
How to configure SSL proxying in Zorp 7
March 04, 2024

Abstract
This tutorial describes how to configure Zorp to proxy SSL traffic

Copyright © 1996-2024 Balasys IT Zrt. (Private Limited Company)

Table of Contents
1. Preface .. 3

1.1. Configuring Zorp: ZMC versus Python ... 3
2. Configuring SSL proxying .. 4

2.1. Enabling SSL-encryption in the connection ... 4
2.2. Configuring keybridging .. 15
2.3. Exemption sites and whitelists .. 21

3. Python code summary .. 24
4. Summary ... 26

2www.balasys.hu

1. Preface

This tutorial provides guidelines for Zorp administrators on how to enable proxying secure SSL and TLS
connections. Knowledge in TCP/IP and Zorp administration is required to fully comprehend the contents of
this paper. The procedures and concepts described here are applicable to version 7 of Zorp. Detailed information
is provided to configure Zorp both from Zorp Management Console and using Python scripts.

Note that explaining the concepts of the different aspects of SSL/TLS proxying is beyond the scope of this
tutorial. For background information, see the following documents:

■ For details on deriving and modifying proxies, see Section 6.6, Proxy classes in Zorp Professional
7 Administrator Guide.

■ For an overview on certificates and related topics in connection with Zorp, see Chapter 11, Key and
certificate management in Zorp in Zorp Professional 7 Administrator Guide.

■ For details on the available SSL-related attributes of the Zorp proxies, see Section 3.2, Handling
TLS and SSL connections in Zorp in Zorp Professional 7 Reference Guide

You can download the above documents at the Balasys Documentation Page.

1.1. Configuring Zorp: ZMC versus Python

Zorp can be fully configured using either the graphical Zorp Management Console (ZMC) or manually by
editing plain text Python configuration files. The suggestions and the background information provided in this
tutorial are equally applicable to both methods. Step-by-step explanation with screenshots are given for
ZMC-based configuration, while sample Python code lines can be found at the end of each step. After replacing
the sample parameters (for example, IP addresses) with the proper ones for the actual configuration, add these
lines to the policy file of Zorp (usually found under /etc/zorp/policy.py). Also pay attention to the proper
indentation of Python code lines. For more details, see Chapter 10, Local firewall administration in Zorp
Professional 7 Administrator Guide.

If Zorp Management Console is used and the Python code generated by ZMC needs to be displayed, select a
host, then select Configuration > View from the main menu.

3www.balasys.hu

Preface

../../zorp-gateway-guide-admin/pdf/zorp-gateway-guide-admin.pdf#zorp_proxy_classes
../../zorp-gateway-guide-admin/pdf/zorp-gateway-guide-admin.pdf#chapter_pki
../../zorp-gateway-guide-admin/pdf/zorp-gateway-guide-admin.pdf#chapter_pki
../../zorp-gateway-guide-reference/pdf/zorp-gateway-guide-reference.pdf#configuring-ssl
../../zorp-gateway-guide-reference/pdf/zorp-gateway-guide-reference.pdf#configuring-ssl
http://docs.balasys.hu/
../../zorp-gateway-guide-admin/pdf/zorp-gateway-guide-admin.pdf#chapter_localadmin

2. Configuring SSL proxying

For proxying connections embedded in SSL, a properly configured proxy for the embedded protocol is required
— the best way is to derive an own proxy class and modify its parameters, but you can use a built-in proxy (for
example, the HttpProxy for HTTPS traffic) if its default behavior is acceptable for you. The SSL-framework
validates the certificate of the server, decrypts the secure channel, then passes the data to the proxy. To transfer
traffic that does not have a native proxy, or to inspect only the SSL connection without analyzing the embedded
protocol, use PlugProxy.

For details on deriving andmodifying proxies, see Section 6.6, Proxy classes in Zorp Professional 7 Administrator
Guide.

The following procedure describes how to configure Zorp proxies to handle SSL/TLS connections. For the
configuration examples, an Http proxy will be used to inspect HTTPS connections— you can use other proxies
similarly to inspect IMAPS, POP3S, and other types of traffic.

2.1. Procedure – Enabling SSL-encryption in the connection

Purpose:

To proxy HTTPS connections, configure an Encryption Policy to handle SSL/TLS connections, and use this
Encryption Policy in your Service. The policy will be configured to:

■ Require the client and the server to use strong encryption algorithms, the use of weak algorithms
will not be permitted.

■ Enable connections only to servers with certificates signed by CAs that are in the trusted CAs list
of the Zorp firewall node. (For details onmanaging trusted CA groups, see Section 11.3.7.3, Managing
trusted groups in Zorp Professional 7 Administrator Guide.)

■ The clients will only see the certificate of Zorp. To allow the clients to access the certificate
information of the server, see Procedure 2.2, Configuring keybridging (p. 15).

Steps:

Step 1. Generate a certificate for your firewall. The Zorp component requires its own certificate and keypair
to perform SSL/TLS proxying.
ZMC: Create a certificate, set the firewall as the owner host of the certificate, then distribute it to
the firewall host. For details, see Chapter 11, Key and certificate management in Zorp in Zorp
Professional 7 Administrator Guide.

Python: In configurations managed manually from python, create an X.509 certificate (with its
related keypair) using a suitable software (for example, OpenSSL) and deploy it to the Zorp firewall
host (for example, copy it to the /etc/key.d/mycert folder).

Step 2. Create and configure an Encryption Policy. Complete the following steps.

Step a. Navigate to the Zorp ZMC component of the firewall host.

Step b. Select Policies > New.
Step c. Enter a name into the Policy name field, for example, MyTLSEncryption.

4www.balasys.hu

Configuring SSL proxying

../../zorp-gateway-guide-admin/pdf/zorp-gateway-guide-admin.pdf#zorp_proxy_classes
../../zorp-gateway-guide-admin/pdf/zorp-gateway-guide-admin.pdf#pki-trusted-groups
../../zorp-gateway-guide-admin/pdf/zorp-gateway-guide-admin.pdf#pki-trusted-groups
../../zorp-gateway-guide-admin/pdf/zorp-gateway-guide-admin.pdf#chapter_pki

Figure 1. Creating a new Encryption policy

Step d. Select Policy type > Encryption Policy, then click OK.
Step e. Select Class > TwoSidedEncryption.

Python:

EncryptionPolicy(

name="MyTLSEncryption",

encryption=TwoSidedEncryption()

)

Step f. Double-click client_certificate_generator, then select Class > StaticCertificate.

5www.balasys.hu

Configuring SSL proxying

Figure 2. Selecting Encryption policy class

Step g. Double-click the certificates and click New to add a certificate entry to a list of
certificates.

6www.balasys.hu

Configuring SSL proxying

Figure 3. Creating a new certificate entry

Step h. Double-click the certificate_file_path. A window displaying the certificates owned
by the host will open up. The lower section of the window shows the information
contained in the certificate. Select the list of certificates Zorp is required to show to
the clients (for example, the certificate created in Step 1), then click Select.

7www.balasys.hu

Configuring SSL proxying

Figure 4. Creating a new Encryption policy

Python:

encryption=TwoSidedEncryption(

client_certificate_generator=StaticCertificate(

certificates=(

Certificate.fromFile(

certificate_file_path="/etc/key.d/ZMS_Engine/cert.pem",

private_key=PrivateKey.fromFile(

"/etc/key.d/ZMS_Engine/key.pem")

),

)

)

)

Step i. If the private key of the certificate is password-protected, double-click
private_key_password, type the password, then click OK. Otherwise, click OK.

Step j. Disable mutual authentication. That way, Zorp will not request a certificate from the
clients.
Double-click client_verify, select Class > ClientNoneVerifier, then click OK.

8www.balasys.hu

Configuring SSL proxying

Figure 5. Disabling mutual authentication

Python:

encryption=TwoSidedEncryption(

client_verify=None

)

Step k. Specify the directory containing the certificates of the trusted CAs. These settings
determine which servers can the clients access: the clients will be able to connect only
those servers via SSL/TLS which have certificate signed by one of these CAs (or a
lower level CA in the CA chain).
Double-click server_verify, double-click ca_directory, then type the path and name
to the directory that stores the trusted CA certificates, for example,
/etc/ca.d/certs/. Click OK.

9www.balasys.hu

Configuring SSL proxying

Figure 6. Specifying trusted CAs

Python:

encryption=TwoSidedEncryption(

server_verify=ServerCertificateVerifier(

ca_directory="/etc/ca.d/certs/"

)

)

Note
CAs cannot be referenced directly, only the trusted group containing them. For details on managing
trusted groups, see Section 11.3.7.3, Managing trusted groups in Zorp Professional 7 Administrator
Guide.

Step l. Specify the directory containing the CRLs of the trusted CAs.
Double-click crl_directory, then type the path and name to the directory that stores
the CRLs of the trusted CA certificates, for example, /etc/ca.d/crls/. Click OK.

10www.balasys.hu

Configuring SSL proxying

../../zorp-gateway-guide-admin/pdf/zorp-gateway-guide-admin.pdf#pki-trusted-groups

Figure 7. Specifying CRLs

Python:

encryption=TwoSidedEncryption(

server_verify=ServerCertificateVerifier(

ca_directory="/etc/ca.d/certs/",

crl_directory="/etc/ca.d/crls/"

)

)

S t e p
m.

Optional Step: The Common Name in the certificate of a server or webpage is usually
its domain name or URL. By default, Zorp compares this Common Name to the actual
domain name it receives from the server, and rejects the connection if they do not
match. That way it is possible to detect several types of false certificates and prevent
a number of phishing attacks. If this mode of operation interferes with your environment,
and you cannot use certificates that have proper Common Names, disable this option.
Double-click server_verify > check_subject, select FALSE, then click OK.

Python:

encryption=TwoSidedEncryption(

server_verify=ServerCertificateVerifier(

ca_directory="/etc/ca.d/certs/",

crl_directory="/etc/ca.d/crls/",

check_subject=FALSE

)

)

11www.balasys.hu

Configuring SSL proxying

Step n. Optional Step: Forbid the use of weak encryption algorithms to increase security. The
related parameters can be set separately for the client and the server-side of Zorp, using
the client_ssl_options and server_ssl_options parameters of the Encryption Policy.
Disabling weak algorithms also eliminates the risk of downgrade attacks, where the
attacker modifies the SSL session-initiation messages to force using weak encryption
that can be easily decrypted by a third party.

Note
Certain outdated operating systems, or old browser applications do not properly support strong encryption
algorithms. If your clients use such systems or applications, it might be required to permit weak
encryption algorithms.

• SSLmethodsmay occasionally fall back to older (thus weaker) protocol
versions if one of the peers does not support the newer version. To
avoid this situation, explicitly disable undesired protocol versions
(SSLv2 and SSLv3 are disabled by default).
For example, to disable TLSv1, double-click client_ssl_options >
disable_tlsv1, click TRUE, then click OK. Repeat this step for the
server_ssl_options parameter.

Python:

encryption=TwoSidedEncryption(

server_ssl_options=ServerSSLOptions(

disable_tlsv1=TRUE)

client_ssl_options=ClientSSLOptions(

disable_tlsv1=TRUE)

)

Step o. Optional Step: Enable untrusted certificates. Since a significant number of servers use
self-signed certificates (with unverifiable trustworthiness), in certain situations it might
be needed to permit access to servers that have untrusted certificates.

Note
When an untrusted certificate is accepted, the generated certificates will be signed with the untrusted
CA during keybridge scenarios. For details on configuring keybridging, see Procedure 2.2, Configuring
keybridging (p. 15)

Double-click server_verifier > trust_level, click the drop-down menu and select
UNTRUSTED, then click OK.

Note
When the trust_level value is NONE, even the invalid certificates are accepted and at the client side
there is no client certificate request sent to the client.

Python:

12www.balasys.hu

Configuring SSL proxying

encryption=TwoSidedEncryption(

server_verify=ServerCertificateVerifier(

trust_level=TLS_TRUST_LEVEL_UNTRUSTED

)

)

Python:

The Encryption Policy configured in the previous steps is summarized in the following code snippet.

EncryptionPolicy(

name="MyTLSEncryption",

encryption=TwoSidedEncryption(

client_verify=ClientNoneVerifier(),

client_ssl_options=ClientSSLOptions(),

server_verify=ServerCertificateVerifier(

trust_level=TLS_TRUST_LEVEL_FULL,

intermediate_revocation_check_type =

TLS_INTERMEDIATE_REVOCATION_SOFT_FAIL,

leaf_revocation_check_type =

TLS_LEAF_REVOCATION_SOFT_FAIL,

trusted_certs_directory="",

verify_depth=4,

verify_ca_directory="/etc/ca.d/certs/",

verify_crl_directory="/etc/ca.d/crls/",

check_subject=TRUE

),

server_ssl_options=ServerSSLOptions(),

client_certificate_generator=StaticCertificate(

certificates=(

Certificate.fromFile(

certificate_file_path=

"/etc/key.d/ZMS_Engine/cert.chain.pem",

private_key=PrivateKey.fromFile(

"/etc/key.d/ZMS_Engine/key.pem")),

))

))

Step 3. Select PKI > Distribute Certificates.
Note whenmanaging Zorp without ZMC, copy the certificates and CRLs to their respective directories.
They are not updated automatically as in configurations managed by ZMC.

By performing the above steps, the proxy has been configured to use the specified certificate and its
private key, and also the directory has been set that will store the certificates of the trusted CAs and
their CRLs. Client authentication has also been disabled.

Step 4. Create a service that clients can use to access the Internet in a secure channel. This service will use
the MyTLSEncryption Encryption Policy.

Step a. Select Services > New, enter a name for the service (for example,
intra_HTTPS_inter), then click OK.

Step b. Select Proxy class > Http > HttpProxy.

13www.balasys.hu

Configuring SSL proxying

Step c. Select Encryption > MyTLSEncryption.
Step d. Configure the other parameters of the service as neecessary for the environment, then

click OK.
Step e. Select Firewall Rules > New > Service, and select the service created in the previous

step. For more details on creating firewall rules, see Section 6.5, Configuring firewall
rules in Zorp Professional 7 Administrator Guide.

Step f. Configure the other parameters of the rule as necessary for the environment, then click
OK.

Figure 8. Creating a Service

Python:

def demo() :

Service(

name='demo/intra_HTTPS_inter',

router=TransparentRouter(),

chainer=ConnectChainer(),

proxy_class=HttpProxy,

max_instances=0,

max_sessions=0,

keepalive=Z_KEEPALIVE_NONE,

encryption_policy="MyTLSEncryption"

)

Rule(

rule_id=300,

14www.balasys.hu

Configuring SSL proxying

../../zorp-gateway-guide-admin/pdf/zorp-gateway-guide-admin.pdf#zorp-firewall-rules
../../zorp-gateway-guide-admin/pdf/zorp-gateway-guide-admin.pdf#zorp-firewall-rules

src_subnet=('192.168.1.1/32',),

dst_zone=('internet',),

proto=6,

service='demo/intra_HTTPS_inter'

)

Step 5. Commit and upload the changes, then restart Zorp.
Expected result:

Every time a client connects to a server, Zorp checks the certificate of the server. If the signer CA is
trusted, Zorp shows a trusted certificate to the client (browser or other application). If the certificate
of the server is untrusted, Zorp shows an untrusted certificate to the client, giving a warning to the
user. The user can then decide whether the certificate can be accepted or not.

2.2. Procedure – Configuring keybridging

Purpose:

Keybridging is a method to let the client see a copy of the server's certificate (or vice versa). That way the client
can inspect the certificate of the server, and decide about its trustworthiness. If the Zorp firewall is proxying
the SSL/TLS connection, the client cannot inspect the certificate of the server directly, but you can configure
Zorp to generate a new certificate on-the-fly, using the data in the server's certificate. Zorp sends this generated
certificate to the client. To configure to perform keybridging, complete the following steps.

Steps:

Step 1. Create the required keys and CA certificates.

Step a. Generate two local CA certificates. Zorp will use one of them to sign the generated
certificate for servers having trusted certificates, the other one for servers with untrusted
or self-signed certificates. Make this difference visible somewhere in the CA's
certificates, for example, in their common name (CA_for_Untrusted_certs;
CA_for_Trusted_certs). These CA certificates can be self-signed, or signed by
your local root CA.
IMPORTANT: Do NOT set a password for these CAs, as Zorp must be able to access
them automatically.

Step b. Import the certificate of the CA signing the trusted certificates to your clients to make
the generated certificates 'trusted'.
IMPORTANT: Do NOT import the other CA certificate.

Step c. Generate a new certificate. The private key of this keypair will be used in the on-the-fly
generated certificates, the public part (DN and similar information) will not be used.

Step d. In ZMC, set the Zorp firewall host to be the owner of this certificate, then select PKI
> Distribute Certificates.
Python:

15www.balasys.hu

Configuring SSL proxying

Copy the certificates and CRLs to their respective directories (for example, into
/etc/zorp/ssl-bridge/). Note that they are not updated automatically as in
configurations managed by ZMC.

Step 2. Create and configure an Encryption Policy. Complete the following steps.

Step a. Navigate to the Zorp ZMC component of the firewall host.

Step b. Select Policies > New.
Step c. Enter a name into the Policy name field, for example, KeybridgingEncryption.

Figure 9. Creating an Encryption policy

Step d. Select Policy type > Encryption Policy, then click OK.
Step e. Select Class > TwoSidedEncryption.

16www.balasys.hu

Configuring SSL proxying

Figure 10. Selecting the encryption class

Python:

EncryptionPolicy(

name="KeybridgingEncryption",

encryption=TwoSidedEncryption()

)

Step f. Double-click client_certificate_generator, then select Class > DynamicCertificate.

17www.balasys.hu

Configuring SSL proxying

Figure 11. Selecting the certificate

Python:

encryption=TwoSidedEncryption(

client_certificate_generator=DynamicCertificate()

)

Step g. Double-click private_key > key_file_path. The certificates owned by the host will
be displayed. Select the one you created in Step 1c, then click OK. ZMC will
automatically fill the value of the parameter to point to the location of the private key
file of the certificate.
If the private key of the certificate is password-protected, double-click passphrase,
then enter the passphrase for the private key.

Python:

encryption=TwoSidedEncryption(

client_certificate_generator=DynamicCertificate(

private_key=PrivateKey.fromFile(key_file_path="/etc/key.d/SSL-bridge/key.pem")

)

)

Step h. Double-click trusted_ca_files > certificate_file_path, select CA that
will be used to sign the generated certificates for trusted peers (for example,
CA_for_Trusted_certs), then click OK.
If the private key of the certificate is password-protected, double-click
private_key_password, then enter the passphrase for the private key.

Python:

18www.balasys.hu

Configuring SSL proxying

client_certificate_generator=DynamicCertificate(

private_key=PrivateKey.fromFile(key_file_path="/etc/key.d/SSL-bridge/key.pem"),

trusted_ca=Certificate.fromFile(

certificate_file_path="/etc/ca.d/certs/CA_for_Trusted_certs.pem",

private_key=PrivateKey.fromFile("/etc/ca.d/keys/CA_for_Trusted_certs.pem"))

)

Step i. Double-click untrusted_ca_files, then select CA that will be used to sign the
generated certificates for untrusted peers (for example, CA_for_Untrusted_certs).
If the private key of the certificate is password-protected, double-click
private_key_password, then enter the passphrase for the private key.

Python:

client_certificate_generator=DynamicCertificate(

private_key=PrivateKey.fromFile(key_file_path="/etc/key.d/SSL-bridge/key.pem"),

trusted_ca=Certificate.fromFile(

certificate_file_path="/etc/ca.d/certs/CA_for_Trusted_certs.pem",

private_key=PrivateKey.fromFile("/etc/ca.d/keys/CA_for_Trusted_certs.pem")),

untrusted_ca=Certificate.fromFile(

certificate_file_path="/etc/ca.d/certs/CA_for_Untrusted_certs.pem",

private_key=PrivateKey.fromFile("/etc/ca.d/keys/CA_for_Untrusted_certs.pem"))

)

Python:

The Encryption Policy configured in the previous steps is summarized in the following
code snippet.

EncryptionPolicy(

name="KeybridgingEncryption",

encryption=TwoSidedEncryption(

client_verify=ClientNoneVerifier(),

client_ssl_options=ClientSSLOptions(),

server_verify=ServerCertificateVerifier(),

server_ssl_options=ServerSSLOptions(),

client_certificate_generator=DynamicCertificate(

19www.balasys.hu

Configuring SSL proxying

private_key=PrivateKey.fromFile(key_file_path="/etc/key.d/SSL-bridge/key.pem"),

trusted_ca=Certificate.fromFile(

certificate_file_path="/etc/ca.d/certs/CA_for_Trusted_certs.pem",

private_key=PrivateKey.fromFile("/etc/ca.d/keys/CA_for_Trusted_certs.pem")),

untrusted_ca=Certificate.fromFile(

certificate_file_path="/etc/ca.d/certs/CA_for_Untrusted_certs.pem",

private_key=PrivateKey.fromFile("/etc/ca.d/keys/CA_for_Untrusted_certs.pem")

)

)

))

Step 3. Create a service that uses the Encryption Policy created in the previous step.

Figure 12. Creating a service

Python:

20www.balasys.hu

Configuring SSL proxying

def demo_instance() :

Service(name='demo/intra_HTTPS_Keybridge_inter',

router=TransparentRouter(), chainer=ConnectChainer(), proxy_class=HttpProxy,

max_instances=0, max_sessions=0, keepalive=Z_KEEPALIVE_NONE,

encryption_policy="KeybridgingEncryption")

Rule(rule_id=20,

src_zone=('intra',),

dst_zone=('internet',),

proto=6,

service='demo_instance/intra_HTTPS_Keybridge_inter'

)

Step 4. Configure other parameters of the Encryption Policy, service, and firewall rule as needed by your
environment.

Step 5. Commit and upload the changes, then restart Zorp.
Expected result:

Every time a client connects to a previously unknown server, Zorp will generate a new certificate, sign
it with one of the specified CAs, and send it to the client. This new certificate will be stored under
/var/lib/zorp/ssl-bridge under a filename based on the original server certificate. If the signer
CA is trusted, the client (browser or other application) will accept the connection. If the certificate is
signed by the CA for untrusted certificates, the application will not recognize the issuer CA (since its
certificate has not been imported to the client) and give a warning to the user. The user can then decide
whether the certificate can be accepted or not.

(Actually, two files are stored on the firewall for each certificate: the original certificate received from
the server, and the generated certificate. When a client connects to the server, the certificate provided
by the server is compared to the stored one: if they do not match, a new certificate is generated. For
example, this happens when the server certificate has been expired and refreshed.)

2.3. Exemption sites and whitelists

Certain situations require client-side or mutual authentication that might not be proxied appropriately, therefore
you have to allow them to pass the firewall using a plug proxy. This situation arises most commonly in secure
banking and online ordering sites that use HTTPS, or with dedicated client-server applications (such as
WindowsUpdate). To maintain a list of such sites, use one of the following methods:

■ If the IP address of the affected servers is static, add them to a separate zone. For details, see Procedure
2.3.1, IP filtering using a zone (p. 22).

■ Use aMatcherPolicy. Matcher policies can compare the IP address of the target server to a predefined
list, and can be configured to behave differently if a match is found or not. Another example will
use a domain-name-matcher policy to resolve domain names that have dynamic IPs, or change their
addresses periodically (for example, they use DNS round-robin method). Matcher policies are a bit
more resource intensive, but easier to use and maintain after the initial configuration. If nothing
restricts it, use a matcher policy.

21www.balasys.hu

Exemption sites and whitelists

■ Use a DetectorService to select which service to start based on the traffic parameters. For details,
see Section 6.7.2, Detector policies in Zorp Professional 7 Administrator Guide and Procedure 6.4.4,
Creating a new DetectorService in Zorp Professional 7 Administrator Guide.

More sophisticated configurations using both types of whitelisting can be also implemented based on the
following examples.

2.3.1. Procedure – IP filtering using a zone

Purpose:

Firewall rules can select the service to be started based on the zone that the server and the client belongs to.
Zones are organized based on IP addresses, the rule specifies which clients can use which services to access
the specified servers. To create whitelists using a zone, complete the following steps.

Steps:

Step 1. Create a zone containing only the servers that require client-side authentication (or that have other
reasons why the connection cannot be proxied).

Step a. Select the site that contains the firewall host, then click New, and create a new zone
(for example, banks).

Step b. Select the newly created zone, and add a network to the zone, that is, specify the
Network address andNetmask of the target servers. Include only the servers that you
want to be available via encrypted but not proxied channels.

Note
You will also need a client zone. You can use the entire intranet or a smaller zone, as required. Create
a new zone for the clients if you want to make these servers available only to certain clients.

Step 2. Create a new service.

Step a. Select your firewall host, navigate to Zorp > Services, then click New.
Step b. Create a new service, for example, intra_PLUG_banks.

Step c. Select Proxy class > PlugProxy.
Step d. Specify other service parameters as required for your environment.

Step 3. Create a firewall rule that uses the zones and the service created in the previous steps.

Step a. Select Firewall Rules > New > Service > Class, and select the service created in the
previous step. For more details on creating firewall rules, see Section 6.5, Configuring
firewall rules in Zorp Professional 7 Administrator Guide.

Step b. SelectConditions > Source > Add > Zone, and select the zone from which the clients
will connect to the servers (for example, intranet).

Step c. Select Destination > Add > Zone, and select the zone that contains the whitelisted
servers (for example, banks).

Step d. Configure the other parameters of the rule as needed for your environment, then click
OK.

22www.balasys.hu

Exemption sites and whitelists

../../zorp-gateway-guide-admin/pdf/zorp-gateway-guide-admin.pdf#zorp_detectorpolicies
../../zorp-gateway-guide-admin/pdf/zorp-gateway-guide-admin.pdf#zorp-services-detectorservice
../../zorp-gateway-guide-admin/pdf/zorp-gateway-guide-admin.pdf#zorp-services-detectorservice
../../zorp-gateway-guide-admin/pdf/zorp-gateway-guide-admin.pdf#zorp-firewall-rules
../../zorp-gateway-guide-admin/pdf/zorp-gateway-guide-admin.pdf#zorp-firewall-rules

Step 4. Commit and upload your changes, then restart Zorp.

23www.balasys.hu

Exemption sites and whitelists

3. Python code summary

When configured according to this tutorial, the policy.py file of Zorp should look something like this:

Configuring SSL proxying:

EncryptionPolicy(

name="MyTLSEncryption",

encryption=TwoSidedEncryption(

client_verify=ClientNoneVerifier(),

client_ssl_options=ClientSSLOptions(),

server_verify=ServerCertificateVerifier(

ca_directory="/etc/ca.d/certs/",

crl_directory="/etc/ca.d/crls/",

trusted=TRUE, verify_depth=4,

permit_invalid_certificates=FALSE,

permit_missing_crl=FALSE,

check_subject=TRUE

),

server_ssl_options=ServerSSLOptions(

method=SSL_METHOD_TLSV1,

cipher=SSL_CIPHERS_HIGH, timeout=300,

disable_sslv2=TRUE, disable_sslv3=FALSE,

disable_tlsv1=FALSE, disable_tlsv1_1=FALSE,

disable_tlsv1_2=FALSE,

),

client_certificate_generator=StaticCertificate(

certificates=(

Certificate.fromFile(

certificate_file_path="/etc/key.d/ZMS_Engine/cert.pem",

private_key=PrivateKey.fromFile(

"/etc/key.d/ZMS_Engine/key.pem")),

))

))

def demo() :

Service(

name='demo/intra_HTTPS_inter',

router=TransparentRouter(),

chainer=ConnectChainer(),

proxy_class=HttpProxy,

max_instances=0,

max_sessions=0,

keepalive=Z_KEEPALIVE_NONE,

encryption_policy="MyTLSEncryption"

)

Rule(

rule_id=300,

src_subnet=('192.168.1.1/32',),

dst_zone=('internet',),

proto=6,

24www.balasys.hu

Python code summary

service='demo/intra_HTTPS_inter'

)

If keybridging is performed:

EncryptionPolicy(

name="KeybridgingEncryption",

encryption=TwoSidedEncryption(

client_verify=ClientNoneVerifier(),

client_ssl_options=ClientSSLOptions(),

server_verify=ServerCertificateVerifier(),

server_ssl_options=ServerSSLOptions(),

client_certificate_generator=DynamicCertificate(

private_key=PrivateKey.fromFile(key_file_path="/etc/key.d/SSL-bridge/key.pem"),

trusted_ca=Certificate.fromFile(

certificate_file_path="/etc/ca.d/certs/CA_for_Trusted_certs.pem",

private_key=PrivateKey.fromFile("/etc/ca.d/keys/CA_for_Trusted_certs.pem")),

untrusted_ca=Certificate.fromFile(

certificate_file_path="/etc/ca.d/certs/CA_for_Untrusted_certs.pem",

private_key=PrivateKey.fromFile("/etc/ca.d/keys/CA_for_Untrusted_certs.pem")),

cache_directory="/var/lib/zorp/ssl-bridge")

))

def demo_instance() :

Service(name='demo/intra_HTTPS_Keybridge_inter', router=TransparentRouter(),

chainer=ConnectChainer(), proxy_class=HttpProxy, max_instances=0, max_sessions=0,

keepalive=Z_KEEPALIVE_NONE, encryption_policy="KeybridgingEncryption")

Rule(rule_id=20,

src_zone=('intra',),

dst_zone=('internet',),

proto=6,

service='demo_instance/intra_HTTPS_Keybridge_inter'

)

25www.balasys.hu

Python code summary

4. Summary

This tutorial has shown how to configure Zorp to proxy encrypted SSL/TLS traffic, including scenarios where
keybridging is used. Although these examples are relatively simple, they provide a solid base from which more
complex configurations can be built — just as the security policy of your organization requires it.

All questions, comments or inquiries should be directed to <info@balasys.hu> or by post to the following address: BalaSys IT Ltd. 1117 Budapest, Alíz Str. 4 Phone: +36
1 646 4740 Web: https://www.balasys.hu/
Copyright © 2024 BalaSys IT Ltd. All rights reserved.

The latest version is always available at the Balasys Documentation Page.

26www.balasys.hu

Summary

https://www.balasys.hu/
https://www.balasys.hu/

	How to configure SSL proxying in Zorp 7
	Table of Contents
	1. Preface
	1.1. Configuring Zorp: ZMC versus Python

	2. Configuring SSL proxying
	2.1. Enabling SSL-encryption in the connection
	2.2. Configuring keybridging
	2.3. Exemption sites and whitelists
	2.3.1. IP filtering using a zone

	3. Python code summary
	4. Summary

