),

src_zone='office',

service='MyHttpService'

)

5.13.4. Classes in the Rule module

DescriptionClass

Specifies a port range for a rulePortRange

This class implements firewall rulesRule
Table 5.97. Classes of the Rule module

5.13.5. Class PortRange

This class specifies a port range for a firewall rule. It can be used in the src_port and dst_port parameters
of a rule. For example: src_port=PortRange(2000, 2100), or src_port=(PortRange(2000, 2100),

PortRange(2500, 2600)). When listing multiple elements, ports and port ranges can be mixed, for example:
src_port=(4433, PortRange(2000, 2100), PortRange(2500, 2600))

5.13.5.1. Attributes of PortRange

high (integer)

Default: n/a

The higher value of the port range.

low (integer)

Default: n/a

194www.balasys.hu

Classes in the Rule module



low (integer)

The lower value of the port range.

5.13.6. Class Rule

This class implements firewall rules. For details, see Section 5.13, Module Rule (p. 191).

5.13.6.1. Rule methods

DescriptionMethod

Initializes a rule__init__(self, **kw)
Table 5.98. Method summary

Method __init__(self, **kw)

Initializes a rule

Arguments of __init__

dst_iface (interface)

Default: n/a

Permit traffic only for connections that target a configured IP address of the listed interfaces. This parameter
can be used to provide nontransparent service on an interface that received its IP address dynamically. For
example, dst_iface='eth0', or dst_iface=('eth0', 'tun1'),.

dst_ifgroup (integer)

Default: n/a

Permit traffic only for connections that target a configured IP address of the listed interface group. This
parameter can be used to provide nontransparent service on an interface that received its IP address dynamically.
For example, dst_ifgroup=1.

dst_port (integer)

Default: n/a

Permit traffic only if the client targets the listed port. For example, dst_port=80, or dst_port=(80,
443). To specify port ranges, use thePortRange class, for example, dst_port=PortRange(2000, 2100).

dst_subnet (subnet)

Default: n/a

Permit traffic only for connections targeting a listed IP address, or an address belonging to the listed subnet.
The subnet can be IPv4 or IPv6 subnet. When listing multiple subnets, you can list both IPv4 and IPv6 subnets.

195www.balasys.hu

Class Rule



dst_subnet (subnet)

IP addresses are treated as subnets with a /32 (IPv4) or /128 (IPv6) netmask. If no netmask is set for a subnet,
it is treated as a specific IP address. For example, dst_subnet='192.168.10.16' or
dst_subnet=('192.168.0.0/16', '2001:db8:c001:ba80::/58').

dst_zone (zone)

Default: n/a

Permit traffic only for connections targeting an address belonging to the listed zones. For example,
dst_zone='office' or dst_zone=('office', 'finance'). Note that this applies to destination
address of the client-side connection request: the actual address of the server-side connection can be different
(for example, if a DirectedRouter is used in the service).

proto (integer)

Default: n/a

Permit only connections using the specified transport protocol. This is the transport layer (Layer 4) protocol
of the OSI model, for example, TCP, UDP, ICMP, and so on. The protocol must be specified using a number:
the decimal value of the "protocol" field of the IP header. This value is 6 for the TCP and 17 for the UDP
protocol. For a list of protocol numbers, see the Assigned Internet Protocol Numbers page of IANA. For
example: proto=(6,17).
To permit any protocol, do not add the proto parameter to the rule.

rule_id (integer)

Default: n/a

A unique ID number for the rule. This parameter is optional, an ID number is automatically generated for the
rule during startup.

service (service)

Default: n/a

The name of the service to start for matching connections. This is the only required parameter for the rule,
everything else is optional. For example, service='MyService'

src_iface (interface)

Default: n/a

Permit traffic only for connections received on the listed interface. For example, src_iface='eth0', or
src_iface=('eth0', 'tun1'),.

src_ifgroup (integer)

Default: n/a

196www.balasys.hu

Class Rule

http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xml


src_ifgroup (integer)

Permit traffic only for connections received on the listed interfacegroup. For example, src_iface=1. Interface
groups can be defined in the /etc/network/interfaces file, for example:

iface eth0 inet dhcp

group 1

iface eth1 inet dhcp

group 1

src_port (integer)

Default: n/a

Permit traffic only if the client sends the connection request from the listed port. For example, src_port=4455.
To specify port ranges, use the PortRange class, for example, src_port=PortRange(2000, 2100).

src_subnet (subnet)

Default: n/a

Permit traffic only for the clients of the listed subnet or IP addresses. The subnet can be IPv4 or IPv6 subnet.
When listing multiple subnets, you can list both IPv4 and IPv6 subnets. IP addresses are treated as subnets
with a /32 (IPv4) or /128 (IPv6) netmask. If no netmask is set for a subnet, it is treated as a specific IP address.
For example, src_subnet='192.168.10.16' or src_subnet=('192.168.0.0/16',
'2001:db8:c001:ba80::/58').

src_zone (zone)

Default: n/a

Permit traffic only for the clients of the listed zones. For example, src_zone='office' or
src_zone=('office', 'finance').

5.14. Module Service

This module defines classes encapsulating service descriptions. The services define how the incoming connection
requests are handled. When a connection is accepted by a Rule, the service specified in the Rule creates an
instance of itself. This instance handles the connection, and proxies the traffic between the client and the server.
It also handles TLS and SSL encryption of the traffic if needed, as configured in the encryption_policy

parameter of the service. The instance of the selected service is created using the 'startInstance()' method.

A service is not usable on its own, it needs a Rule to bind the service to a network interface of the firewall and
activate it when a matching connection request is received. New instances of the service are started as the Rule
accepts new connections.

5.14.1. Naming services

The name of the service must be a unique identifier; rules refer to this unique ID.

197www.balasys.hu

Module Service



Use clear, informative, and consistent service names. Include the following information in the service name:

■ Source zones, indicating which clients may use the service (e.g., intranet).

■ The protocol permitted in the traffic (e.g., HTTP).

■ Destination zones, indicating which servers may be accessed using the service (e.g., Internet).

Tip
Name the service that allows internal users to browse the Web intra_HTTP_internet. Use dots to indicate child zones, e.g.,
intra.marketing_HTTP_inter.

5.14.2. Classes in the Service module

DescriptionClass

Class encapsulating the abstract Service properties.AbstractService

DenyService prohibits access to certain servicesDenyService

Class encapsulating a packet-filter service definition.PFService

Class encapsulating a service definition.Service
Table 5.99. Classes of the Service module

5.14.3. Class AbstractService

AbstractService implements an abstract service. Service definitions should be based on a customized class
derived from AbstractService, or on the predefined Service class.

5.14.3.1. Attributes of AbstractService

name (string)

Default: n/a

The name of the service.

5.14.3.2. AbstractService methods

DescriptionMethod

Constructor to initialize an instance of the
AbstractService class.

__init__(self, name)

Table 5.100. Method summary

Method __init__(self, name)

This constructor creates an AbstractService instance and sets the attributes of the instance according to the
received arguments. It also registers the Service to the services hash so that rules can find the service instance.

198www.balasys.hu

Classes in the Service module



Arguments of __init__

name (string)

Default: n/a

The name of the service.

5.14.4. Class DenyService

The DenyService class is a type of service that rejects connections with a predefined error code. DenyServices
can be specified in the service parameter ofRules. If the rule referencing the DenyService matches a connection
request, the connection is rejected. DenyService is a replacement for the obsolete Umbrella zone concept.

Example 5.38. A simple DenyService
The following defines a DenyService and a rule to reject all traffic that targets port 5555.

def demo() :

DenyService(name='DenyService', ipv4_setting=DenyIPv4.DROP, ipv6_setting=DenyIPv6.DROP)

Rule(dst_port=5555,

service='DenyService'

)

5.14.4.1. Attributes of DenyService

ipv4_setting (complex)

Default: n/a

Specifies how to reject IPv4 traffic. By default, the traffic is simply dropped without notifying the client
(DenyIPv4.DROP). The following values are available: DenyIPv4.DROP, DenyIPv4.TCP_RESET,
DenyIPv4.ICMP_NET_UNREACHABLE, DenyIPv4.ICMP_HOST_UNREACHABLE,
DenyIPv4.ICMP_PROTO_UNREACHABLE, DenyIPv4.ICMP_PORT_UNREACHABLE,
DenyIPv4.ICMP_NET_PROHIBITED, DenyIPv4.ICMP_HOST_PROHIBITED,
DenyIPv4.ICMP_ADMIN_PROHIBITED

Note
When the DenyIPv4.TCP_RESET option is used, the TCP RESET packet is sent as if it was sent by the target server.

When using an ICMP option, the appropriate ICMP packet is sent, just like a router would.

ipv6_setting (complex)

Default: n/a

Specifies how to reject IPv6 traffic. By default, the traffic is dropped without notifying the client
(DenyIPv6.DROP). The following values are available: DenyIPv6.DROP, DenyIPv6.TCP_RESET,
DenyIPv6.ICMP_NO_ROUTE, DenyIPv6.ICMP_ADMIN_PROHIBITED,
DenyIPv6.ICMP_ADDR_UNREACHABLE, DenyIPv6.ICMP_PORT_UNREACHABLE

199www.balasys.hu

Class DenyService



name (string)

Default: n/a

The name of the service.

5.14.4.2. DenyService methods

DescriptionMethod

Constructor to initialize a DenyService instance.__init__(self, name, logging, ipv4_setting,
ipv6_setting, log_verbose, log_spec)

Table 5.101. Method summary

Method __init__(self, name, logging, ipv4_setting, ipv6_setting, log_verbose, log_spec)

This constructor defines a DenyService with the specified parameters.

Arguments of __init__

log_spec (string)

Default: None

Message filter expression.

log_verbose (integer)

Default: None

Default log verbosity level.

name (string)

Default: n/a

The name identifying the service.

5.14.5. Class PFService

PFServices allow you to replace the FORWARD rules of iptables, and configure application-level and
packet-filter rules from Zorp.

Note
The PFService class transfers packet-filter level services.

To transfer connections on the packet-filter level, use the PFService class.■

■ To transfer connections on the application-level, use the Service class.

200www.balasys.hu

Class PFService



Example 5.39. PFService example
The following packet-filtering service transfers TCP connections that arrive to port 5555.

PFService(name="intranet_PF5555_internet", router=TransparentRouter())

The following example defines a few classes: the client and server zones, a simple services, and a rule that starts the service.

Zone('internet', ['0.0.0.0/0'])

Zone('intranet', ['192.168.0.0/16'])

def demo() :

PFService(name="intranet_PF5555_internet", router=TransparentRouter())

Rule(dst_port=5555,

src_zone='intranet',

dst_zone='internet',

service='PFService'

)

5.14.5.1. Attributes of PFService

dnat_policy (class)

Default: n/a

Name of the NAT policy instance used to translate the destination addresses of the sessions. See Section 5.8,
Module NAT (p. 170) for details.

router (class)

Default: n/a

A router instance used to determine the destination address of the server. See Section 5.12, Module
Router (p. 186) for details.

snat_policy (class)

Default: n/a

Name of the NAT policy instance used to translate the source addresses of the sessions. See Section 5.8,
Module NAT (p. 170) for details.

5.14.5.2. PFService methods

DescriptionMethod

Constructor to initialize a PFService instance.__init__(self, name, router, snat_policy, dnat_policy,
log_verbose, log_spec)

Table 5.102. Method summary

Method __init__(self, name, router, snat_policy, dnat_policy, log_verbose, log_spec)

This constructor defines a packetfilter-service with the specified parameters.

201www.balasys.hu

Class PFService



Arguments of __init__

log_spec (string)

Default: None

Message filter expression.

log_verbose (integer)

Default: None

Default log verbosity level.

5.14.6. Class Service

A service is one of the fundamental objects. It stores the names of proxy-related parameters, and is also used
for access control purposes to decide what kind of traffic is permitted.

Note
The Service class transfers application-level (proxy) services.

To transfer connections on the packet-filter level, use the PFService class.■

■ To transfer connections on the application-level, use the Service class.

Example 5.40. Service example
The following service transfers HTTP connections. Every parameter is left at its default.

Service(name="demo_http, proxy_class=HttpProxy, router=TransparentRouter())

The following service handles HTTP connections. This service uses authentication and authorization, and network address translation
on the client addresses (SNAT).

Service(name="demo_http", proxy_class=HttpProxy, authentication_policy="demo_authentication_policy",

authorization_policy="demo_permituser", snat_policy="demo_natpolicy", router=TransparentRouter())

The following example defines a few classes: the client and server zones, a simple services, and a rule that starts the service.

Zone('internet', ['0.0.0.0/0'])

Zone('office', ['192.168.1.0/32', '192.168.2.0/32'])

def demo_instance() :

Service(name="office_http_inter", proxy_class=HttpProxy, router=TransparentRouter())

Rule(src_zone='office',

proto=6,

dst_zone='internet',

service='office_http_inter'

)

5.14.6.1. Attributes of Service

auth_name (string)

Default: n/a

202www.balasys.hu

Class Service



auth_name (string)

Authentication name of the service. This string informs the users of the Zorp Authentication Agent about
which service they are authenticating for. Default value: the name of the service.

authentication_policy (class)

Default: n/a

Name of the AuthenticationPolicy instance used to authenticate the clients. See Section 5.1, Module Auth (p. 88)
for details.

authorization_policy (class)

Default: n/a

Name of the AuthorizationPolicy instance used to authorize the clients. See Section 5.1, Module Auth (p. 88)
for details.

chainer (class)

Default: n/a

A chainer instance used to connect to the destination server. See Section 5.3, Module Chainer (p. 103) for
details.

dnat_policy (class)

Default: n/a

Name of the NAT policy instance used to translate the destination addresses of the sessions. See Section 5.8,
Module NAT (p. 170) for details.

encryption_policy (class)

Default: None

Name of the Encryption policy instance used to encrypt the sessions and verify the certificates used. For
details, see Section 5.5, Module Encryption (p. 116).

instance_id (integer)

Default: n/a

The sequence number of the last session started

keepalive (integer)

Default: Z_KEEPALIVE_NONE

The TCP keepalive option, one of the Z_KEEPALIVE_NONE, Z_KEEPALIVE_CLIENT,
Z_KEEPALIVE_SERVER, Z_KEEPALIVE_BOTH values.

203www.balasys.hu

Class Service



max_instances (integer)

Default: n/a

Permitted number of concurrent instances of this service. Usually each service instance handles one connection.
The default value is 0, which allows unlimited number of instances.

max_sessions (integer)

Default: n/a

Maximum number of concurrent sessions handled by one thread.

num_instances (integer)

Default: n/a

The current number of running instances of this service.

proxy_class (class)

Default: n/a

Name of the proxy class instance used to analyze the traffic transferred in the session. See Section 5.10,
Module Proxy (p. 180) for details.

resolver_policy (unknown)

Default: n/a

Name of the ResolvePolicy instance used to resolve the destination domain names. See Section 5.11, Module
Resolver (p. 184) for details. Default value: DNSResolver

router (class)

Default: n/a

A router instance used to determine the destination address of the server. See Section 5.12, Module
Router (p. 186) for details.

snat_policy (class)

Default: n/a

Name of the NAT policy instance used to translate the source addresses of the sessions. See Section 5.8,
Module NAT (p. 170) for details.

204www.balasys.hu

Class Service



5.14.6.2. Service methods

DescriptionMethod

Constructor to initialize a Service instance.__init__(self, name, proxy_class, router, chainer,
snat_policy, snat, dnat_policy, dnat,
authentication_policy, authorization_policy,
max_instances, max_sessions, auth_name,
resolver_policy, auth, auth_policy, keepalive,
encryption_policy, limit_target_zones_to,
detector_config, detector_default_service_name,
session_counting)

Start a service instance.startInstance(self, session)
Table 5.103. Method summary

Method __init__(self, name, proxy_class, router, chainer, snat_policy, snat, dnat_policy, dnat,
authentication_policy, authorization_policy, max_instances,max_sessions, auth_name, resolver_policy,
auth, auth_policy, keepalive, encryption_policy, limit_target_zones_to, detector_config,
detector_default_service_name, session_counting)

This contructor defines a Service with the specified parameters.

Arguments of __init__

auth_name (string)

Default: None

Authentication name of the service. This string informs the users of the Zorp Authentication Agent about
which service they are authenticating for. Default value: the name of the service.

authentication_policy (class)

Default: None

Name of the AuthenticationPolicy instance used to authenticate the clients. See Section 5.1, Module Auth (p. 88)
for details.

authorization_policy (class)

Default: None

Name of the AuthorizationPolicy instance used to authorize the clients. See Section 5.1, Module Auth (p. 88)
for details.

chainer (class)

Default: None

205www.balasys.hu

Class Service



chainer (class)

Name of the chainer instance used to connect to the destination server. Defaults to ConnectChainer if no
other chainer is specified.

dnat_policy (class)

Default: None

Name of the NAT policy instance used to translate the destination addresses of the sessions. See Section 5.8,
Module NAT (p. 170) for details.

encryption_policy (class)

Default: None

Name of the Encryption policy instance used to encrypt the sessions and verify the certificates used. For
details, see Section 5.5, Module Encryption (p. 116).

keepalive (integer)

Default: Z_KEEPALIVE_NONE

The TCP keepalive option, one of the Z_KEEPALIVE_NONE, Z_KEEPALIVE_CLIENT,
Z_KEEPALIVE_SERVER, Z_KEEPALIVE_BOTH values.

limit_target_zones_to (complex)

Default: None

A comma-separated list of zone names permitted as the target of the service. No restrictions are applied if the
list is empty. Use this parameter to replace the obsolete inbound_services parameter of the Zone class.

max_instances (integer)

Default: 0

Permitted number of concurrent instances of this service. Usually each service instance handles one connection.
Default value: 0 (unlimited).

max_sessions (integer)

Default: 0

Maximum number of concurrent sessions handled by one thread.

name (string)

Default: n/a

The name identifying the service.

206www.balasys.hu

Class Service



proxy_class (class)

Default: n/a

Name of the proxy class instance used to analyze the traffic transferred in the session. See Section 5.10,
Module Proxy (p. 180) for details.

resolver_policy (class)

Default: None

Name of the ResolvePolicy instance used to resolve the destination domain names. See Section 5.11, Module
Resolver (p. 184) for details. Default value: DNSResolver.

router (class)

Default: None

Name of the router instance used to determine the destination address of the server. Defaults to
TransparentRouter if no other router is specified.

snat_policy (class)

Default: None

Name of the NAT policy instance used to translate the source addresses of the sessions. See Section 5.8,
Module NAT (p. 170) for details.

Method startInstance(self, session)

Called by the Rule to create an instance of this service.

Arguments of startInstance

session (unknown)

Default: n/a

The session object

5.15. Module Session

This module defines the abstract session interface in a class named AbstractSession, and two descendants
MasterSession and StackedSession.

Sessions are hierarchically stacked into each other just like proxies. All sessions except the master session have
a parent session from which child sessions inherit variables. Child sessions are stacked into their master sessions,
so stacked sessions can inherit data from the encapsulating proxy instances. (Inheritance is implemented using
a simple getattr wrapper.)

207www.balasys.hu

Module Session



Instances of the Session classes store the parameters of the client-side and server-side connections in a session
object (for example, the IP addresses and zone of the server and the client, and the username and group
memberships of the user when authentication is used). Other components refer to this data when making various
policy-based decisions.

5.15.1. Classes in the Session module

DescriptionClass

Class encapsulating a subsession.StackedSession
Table 5.104. Classes of the Session module

5.15.2. Class StackedSession

This class represents a stacked session, e.g., a session within the session hierarchy. Every subsession inherits
session-wide parameters from its parent.

5.15.2.1. Attributes of StackedSession

chainer (class)

Default: n/a

The chainer used to connect to the parent proxy. If unset, the server_stream parameter must be set.

owner (class)

Default: n/a

The parent session of the current session.

server_address (class)

Default: n/a

The IP address to connect. Most often this is the IP address requested by the client, but the client requests
can be redirected to different IPs.

server_local (class)

Default: n/a

The server is connected from this IP address. This is either the IP address of Zorp's external interface, or the
IP address of the client (if Forge Port is enabled). The client's original IP address may be modified if SNAT
policies are used.

server_stream (class)

Default: n/a

Server-side stream.

208www.balasys.hu

Classes in the Session module



server_zone (class)

Default: n/a

Zone of the server.

target_address (class)

Default: n/a

The IP address to connect. Most often this is the IP address requested by the client, but the client requests
can be redirected to different IPs.

target_local (class)

Default: n/a

The server is connected from this IP address. This is either the IP address of Zorp's external interface, or the
IP address of the client (if Forge Port is enabled). The client's original IP address may be modified if SNAT
policies are used.

target_zone (class)

Default: n/a

Zone of the server.

5.15.2.2. StackedSession methods

DescriptionMethod

Set the target server address.setTargetAddress(self, addr)
Table 5.105. Method summary

Method setTargetAddress(self, addr)

This is a compatibility function for proxies that override the routed target.

Arguments of setTargetAddress

addr (unknown)

Default: n/a

Server address

5.16. Module SockAddr

This module implements inet_ntoa and inet_aton. The module also provides an interface to the SockAddr
services of the Zorp core. SockAddr is used for example to define the address of the ZAS server in
AuthenticationProvider policies.

209www.balasys.hu

Module SockAddr



5.16.1. Classes in the SockAddr module

DescriptionClass

Class encapsulating an IPv4 address:port pair.SockAddrInet

Class encapsulating an IPv6 address:port pair.SockAddrInet6

Class encapsulating a hostname:port pair.SockAddrInetHostname

Class encapsulating an IPv4 address and a port range.SockAddrInetRange

Class encapsulating a UNIX domain socket.SockAddrUnix
Table 5.106. Classes of the SockAddr module

5.16.2. Class SockAddrInet

This class encapsulates an IPv4 address:port pair, similarly to the sockaddr_in struct in C. The class is
implemented and exported by the Zorp core. The SockAddrInet Python class serves only documentation
purposes, and has no real connection to the behavior implemented in C.

Example 5.41. SockAddrInet example
The following example defines an IPv4 address:port pair.

SockAddrInet('192.168.10.10', 80)

The following example uses SockAddrInet in a dispatcher.

Dispatcher(transparent=TRUE, bindto=DBSockAddr(protocol=ZD_PROTO_TCP, sa=SockAddrInet('192.168.11.11',

50080)), service="intra_HTTP_inter", backlog=255, rule_port="50080")

5.16.2.1. Attributes of SockAddrInet

ip (unknown)

Default: n/a

IP address (network byte order).

ip_s (unknown)

Default: n/a

IP address in string representation.

port (unknown)

Default: n/a

Port number (network byte order).

210www.balasys.hu

Classes in the SockAddr module



type (string)

Default: n/a

The inet value that indicates an address in the AF_INET domain.

5.16.3. Class SockAddrInet6

This class encapsulates an IPv6 address:port pair, similarly to the sockaddr_in struct in C. The class is
implemented and exported by the Zorp core. The SockAddrInet Python class serves only documentation
purposes, and has no real connection to the behavior implemented in C.

Example 5.42. SockAddrInet example
The following example defines an IPv6 address:port pair.

SockAddrInet('fec0::1', 80)

The following example uses SockAddrInet in a dispatcher.

Dispatcher(transparent=TRUE, bindto=DBSockAddr(protocol=ZD_PROTO_TCP, sa=SockAddrInet('fec0::1',

50080)), service="intra_HTTP_inter", backlog=255, rule_port="50080")

5.16.3.1. Attributes of SockAddrInet6

ip (unknown)

Default: n/a

IP address (network byte order).

ip_s (unknown)

Default: n/a

IP address in string representation.

port (unknown)

Default: n/a

Port number (network byte order).

type (string)

Default: n/a

The inet value that indicates an address in the AF_INET domain.

5.16.4. Class SockAddrInetHostname

This class encapsulates a hostname:port or IPv4 address:port pair. Name resolution is only performed when
creating the SockAddrInetHostname object (that is, during startup and reload). The class is implemented and

211www.balasys.hu

Class SockAddrInet6



exported by the Zorp core. The SockAddrInetHostname Python class serves only documentation purposes,
and has no real connection to the behavior implemented in C.

Example 5.43. SockAddrInetHostname example
The following example defines a hostname:port or IPv4 address:port pair.

SockAddrInetHostname('www.example.com', 80)

SockAddrInetHostname('192.168.10.10', 80)

The following example uses SockAddrInetHostname in a dispatcher.

Dispatcher(transparent=TRUE, bindto=DBSockAddr(protocol=ZD_PROTO_TCP,

sa=SockAddrInetHostname('www.example.com', 50080)), service="intra_HTTP_inter", backlog=255,

rule_port="50080")

5.16.4.1. Attributes of SockAddrInetHostname

ip (unknown)

Default: n/a

IP address (network byte order).

ip_s (unknown)

Default: n/a

IP address in string representation.

port (unknown)

Default: n/a

Port number (network byte order).

type (string)

Default: n/a

The inet value that indicates an address in the AF_INET domain.

5.16.5. Class SockAddrInetRange

A specialized SockAddrInet class which allocates a new port within the given range of ports when a dispatcher
bounds to it. The class is implemented and exported by the Zorp core. The SockAddrInetRange Python class
serves only documentation purposes, and has no real connection to the behavior implemented in C.

5.16.5.1. Attributes of SockAddrInetRange

ip (unknown)

Default: n/a

212www.balasys.hu

Class SockAddrInetRange



ip (unknown)

IP address (network byte order).

ip_s (unknown)

Default: n/a

IP address in string representation.

port (unknown)

Default: n/a

Port number (network byte order).

type (string)

Default: n/a

The inet value that indicates an address in the AF_INET domain.

5.16.6. Class SockAddrUnix

This class encapsulates a UNIX domain socket endpoint. The socket is represented by a filename. The
SockAddrUnix Python class serves only documentation purposes, and has no real connection to the behavior
implemented in C.

Example 5.44. SockAddrUnix example
The following example defines a Unix domain socket.

SockAddrUnix('/var/sample.socket')

The following example uses SockAddrUnix in a DirectedRouter.

Service(name="demo_service", proxy_class=HttpProxy,

router=DirectedRouter(dest_addr=SockAddrUnix('/var/sample.socket'), overrideable=FALSE,

forge_addr=FALSE))

5.16.6.1. Attributes of SockAddrUnix

type (string)

Default: n/a

The unix value that indicates an address in the UNIX domain.

5.17. Module Stack

Zorp is capable of stacking, that is, handing over parts of the traffic to other modules for further inspection
(e.g., to other proxies to inspect embedded protocols, to content vectoring modules for virus filtering, etc.). The
Stack module defines the classes required for this functionality.

213www.balasys.hu

Class SockAddrUnix



Stacking in services is performed using StackingProvider policies, which reference the host that performs the
stacked operations using the RemoteStackingBackend class.

5.17.1. Classes in the Stack module

DescriptionClass

This is an abstract class, currently without any
functionality.

AbstractStackingBackend

Constructor to initialize an instance of the
RemoteStackingBackend class.

RemoteStackingBackend

This is a policy class that is used to reference a
configured stacking provider in service definitions.

StackingProvider

Table 5.107. Classes of the Stack module

5.17.2. Class AbstractStackingBackend

This is an abstract class, currently without any functionality.

5.17.3. Class RemoteStackingBackend

This class contains the address of the host that performs the stacked operations. It is typically used to access
the Zorp Content Vectoring Server (ZCV) to perform virus filtering in the traffic. The remote backend can be
a c c e s s e d u s i n g t h e T C P p r o t o c o l o r a l o c a l s o c k e t , e . g . ,
RemoteStackingBackend(addrs=(SockAddrInet('192.168.2.3', 1318),)) or
RemoteStackingBackend(addrs=(SockAddrUnix('/var/run/zcv/zcv.sock'),)). .

5.17.3.1. RemoteStackingBackend methods

DescriptionMethod

__init__(self, addrs)
Table 5.108. Method summary

Method __init__(self, addrs)

Arguments of __init__

addrs (complex)

Default: n/a

The address of the remote backend in SockAddrInet or SockAddrUnix format. Separate addresses with commas
to list more than one address for a backend. Zorp will connect to these addresses in a failover fashion.

214www.balasys.hu

Classes in the Stack module



5.17.4. Class StackingProvider

Instances of the StackingProvider class are policies that define which remote stacking backend a particular
service uses to inspect the contents of the traffic.

Example 5.45. A simple StackingProvider class
The following class creates a simple stacking provider that can be referenced in service definitions. The remote host that provides the
stacking services is located under the 192.168.12.12 IP address.

StackingProvider(name="demo_stackingprovider",

backend=RemoteStackingBackend(addrs=(SockAddrInet('192.168.12.12', 1318),)))

Example 5.46. Using a StackingProvider in an FTP proxy
The following classes define a stacking provider that can be accesses a local ZCV instance using a domain socket. This service provider
is then used to filter FTP traffic. The configuration of the ZCV (i.e., what modules it uses to filter the traffic is not discussed here).

class StackingFtpProxy(FtpProxy):

def config(self):

super(StackingFtpProxy, self).config()

self.request_stack["RETR"]=(FTP_STK_DATA, (Z_STACK_PROVIDER, "demo_stackingprovider",

"default_rulegroup"))

StackingProvider(name="demo_stackingprovider_socket",

backend=RemoteStackingBackend(addrs=(SockAddrUnix('/var/run/zcv/zcv.sock'),)))

5.17.4.1. StackingProvider methods

DescriptionMethod

Constructor to initialize an instance of the
StackingProvider class.

__init__(self, name, backend)

Table 5.109. Method summary

Method __init__(self, name, backend)

This constructor creates a StackingProvider instance and sets the attributes of the instance according to the
received arguments.

Arguments of __init__

backend (class)

Default: n/a

A configured RemoteStackingBackend class containing the address of the remote stacking backend, e.g.,
RemoteStackingBackend(addrs=(SockAddrInet('192.168.2.3', 1318),)) or
RemoteStackingBackend(addrs=(SockAddrUnix('/var/run/zcv/zcv.sock'),)). .

name (string)

Default: n/a

215www.balasys.hu

Class StackingProvider



name (string)

Name of the Stacking provider policy. This name can be referenced in the service definitions.

5.18. Module Zone

This module defines the Zone class.

Zones are the basis of access control. A zone consists of a set of IP addresses, address ranges, or subnet. For
example, a zone can contain an IPv4 or IPv6 subnet.

Zones are organized into a hierarchy created by the administrator. Child zones inherit the security attributes
(set of permitted services etc.) from their parents. The administrative hierarchy often reflects the organization
of the company, with zones assigned to the different departments.

When it has to be determined what zone a client belongs to, the most specific zone containing the searched IP
address is selected. If an IP address belongs to two different zones, the most specific zone is selected.

Example 5.47. Finding IP networks
Suppose there are three zones configured: Zone_A containing the 10.0.0.0/8 network, Zone_B containing the 10.0.0.0/16 network,
and Zone_C containing the 10.0.0.25 IP address. Searching for the 10.0.44.0 network returns Zone_B, because that is the most
specific zone matching the searched IP address. Similarly, searching for 10.0.0.25 returns only Zone_C.

This approach is used in the service definitions as well: when a client sends a connection request, the most specific zone containing the
IP address of the client is looked up. Suppose that the clients in Zone_A are allowed to use HTTP. If a client with IP 10.0.0.50 (thus
belonging to Zone_B) can only use HTTP if Zone_B is the child of Zone_A, or if a service definition explicitly permits Zone_B to use
HTTP.

Example 5.48. Zone examples
The following example defines a simple zone hierarchy. The following zones are defined:

internet: This zone contains every possible IP addresses, if an IP address does not belong to another zone, than it belongs
to the internet zone.

■

■ office: This zone contains the 192.168.1.0/32 and 192.168.2.0/32 networks.

■ management: This zone is separated from the office zone, because it contans an independent subnet 192.168.3.0/32 .
But from the administrator's view, it is the child zone of the office zone, meaning that it can use (and accept) the same
services as the office zone.

■ DMZ: This is a separate zone.

Zone('internet', ['0.0.0.0/0', '::0/0'])

Zone('office', ['192.168.1.0/32', '192.168.2.0/32'])

Zone('management', ['192.168.3.0/32'])

Zone('DMZ', ['10.50.0.0/32'])

216www.balasys.hu

Module Zone



5.18.1. Classes in the Zone module

DescriptionClass

Class encapsulating IP zones.Zone
Table 5.110. Classes of the Zone module

5.18.2. Class Zone

This class encapsulates IPv4 and IPv6 zones.

Example 5.49. Determining the zone of an IP address
An IP address always belongs to the most specific zone. Suppose that Zone A includes the IP network 10.0.0.0/8 and Zone B includes
the network 10.0.1.0/24. In this case, a client machine with the 10.0.1.100/32 IP address belongs to both zones from an IP
addressing point of view. But Zone B is more specific (in CIDR terms), so the client machine belongs to Zone B.

5.18.2.1. Zone methods

DescriptionMethod

Constructor to initialize a Zone instance__init__(self, name, addrs, hostnames, admin_parent,
inbound_services, outbound_services)

Table 5.111. Method summary

Method __init__(self, name, addrs, hostnames, admin_parent, inbound_services, outbound_services)

This constructor initializes a Zone object.

Arguments of __init__

addr (complex)

Default: n/a

A string representing an address range interpreted by the domain class (last argument), *or* a list of strings
representing multiple address ranges.

admin_parent (string)

Default: n/a

Name of the administrative parent zone. If set, the current zone inherits the lists of permitted inbound and
outbound services from its administrative parent zone.

hostnames (complex)

Default: n/a

217www.balasys.hu

Classes in the Zone module



hostnames (complex)

A string representing a domain name, the addresses of its A and AAAA records are placed into the zone
hierarchy *or* a list of domain names representing multiple domain names

name (string)

Default: n/a

Name of the zone.

5.19. Module Zorp

This module defines global constants (e.g., TRUE and FALSE) used by other components, and interface entry
points to the core.

218www.balasys.hu

Module Zorp



Chapter 6. Core-internal

This chapter provides information about some of the internal Zorp modules.

6.1. Module Cache

Caching is used throughout the policy layer to improve performance. This module includes a couple of general
caching classes used by various parts of the policy code.

6.2. Module Core

This module imports all public interfaces and makes it easy to use those from the user policy file by simply
importing all symbols from Zorp.Core.

6.3. Module Dispatch

Dispatchers bind to a specific IP address and port of the Zorp firewall and wait for incoming connection requests.
For each accepted connection, the Dispatcher creates a new service instance to handle the traffic arriving in the
connection.

Note
Earlier product versions used different classes to handle TCP and UDP connections (Dispatchers, respectively). These classes have been
merged into the Dispatcher module.

For each accepted connection, the Dispatcher creates a new service instance to handle the traffic arriving in the
connection. The service started by the dispatcher depends on the type of the dispatcher:

■ Dispatchers start the same service for every connection.

■ CSZoneDispatchers start different services based on the zones the client and the destination server
belong to.

Note
Only one dispatcher can bind to an IP address/port pair.

6.3.1. Zone-based service selection

Dispatchers can start only a predefined service. Use CSZonedDispatchers to start different services for different
connections. CSZoneDispatchers assign different services to different client-server zone pairs. Define the zones
and the related services in the services parameter. The * wildcard matches all client or server zones.

219www.balasys.hu

Module Cache



Note
The server zone may be modified by the proxy, the router, the chainer, or the NAT policy used in the service. To select the service,
CSZoneDispatcher determines the server zone from the original destination IP address of the incoming client request. Similarly, the
client zone is determined from the source IP address of the original client request.

To accept connections from the child zones of the selected client zones, set the follow_parent attribute to
TRUE. Otherwise, the dispatcher accepts traffic only from the client zones explicitly listed in the services

attribute of the dispatcher.

6.3.2. Classes in the Dispatch module

DescriptionClass

Class encapsulating the Dispatcher which starts a
service by the client and server zone.

CSZoneDispatcher

Class encapsulating the Dispatcher which starts a
service by the client and server zone.

Dispatcher

Table 6.1. Classes of the Dispatch module

6.3.3. Class CSZoneDispatcher

This class is similar to a simple Dispatcher, but instead of starting a fixed service, it chooses one based on the
client and the destined server zone.

It takes a mapping of services indexed by a client and the server zone name, with an exception of the '*' zone,
which matches anything.

NOTE: the server zone might change during proxy and NAT processing, therefore the server zone used here
only matches the real destination if those phases leave the server address intact.

Example 6.1. CSZoneDispatcher example
The following example defines a CSZoneDispatcher that starts the service called internet_HTTP_DMZ for connections received on
the 192.168.2.1 IP address, but only if the connection comes from the internet zone and the destination is in the DMZ zone.

CSZoneDispatcher(bindto=SockAddrInet('192.168.2.1', 50080), services={("internet",

"DMZ"):"internet_HTTP_DMZ"}, transparent=TRUE, backlog=255, threaded=FALSE, follow_parent=FALSE)

6.3.3.1. Attributes of CSZoneDispatcher

services (unknown)

Default: n/a

services mapping indexed by zone names

220www.balasys.hu

Classes in the Dispatch module



6.3.3.2. CSZoneDispatcher methods

DescriptionMethod

Constructor to initialize a CSZoneDispatcher instance.__init__(self, bindto, services, **kw)
Table 6.2. Method summary

Method __init__(self, bindto, services, **kw)

This constructor initializes a CSZoneDispatcher instance and sets its initial attributes based on arguments.

Arguments of __init__

bindto (sockaddr)

Default: n/a

An existing socket address containing the IP address and port number where the Dispatcher accepts connections.

follow_parent (boolean)

Default: n/a

Set this parameter to TRUE if the dispatcher handles also the connections coming from the child zones of the
selected client zones. Otherwise, the dispatcher accepts traffic only from the explicitly listed client zones.

services (complex)

Default: n/a

Client zone - server zone - service name pairs using the (("client_zone","server_zone"):"service")
format; specifying the service to start when the dispatcher accepts a connection from the given client zone
that targets the server zone.

6.3.4. Class Dispatcher

This class is the starting point of services. It listens on the given port, and when a connection is accepted it
starts a session and the given service.

Example 6.2. Dispatcher example
The following example defines a transparent dispatcher that starts the service called demo_http_service for connections received on
the 192.168.2.1 IP address.

Dispatcher(bindto=SockAddrInet('192.168.2.1', 50080), service="demo_http_service", transparent=TRUE,

backlog=255, threaded=FALSE)

221www.balasys.hu

Class Dispatcher



6.3.4.1. Attributes of Dispatcher

backlog (integer)

Default: n/a

Applies only to TCP connections. This parameter sets the queue size (maximum number) of TCP connections
that are established by the kernel, but not yet accepted by Zorp. This queue stores the connections that
successfully performed the three-way TCP handshake with the Zorp host, until the dispatcher sends the Accept
package.

bindto (sockaddr)

Default: n/a

An existing socket address containing the IP address and port number where the Dispatcher accepts connections.

protocol (unknown)

Default: n/a

the protocol we were bound to

service (service)

Default: n/a

Name of the service to start.

threaded (boolean)

Default: n/a

Set this parameter to TRUE to start a new thread for every client request. The proxy threads started by the
dispatcher will start from the dispatcher's thread instead of the main thread. Incoming connections are accepted
faster and optimizes queuing if this option is enabled. This improves user experience, but significantly increases
the memory consumption of Zorp. Use it only if a very high number of concurrent connections have to be
transfered.

6.3.4.2. Dispatcher methods

DescriptionMethod

Constructor to initialize a Dispatcher instance.__init__(self, bindto, service, **kw)
Table 6.3. Method summary

Method __init__(self, bindto, service, **kw)

This constructor creates a new Dispatcher instance which can be associated with a Service.

222www.balasys.hu

Class Dispatcher



Arguments of __init__

bindto (sockaddr)

Default: n/a

An existing socket address containing the IP address and port number where the Dispatcher accepts connections.

service (service)

Default: n/a

Name of the service to start.

transparent (boolean)

Default: n/a

Set this parameter to TRUE if the dispatcher starts a transparent service.

6.4. Module Globals

Global variables used by the policy layer.

6.5. Module Stream

This module defines the Stream class, encapsulating file descriptors and related functions.

6.5.1. Classes in the Stream module

DescriptionClass

Class encapsulating the file descriptor and related
functions.

Stream

Table 6.4. Classes of the Stream module

6.5.2. Class Stream

This class encapsulates a full-duplex data tunnel, represented by a UNIX file descriptor. Proxies communicate
with its peers through instances of this class. The client_stream and server_stream attributes of the
Session class contain a Stream instance.

6.5.2.1. Attributes of Stream

bytes_recvd (integer)

Default: n/a

The number of bytes received in the stream.

223www.balasys.hu

Module Globals



bytes_sent (integer)

Default: n/a

The number of bytes sent in the stream.

fd (integer)

Default: n/a

The file descriptor associated to the stream.

name (string)

Default: n/a

The name of the stream.

6.5.2.2. Stream methods

DescriptionMethod

Constructor to initialize a stream.__init__(self, fd, name)
Table 6.5. Method summary

Method __init__(self, fd, name)

This constructor initializes a Stream instance setting its attributes according to arguments.

Arguments of __init__

fd (integer)

Default: n/a

The file descriptor associated to the stream.

name (string)

Default: n/a

The name of the stream.

224www.balasys.hu

Class Stream



Appendix A. Additional proxy information

A.1. TELNET appendix

The constants defined for the easier use of TELNET options and suboptions are listed in the table below.
Suboptions are listed directly under the option they refer to. All suboptions have the TELNET_SB prefix. The
RFC describing the given option is also shown in the table.

Detailed in RFC #C o n s t a n t v a l u e o f
option/suboption

Name

8560TELNET_BINARY

8571TELNET_ECHO

8583TELNET_SUPPRESS_GO_AHEAD

8595TELNET_STATUS

0TELNET_SB_STATUS_SB_IS

1TELNET_SB_STATUS_SB_SEND

8606TELNET_TIMING_MARK

7267TELNET_RCTE

65210TELNET_NAOCRD

0TELNET_SB_NAOCRD_DR

1TELNET_SB_NAOCRD_DS

65311TELNET_NAOHTS

0TELNET_SB_NAOHTS_DR

1TELNET_SB_NAOHTS_DS

65412TELNET_NAOHTD

0TELNET_SB_NAOHTD_DR

1TELNET_SB_NAOHTD_DS

65513TELNET_NAOFFD

0TELNET_SB_NAOFFD_DR

1TELNET_SB_NAOFFD_DS

65614TELNET_NAOVTS

0TELNET_SB_NAOVTS_DR

1TELNET_SB_NAOVTS_DS

225www.balasys.hu

TELNET appendix



Detailed in RFC #C o n s t a n t v a l u e o f
option/suboption

Name

65715TELNET_NAOVTD

0TELNET_SB_NAOVTD_DR

1TELNET_SB_NAOVTD_DS

65816TELNET_NAOLFD

0TELNET_SB_NAOLFD_DR

1TELNET_SB_NAOLFD_DS

69817TELNET_EXTEND_ASCII

72718TELNET_LOGOUT

73519TELNET_BM

1TELNET_SB_BM_DEFINE

2TELNET_SB_BM_ACCEPT

3TELNET_SB_BM_REFUSE

4TELNET_SB_BM_LITERAL

5TELNET_SB_BM_CANCEL

1043, 73220TELNET_DET

1TELNET_SB_DET_DEFINE

2TELNET_SB_DET_ERASE

3TELNET_SB_DET_TRANSMIT

4TELNET_SB_DET_FORMAT

5TELNET_SB_DET_MOVE_CURSOR

6TELNET_SB_DET_SKIP_TO_LINE

7TELNET_SB_DET_SKIP_TO_CHAR

8TELNET_SB_DET_UP

9TELNET_SB_DET_DOWN

10TELNET_SB_DET_LEFT

11TELNET_SB_DET_RIGHT

12TELNET_SB_DET_HOME

13TELNET_SB_DET_LINE_INSERT

14TELNET_SB_DET_LINE_DELETE

15TELNET_SB_DET_CHAR_INSERT

226www.balasys.hu

TELNET appendix



Detailed in RFC #C o n s t a n t v a l u e o f
option/suboption

Name

16TELNET_SB_DET_CHAR_DELETE

17TELNET_SB_DET_READ_CURSOR

18TELNET_SB_DET_CURSOR_POSITION

19TELNET_SB_DET_REVERSE_TAB

20TELNET_SB_DET_TRANSMIT_SCREEN

21TELNET_SB_DET_TRANSMIT_UNPROTECTED

22TELNET_SB_DET_TRANSMIT_LINE

23TELNET_SB_DET_TRANSMIT_FIELD

24TELNET_SB_DET_TRANSMIT_REST_SCREEN

25TELNET_SB_DET_TRANSMIT_REST_LINE

26TELNET_SB_DET_TRANSMIT_REST_FIELD

27TELNET_SB_DET_TRANSMIT_MODIFIED

28TELNET_SB_DET_DATA_TRANSMIT

29TELNET_SB_DET_ERASE_SCREEN

30TELNET_SB_DET_ERASE_LINE

31TELNET_SB_DET_ERASE_FIELD

32TELNET_SB_DET_ERASE_REST_SCREEN

33TELNET_SB_DET_ERASE_REST_LINE

34TELNET_SB_DET_ERASE_REST_FIELD

35TELNET_SB_DET_ERASE_UNPROTECTED

36TELNET_SB_DET_FORMAT_DATA

37TELNET_SB_DET_REPEAT

38TELNET_SB_DET_SUPPRESS_PROTECTION

39TELNET_SB_DET_FIELD_SEPARATOR

40TELNET_SB_DET_FN

41TELNET_SB_DET_ERROR

736, 73421TELNET_SUPDUP

74922TELNET_SUPDUP_OUTPUT

77923TELNET_SEND_LOCATION

109124TELNET_TERMINAL_TYPE

227www.balasys.hu

TELNET appendix



Detailed in RFC #C o n s t a n t v a l u e o f
option/suboption

Name

0TELNET_SB_TERMINAL_TYPE_IS

1TELNET_SB_TERMINAL_TYPE_SEND

88525TELNET_EOR

92726TELNET_TUID

93327TELNET_OUTMRK

28 946TELNET_TTYLOC

104129TELNET_3270_REGIME

0TELNET_SB_3270_REGIME_IS

1TELNET_SB_3270_REGIME_ARE

105330TELNET_X3_PAD

0TELNET_SB_X3_PAD_SET

1TELNET_SB_X3_PAD_RESPONSE_SET

2TELNET_SB_X3_PAD_IS

3TELNET_SB_X3_PAD_RESPONSE_IS

4TELNET_SB_X3_PAD_SEND

107331TELNET_NAWS

107932TELNET_TERMINAL_SPEED

0TELNET_SB_TERMINAL_SPEED_IS

1TELNET_SB_TERMINAL_SPEED_SEND

137233TELNET_TOGGLE_FLOW_CONTROL

0TELNET_SB_TOGGLE_FLOW_CONTROL_OFF

1TELNET_SB_TOGGLE_FLOW_CONTROL_ON

2TELNET_SB_TOGGLE_FLOW_CONTROL_RESTART_ANY

3TELNET_SB_TOGGLE_FLOW_CONTROL_RESTART_XON

118434TELNET_LINEMODE

1TELNET_SB_LINEMODE_MODE

2TELNET_SB_LINEMODE_FORWARDMASK

3TELNET_SB_LINEMODE_SLC

109635TELNET_X_DISPLAY_LOCATION

0TELNET_SB_X_DISPLAY_LOCATION_IS

228www.balasys.hu

TELNET appendix



Detailed in RFC #C o n s t a n t v a l u e o f
option/suboption

Name

1TELNET_SB_X_DISPLAY_LOCATION_SEND

140836TELNET_OLD_ENVIRONMENT

0TELNET_SB_OLD_ENVIRONMENT_IS

1TELNET_SB_OLD_ENVIRONMENT_SEND

2TELNET_SB_OLD_ENVIRONMENT_INFO

294137TELNET_AUTHENTICATION

0TELNET_SB_AUTHENTICATION_IS

1TELNET_SB_AUTHENTICATION_SEND

2TELNET_SB_AUTHENTICATION_REPLY

3TELNET_SB_AUTHENTICATION_NAME

294638TELNET_ENCRYPT

0TELNET_SB_ENCRYPT_IS

1TELNET_SB_ENCRYPT_SUPPORT

2TELNET_SB_ENCRYPT_REPLY

3TELNET_SB_ENCRYPT_START

4TELNET_SB_ENCRYPT_END

5TELNET_SB_ENCRYPT_REQUEST_START

6TELNET_SB_ENCRYPT_REQUEST_END

7TELNET_SB_ENCRYPT_ENC_KEYID

8TELNET_SB_ENCRYPT_DEC_KEYID

157239TELNET_ENVIRONMENT

0TELNET_SB_ENVIRONMENT_IS

1TELNET_SB_ENVIRONMENT_SEND

2TELNET_SB_ENVIRONMENT_INFO

164740TELNET_TN3270E

0TELNET_SB_TN3270E_ASSOCIATE

1TELNET_SB_TN3270E_CONNECT

2TELNET_SB_TN3270E_DEVICE_TYPE

3TELNET_SB_TN3270E_FUNCTIONS

4TELNET_SB_TN3270E_IS

229www.balasys.hu

TELNET appendix



Detailed in RFC #C o n s t a n t v a l u e o f
option/suboption

Name

5TELNET_SB_TN3270E_REASON

6TELNET_SB_TN3270E_REJECT

7TELNET_SB_TN3270E_REQUEST

8TELNET_SB_TN3270E_SEND

206642TELNET_CHARSET

1TELNET_SB_CHARSET_REQUEST

2TELNET_SB_CHARSET_ACCEPTED

3TELNET_SB_CHARSET_REJECTED

4TELNET_SB_CHARSET_TTABLE_IS

5TELNET_SB_CHARSET_TTABLE_REJECTED

6TELNET_SB_CHARSET_TTABLE_ACK

7TELNET_SB_CHARSET_TTABLE_NAK

221744TELNET_COM_PORT

1TELNET_SB_COM_PORT_CLI_SET_BAUDRATE

2TELNET_SB_COM_PORT_CLI_SET_DATASIZE

3TELNET_SB_COM_PORT_CLI_SET_PARITY

4TELNET_SB_COM_PORT_CLI_SET_STOPSIZE

5TELNET_SB_COM_PORT_CLI_SET_CONTROL

6TELNET_SB_COM_PORT_CLI_NOTIFY_LINESTATE

7TELNET_SB_COM_PORT_CLI_NOTIFY_MODEMSTATE

8TELNET_SB_COM_PORT_CLI_FLOWCONTROL_SUSPEND

9TELNET_SB_COM_PORT_CLI_FLOWCONTROL_RESUME

10TELNET_SB_COM_PORT_CLI_SET_LINESTATE_MASK

11TELNET_SB_COM_PORT_CLI_SET_MODEMSTATE_MASK

12TELNET_SB_COM_PORT_CLI_PURGE_DATA

101TELNET_SB_COM_PORT_SVR_SET_BAUDRATE

102TELNET_SB_COM_PORT_SVR_SET_DATASIZE

103TELNET_SB_COM_PORT_SVR_SET_PARITY

104TELNET_SB_COM_PORT_SVR_SET_STOPSIZE

105TELNET_SB_COM_PORT_SVR_SET_CONTROL

230www.balasys.hu

TELNET appendix



Detailed in RFC #C o n s t a n t v a l u e o f
option/suboption

Name

106TELNET_SB_COM_PORT_SVR_NOTIFY_LINESTATE

107TELNET_SB_COM_PORT_SVR_NOTIFY_MODEMSTATE

108TELNET_SB_COM_PORT_SVR_FLOWCONTROL_SUSPEND

109TELNET_SB_COM_PORT_SVR_FLOWCONTROL_RESUME

110TELNET_SB_COM_PORT_SVR_SET_LINESTATE_MASK

111TELNET_SB_COM_PORT_SVR_SET_MODEMSTATE_MASK

112TELNET_SB_COM_PORT_SVR_PURGE_DATA

284047TELNET_KERMIT

0TELNET_SB_KERMIT_START_SERVER

1TELNET_SB_KERMIT_STOP_SERVER

2TELNET_SB_KERMIT_REQ_START_SERVER

3TELNET_SB_KERMIT_REQ_STOP_SERVER

4TELNET_SB_KERMIT_SOP

8TELNET_SB_KERMIT_RESP_START_SERVER

9TELNET_SB_KERMIT_RESP_STOP_SERVER

861255TELNET_EXOPL

1097257TELNET_SUBLIMINAL_MSG
Table A.1. TELNET options and suboptions

231www.balasys.hu

TELNET appendix



Appendix B. Global options of Zorp

Zorp has a number of global options and variables that are used during the initialization of the engine, before
any proxies or services are started. These options control the swapping of large data chunks (blobs) to disk, the
handling of audit trails, and other miscellaneous parameters. To set these options, complete the following steps:

B.1. Procedure – Setting global options of Zorp

Step 1. Select the Zorp component, then select Variables > New.

Step 2. Enter the name of the global option into the Name field, and select the type of the option in the Type
field.

Step 3. Select OK, then Edit.
Step 4. Enter the desired value of the option, then select OK.

Note
Global options can be also set at the beginning of the Config.py file if managing the configuration of Zorp manually.

232www.balasys.hu



blob

blob

Description

These options control the handling of large data chunks (blobs), determine when the are swapped to disk, and
also how much disk space and memory can be used by Zorp.

Blob options

config.blob.temp_directory The directory where the blobs are swapped to. Default value:
/var/lib/zorp/tmp/

config.blob.hiwat Zorp tries to store everything in the memory if possible. If
the memory usage of Zorp reaches hiwat, it starts to swap the
data onto the hard disk, until the memory usage reaches lowat.
Default value: 128*0x100000 (128 MB)

config.blob.lowat Global options can be also set at the beginning of the
Config.py file if managing the configuration of Zorp
manually.
Lower threshold of data swapping. Default value:
96*0x100000 (96 MB)

config.blob.max_disk_usage The maximum amount of hard disk space that Zorp is allowed
to use. Default value: 1024*0x100000 (1 GB)

config.blob.max_mem_usage The maximum amount of memory that Zorp is allowed to
use. Default value: 256*0x100000 (256 MB)

config.blob.noswap_max Objects smaller than this value (in bytes) are never swapped
to hard disk. Default value: 16384

233www.balasys.hu



audit

audit

Description

These options control the handling of audit trails in Zorp.

Audit options

config.audit.compress Enable the compression of audit trail files. The level of
c o m p r e s s i o n c a n b e s e t v i a t h e
config.audit.compress_level parameter. Default value:
TRUE

config.audit.compress_level The level of compression ranging from 1 (lowest, default) to
9 (highest). Please note that higher compression levels use
significantly more CPU, therefore it is usually not
recommended to set it to higher than 4. Default value: 1

config.audit.encrypt Encrypt the audit trail files using the key provided in the
config.audit.encrypt_certificate parameter. Default
value: FALSE

config.audit.encrypt_certificate The X.509 PEM certificate used to encrypt the audit trail files.
Default value: empty.
The certificate should be placed in the following format:

-----BEGIN CERTIFICATE-----

insert key here

-----END CERTIFICATE-----

config.audit.encrypt_certificate_file Name and path of the file containing the X.509 PEM
certificate used to encrypt the audit trail files. If this parameter
i s s e t , i t o v e r r i d e s t h e s e t t i n g s o f
config.audit.encrypt_certificate. Default value:
empty.

config.audit.reopen_size_threshold The maximum size of a single audit trail file in bytes. Default
value: 2000000000L (2 GB)

config.audit.per_session Store each session in its own audit file. Default value: FALSE

config.audit.reopen_time_threshold The maximum time frame of a single audit file in seconds.
Default value: 28800 (8 hours)

config.audit.rate_limit Zorp considers it abnormal if the size of an audit trail is
increasing faster than this value in byte/second. Default value:
2097152 (2 MB)

config.audit.rate_notification_interval Time in seconds before repeating the notification about
abnormally growing audit trails. Default value: 300 (5
minutes)

234www.balasys.hu



config.audit.write_size_max Maximum size of an audit trail file in bytes. Default value:
52428800 (50 MB)

config.audit.terminate_on_max_size If set to TRUE, Zorp terminates the connection if the
corresponding audit trail file reaches the size limit set in
config.audit.write_size_max. Default value: FALSE

235www.balasys.hu



options

options

Description

These options control various behavior of Zorp.

Options

config.options.dscp_prio_mapping Priority mapping for transferring Differentiated Services Code
Point (DSCP, also known as Type of Service or ToS). The
low (0), normal (1), high (2), and urgent (3) priorities can be
assigned to the DSCP classes. The assigned priority
determines the priority of the Zorp thread that handles the
connection. The mapping is actually a hash table consisting
of the DSCP class ID, a colon (:), the priority of the class
(0-3), and a comma (,) except for the last row. For example:

config.options.dscp_mapping = { 1: 3,

2: 2,

3: 2,

4: 0 }

config.options.language The default language used to display user-visible messages,
e.g., HTTP error pages. Default value: en (English). Other
supported languages: de (German); hu (Hungarian).

config.options.timeout_server_connect The timeout (in milliseconds) used when establishing
server-side connections. Default value: 30000 (30 sec)

Cache options

Zorp caches certain data (e.g., to which zone a particular IP address belongs to) to decrease the time required
to process a connection. The following parameters determine the size of these caches (the number of decisions
stored in the cache). Adjusting these parameters is required only in environments having very complex zone
structure and a large number of services. The following log message indicates that a cache is full: Cache over

shift-threshold, shifting

config.zone_cache_shift_threshold Stores IP addresses and the zone they belong to. Default value:
1000

config.inbound_service_cache_threshold Stores service-zone pairs, and if the service is permitted to
enter the zone. Default value: 1000

config.outbound_service_cache_threshold Stores service-zone pairs, and if the service is permitted to
leave the zone. Default value: 1000

236www.balasys.hu



Appendix C. Zorp manual pages

237www.balasys.hu



instances.conf

instances.conf — zorp(8) instances database

Description

The instances.conf file describes the zorp(8) instances to be run on the system. It is processed by
zorpctl(8) line by line, each line having the structure described below. Empty lines and lines beginning
with '#' are comments ignored by zorpctl.

Structure

instance-name parameters [-- zorpctl-options]

instance-name is the name of the Zorp instance to be started; it is passed to zorp with its --as parameter.
Instance names may consist of the characters [a-zA-Z0-9_] and must begin with a letter.

parameters are space separated parameters entered into the zorp command-line. For details on these command-line
parameters see zorp(8).

zorpctl-options are space separated parameters control startup specific options. They are processed by zorpctl
itself. The following zorpctl options are available:

--auto-restart or -A Enable the automatic restart feature of zorpctl. When an
instance is in auto-restart mode, it is restarted automatically in
case the instance exits.

--no-auto-restart or -a Disable automatic restart for this instance.

--fd-limit <number> or -f
<number>

Set the file descriptor limit to <number>. The file descriptor
limit defaults to the number of threads (specified by the --threads
parameter of zorp(8)) multiplied by 4.

--num-of-processes <number>

or -P <number>

Run <number> of processes for the instance. zorpctl starts
exactly one Zorp process in master mode and <number> of slave
Zorp processes. This mode of operation is incompatible with
old-style dispatchers, you must use the new rule-based policy
with this option.

Examples

zorp_ftp --policy /etc/zorp/policy.py --verbose 5

The line above describes a Zorp instance named zorp_ftp using policy file /etc/zorp/policy.py, and having
verbosity level 5.

zorp_intra -v4 -p /etc/zorp/policy.py --threads 500 --no-auto-restart --fd-limit

1024 --process-limit 512

This line describes a zorp instance named zorp_intra using the policy file /etc/zorp/policy.py, verbosity
level 4. The maximum number of threads is set to 500, file descriptor limit to 1024, process limit to 512.

238www.balasys.hu



Files

The default location of instances.conf is /etc/zorp/instances.conf. Defaults for zorpctl tunables
can be specified in /etc/zorp/zorpctl.

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 1996-2024 Balasys IT Zrt. All rights reserved.

239www.balasys.hu



policy.py

policy.py — zorp(8) policy file.

Description

The policy.py file is a Python module containing the zone and service definitions and other policy related
settings used by zorp(8) . Empty lines and lines beginning with '#' are comments and are ignored.

The policy.py file is generated automatically by ZMC, the Zorp Management Console, or it can be edited
manually.

IMPORTANT: Do not edit manually a file generated by ZMC, because the manual changes will not be retained
by ZMC and will be lost when re-generating the file.

Files

The default location of policy.py is /etc/zorp/policy.py.

See Also

For further information on policy.py refer to the following sources:

A tutorial on manually editing the policy.py file can be found at http://www.balasys.hu/documentation/.

Additional information can also be found in the Zorp Administrator's Guide, the Zorp Reference Guide, and in
the various tutorials available at the BalaSys Documentation Page at http://www.balasys.hu/documentation.

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 1996-2024 Balasys IT Zrt. All rights reserved.

240www.balasys.hu

http://www.balasys.hu/documentation/
http://www.balasys.hu/documentation


zorp

zorp — Zorp Firewall Suite

Synopsis

zorp [options]

Description

The zorp command is the main entry point for a Zorp instance, and as such it is generally called by zorpctl(8)
with command line parameters specified in instances.conf(5) .

Options

--version or -V Display version number and compilation information.

--as <name> or -a <name> Set instance name to <name>. Instance names may consist of
the characters [a-zA-Z0-9_] and must begin with a letter. Log
messages of this instance are prefixed with this name.

--no-syslog or -l Send log messages to the standard output instead of syslog. This
option implies foreground mode, overriding the contradicting
process options if present.

--log-tags or -T Prepend log category and log level to each message.

--log-escape Escape non-printable characters to avoid binary log files. Each
character less than 0x20 and greater than 0x7F are escaped in
the form <XX>.

--log-spec <spec> or -s
<spec>

Set verbosity mask on a per category basis. Each log message
has an assigned multi-level category, where levels are separated
by a dot. For example, HTTP requests are logged under
http.request. <spec> is a comma separated list of log
specifications. A single log specification consists of a wildcard
matching log category, a colon, and a number specifying the
verbosity level of that given category. Categories match from
left to right. E.g.: --logspec 'http.*:5,core:3'. The last
matching entry will be used as the verbosity of the given
category. If no match is found the default verbosity specified
with --verbose is used.

--threads <num> or -t <num> Set the maximum number of threads that can be used in parallel
by this Zorp instance.

--idle-threads <num> or -I Set the maximum number of idle threads; this option has effect
only if threadpools are enabled (see the option --threadpools).

--threadpools or -O Enable the use of threadpools, which means that threads
associated with sessions are not automatically freed, only if the
maximum number of idle threads is exceeded.

--user <user> or -u <user> Switch to the supplied user after starting up.

241www.balasys.hu



--group <group> or -g <group> Switch to the supplied group after starting up.

--chroot <dir> or -R <dir> Change root to the specified directory before reading the
configuration file. The directory must be set up accordingly.

--caps <caps> or -C <caps> Switch to the supplied set of capabilities after starting up. This
should contain the required capabilities in the permitted set. For
the syntax of capability description see the man page of
cap_from_text(3).

--no-caps or -N Do not change capabilities at all.

--crypto-engine <engine> or
-E <engine>

Set the OpenSSL crypto engine to be used for hardware
accelerated crypto support.

Files

/etc/zorp/

/etc/zorp/policy.py

/etc/zorp/instances.conf

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 1996-2024 Balasys IT Zrt. All rights reserved.

242www.balasys.hu



zorpctl

zorpctl — Start and stop zorp instances.

Synopsis

zorpctl command [options [instances/@instance-list-file]]

Description

zorpctl starts and stops zorp(8) instances based on the contents of the instances.conf(5) file. Multiple
instance names can be specified in the command-line or in a file to start or stop several instances. If an error
occurs while stopping or starting an instance, an exclamation mark is appended to the instance name as zorpctl
processes the request, and a summary is printed when the program exits. If no instance is specified, the command
is executed on all instances. The instances to be controlled can be specified in a file instead of listing them in
the command line, e.g.: zorpctl command options instances.txt. The instances.txt should contain
every instance name in a new line.

Commands

start Starts the specified Zorp instance(s).

force-start Starts the specified Zorp instance(s) even if they are disabled.

stop Stops the specified Zorp instance(s).

force-stop Forces the specified Zorp instance(s) to stop using the KILL
signal.

restart Restart the specified Zorp instance(s).

force-restart Forces the specified Zorp instance(s) to restart by stopping them
using the KILL signal.

reload Reload the specified Zorp instance(s).

status Display the status of the specified Zorp instance(s).

--verbose or -v Display detailed status
information.

gui-status Display the status of the specified Zorp instance(s) in an internal
format easily parsable by ZMC. NOTE: This command is mainly
used internally within Zorp, and the structure of its output may
change.

version Display version information on Zorp.

inclog Raise the verbosity (log) level of the specified Zorp instance(s)
by one.

declog Decrease the verbosity (log) level of the specified Zorp
instance(s) by one.

log Change various log related settings in the specified Zorp
instance(s) using the following options:

243www.balasys.hu



--vinc or -i Increase verbosity level
by one.

--vdec or -d Decrease verbosity level
by one.

--vset <verbosity> or -s
<verbosity>

Set verbosity level to
<verbosity>.

--log-spec <spec> or -S
<spec>

Set verbosity mask on a
per category basis. The
format of this value is
described in zorp(8).

--help or -h Display this help screen
on the options of the log
command.

szig Display internal information from the specified Zorp instance(s).
The information to be disblayed can be specified with the
following options:

--walk or -w Walk the specified tree.

--root [node] or -r [node] Set the root node of the
walk operation to [node].

--help or -h Display a brief help on
the options of the szig

command.

help Display a brief help message.

Examples

zorpctl start zorp_ftp

The command above starts the zorp instance named zorp-ftpwith parameters described in the instances.conf
file.

Files

The default location for instances.conf is /etc/zorp/instances.conf.

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 1996-2024 Balasys IT Zrt. All rights reserved.

244www.balasys.hu



zorpctl.conf

zorpctl.conf — zorpctl(8) configuration file.

Description

The zorpctl.conf file describes various global options ifluencing the behavior of zorpctl(8) .
zorpctl(8) processes the file line by line, each line having the structure described below. Empty lines and
lines beginning with '#' are comments and are ignored.

Structure

variable name = variable value

Each non-empty line specifies a variable name and its value separated by the equal sign ('='). The following
variables are available:

AUTO_RESTART Enable the automatic restart feature of zorpctl. Instances
in auto-restart mode are restarted automatically when they
exit. Default value: 1 (TRUE).

STOP_CHECK_TIMEOUT The number of seconds to wait for a stopping Zorp instance.
Default value: 3.

START_CHECK_TIMEOUT In auto-restart mode there is no real way to detect whether
Zorp failed to load or not. Zorpctl waits
START_CHECK_TIMEOUT seconds and assumes that Zorp
loaded successfully if it did not exit within this interval.
Default value: 5 seconds.

START_WAIT_TIMEOUT In no-auto-restart mode the successful loading of a Zorp
instance can be verified by instructing Zorp to daemonize
itself and waiting for the parent to exit. This parameter
specifies the number of seconds to wait for Zorp to daemonize
itself. Default value: 60 seconds.

ZORP_APPEND_ARGS Zorp-specific arguments to be appended to the command line
of each Zorp instance. Also recognised as APPEND_ARGS
(deprecated). Default value: "".

ZORPCTL_APPEND_ARGS Zorpctl-specific arguments to be appended to the command
line of each instance. Default value: "".

CHECK_PERMS Specifies whether to check the permissions of the Zorp
configuration directory. If set, Zorp refuses to run if the
/etc/zorp directory can be written by user other then zorp
Default value: 1 (TRUE).

CONFIG_DIR The path to the Zorp configuration directory to check if
CHECK_PERMS is enabled. NOTE: it does not change the
Zorp policy file argument, this parameter is only used by the
permission validating code. Default value:
${prefix}/etc/zorp .

245www.balasys.hu



CONFIG_DIR_OWNER,

CONFIG_DIR_GROUP,

CONFIG_DIR_MODE

The owner/group/permissions values considered valid for the
configuration directory. zorpctl fails if the actual
owner/group/permissions values conflict the ones set here.
Default values: root.zorp, 0750 .

PIDFILE_DIR The path to the Zorp pid file directory. The directory is created
automatically prior to starting Zorp if it does not already
exist.It is created if it does not exist, before NOTE: No
--pidfile argument is passed to Zorp, only texistance of the
directory is verified. Default value: /var/run/zorp.

PIDFILE_DIR_OWNER,

PIDFILE_DIR_GROUP,

PIDFILE_DIR_MODE

The owner/group/permission values the pidfile directory is
created with if it does not exist. Default values: root.root,
0700.

Files

The default location for zorpctl.conf is /etc/zorp/zorpctl.conf.

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 1996-2024 Balasys IT Zrt. All rights reserved.

246www.balasys.hu



Appendix D. Zorp GPL End-User License
Agreement

(c) Balasys IT Security Ltd.

D.1. 1. SUBJECT OF THE LICENSE CONTRACT

1.1 This License Contract is entered into by and between Balasys and Licensee and sets out the terms and
conditions under which Licensee and/or Licensee's Authorized Subsidiaries may use the Zorp GPL under this
License Contract.

D.2. 2. DEFINITIONS

In this License Contract, the following words shall have the following meanings:

2.1 Balasys

Company name: Balasys IT Ltd.

Registered office: H-1117 Budapest, Alíz Str. 4.

Company registration number: 01-09-687127

Tax number: HU11996468-2-43

2.2. Words and expressions

Annexed Software

Any third party software that is a not a Balasys Product contained in the install media of the Balasys Product.

Authorized Subsidiary

Any subsidiary organization: (i) in which Licensee possesses more than fifty percent (50%) of the voting power
and (ii) which is located within the Territory.

Balasys Product

Any software, hardware or service licensed, sold, or provided by Balasys including any installation, education,
support and warranty services, with the exception of the Annexed Software.

License Contract

The present Zorp GPL License Contract.

Product Documentation

247www.balasys.hu

1. SUBJECT OF THE LICENSE CONTRACT



Any documentation referring to the Zorp GPL or any module thereof, with special regard to the reference guide,
the administration guide, the product description, the installation guide, user guides and manuals.

Protected Hosts

Host computers located in the zones protected by Zorp GPL, that means any computer bounded to network and
capable to establish IP connections through the firewall.

Protected Objects

The entire Zorp GPL including all of its modules, all the related Product Documentation; the source code, the
structure of the databases, all registered information reflecting the structure of the Zorp GPL and all the adaptation
and copies of the Protected Objects that presently exist or that are to be developed in the future, or any product
falling under the copyright of Balasys.

Zorp GPL

Application software Balasys Product designed for securing computer networks as defined by the Product
Description.

Warranty Period

The period of twelve (12) months from the date of delivery of the Zorp GPL to Licensee.

Territory

The countries or areas specified above in respect of which Licensee shall be entitled to install and/or use Zorp
GPL.

Take Over Protocol

The document signed by the parties which contains

a) identification data of Licensee;

b) ordered options of Zorp GPL, number of Protected Hosts and designation of licensed modules thereof;

c) designation of the Territory;

d) declaration of the parties on accepting the terms and conditions of this License Contract; and

e) declaration of Licensee that is in receipt of the install media.

D.3. 3. LICENSE GRANTS AND RESTRICTIONS

3.1. For the Zorp GPL licensed under this License Contract, Balasys grants to Licensee a non-exclusive,

non-transferable, perpetual license to use such Balasys Product under the terms and conditions of this License
Contract and the applicable Take Over Protocol.

3.2. Licensee shall use the Zorp GPL in the in the configuration and in the quantities specified in the Take Over
Protocol within the Territory.

248www.balasys.hu

3. LICENSE GRANTS AND RESTRICTIONS



3.3. On the install media all modules of the Zorp GPL will be presented, however, Licensee shall not be entitled
to use any module which was not licensed to it. Access rights to modules and IP connections are controlled by
an "electronic key" accompanying the Zorp GPL.

3.4. Licensee shall be entitled to make one back-up copy of the install media containing the Zorp GPL.

3.5. Licensee shall make available the Protected Objects at its disposal solely to its own employees and those
of the Authorized Subsidiaries.

3.6. Licensee shall take all reasonable steps to protect Balasys's rights with respect to the Protected Objects
with special regard and care to protecting it from any unauthorized access.

3.7. Licensee shall, in 5 working days, properly answer the queries of Balasys referring to the actual usage
conditions of the

Zorp GPL, that may differ or allegedly differs from the license conditions.

3.8. Licensee shall not modify the Zorp GPL in any way, with special regard to the functions inspecting the
usage of the software. Licensee shall install the code permitting the usage of the Zorp GPL according to the
provisions defined for it by Balasys. Licensee may not modify or cancel such codes. Configuration settings of
the Zorp GPL in accordance with the possibilities offered by the system shall not be construed as modification
of the software.

3.9. Licensee shall only be entitled to analize the structure of the Balasys Products (decompilation or reverse-
engineering) if concurrent operation with a software developed by a third party is necessary, and upon request
to supply the information required for concurrent operation Balasys does not provide such information within
60 days from the receipt of such a request. These user actions are limited to parts of the Balasys Product which
are necessary for concurrent operation.

3.10. Any information obtained as a result of applying the previous Section

(i) cannot be used for purposes other than concurrent operation with the Balasys Product;

(ii) cannot be disclosed to third parties unless it is necessary for concurrent operation with the Balasys Product;

(iii) cannot be used for the development, production or distribution of a different software which is similar to
the BalaSys Product

in its form of expression, or for any other act violating copyright.

3.11. For any Annexed Software contained by the same install media as the Balasys Product, the terms and
conditions defined by its copyright owner shall be properly applied. Balasys does not grant any license rights
to any Annexed Software.

3.12. Any usage of the Zorp GPL exceeding the limits and restrictions defined in this License Contract shall
qualify as material breach of the License Contract.

3.13. The Number of Protected Hosts shall not exceed the amount defined in the Take Over Protocol.

3.14. Licensee shall have the right to obtain and use content updates only if Licensee concludes a maintenance
contract that includes such content updates, or if Licensee has otherwise separately acquired the right to obtain

249www.balasys.hu

3. LICENSE GRANTS AND RESTRICTIONS



and use such content updates. This License Contract does not otherwise permit Licensee to obtain and use
content updates.

D.4. 4. SUBSIDIARIES

4.1 Authorized Subsidiaries may also utilize the services of the Zorp GPL under the terms and conditions of
this License Contract. Any Authorized Subsidiary utilising any service of the Zorp GPL will be deemed to have
accepted the terms and conditions of this License Contract.

D.5. 5. INTELLECTUAL PROPERTY RIGHTS

5.1. Licensee agrees that Balasys owns all rights, titles, and interests related to the Zorp GPL and all of Balasys's
patents, trademarks, trade names, inventions, copyrights, know-how, and trade secrets relating to the design,
manufacture, operation or service of the Balasys Products.

5.2. The use by Licensee of any of these intellectual property rights is authorized only for the purposes set forth
herein, and upon termination of this License Contract for any reason, such authorization shall cease.

5.3. The Balasys Products are licensed only for internal business purposes in every case, under the condition
that such license does not convey any license, expressly or by implication, to manufacture, duplicate or otherwise
copy or reproduce any of the Balasys Products.

No other rights than expressly stated herein are granted to Licensee.

5.4. Licensee will take appropriate steps with its Authorized Subsidiaries, as Balasys may request, to inform
them of and assure compliance with the restrictions contained in the License Contract.

D.6. 6. TRADE MARKS

6.1. Balasys hereby grants to Licensee the non-exclusive right to use the trade marks of the Balasys Products
in the Territory in accordance with the terms and for the duration of this License Contract.

6.2. Balasys makes no representation or warranty as to the validity or enforceability of the trade marks, nor as
to whether these infringe any intellectual property rights of third parties in the Territory.

D.7. 7. NEGLIGENT INFRINGEMENT

7.1. In case of negligent infringement of Balasys's rights with respect to the Zorp GPL, committed by violating
the restrictions and limitations defined by this License Contract, Licensee shall pay liquidated damages to
Balasys. The amount of the liquidated damages shall be twice as much as the price of the Balasys Product
concerned, on Balasys's current Price List.

D.8. 8. INTELLECTUAL PROPERTY INDEMNIFICATION

8.1. Balasys shall pay all damages, costs and reasonable attorney's fees awarded against Licensee in connection
with any claim brought against Licensee to the extent that such claim is based on a claim that Licensee's
authorized use of the Balasys Product infringes a patent, copyright, trademark or trade secret. Licensee shall
notify Balasys in writing of any such claim as soon as Licensee learns of it and shall cooperate fully with Balasys

250www.balasys.hu

4. SUBSIDIARIES



in connection with the defense of that claim. Balasys shall have sole control of that defense (including without
limitation the right to settle the claim).

8.2. If Licensee is prohibited from using any Balasys Product due to an infringement claim, or if Balasys believes
that any Balasys Product is likely to become the subject of an infringement claim, Balasys shall at its sole
option, either: (i) obtain the right for Licensee to continue to use such Balasys Product, (ii) replace or modify
the Balasys Product so as to make such Balasys Product non-infringing and substantially comparable in
functionality or (iii) refund to Licensee the amount paid for such infringing Balasys Product and provide a
pro-rated refund of any unused, prepaid maintenance fees paid by Licensee, in exchange for Licensee's return
of such Balasys Product to Balasys.

8.3. Notwithstanding the above, Balasys will have no liability for any infringement claim to the extent that it
is based upon:

(i) modification of the Balasys Product other than by Balasys,

(ii) use of the Balasys Product in combination with any product not specifically authorized by Balasys to be
combined with the Balasys Product or

(iii) use of the Balasys Product in an unauthorized manner for which it was not designed.

D.9. 9. LICENSE FEE

9.1. The number of the Protected Hosts (including the server as one host), the configuration and the modules
licensed shall serve as the calculation base of the license fee.

9.2. Licensee acknowlegdes that payment of the license fees is a condition of lawful usage.

9.3. License fees do not contain any installation or post charges.

D.10. 10. WARRANTIES

10.1. Balasys warrants that during the Warranty Period, the optical media upon which the Balasys Product is
recorded will not be defective under normal use. Balasys will replace any defective media returned to it,
accompanied by a dated proof of purchase, within the Warranty Period at no charge to Licensee. Upon receipt
of the allegedly defective Balasys Product, Balasys will at its option, deliver a replacement Balasys Product or
Balasys's current equivalent to Licensee at no additional cost. Balasys will bear the delivery charges to Licensee
for the replacement Product.

10.2. In case of installation by Balasys, Balasys warrants that during the Warranty Period, the Zorp GPL, under
normal use in the operating environment defined by Balasys, and without unauthorized modification, will
perform in substantial compliance with the Product Documentation accompanying the Balasys Product, when
used on that hardware for which it was installed, in compliance with the provisions of the user manuals and the
recommendations of Balasys. The date of the notification sent to Balasys shall qualify as the date of the failure.
Licensee shall do its best to mitigate the consequences of that failure. If, during the Warranty Period, the Balasys
Product fails to comply with this warranty, and such failure is reported by Licensee to Balasys within the
Warranty Period, Balasys's sole obligation and liability for breach of this warranty is, at Balasys's sole option,
either:

(i) to correct such failure,

251www.balasys.hu

9. LICENSE FEE



(ii) to replace the defective Balasys Product or

(iii) to refund the license fees paid by Licensee for the applicable Balasys Product.

D.11. 11. DISCLAIMER OF WARRANTIES

11.1. EXCEPT AS SET OUT IN THIS LICENSE CONTRACT, BALASYS MAKES NO WARRANTIES
OF ANY KIND WITH RESPECT TO THE Zorp GPL. TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, BALASYS EXCLUDES ANY OTHER WARRANTIES, INCLUDING BUT NOT
LIMITED TO ANY IMPLIED WARRANTIES OF SATISFACTORY QUALITY, MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY
RIGHTS.

D.12. 12. LIMITATION OF LIABILITY

12.1. SOME STATES AND COUNTRIES, INCLUDING MEMBER COUNTRIES OF THE EUROPEAN
UNION, DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES AND, THEREFORE, THE FOLLOWING LIMITATION OR EXCLUSION
MAY NOT APPLY TO THIS LICENSE CONTRACT IN THOSE STATES AND COUNTRIES. TO THE
MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW AND REGARDLESS OF WHETHER ANY
REMEDY SET OUT IN THIS LICENSE CONTRACT FAILS OF ITS ESSENTIAL PURPOSE, IN NO
EVENT SHALL BALASYS BE LIABLE TO LICENSEE FOR ANY SPECIAL, CONSEQUENTIAL,
INDIRECT OR SIMILAR DAMAGES OR LOST PROFITS OR LOST DATA ARISING OUT OF THE USE
OR INABILITY TO USE THE Zorp GPL EVEN IF BALASYS HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

12.2. IN NO CASE SHALL BALASYS'S TOTAL LIABILITY UNDER THIS LICENSE CONTRACT
EXCEED THE FEES PAID BY LICENSEE FOR THE Zorp GPL LICENSED UNDER THIS LICENSE
CONTRACT.

D.13. 13.DURATION AND TERMINATION

13.1. This License Contract shall come into effect on the date of signature of the Take Over Protocol by the
duly authorized

representatives of the parties.

13.2. Licensee may terminate the License Contract at any time by written notice sent to Balasys and by
simultaneously destroying all copies of the Zorp GPL licensed under this License Contract.

13.3. Balasys may terminate this License Contract with immediate effect by written notice to Licensee, if
Licensee is in material or persistent breach of the License Contract and either that breach is incapable of remedy
or Licensee shall have failed to remedy that breach within 30 days after receiving written notice requiring it to
remedy that breach.

D.14. 14. AMENDMENTS

14.1. Save as expressly provided in this License Contract, no amendment or variation of this License Contract
shall be effective unless in writing and signed by a duly authorised representative of the parties to it.

252www.balasys.hu

11. DISCLAIMER OF WARRANTIES



D.15. 15. WAIVER

15.1. The failure of a party to exercise or enforce any right under this License Contract shall not be deemed to
be a waiver of that right nor operate to bar the exercise or enforcement of it at any time or times thereafter.

D.16. 16. SEVERABILITY

16.1. If any part of this License Contract becomes invalid, illegal or unenforceable, the parties shall in such an
event negotiate in good faith in order to agree on the terms of a mutually satisfactory provision to be substituted
for the invalid, illegal or unenforceable

provision which as nearly as possible validly gives effect to their intentions as expressed in this License Contract.

D.17. 17. NOTICES

17.1. Any notice required to be given pursuant to this License Contract shall be in writing and shall be given
by delivering the notice by hand, or by sending the same by prepaid first class post (airmail if to an address
outside the country of posting) to the address of the relevant party set out in this License Contract or such other
address as either party notifies to the other from time to time. Any notice given according to the above procedure
shall be deemed to have been given at the time of delivery (if delivered by hand) and when received (if sent by
post).

D.18. 18. MISCELLANEOUS

18.1. Headings are for convenience only and shall be ignored in interpreting this License Contract.

18.2. This License Contract and the rights granted in this License Contract may not be assigned, sublicensed
or otherwise transferred in whole or in part by Licensee without Balasys's prior written consent. This consent
shall not be unreasonably withheld or delayed.

18.3. An independent third party auditor, reasonably acceptable to Balasys and Licensee, may upon reasonable
notice to Licensee and during normal business hours, but not more often than once each year, inspect Licensee's
relevant records in order to confirm that usage of the Zorp GPL complies with the terms and conditions of this
License Contract. Balasys shall bear the costs of such audit. All audits shall be subject to the reasonable safety
and security policies and procedures of Licensee.

18.4. This License Contract constitutes the entire agreement between the parties with regard to the subject
matter hereof. Any modification of this License Contract must be in writing and signed by both parties.

253www.balasys.hu

15. WAIVER



Appendix E. Creative Commons Attribution
Non-commercial No Derivatives (by-nc-nd)
License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT
AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED
UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED. BY EXERCISING ANY RIGHTS TO
THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS
LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE
LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR
ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and other pre-existing works,
such as a translation, adaptation, derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and includes cinematographic adaptations
or any other form in which the Work may be recast, transformed, or adapted including in any
form recognizably derived from the original, except that a work that constitutes a Collection will
not be considered an Adaptation for the purpose of this License. For the avoidance of doubt,
where the Work is a musical work, performance or phonogram, the synchronization of the Work
in timed-relation with a moving image ("synching") will be considered an Adaptation for the
purpose of this License.

b. "Collection" means a collection of literary or artistic works, such as encyclopedias and anthologies,
or performances, phonograms or broadcasts, or other works or subject matter other than works
listed in Section 1(f) below, which, by reason of the selection and arrangement of their contents,
constitute intellectual creations, in which the Work is included in its entirety in unmodified form
along with one or more other contributions, each constituting separate and independent works in
themselves, which together are assembled into a collective whole. A work that constitutes a
Collection will not be considered an Adaptation (as defined above) for the purposes of this
License.

c. "Distribute" means to make available to the public the original and copies of the Work through
sale or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the
terms of this License.

e. "Original Author" means, in the case of a literary or artistic work, the individual, individuals,
entity or entities who created the Work or if no individual or entity can be identified, the publisher;
and in addition (i) in the case of a performance the actors, singers, musicians, dancers, and other
persons who act, sing, deliver, declaim, play in, interpret or otherwise perform literary or artistic
works or expressions of folklore; (ii) in the case of a phonogram the producer being the person
or legal entity who first fixes the sounds of a performance or other sounds; and, (iii) in the case
of broadcasts, the organization that transmits the broadcast.

254www.balasys.hu



f. "Work" means the literary and/or artistic work offered under the terms of this License including
without limitation any production in the literary, scientific and artistic domain, whatever may be
the mode or form of its expression including digital form, such as a book, pamphlet and other
writing; a lecture, address, sermon or other work of the same nature; a dramatic or
dramatico-musical work; a choreographic work or entertainment in dumb show; a musical
composition with or without words; a cinematographic work to which are assimilated works
expressed by a process analogous to cinematography; a work of drawing, painting, architecture,
sculpture, engraving or lithography; a photographic work to which are assimilated works expressed
by a process analogous to photography; a work of applied art; an illustration, map, plan, sketch
or three-dimensional work relative to geography, topography, architecture or science; a
performance; a broadcast; a phonogram; a compilation of data to the extent it is protected as a
copyrightable work; or a work performed by a variety or circus performer to the extent it is not
otherwise considered a literary or artistic work.

g. "You" means an individual or entity exercising rights under this License who has not previously
violated the terms of this License with respect to the Work, or who has received express permission
from the Licensor to exercise rights under this License despite a previous violation.

h. "Publicly Perform" means to perform public recitations of the Work and to communicate to the
public those public recitations, by any means or process, including by wire or wireless means or
public digital performances; to make available to the public Works in such a way that members
of the public may access these Works from a place and at a place individually chosen by them;
to perform the Work to the public by any means or process and the communication to the public
of the performances of the Work, including by public digital performance; to broadcast and
rebroadcast the Work by any means including signs, sounds or images.

i. "Reproduce" means to make copies of the Work by any means including without limitation by
sound or visual recordings and the right of fixation and reproducing fixations of the Work,
including storage of a protected performance or phonogram in digital form or other electronic
medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any uses free
from copyright or rights arising from limitations or exceptions that are provided for in connection
with the copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a
worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright)
license to exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce
the Work as incorporated in the Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated in Collections.
The above rights may be exercised in all media and formats whether now known or hereafter devised.
The above rights include the right to make such modifications as are technically necessary to exercise
the rights in other media and formats, but otherwise you have no rights to make Adaptations. Subject
to 8(f), all rights not expressly granted by Licensor are hereby reserved, including but not limited
to the rights set forth in Section 4(d).

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the
following restrictions:

255www.balasys.hu



a. You may Distribute or Publicly Perform the Work only under the terms of this License. You
must include a copy of, or the Uniform Resource Identifier (URI) for, this License with every
copy of the Work You Distribute or Publicly Perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of the recipient of the Work to
exercise the rights granted to that recipient under the terms of the License. You may not sublicense
the Work. You must keep intact all notices that refer to this License and to the disclaimer of
warranties with every copy of the Work You Distribute or Publicly Perform. When You Distribute
or Publicly Perform the Work, You may not impose any effective technological measures on the
Work that restrict the ability of a recipient of the Work from You to exercise the rights granted
to that recipient under the terms of the License. This Section 4(a) applies to the Work as
incorporated in a Collection, but this does not require the Collection apart from the Work itself
to be made subject to the terms of this License. If You create a Collection, upon notice from any
Licensor You must, to the extent practicable, remove from the Collection any credit as required
by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3 above in any manner that is
primarily intended for or directed toward commercial advantage or private monetary compensation.
The exchange of the Work for other copyrighted works by means of digital file-sharing or
otherwise shall not be considered to be intended for or directed toward commercial advantage
or private monetary compensation, provided there is no payment of any monetary compensation
in connection with the exchange of copyrighted works.

c. If You Distribute, or Publicly Perform the Work or Collections, You must, unless a request has
been made pursuant to Section 4(a), keep intact all copyright notices for the Work and provide,
reasonable to the medium or means You are utilizing: (i) the name of the Original Author (or
pseudonym, if applicable) if supplied, and/or if the Original Author and/or Licensor designate
another party or parties (for example a sponsor institute, publishing entity, journal) for attribution
("Attribution Parties") in Licensor's copyright notice, terms of service or by other reasonable
means, the name of such party or parties; (ii) the title of the Work if supplied; (iii) to the extent
reasonably practicable, the URI, if any, that Licensor specifies to be associated with the Work,
unless such URI does not refer to the copyright notice or licensing information for the Work.
The credit required by this Section 4(c) may be implemented in any reasonable manner; provided,
however, that in the case of a Collection, at a minimum such credit will appear, if a credit for all
contributing authors of Collection appears, then as part of these credits and in a manner at least
as prominent as the credits for the other contributing authors. For the avoidance of doubt, You
may only use the credit required by this Section for the purpose of attribution in the manner set
out above and, by exercising Your rights under this License, You may not implicitly or explicitly
assert or imply any connection with, sponsorship or endorsement by the Original Author, Licensor
and/or Attribution Parties, as appropriate, of You or Your use of the Work, without the separate,
express prior written permission of the Original Author, Licensor and/or Attribution Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to collect
royalties through any statutory or compulsory licensing scheme cannot be waived, the Licensor
reserves the exclusive right to collect such royalties for any exercise by You of the rights
granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect
royalties through any statutory or compulsory licensing scheme can be waived, the Licensor
reserves the exclusive right to collect such royalties for any exercise by You of the rights

256www.balasys.hu



granted under this License if Your exercise of such rights is for a purpose or use which is
otherwise than noncommercial as permitted under Section 4(b) and otherwise waives the right
to collect royalties through any statutory or compulsory licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to collect royalties, whether
individually or, in the event that the Licensor is a member of a collecting society that
administers voluntary licensing schemes, via that society, from any exercise by You of the
rights granted under this License that is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(b).

e. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by
applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by itself or as
part of any Collections, You must not distort, mutilate, modify or take other derogatory action
in relation to the Work which would be prejudicial to the Original Author's honor or reputation.

5. Representations, Warranties and Disclaimer UNLESS OTHERWISE MUTUALLY AGREED BY
THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO
REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK,
EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE.
SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES,
SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN
NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by
You of the terms of this License. Individuals or entities who have received Collections from You
under this License, however, will not have their licenses terminated provided such individuals
or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive
any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration
of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right
to release the Work under different license terms or to stop distributing the Work at any time;
provided, however that any such election will not serve to withdraw this License (or any other
license that has been, or is required to be, granted under the terms of this License), and this
License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to
the recipient a license to the Work on the same terms and conditions as the license granted to
You under this License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect
the validity or enforceability of the remainder of the terms of this License, and without further

257www.balasys.hu



action by the parties to this agreement, such provision shall be reformed to the minimum extent
necessary to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to unless
such waiver or consent shall be in writing and signed by the party to be charged with such waiver
or consent.

d. This License constitutes the entire agreement between the parties with respect to the Work licensed
here. There are no understandings, agreements or representations with respect to the Work not
specified here. Licensor shall not be bound by any additional provisions that may appear in any
communication from You. This License may not be modified without the mutual written agreement
of the Licensor and You.

e. The rights granted under, and the subject matter referenced, in this License were drafted utilizing
the terminology of the Berne Convention for the Protection of Literary and Artistic Works (as
amended on September 28, 1979), the Rome Convention of 1961, the WIPO Copyright Treaty
of 1996, the WIPO Performances and Phonograms Treaty of 1996 and the Universal Copyright
Convention (as revised on July 24, 1971). These rights and subject matter take effect in the
relevant jurisdiction in which the License terms are sought to be enforced according to the
corresponding provisions of the implementation of those treaty provisions in the applicable
national law. If the standard suite of rights granted under applicable copyright law includes
additional rights not granted under this License, such additional rights are deemed to be included
in the License; this License is not intended to restrict the license of any rights under applicable
law.

258www.balasys.hu



Index of Proxy attributes

F
Finger

AbstractFingerProxy
max_hop_count, 23
max_hostname_length, 23
max_line_length, 23
max_username_length, 23
request_detailed, 23
request_hostnames, 23
request_username, 24
response_footer, 24
response_header, 24
strict_username_check, 24
timeout, 24

fingerRequest
hostname, 24
username, 25

Ftp
AbstractFtpProxy

active_connection_mode, 30
auth_tls_ok_client, 30
auth_tls_ok_server, 30
buffer_size, 30
data_mode, 31
data_port_max, 31
data_port_min, 31
data_protection_enabled_client, 31
data_protection_enabled_server, 31
features, 31
hostname, 31
hostport, 31
masq_address_client, 32
masq_address_server, 32
max_continuous_line, 32
max_hostname_length, 32
max_line_length, 32
max_password_length, 32
max_username_length, 32
password, 32
permit_client_bounce_attack, 33
permit_empty_command, 33
permit_server_bounce_attack, 33
permit_unknown_command, 33

proxy_password, 33
proxy_username, 33
request, 33
request_command, 33
request_parameter, 34
request_stack, 34
response, 34
response_parameter, 34
response_status, 34
response_strip_msg, 34
strict_port_checking, 34
target_port_range, 34
timeout, 35
transparent_mode, 35
username, 35
valid_chars_username, 35

H
Http

AbstractHttpProxy
auth_by_cookie, 49
auth_by_form, 49
auth_cache_time, 50
auth_cache_update, 50
auth_forward, 50
auth_realm, 50
buffer_size, 50
connection_mode, 50
connect_proxy, 50
current_header_name, 51
current_header_value, 51
default_port, 51
enable_session_persistence, 51
enable_url_filter, 51
enable_url_filter_dns, 51
error_files_directory, 51
error_headers, 51
error_info, 52
error_msg, 52
error_silent, 52
error_status, 52
keep_persistent, 52
language, 52
max_auth_time, 52
max_body_length, 52
max_chunk_length, 53
max_header_lines, 53
max_hostname_length, 53

259www.balasys.hu



max_keepalive_requests, 53
max_line_length, 53
max_url_length, 53
parent_proxy, 53
parent_proxy_port, 53
permit_ftp_over_http, 54
permit_http09_responses, 54
permit_invalid_hex_escape, 54
permit_null_response, 54
permit_proxy_requests, 54
permit_server_requests, 54
permit_unicode_url, 54
request, 54
request_count, 55
request_header, 55
request_method, 55
request_mime_type, 55
request_stack, 55
request_url, 55
request_url_file, 55
request_url_host, 55
request_url_passwd, 56
request_url_port, 56
request_url_proto, 56
request_url_scheme, 56
request_url_username, 56
request_version, 56
require_host_header, 56
rerequest_attempts, 56
reset_on_close, 57
response, 57
response_header, 57
response_mime_type, 57
response_stack, 57
rewrite_host_header, 57
session_persistence_cookie_name, 57
session_persistence_cookie_salt, 57
strict_header_checking, 58
strict_header_checking_action, 58
target_port_range, 58
timeout, 58
timeout_request, 58
timeout_response, 58
transparent_mode, 58
url_category, 58
url_filter_uncategorized_action, 59
use_canonicalized_urls, 59
use_default_port_in_transparent_mode, 59

getRequestHeader
header, 59

getResponseHeader
header, 60

HttpProxyURIFilter
matcher, 61

setRequestHeader
header, 60
new_value, 60

setResponseHeader
header, 60
new_value, 60

P
Plug

AbstractPlugProxy
bandwidth_to_client, 63
bandwidth_to_server, 63
buffer_size, 63
copy_to_client, 63
copy_to_server, 63
packet_stats_interval_packet, 64
packet_stats_interval_time, 64
secondary_mask, 64
secondary_sessions, 64
shutdown_soft, 64
stack_proxy, 64
timeout, 64

packetStats
client_bytes, 65
client_pkts, 65
server_bytes, 65
server_pkts, 65

Pop3
AbstractPop3Proxy

max_authline_count, 70
max_password_length, 70
max_request_line_length, 71
max_response_line_length, 71
max_username_length, 71
password, 71
permit_longline, 71
permit_unknown_command, 71
reject_by_mail, 71
request, 71
request_command, 72
request_param, 72
response_multiline, 72

260www.balasys.hu



response_param, 72
response_stack, 72
response_value, 72
session_timestamp, 72
timeout, 72
username, 73

S
Smtp

AbstractSmtpProxy
active_extensions, 76
add_received_header, 76
append_domain, 77
autodetect_domain_from, 77
domain_name, 77
extensions, 77
interval_transfer_noop, 77
max_auth_request_length, 77
max_request_length, 77
max_response_length, 77
permit_long_responses, 78
permit_omission_of_angle_brackets, 78
permit_unknown_command, 78
request, 78
request_command, 78
request_param, 78
request_stack, 78
require_crlf, 78
resolve_host, 79
response, 79
response_param, 79
response_value, 79
timeout, 79
tls_passthrough, 79
unconnected_response_code, 79

SmtpProxy
error_soft, 80
permit_exclamation_mark, 80
permit_percent_hack, 80
recipient_matcher, 80
relay_check, 80
relay_domains, 80
relay_domains_matcher, 80
relay_zones, 80
sender_matcher, 81

T
Telnet

AbstractTelnetProxy
current_var_name, 85
current_var_value, 85
enable_audit, 85
negotiation, 85
option, 85
timeout, 85

W
Whois

AbstractWhoisProxy
max_line_length, 86
max_request_length, 87
request, 87
response_footer, 87
response_header, 87
timeout, 87

261www.balasys.hu



Index of Core attributes

A
Auth

__init__
acl, 95
authentication, 93
authorization, 94
authorize_policy, 96
cache, 93
cleanup_threshold, 91
connect_timeout, 101
grouplist, 98
intervals, 99
name, 93, 94
pki, 101
port, 101
provider, 93
service_equiv, 91
timeout, 92, 101
update_stamp, 92
userlist, 99
wait_authorization, 96
wait_timeout, 96, 97

AuthDB
__init__

backend, 102
name, 102
pki_ca, 103
pki_cert, 103
serveraddr, 103
ssl_verify_depth, 103
use_ssl, 103

C
Chainer

SideStackChainer
right_chainer, 110
right_class, 111

__init__
protocol, 106, 107, 108, 110, 112
right_chainer, 111
right_class, 111
self, 109
timeout_connect, 106, 107, 108, 109, 110, 112

timeout_state, 108, 112

D
Dispatch

CSZoneDispatcher
services, 220

Dispatcher
backlog, 222
bindto, 222
protocol, 222
service, 222
threaded, 222

__init__
bindto, 221, 223
follow_parent, 221
service, 223
services, 221
transparent, 223

M
Matcher

RegexpFileMatcher
ignore_date, 166
ignore_file, 166
match_date, 166
match_file, 166

RegexpMatcher
ignore, 167
match, 167

__init__
bind_name, 169
cache_timeout, 169
force_delivery_attempt, 169
hosts, 165
ignore_fname, 167
ignore_list, 168
match_fname, 167
match_list, 168
resolve_on_init, 165
sender_address, 169
server, 166, 170
server_name, 169
server_port, 169

N
NAT

performTranslation

262www.balasys.hu



addrs, 172
nat_type, 172
session, 172

__init__
addr, 179
addresses, 178
cacheable, 176
default_reject, 173, 176, 177
from_domain, 177
ip_hash, 173
mapping, 173, 177
name, 176
nat, 176
prefix, 174
prefix_mask, 174, 175
suffix, 174
to_domain, 178

P
Proxy

getCredentials
domain, 182
method, 182
port, 183
target, 183
username, 183

Proxy
encryption_policy, 181
language, 181

setServerAddress
host, 183
port, 183

userAuthenticated
entity, 184

R
Resolver

__init__
mapping, 186
name_server, 185
timeout, 185
use_search_domain, 185

Router
AbstractRouter

forge_addr, 187
forge_port, 187

DirectedRouter
dest_addr, 188

TransparentRouter
forced_port, 190
forge_addr, 190

__init__
dest_addr, 188
forced_port, 191
forge_addr, 188, 189, 191
forge_port, 189, 190, 191
overrideable, 189, 191

S
Service

AbstractService
name, 198

DenyService
ipv4_setting, 199
ipv6_setting, 199
name, 200

PFService
dnat_policy, 201
router, 201
snat_policy, 201

Service
authentication_policy, 203
authorization_policy, 203
auth_name, 203
chainer, 203
dnat_policy, 203
encryption_policy, 203
instance_id, 203
keepalive, 203
max_instances, 204
max_sessions, 204
num_instances, 204
proxy_class, 204
resolver_policy, 204
router, 204
snat_policy, 204

startInstance
session, 207

__init__
authentication_policy, 205
authorization_policy, 205
auth_name, 205
chainer, 206
dnat_policy, 206
encryption_policy, 206
keepalive, 206

263www.balasys.hu



limit_target_zones_to, 206
log_spec, 200, 202
log_verbose, 200, 202
max_instances, 206
max_sessions, 206
name, 199, 200, 206
proxy_class, 207
resolver_policy, 207
router, 207
snat_policy, 207

Session
setTargetAddress

addr, 209
StackedSession

chainer, 208
owner, 208
server_address, 208
server_local, 208
server_stream, 208
server_zone, 209
target_address, 209
target_local, 209
target_zone, 209

SockAddr
SockAddrInet

ip, 210
ip_s, 210
port, 210
type, 211

SockAddrInet6
ip, 211
ip_s, 211
port, 211
type, 211

SockAddrInetHostname
ip, 212
ip_s, 212
port, 212
type, 212

SockAddrInetRange
ip, 213
ip_s, 213
port, 213
type, 213

SockAddrUnix
type, 213

Z
Zone

__init__
addr, 217
admin_parent, 217
hostnames, 218
name, 218

264www.balasys.hu



Index of all attributes

A
acl, 95
active_connection_mode, 30
active_extensions, 76
addr, 179, 209, 217
addresses, 178
addrs, 172, 214
add_received_header, 76
admin_parent, 217
append_domain, 77
authentication, 93
authentication_policy, 203, 205
authorization, 94
authorization_policy, 203, 205
authorize_policy, 96
auth_by_cookie, 49
auth_by_form, 49
auth_cache_time, 50
auth_cache_update, 50
auth_forward, 50
auth_name, 203, 205
auth_realm, 50
auth_tls_ok_client, 30
auth_tls_ok_server, 30
autodetect_domain_from, 77

B
backend, 102, 215
backlog, 222
bandwidth_to_client, 63
bandwidth_to_server, 63
bindto, 221, 222, 223
bind_name, 169
buffer_size, 30, 50, 63
bytes_recvd, 223
bytes_sent, 224

C
cache, 93
cacheable, 176
cache_directory, 137, 161, 162
cache_timeout, 169
ca_hint_directory, 125, 127

certificate, 114
certificates, 158, 159
certificate_file_path, 123, 124, 125
chainer, 203, 206, 208
check_subject, 151, 152
cipher, 131, 133, 148, 149, 155, 157
ciphers_tlsv1_3, 131, 133, 148, 149, 155, 157
cipher_server_preference, 131, 133
cleanup_threshold, 91
client_bytes, 65
client_certificate_generator, 128, 129, 130, 138, 141, 
142, 143, 144, 159, 160
client_max_line_length, 20
client_pkts, 65
client_security, 138
client_ssl_options, 128, 129, 130, 131, 138, 139, 141, 
142, 143, 144, 159, 160
client_verify, 129, 130, 131, 138, 139, 141, 142, 143, 
144, 159, 160
connection_mode, 50
connect_proxy, 50
connect_timeout, 101
copy_to_client, 63
copy_to_server, 63
current_header_name, 51
current_header_value, 51
current_var_name, 85
current_var_value, 85

D
data_mode, 31
data_port_max, 31
data_port_min, 31
data_protection_enabled_client, 31
data_protection_enabled_server, 31
default, 146, 147
default_port, 51
default_reject, 173, 176, 177
dest_addr, 188
dh_params, 131
dh_param_file_path, 134
disable_compression, 131, 134, 148, 150, 155, 157
disable_renegotiation, 134
disable_send_root_ca, 132, 134
disable_session_cache, 132, 134, 148, 150, 155, 157
disable_ticket, 132, 134, 148, 150, 155, 157
disable_tlsv1, 132, 134, 148, 150, 155, 157
disable_tlsv1_1, 132, 134, 148, 150, 156, 157

265www.balasys.hu



disable_tlsv1_2, 132, 135, 148, 150, 156, 157
disable_tlsv1_3, 132, 135, 149, 150, 156, 158
dnat_policy, 201, 203, 206
domain, 182
domain_name, 77
dst_iface, 195
dst_ifgroup, 195
dst_port, 195
dst_subnet, 195
dst_zone, 196

E
enable_audit, 85
enable_session_persistence, 51
enable_url_filter, 51
enable_url_filter_dns, 51
encryption, 139, 140
encryption_policy, 181, 203, 206
entity, 184
error_files_directory, 51
error_headers, 51
error_info, 52
error_msg, 52
error_silent, 52
error_soft, 80
error_status, 52
extensions, 77
extension_whitelist, 137, 162

F
fd, 224
features, 31
file_path, 136
follow_parent, 221
forced_port, 190, 191
force_delivery_attempt, 169
forge_addr, 187, 188, 189, 190, 191
forge_port, 187, 189, 190, 191
from_domain, 177

G
grouplist, 98

H
header, 59, 60
high, 194
host, 183

hostname, 24, 31
hostnames, 218
hostname_certificate_map, 147
hostport, 31
hosts, 165

I
ignore, 115, 167
ignore_date, 166
ignore_file, 166
ignore_fname, 167
ignore_list, 168
instance_id, 203
intermediate_revocation_check_type, 120, 121, 125, 
127, 151, 152
intervals, 99
interval_transfer_noop, 77
ip, 210, 211, 212, 213
ipv4_setting, 199
ipv6_setting, 199
ip_hash, 173
ip_s, 210, 211, 212, 213

K
keepalive, 203, 206
keep_persistent, 52
key_file, 161, 163
key_file_path, 145, 146
key_passphrase, 162, 163

L
language, 52, 181
leaf_revocation_check_type, 120, 122, 125, 127, 151, 
153
level, 180
limit_target_zones_to, 206
log_spec, 200, 202
log_verbose, 200, 202
low, 195

M
mapping, 173, 177, 186
masq_address_client, 32
masq_address_server, 32
match, 115, 167
matcher, 61
match_date, 166

266www.balasys.hu



match_file, 166
match_fname, 167
match_list, 168
max_authline_count, 70
max_auth_request_length, 77
max_auth_time, 52
max_body_length, 52
max_chunk_length, 53
max_continuous_line, 32
max_header_lines, 53
max_hop_count, 23
max_hostname_length, 23, 32, 53
max_instances, 204, 206
max_keepalive_requests, 53
max_line_length, 23, 32, 53, 86
max_password_length, 32, 70
max_request_length, 77, 87
max_request_line_length, 71
max_response_length, 77
max_response_line_length, 71
max_sessions, 204, 206
max_url_length, 53
max_username_length, 23, 32, 71
method, 182
msg, 181

N
name, 93, 94, 102, 139, 140, 176, 198, 199, 200, 206, 
216, 218, 224
name_server, 185
nat, 176
nat_type, 172
negotiation, 85
new_value, 60
num_instances, 204

O
option, 85
overrideable, 189, 191
owner, 208

P
packet_stats_interval_packet, 64
packet_stats_interval_time, 64
params, 136
parent_proxy, 53
parent_proxy_port, 53

passphrase, 124, 145, 146
password, 32, 71
permit_client_bounce_attack, 33
permit_empty_command, 33
permit_exclamation_mark, 80
permit_ftp_over_http, 54
permit_http09_responses, 54
permit_invalid_hex_escape, 54
permit_longline, 71
permit_long_responses, 78
permit_null_response, 54
permit_omission_of_angle_brackets, 78
permit_percent_hack, 80
permit_proxy_requests, 54
permit_server_bounce_attack, 33
permit_server_requests, 54
permit_unicode_url, 54
permit_unknown_command, 33, 71, 78
pki, 101
pki_ca, 103
pki_cert, 103
port, 101, 183, 210, 211, 212, 213
prefix, 174
prefix_mask, 174, 175
private_key, 137
private_key_password, 123, 124, 125
proto, 196
protocol, 106, 107, 108, 110, 112, 222
provider, 93
proxy_class, 204, 207
proxy_password, 33
proxy_username, 33

R
recipient, 179, 180
recipient_matcher, 80
reject_by_mail, 71
relay_check, 80
relay_domains, 80
relay_domains_matcher, 80
relay_zones, 80
request, 33, 54, 71, 78, 87
request_command, 33, 72, 78
request_count, 55
request_detailed, 23
request_header, 55
request_hostnames, 23
request_method, 55

267www.balasys.hu



request_mime_type, 55
request_param, 72, 78
request_parameter, 34
request_stack, 34, 55, 78
request_url, 55
request_url_file, 55
request_url_host, 55
request_url_passwd, 56
request_url_port, 56
request_url_proto, 56
request_url_scheme, 56
request_url_username, 56
request_username, 24
request_version, 56
required, 120, 122, 126, 127
require_crlf, 78
require_host_header, 56
rerequest_attempts, 56
reset_on_close, 57
resolver_policy, 204, 207
resolve_host, 79
resolve_on_init, 165
response, 34, 57, 79
response_footer, 24, 87
response_header, 24, 57, 87
response_mime_type, 57
response_multiline, 72
response_param, 72, 79
response_parameter, 34
response_stack, 57, 72
response_status, 34
response_strip_msg, 34
response_value, 72, 79
rewrite_host_header, 57
right_chainer, 110, 111
right_class, 111
router, 201, 204, 207
rule_id, 196

S
secondary_mask, 64
secondary_sessions, 64
self, 109
sender_address, 169
sender_matcher, 81
server, 166, 170
serveraddr, 103
server_address, 208

server_bytes, 65
server_certificate_generator, 154, 159, 160
server_local, 208
server_max_line_length, 21
server_name, 169
server_name_matcher, 115, 116
server_pkts, 65
server_port, 169
server_ssl_options, 141, 142, 143, 144, 154, 159, 161
server_stream, 208
server_verify, 141, 142, 143, 144, 154, 155, 160, 161
server_zone, 209
service, 196, 222, 223
services, 220, 221
service_equiv, 91
session, 21, 172, 207
session_cache_size, 132, 135, 149, 150, 156, 158
session_persistence_cookie_name, 57
session_persistence_cookie_salt, 57
session_timestamp, 72
shared_groups, 133, 135, 149, 151, 156, 158
shutdown_soft, 64
snat_policy, 201, 204, 207
src_iface, 196
src_ifgroup, 197
src_port, 197
src_subnet, 197
src_zone, 197
ssl_verify_depth, 103
stack_proxy, 64
strict_header_checking, 58
strict_header_checking_action, 58
strict_port_checking, 34
strict_username_check, 24
suffix, 174

T
target, 183
target_address, 209
target_local, 209
target_port_range, 34, 58
target_zone, 209
threaded, 222
timeout, 24, 35, 58, 64, 72, 79, 85, 87, 92, 101, 135, 
151, 158, 185
timeout_connect, 106, 107, 108, 109, 110, 112
timeout_request, 58
timeout_response, 58

268www.balasys.hu



timeout_state, 108, 112
tls_passthrough, 79
to_domain, 178
transparent, 223
transparent_mode, 35, 58
trusted_ca, 137
trusted_ca_files, 162, 163
trusted_certs_directory, 121, 122, 126, 128, 151, 153
trust_level, 120, 122, 126, 127, 151, 153
type, 181, 211, 212, 213

U
unconnected_response_code, 79
untrusted_ca, 137
untrusted_ca_files, 162, 163
update_stamp, 92
url_category, 58
url_filter_uncategorized_action, 59
userlist, 99
username, 25, 35, 73, 183
use_canonicalized_urls, 59
use_default_port_in_transparent_mode, 59
use_search_domain, 185
use_ssl, 103

V
valid_chars_username, 35
verify_ca_directory, 121, 122, 126, 128, 152, 153
verify_crl_directory, 121, 122, 126, 128, 152, 153
verify_depth, 121, 122, 126, 128, 152, 153

W
wait_authorization, 96
wait_timeout, 96, 97

269www.balasys.hu


	Zorp GPL 7 Reference Guide
	Table of Contents
	Preface
	1. Summary of contents
	2. Terminology
	3. Target audience and prerequisites
	4. Products covered in this guide
	5. Contact and support information
	5.1. Sales contact
	5.2. Support contact
	5.3. Training

	6. About this document
	6.1. Feedback


	Chapter 1. How Zorp works
	1.1. Zorp startup and initialization
	1.2. Handling incoming connections
	1.2.1. Handling packet filtering services
	1.2.2. Handling application-level services

	1.3. Proxy startup and the server-side connection

	Chapter 2. Configuring Zorp proxies
	2.1. Policies for requests and responses
	2.1.1. Default actions
	2.1.2. Response codes

	2.2. Secondary sessions
	2.3. Embedded protocol analysis
	2.3.1. Proxy stacking
	2.3.2. Program stacking


	Chapter 3. The Zorp SSL framework
	3.1. The SSL protocol
	3.1.1. The SSL handshake

	3.2. Configuring TLS and SSL encrypted connections
	3.2.1. Behavior of the SSL framework
	3.2.1.1. General behavior
	3.2.1.2. Client-side (SSL server) behavior
	3.2.1.3. Server-side (SSL client) behavior

	3.2.2. Handshake callbacks
	3.2.3. X.509 Certificates
	3.2.3.1. X.509 Certificate Names
	3.2.3.2. X.509 Certificate Revocation List
	3.2.3.3. X.509 Certificate hash
	3.2.3.4. X.509 CRL hash
	3.2.3.5. Certificate verification options

	3.2.4. Setting the allowed TLS protocol
	3.2.5. SSL cipher selection
	3.2.6. Enabling STARTTLS
	3.2.7. Keybrigding certificates
	3.2.7.1. Configuring keybridging


	3.3. Related standards
	3.4. SSL options reference

	Chapter 4. Proxies
	4.1. General information on the proxy modules
	4.2. Attribute values
	4.3. Examples
	4.4. Module AnyPy
	4.4.1. Related standards
	4.4.2. Classes in the AnyPy module
	4.4.3. Class AbstractAnyPyProxy
	4.4.3.1. Attributes of AbstractAnyPyProxy
	4.4.3.2. AbstractAnyPyProxy methods
	Method __init__(self, session)
	Arguments of __init__

	Method proxyThread(self)


	4.4.4. Class AnyPyProxy
	4.4.4.1. Note


	4.5. Module Finger
	4.5.1. The Finger protocol
	4.5.2. Proxy behavior
	4.5.3. Related standards
	4.5.4. Classes in the Finger module
	4.5.5. Class AbstractFingerProxy
	4.5.5.1. Attributes of AbstractFingerProxy
	4.5.5.2. AbstractFingerProxy methods
	Method fingerRequest(self, username, hostname)
	Arguments of fingerRequest



	4.5.6. Class FingerProxy

	4.6. Module Ftp
	4.6.1. The FTP protocol
	4.6.1.1. Protocol elements
	4.6.1.2. Data transfer

	4.6.2. Proxy behavior
	4.6.2.1. Configuring policies for FTP commands and responses
	4.6.2.2. Configuring policies for FTP features and FTPS support
	Enabling FTPS connections

	4.6.2.3. Stacking
	4.6.2.4. Configuring inband authentication

	4.6.3. Related standards
	4.6.4. Classes in the Ftp module
	4.6.5. Class AbstractFtpProxy
	4.6.5.1. Attributes of AbstractFtpProxy

	4.6.6. Class FtpProxy
	4.6.7. Class FtpProxyAnonRO
	4.6.8. Class FtpProxyAnonRW
	4.6.9. Class FtpProxyRO
	4.6.10. Class FtpProxyRW

	4.7. Module Http
	4.7.1. The HTTP protocol
	4.7.1.1. Protocol elements
	4.7.1.2. Protocol versions
	4.7.1.3. Bulk transfer

	4.7.2. Proxy behavior
	4.7.2.1. Transparent and non-transparent modes
	4.7.2.2. Configuring policies for HTTP requests and responses
	4.7.2.3. Configuring policies for HTTP headers
	4.7.2.4. Redirecting URLs
	4.7.2.5. Request types
	4.7.2.6. Using parent proxies
	4.7.2.7. FTP over HTTP
	4.7.2.8. Error messages
	4.7.2.9. Stacking
	4.7.2.10. Webservers returning data in 205 responses
	4.7.2.11. Session persistence in load balancing
	4.7.2.12. URL filtering in HTTP
	Configuring URL-filtering in HTTP
	List of URL-filtering categories
	Customizing the URL database


	4.7.3. Related standards
	4.7.4. Classes in the Http module
	4.7.5. Class AbstractHttpProxy
	4.7.5.1. Attributes of AbstractHttpProxy
	4.7.5.2. AbstractHttpProxy methods
	Method getRequestHeader(self, header)
	Arguments of getRequestHeader

	Method getResponseHeader(self, header)
	Arguments of getResponseHeader

	Method setRequestHeader(self, header, new_value)
	Arguments of setRequestHeader

	Method setResponseHeader(self, header, new_value)
	Arguments of setResponseHeader



	4.7.6. Class HttpProxy
	4.7.7. Class HttpProxyNonTransparent
	4.7.8. Class HttpProxyURIFilter
	4.7.8.1. Attributes of HttpProxyURIFilter

	4.7.9. Class HttpProxyURIFilterNonTransparent
	4.7.10. Class HttpProxyURLCategoryFilter
	4.7.11. Class HttpWebdavProxy
	4.7.12. Class NontransHttpWebdavProxy

	4.8. Module Plug
	4.8.1. Proxy behavior
	4.8.2. Related standards
	4.8.3. Classes in the Plug module
	4.8.4. Class AbstractPlugProxy
	4.8.4.1. Attributes of AbstractPlugProxy
	4.8.4.2. AbstractPlugProxy methods
	Method packetStats(self, client_bytes, client_pkts, server_bytes, server_pkts)
	Arguments of packetStats



	4.8.5. Class PlugProxy

	4.9. Module Pop3
	4.9.1. The POP3 protocol
	4.9.1.1. Protocol elements
	4.9.1.2. POP3 states
	4.9.1.3. Bulk transfers

	4.9.2. Proxy behavior
	4.9.2.1. Default policy for commands
	4.9.2.2. Configuring policies for POP3 commands
	4.9.2.3. Rewriting the banner
	4.9.2.4. Stacking
	4.9.2.5. Rejecting viruses and spam

	4.9.3. Related standards
	4.9.4. Classes in the Pop3 module
	4.9.5. Class AbstractPop3Proxy
	4.9.5.1. Attributes of AbstractPop3Proxy

	4.9.6. Class Pop3Proxy
	4.9.7. Class Pop3STLSProxy

	4.10. Module Smtp
	4.10.1. The SMTP protocol
	4.10.1.1. Protocol elements
	4.10.1.2. Extensions
	4.10.1.3. Bulk transfer

	4.10.2. Proxy behavior
	4.10.2.1. Default policy for commands
	4.10.2.2. Configuring policies for SMTP commands and responses
	4.10.2.3. Stacking

	4.10.3. Related standards
	4.10.4. Classes in the Smtp module
	4.10.5. Class AbstractSmtpProxy
	4.10.5.1. Attributes of AbstractSmtpProxy

	4.10.6. Class SmtpProxy
	4.10.6.1. Attributes of SmtpProxy


	4.11. Module Telnet
	4.11.1. The Telnet protocol
	4.11.1.1. The network virtual terminal
	4.11.1.2. Protocol elements

	4.11.2. Proxy behavior
	4.11.2.1. Default policy
	4.11.2.2. Configuring policies for the TELNET protocol
	Policy callback functions
	Option negotiation


	4.11.3. Related standards
	4.11.4. Classes in the Telnet module
	4.11.5. Class AbstractTelnetProxy
	4.11.5.1. Attributes of AbstractTelnetProxy

	4.11.6. Class TelnetProxy
	4.11.7. Class TelnetProxyStrict

	4.12. Module Whois
	4.12.1. The Whois protocol
	4.12.2. Proxy behavior
	4.12.3. Related standards
	4.12.4. Classes in the Whois module
	4.12.5. Class AbstractWhoisProxy
	4.12.5.1. Attributes of AbstractWhoisProxy
	4.12.5.2. AbstractWhoisProxy methods
	Method whoisRequest(self, request)


	4.12.6. Class WhoisProxy


	Chapter 5. Core
	5.1. Module Auth
	5.1.1. Authentication and authorization basics
	5.1.2. Authentication and authorization in Zorp
	5.1.3. Classes in the Auth module
	5.1.4. Class AbstractAuthentication
	5.1.4.1. AbstractAuthentication methods
	Method __init__(self, authentication_provider, auth_cache)


	5.1.5. Class AbstractAuthorization
	5.1.6. Class AuthCache
	5.1.6.1. AuthCache methods
	Method __init__(self, name, timeout, update_stamp, service_equiv, cleanup_threshold)
	Arguments of __init__



	5.1.7. Class AuthenticationPolicy
	5.1.7.1. AuthenticationPolicy methods
	Method __init__(self, name, provider, authentication, cache)
	Arguments of __init__



	5.1.8. Class AuthorizationPolicy
	5.1.8.1. AuthorizationPolicy methods
	Method __init__(self, name, authorization)
	Arguments of __init__



	5.1.9. Class BasicAccessList
	5.1.9.1. BasicAccessList methods
	Method __init__(self, acl)
	Arguments of __init__



	5.1.10. Class InbandAuthentication
	5.1.10.1. InbandAuthentication methods
	Method __init__(self, authentication_provider, auth_cache)


	5.1.11. Class NEyesAuthorization
	5.1.11.1. NEyesAuthorization methods
	Method __init__(self, authorize_policy, wait_authorization, wait_timeout)
	Arguments of __init__



	5.1.12. Class PairAuthorization
	5.1.12.1. PairAuthorization methods
	Method __init__(self, wait_timeout)
	Arguments of __init__



	5.1.13. Class PermitGroup
	5.1.13.1. PermitGroup methods
	Method __init__(self, grouplist)
	Arguments of __init__



	5.1.14. Class PermitTime
	5.1.14.1. PermitTime methods
	Method __init__(self, intervals)
	Arguments of __init__



	5.1.15. Class PermitUser
	5.1.15.1. PermitUser methods
	Method __init__(self, userlist)
	Arguments of __init__



	5.1.16. Class SatyrAuthentication
	5.1.17. Class ServerAuthentication
	5.1.17.1. ServerAuthentication methods
	Method __init__(self)


	5.1.18. Class ZAAuthentication
	5.1.18.1. ZAAuthentication methods
	Method __init__(self, authentication_provider, pki, cert_file, key_file, port, timeout, connect_timeout, auth_cache)
	Arguments of __init__




	5.2. Module AuthDB
	5.2.1. Classes in the AuthDB module
	5.2.2. Class AbstractAuthenticationBackend
	5.2.3. Class AuthenticationProvider
	5.2.3.1. AuthenticationProvider methods
	Method __init__(self, name, backend)
	Arguments of __init__



	5.2.4. Class ZAS2AuthenticationBackend
	5.2.4.1. ZAS2AuthenticationBackend methods
	Method __init__(self, serveraddr, use_ssl, pki_cert, cert_file, key_file, pki_ca, ca_dir, crl_dir, ssl_verify_depth)
	Arguments of __init__




	5.3. Module Chainer
	5.3.1. Selecting the network protocol
	5.3.2. Classes in the Chainer module
	5.3.3. Class AbstractChainer
	5.3.4. Class AvailabilityChainer
	5.3.4.1. AvailabilityChainer methods
	Method __init__(self, protocol, timeout_connect)
	Arguments of __init__



	5.3.5. Class ConnectChainer
	5.3.5.1. ConnectChainer methods
	Method __init__(self, protocol, timeout_connect)
	Arguments of __init__



	5.3.6. Class FailoverChainer
	5.3.6.1. FailoverChainer methods
	Method __init__(self, protocol, timeout, timeout_state, timeout_connect, round_robin)
	Arguments of __init__



	5.3.7. Class MultiTargetChainer
	5.3.7.1. MultiTargetChainer methods
	Method __init__(self, protocol, timeout_connect)
	Arguments of __init__



	5.3.8. Class RoundRobinAvailabilityChainer
	5.3.8.1. RoundRobinAvailabilityChainer methods
	Method __init__(self, protocol, timeout_connect)
	Arguments of __init__



	5.3.9. Class RoundRobinChainer
	5.3.10. Class SideStackChainer
	5.3.10.1. Attributes of SideStackChainer
	5.3.10.2. SideStackChainer methods
	Method __init__(self, right_class, right_chainer)
	Arguments of __init__



	5.3.11. Class StateBasedChainer
	5.3.11.1. StateBasedChainer methods
	Method __init__(self, protocol, timeout_connect, timeout_state)
	Arguments of __init__




	5.4. Module Detector
	5.4.1. Classes in the Detector module
	5.4.2. Class AbstractDetector
	5.4.3. Class CertDetector
	5.4.3.1. Attributes of CertDetector
	5.4.3.2. CertDetector methods
	Method __init__(self, certificate)
	Arguments of __init__



	5.4.4. Class DetectorPolicy
	5.4.5. Class HttpDetector
	5.4.5.1. Attributes of HttpDetector
	5.4.5.2. HttpDetector methods
	Method __init__(self, **kw)


	5.4.6. Class SniDetector
	5.4.6.1. Attributes of SniDetector
	5.4.6.2. SniDetector methods
	Method __init__(self, server_name_matcher)
	Arguments of __init__



	5.4.7. Class SshDetector

	5.5. Module Encryption
	5.5.1. SSL parameter constants
	5.5.2. Classes in the Encryption module
	5.5.3. Class AbstractVerifier
	5.5.3.1. Attributes of AbstractVerifier
	5.5.3.2. AbstractVerifier methods
	Method __init__(self, trust_level, intermediate_revocation_check_type, leaf_revocation_check_type, trusted_certs_directory, required, verify_depth, verify_ca_directory, verify_crl_directory)
	Arguments of __init__



	5.5.4. Class Certificate
	5.5.4.1. Attributes of Certificate
	5.5.4.2. Certificate methods
	Method __init__(self, certificate, private_key)
	Arguments of __init__

	Method fromFile(certificate_file_path, private_key)
	Arguments of fromFile



	5.5.5. Class CertificateCA
	5.5.5.1. Attributes of CertificateCA
	5.5.5.2. CertificateCA methods
	Method __init__(self, certificate, private_key)
	Arguments of __init__



	5.5.6. Class ClientCertificateVerifier
	5.5.6.1. Attributes of ClientCertificateVerifier
	5.5.6.2. ClientCertificateVerifier methods
	Method __init__(self, trust_level, intermediate_revocation_check_type, leaf_revocation_check_type, trusted_certs_directory, required, verify_depth, verify_ca_directory, verify_crl_directory, ca_hint_directory)
	Arguments of __init__



	5.5.7. Class ClientNoneVerifier
	5.5.8. Class ClientOnlyEncryption
	5.5.8.1. Attributes of ClientOnlyEncryption
	5.5.8.2. ClientOnlyEncryption methods
	Method __init__(self, client_certificate_generator, client_verify, client_ssl_options)
	Arguments of __init__



	5.5.9. Class ClientOnlyStartTLSEncryption
	5.5.9.1. Attributes of ClientOnlyStartTLSEncryption
	5.5.9.2. ClientOnlyStartTLSEncryption methods
	Method __init__(self, client_certificate_generator, client_verify, client_ssl_options)
	Arguments of __init__



	5.5.10. Class ClientSSLOptions
	5.5.10.1. Attributes of ClientSSLOptions
	5.5.10.2. ClientSSLOptions methods
	Method __init__(self, method, cipher, ciphers_tlsv1_3, shared_groups, cipher_server_preference, timeout, disable_sslv2, disable_sslv3, disable_tlsv1, disable_tlsv1_1, disable_tlsv1_2, disable_tlsv1_3, session_cache_size, disable_session_cache, disable_ticket, disable_compression, dh_params, disable_renegotiation, disable_send_root_ca)
	Arguments of __init__



	5.5.11. Class DHParam
	5.5.11.1. Attributes of DHParam
	5.5.11.2. DHParam methods
	Method __init__(self, params)
	Arguments of __init__

	Method fromFile(file_path)
	Arguments of fromFile



	5.5.12. Class DynamicCertificate
	5.5.12.1. DynamicCertificate methods
	Method __init__(self, private_key, trusted_ca, untrusted_ca, cache_directory, extension_whitelist)
	Arguments of __init__



	5.5.13. Class DynamicServerEncryption
	5.5.13.1. Attributes of DynamicServerEncryption
	5.5.13.2. DynamicServerEncryption methods
	Method __init__(self, client_security, client_certificate_generator, client_verify, client_ssl_options)
	Arguments of __init__



	5.5.14. Class EncryptionPolicy
	5.5.14.1. Attributes of EncryptionPolicy
	5.5.14.2. EncryptionPolicy methods
	Method __init__(self, name, encryption)
	Arguments of __init__



	5.5.15. Class FakeStartTLSEncryption
	5.5.15.1. Attributes of FakeStartTLSEncryption
	5.5.15.2. FakeStartTLSEncryption methods
	Method __init__(self, client_certificate_generator, client_verify, server_verify, client_ssl_options, server_ssl_options)
	Arguments of __init__



	5.5.16. Class ForwardStartTLSEncryption
	5.5.16.1. Attributes of ForwardStartTLSEncryption
	5.5.16.2. ForwardStartTLSEncryption methods
	Method __init__(self, client_certificate_generator, client_verify, server_verify, client_ssl_options, server_ssl_options)
	Arguments of __init__



	5.5.17. Class PrivateKey
	5.5.17.1. Attributes of PrivateKey
	5.5.17.2. PrivateKey methods
	Method __init__(self, key, passphrase)
	Arguments of __init__

	Method fromFile(key_file_path, passphrase)
	Arguments of fromFile



	5.5.18. Class SNIBasedCertificate
	5.5.18.1. Attributes of SNIBasedCertificate
	5.5.18.2. SNIBasedCertificate methods
	Method __init__(self, hostname_certificate_map, default)
	Arguments of __init__



	5.5.19. Class SSLOptions
	5.5.19.1. Attributes of SSLOptions
	5.5.19.2. SSLOptions methods
	Method __init__(self, cipher, ciphers_tlsv1_3, shared_groups, timeout, disable_tlsv1, disable_tlsv1_1, disable_tlsv1_2, disable_tlsv1_3, session_cache_size, disable_session_cache, disable_ticket, disable_compression)
	Arguments of __init__



	5.5.20. Class ServerCertificateVerifier
	5.5.20.1. Attributes of ServerCertificateVerifier
	5.5.20.2. ServerCertificateVerifier methods
	Method __init__(self, trust_level, intermediate_revocation_check_type, leaf_revocation_check_type, trusted_certs_directory, verify_depth, verify_ca_directory, verify_crl_directory, check_subject)
	Arguments of __init__



	5.5.21. Class ServerNoneVerifier
	5.5.22. Class ServerOnlyEncryption
	5.5.22.1. Attributes of ServerOnlyEncryption
	5.5.22.2. ServerOnlyEncryption methods
	Method __init__(self, server_certificate_generator, server_verify, server_ssl_options)
	Arguments of __init__



	5.5.23. Class ServerSSLOptions
	5.5.23.1. Attributes of ServerSSLOptions
	5.5.23.2. ServerSSLOptions methods
	Method __init__(self, method, cipher, ciphers_tlsv1_3, shared_groups, timeout, disable_sslv2, disable_sslv3, disable_tlsv1, disable_tlsv1_1, disable_tlsv1_2, disable_tlsv1_3, session_cache_size, disable_session_cache, disable_ticket, disable_compression)
	Arguments of __init__



	5.5.24. Class StaticCertificate
	5.5.24.1. Attributes of StaticCertificate
	5.5.24.2. StaticCertificate methods
	Method __init__(self, certificates, certificate)
	Arguments of __init__



	5.5.25. Class TwoSidedEncryption
	5.5.25.1. Attributes of TwoSidedEncryption
	5.5.25.2. TwoSidedEncryption methods
	Method __init__(self, client_certificate_generator, server_certificate_generator, client_verify, server_verify, client_ssl_options, server_ssl_options)
	Arguments of __init__




	5.6. Module Keybridge
	5.6.1. Classes in the Keybridge module
	5.6.2. Class X509KeyBridge
	5.6.2.1. Attributes of X509KeyBridge
	5.6.2.2. X509KeyBridge methods
	Method _old_init(self, key_file, cache_directory, trusted_ca_files, untrusted_ca_files, key_passphrase, extension_whitelist)
	Arguments of _old_init




	5.7. Module Matcher
	5.7.1. Classes in the Matcher module
	5.7.2. Class AbstractMatcher
	5.7.3. Class CombineMatcher
	5.7.4. Class DNSMatcher
	5.7.4.1. DNSMatcher methods
	Method __init__(self, hosts, server, resolve_on_init)
	Arguments of __init__



	5.7.5. Class MatcherPolicy
	5.7.6. Class RegexpFileMatcher
	5.7.6.1. Attributes of RegexpFileMatcher
	5.7.6.2. RegexpFileMatcher methods
	Method __init__(self, match_fname, ignore_fname)
	Arguments of __init__



	5.7.7. Class RegexpMatcher
	5.7.7.1. Attributes of RegexpMatcher
	5.7.7.2. RegexpMatcher methods
	Method __init__(self, match_list, ignore_list, ignore_case)
	Arguments of __init__



	5.7.8. Class SmtpInvalidRecipientMatcher
	5.7.8.1. SmtpInvalidRecipientMatcher methods
	Method __init__(self, server_name, server_port, cache_timeout, attempt_delivery, force_delivery_attempt, sender_address, bind_name)
	Arguments of __init__



	5.7.9. Class WindowsUpdateMatcher
	5.7.9.1. WindowsUpdateMatcher methods
	Method __init__(self, server)
	Arguments of __init__




	5.8. Module NAT
	5.8.1. Classes in the NAT module
	5.8.2. Class AbstractNAT
	5.8.2.1. AbstractNAT methods
	Method __init__(self)
	Method performTranslation(self, session, addrs, nat_type)
	Arguments of performTranslation



	5.8.3. Class GeneralNAT
	5.8.3.1. GeneralNAT methods
	Method __init__(self, mapping)
	Arguments of __init__



	5.8.4. Class HashNAT
	5.8.4.1. HashNAT methods
	Method __init__(self, ip_hash, default_reject)
	Arguments of __init__



	5.8.5. Class NAT46
	5.8.5.1. NAT46 methods
	Method __init__(self, prefix, prefix_mask, suffix)
	Arguments of __init__



	5.8.6. Class NAT64
	5.8.6.1. NAT64 methods
	Method __init__(self, prefix_mask)
	Arguments of __init__



	5.8.7. Class NATPolicy
	5.8.7.1. NATPolicy methods
	Method __init__(self, name, nat, cacheable)
	Arguments of __init__



	5.8.8. Class OneToOneMultiNAT
	5.8.8.1. OneToOneMultiNAT methods
	Method __init__(self, mapping, default_reject)
	Arguments of __init__



	5.8.9. Class OneToOneNAT
	5.8.9.1. OneToOneNAT methods
	Method __init__(self, from_domain, to_domain, default_reject)
	Arguments of __init__



	5.8.10. Class RandomNAT
	5.8.10.1. RandomNAT methods
	Method __init__(self, addresses)
	Arguments of __init__



	5.8.11. Class StaticNAT
	5.8.11.1. StaticNAT methods
	Method __init__(self, addr)
	Arguments of __init__




	5.9. Module Notification
	5.9.1. Classes in the Notification module
	5.9.2. Class AbstractNotificationMethod
	5.9.3. Class EmailNotificationMethod
	5.9.3.1. Attributes of EmailNotificationMethod
	5.9.3.2. EmailNotificationMethod methods
	Method __init__(self, recipient)
	Arguments of __init__



	5.9.4. Class NotificationPolicy

	5.10. Module Proxy
	5.10.1. Functions in module Proxy
	5.10.2. Classes in the Proxy module
	5.10.3. Functions
	5.10.3.1. Function proxyLog(self, type, level, msg, args)
	Arguments of proxyLog


	5.10.4. Class Proxy
	5.10.4.1. Attributes of Proxy
	5.10.4.2. Proxy methods
	Method closedByAbort(self)
	Method config(self)
	Method connectServer(self)
	Method getCredentials(self, method, username, domain, target, port)
	Arguments of getCredentials

	Method invalidPolicyCall(self)
	Method setServerAddress(self, host, port)
	Arguments of setServerAddress

	Method setServerSideEncryption(self)
	Method userAuthenticated(self, entity, groups, auth_info)
	Arguments of userAuthenticated




	5.11. Module Resolver
	5.11.1. Classes in the Resolver module
	5.11.2. Class AbstractResolver
	5.11.3. Class DNSResolver
	5.11.3.1. DNSResolver methods
	Method __init__(self, name_server, timeout, use_search_domain)
	Arguments of __init__



	5.11.4. Class HashResolver
	5.11.4.1. HashResolver methods
	Method __init__(self, mapping)
	Arguments of __init__




	5.12. Module Router
	5.12.1. The source address used in the server-side connection
	5.12.2. Classes in the Router module
	5.12.3. Class AbstractRouter
	5.12.3.1. Attributes of AbstractRouter

	5.12.4. Class DirectedRouter
	5.12.4.1. Attributes of DirectedRouter
	5.12.4.2. DirectedRouter methods
	Method __init__(self, dest_addr, forge_addr, overrideable, forge_port)
	Arguments of __init__



	5.12.5. Class InbandRouter
	5.12.5.1. InbandRouter methods
	Method __init__(self, forge_addr, forge_port)
	Arguments of __init__



	5.12.6. Class TransparentRouter
	5.12.6.1. Attributes of TransparentRouter
	5.12.6.2. TransparentRouter methods
	Method __init__(self, forced_port, forge_addr, overrideable, forge_port)
	Arguments of __init__




	5.13. Module Rule
	5.13.1. Evaluating firewall rules
	5.13.2. Sample rules
	5.13.3. Adding metadata to rules: tags and description
	5.13.4. Classes in the Rule module
	5.13.5. Class PortRange
	5.13.5.1. Attributes of PortRange

	5.13.6. Class Rule
	5.13.6.1. Rule methods
	Method __init__(self, **kw)
	Arguments of __init__




	5.14. Module Service
	5.14.1. Naming services
	5.14.2. Classes in the Service module
	5.14.3. Class AbstractService
	5.14.3.1. Attributes of AbstractService
	5.14.3.2. AbstractService methods
	Method __init__(self, name)
	Arguments of __init__



	5.14.4. Class DenyService
	5.14.4.1. Attributes of DenyService
	5.14.4.2. DenyService methods
	Method __init__(self, name, logging, ipv4_setting, ipv6_setting, log_verbose, log_spec)
	Arguments of __init__



	5.14.5. Class PFService
	5.14.5.1. Attributes of PFService
	5.14.5.2. PFService methods
	Method __init__(self, name, router, snat_policy, dnat_policy, log_verbose, log_spec)
	Arguments of __init__



	5.14.6. Class Service
	5.14.6.1. Attributes of Service
	5.14.6.2. Service methods
	Method __init__(self, name, proxy_class, router, chainer, snat_policy, snat, dnat_policy, dnat, authentication_policy, authorization_policy, max_instances, max_sessions, auth_name, resolver_policy, auth, auth_policy, keepalive, encryption_policy, limit_target_zones_to, detector_config, detector_default_service_name, session_counting)
	Arguments of __init__

	Method startInstance(self, session)
	Arguments of startInstance




	5.15. Module Session
	5.15.1. Classes in the Session module
	5.15.2. Class StackedSession
	5.15.2.1. Attributes of StackedSession
	5.15.2.2. StackedSession methods
	Method setTargetAddress(self, addr)
	Arguments of setTargetAddress




	5.16. Module SockAddr
	5.16.1. Classes in the SockAddr module
	5.16.2. Class SockAddrInet
	5.16.2.1. Attributes of SockAddrInet

	5.16.3. Class SockAddrInet6
	5.16.3.1. Attributes of SockAddrInet6

	5.16.4. Class SockAddrInetHostname
	5.16.4.1. Attributes of SockAddrInetHostname

	5.16.5. Class SockAddrInetRange
	5.16.5.1. Attributes of SockAddrInetRange

	5.16.6. Class SockAddrUnix
	5.16.6.1. Attributes of SockAddrUnix


	5.17. Module Stack
	5.17.1. Classes in the Stack module
	5.17.2. Class AbstractStackingBackend
	5.17.3. Class RemoteStackingBackend
	5.17.3.1. RemoteStackingBackend methods
	Method __init__(self, addrs)
	Arguments of __init__



	5.17.4. Class StackingProvider
	5.17.4.1. StackingProvider methods
	Method __init__(self, name, backend)
	Arguments of __init__




	5.18. Module Zone
	5.18.1. Classes in the Zone module
	5.18.2. Class Zone
	5.18.2.1. Zone methods
	Method __init__(self, name, addrs, hostnames, admin_parent, inbound_services, outbound_services)
	Arguments of __init__




	5.19. Module Zorp

	Chapter 6. Core-internal
	6.1. Module Cache
	6.2. Module Core
	6.3. Module Dispatch
	6.3.1. Zone-based service selection
	6.3.2. Classes in the Dispatch module
	6.3.3. Class CSZoneDispatcher
	6.3.3.1. Attributes of CSZoneDispatcher
	6.3.3.2. CSZoneDispatcher methods
	Method __init__(self, bindto, services, **kw)
	Arguments of __init__



	6.3.4. Class Dispatcher
	6.3.4.1. Attributes of Dispatcher
	6.3.4.2. Dispatcher methods
	Method __init__(self, bindto, service, **kw)
	Arguments of __init__




	6.4. Module Globals
	6.5. Module Stream
	6.5.1. Classes in the Stream module
	6.5.2. Class Stream
	6.5.2.1. Attributes of Stream
	6.5.2.2. Stream methods
	Method __init__(self, fd, name)
	Arguments of __init__





	Appendix A. Additional proxy information
	A.1. TELNET appendix

	Appendix B. Global options of Zorp
	B.1. Setting global options of Zorp
	blob
	Description
	Blob options

	audit
	Description
	Audit options

	options
	Description
	Options
	Cache options


	Appendix C. Zorp manual pages
	instances.conf
	Description
	Structure
	Examples
	Files
	Author
	Copyright

	policy.py
	Description
	Files
	See Also
	Author
	Copyright

	zorp
	Synopsis
	Description
	Options
	Files
	Author
	Copyright

	zorpctl
	Synopsis
	Description
	Commands
	Examples
	Files
	Author
	Copyright

	zorpctl.conf
	Description
	Structure
	Files
	Author
	Copyright


	Appendix D. Zorp GPL End-User License Agreement
	D.1. 1. SUBJECT OF THE LICENSE CONTRACT
	D.2. 2. DEFINITIONS
	D.3. 3. LICENSE GRANTS AND RESTRICTIONS
	D.4.  4. SUBSIDIARIES
	D.5.  5. INTELLECTUAL PROPERTY RIGHTS
	D.6.  6. TRADE MARKS
	D.7. 7. NEGLIGENT INFRINGEMENT
	D.8. 8. INTELLECTUAL PROPERTY INDEMNIFICATION
	D.9. 9. LICENSE FEE
	D.10. 10. WARRANTIES
	D.11. 11. DISCLAIMER OF WARRANTIES
	D.12. 12. LIMITATION OF LIABILITY
	D.13. 13.DURATION AND TERMINATION
	D.14. 14. AMENDMENTS
	D.15. 15. WAIVER
	D.16. 16. SEVERABILITY
	D.17. 17. NOTICES
	D.18. 18. MISCELLANEOUS

	Appendix E. Creative Commons Attribution Non-commercial No Derivatives (by-nc-nd) License
	Index of Proxy attributes
	Index of Core attributes
	Index of all attributes

