
Proxedo API Security in Kubernetes:
Administration Guide

Copyright © 2019 Balasys IT Ltd.. All rights reserved. This document is protected by copyright and is
distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
document may be reproduced in any form by any means without prior written authorization of Balasys.

This documentation and the product it describes are considered protected by copyright according to the
applicable laws.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/). This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com)

Linux™ is a registered trademark of Linus Torvalds.

Windows™ 10 is registered trademarks of Microsoft Corporation.

The Balasys™ name and the Balasys™ logo are registered trademarks of Balasys IT Ltd.

The Proxedo™ name and the Proxedo™ logo are registered trademarks of Balasys IT Ltd.

AMD Ryzen™ and AMD EPYC™ are registered trademarks of Advanced Micro Devices, Inc.

Intel® Core™ and Intel® Xeon™ are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries.

All other product names mentioned herein are the trademarks of their respective owners.

DISCLAIMER

Balasys is not responsible for any third-party websites mentioned in this document. Balasys does not
endorse and is not responsible or liable for any content, advertising, products, or other material on or
available from such sites or resources. Balasys will not be responsible or liable for any damage or loss
caused or alleged to be caused by or in connection with use of or reliance on any such content, goods, or
services that are available on or through any such sites or resources.

2024-09-09

Administration Guide

4.11.0 1

http://www.openssl.org/
mailto:eay@cryptsoft.com

Preface

Typographical conventions
Before you start using this guide, it is important to understand the terms and typographical conventions used in
the documentation. For more information on specialized terms and abbreviations used in the documentation, see
the Glossary at the end of this document.

The following text formatting principles and icons identify special information in the document.

 Tips provide best practices and recommendations.

Notes provide additional information on a topic, and emphasize important facts and
considerations.

Warnings mark situations where loss of data or misconfiguration of the device is possible if the
instructions are not obeyed.

Command

Commands you have to execute.

Emphasis
Reference items, additional readings.

/path/to/file

File names.

Parameters
Parameter and attribute names.

Additional marks used specifically in the Web User Interface (UI):

Key Description

* The elements marked with * in the configuration reference tables are mandatory to
be configured.

(Default) For some of the configuration elements there are recommended default values,
marked as (Default). In case the value is not defined during the configuration, the
default value will be considered for the actual element.

+ By clicking this sign you can add the actual element to the list of configuration
elements.

Contact and support information
This product is developed and maintained by Balasys IT Ltd..

Contact:

Administration Guide Preface

4.11.0 2

Balasys IT Ltd.
4 Alíz Street
H-1117 Budapest, Hungary
Tel: +36 1 646 4740
E-mail: <info@balasys.hu>
Web: http://balasys.hu/

Sales contact
You can directly contact us with sales-related topics at the e-mail address <sales@balasys.hu>, or leave us your
contact information and we call you back.

Support contact
To access the Balasys Support System, sign up for an account at the Balasys Support System page. Online support
is available 24 hours a day.

Balasys Support System is available only for registered users with a valid support package.

Support e-mail address: <support@balasys.hu>.

Training
Balasys IT Ltd. holds courses on using its products for new and experienced users. For dates, details, and
application forms, visit the https://www.balasys.hu/en/services#training webpage.

1. Scope of this document
This document describes installation, configuration and operation of Proxedo API Security in Kubernetes. The
purpose of this document is to present the designed approach for different installation scenarios, base system
configuration, and the usage of the Web User Interface (UI). It also documents common use cases for operation
and troubleshooting. The primary intended audience of this document are system engineers and system
designers for configuring Proxedo API Security systems.

2. Introduction to Proxedo API Security

2.1. What is Proxedo API Security
The Proxedo API Security (PAS) is a security solution that protects API serving endpoints. It is positioned in the
network flow between consumers of the APIs (clients) and backend solutions serving the API (servers) as a
transparent HTTP proxy.

Proxedo API Security can:

• handle incoming Transport Layer Security v1 (TLS) connections from clients & outgoing TLS connections to
servers separately and selectively

• verify that the communication conforms to HTTP specifications

• verify that the content of the messages conform to their specified content type

• verify that the content of messages conform to API specification(s) as described in schemas

• evaluate the level of risk with regards to the API call using the data collected from call data

Administration Guide Sales contact

4.11.0 3

mailto:sales@balasys.hu
mailto:support@balasys.hu
https://www.balasys.hu/en/services#training
https://www.balasys.hu/en/services#training
https://www.balasys.hu/en/services#training
https://www.balasys.hu/en/services#training
https://www.balasys.hu/en/services#training
https://www.balasys.hu/en/services#training
https://www.balasys.hu/en/services#training

• provide rule-based protection against a variety of web-based application layer attacks

• extract parts of the content of the messages and relay them to external data stores such as log servers, SIEM
systems or other data warehouses

2.2. Where to start
Depending on what you need to do the following starting points are suggested:

• To understand what the product does and how, see Overview of Proxedo API Security.

◦ If you are familiar with API terminology jump right to Architecture for Proxedo API Security.

• See Installation of Proxedo API Security in Kubernetes environment if you need to set up a new PAS.

• The Operation of Proxedo API Security in Kubernetes environment chapter is about how to manage a working
system on the level of the operating system.

• Configuration of Proxedo API Security on the Web User Interface contains in-depth information about
everything that can be configured with the help of the Web User Interface.

• If you are already familiar with the system and need to find a component that suits your needs consult the
Matcher types, Comparators, Extractor types or Insight Target.

3. Overview of Proxedo API Security

3.1. Main features

3.1.1. TLS

Transport Layer Security v1 (TLS) (successor of the now obsoleted Secure Socket Layer v3 (SSL)) is a widely used
crypto protocol, guaranteeing data integrity and confidentiality in many PKI and e-commerce systems.

The TLS framework inspects TLS connections, and also any other connections embedded into the encrypted TLS
channel. TLS connections initiated from the client are terminated on the Proxedo API Security, and two separate
TLS connections are built: one between the client and the firewall, and one between the firewall and the server. If
both connections match the configuration settings of PAS (for example, the certificates are valid, and only the
allowed encryption algorithms are used), PAS inspects the protocol embedded into the secure channel as well.
Note that the configuration settings can be different for the two connections, for example, it is possible to permit
different protocol versions and encryption settings.

3.1.2. Enforcement

Proxedo API Security acts as an HTTP proxy and verifies that the traffic passing through conforms to HTTP’s
specifications. By using OpenAPI schemas, as defined in OpenAPI specifications (also known as Swagger), it also
verifies that the traffic passing through conforms to the API endpoint’s specification and can log or deny non-
conforming traffic.

PAS also provides its own versatile filtering system to control passing traffic.

3.1.3. Fraud Detection

The Fraud Detection module of Proxedo API Security reduces the number of fraudulent transactions by
harnessing device fingerprinting and enriching incoming data with alternate sources to provide the best accuracy
and details about transactions.

3.1.4. Rule-based Enforcement

Besides its positive security model approach, Proxedo API Security also has a web application firewall module.

Administration Guide 2.2. Where to start

4.11.0 4

The WAF Enforcer protects against a variety of application layer attacks including credential theft, code injection,
cross-site scripting (XSS), cookie poisoning, CSRF, SQL injection, DoS, ransomware, and more.

3.1.5. Insights

With Proxedo API Security it is possible to extract business-relevant information with extremely high resolution
from the traffic and relay it to external data stores where further analysis can be implemented.

Thus, it is possible to feed Log Management solutions, Monitoring and SIEM systems, Data visualization tools with
data extracted from the traffic, even to the level of specific fields deep inside API calls or URI parameters.

3.1.6. Security flow

The security flow binds most of PAS’s features together. It allows flexible configuration for handling the traffic.
Multiple Enforcement, Filter and Insight plugins can be mix-and-matched with control over error policies.

3.2. Main Concepts in Proxedo API Security
This chapter provides an overview of the Proxedo API Security solution, introduces its main concepts, and
explains the relationship of the various components.

API Endpoint
Proxedo API Security protects API endpoints. An API endpoint is the serving part of the communication
channel and is the collection of all functions of a service. It resides at a list of well-known top URIs under which
all the functions are accessible. APIs have well-defined HTTP Endpoints for all exposed calls, resources etc.,
usually through providing a schema that describes all parameters of these URI paths, including possible HTTP
response codes, the format and fields of the data structure in the request’s and response’s body.

Client
It is a consumer of API endpoints. It is the source of the requests.

Backend
The backend constitutes of one or more servers that serve the API endpoint. It receives the requests of the
client and sends the responses.

HTTP message
It can be an HTTP request coming from the client or an HTTP response coming from the backend.

Call
An HTTP conversation constitutes of a request — response interchange of HTTP messages between the client
and the backend. Whenever the direction is irrelevant in the context — it applies to both requests and
responses — the message is named Call.

Listener
It is the part of PAS that listens to incoming traffic for given API Endpoints. It is bound to a network port.
Clients address this port when accessing API Endpoints through the gateway.

TLS
Transport Layer Security is the cryptographic protocol that secures HTTPS communications. PAS can apply
TLS encryption both when communicating with Clients and Backends. TLS encryption can also be used with
Syslog Insight Target and Elastic Insight Target.

Security flow
It provides a collection of security rules that PAS applies to a Call. It is two series of Plugins: one for requests
and one for responses.

Administration Guide 3.2. Main Concepts in Proxedo API Security

4.11.0 5

Plugin
It is an element of the security flow that applies a specific security function. It has different types based on the
role they do.

Decompressor
A Plugin responsible for decompressing compressed content in the HTTP message’s body. This ensures
that the original content of the message is available for processing.

Compressor
A Plugin responsible for compressing the result of a flow and forwarding the compressed content.

Deserializer
A Plugin responsible for parsing the HTTP message’s body to structured data. This ensures that a message
is well-formed. The structured data will also be consumed by other Plugins that operate on the body of the
message.

Serializer
A Plugin responsible for serializing the structured data to the format of the HTTP message’s body.

Filter
A Plugin that rejects calls when they match defined rules.

Enforcer
A Plugin that validates calls against externally defined schemas.

Insight
A Plugin that extracts various data from the call and sends it to external systems (log servers, SIEMs, and
other data analysis tools).

Brick
They are reusable components of Plugins. They can be defined on their own and then shared by multiple
Plugins.

Error policy
It is a brick that defines what happens if the Plugin has found an error. It decides if calls are rejected or
merely logged, and defines the details of the HTTP error response sent to the client if a call is rejected.

Matcher
It is a brick that decides if the Plugin should be executed for a given call by checking various data in the
HTTP message.

Selector
Selector is a brick that can extract a piece of information from a call. It is used by Insight plugins.

Insight Target
It is a brick that defines an external system to send extracted data to. It is used by Insight plugins.

3.3. Architecture for Proxedo API Security
Proxedo API Security is based on a micro-services architecture separated into three deployment units:
Management, Storage, and Core. These deployment units (or infrastructure components) can be scaled or moved
between hosts to accommodate different throughput and reliability requirements.

3.3.1. Management component

Responsible for handling the security component configuration of the Core component, while the data itself

Administration Guide 3.3. Architecture for Proxedo API Security

4.11.0 6

resides in the Storage component. Contains the following services:

Config API
Exposes a configuration API that can be used to manage the product:

• Editing the security component configuration

• Applying the security component configuration

Config WebUI
Provides a browser-based user interface to the configuration API.

3.3.2. Storage component

Stores and distributes different versions of the security component configuration to the Core component.
Contains the following services:

Consul
Stores the different versions of the security component configuration, and monitors the status of PAS services.

Blob Store
Stores file resources that are part of the security component configuration.

3.3.3. Core component

The Core services are each responsible for a well-defined subset of handling traffic between the client and the
backend. Contains the following services:

Transport Director
Manages the transport layer of API connections:

• Handles network connections from the client

• Handles network connections towards the backends

• Handles TLS on these connections

• Load balances between multiple backend servers

• Load balances between multiple Flow Directors

• Enforces HTTP protocol validity in calls

Flow Director
Responsible for the execution of the Plugins in the Endpoints' flow and for applying Error Policies as necessary.

Insight Director
Manages the connections to Insight Targets. Responsible for sending the data collected by Insight plugins to
Insight Target systems.

Content Filtering Director
Provides content filtering capabilities for the WAF Enforcer plugin.

3.3.4. The configuration process

While the configuration most commonly takes place on the Web UI, the process works the
same way through the configuration API.

1. When a user logs in to the Web UI, the currently running configuration is visible.

Administration Guide 3.3. Architecture for Proxedo API Security

4.11.0 7

◦ When logging in to the Web UI for the first time after a fresh install, the current configuration is empty.
Only a few mandatory and default components are added, and some mandatory components must be
added to the configuration for the first configuration to become valid.

◦ The running configuration is always stored in the Storage component.

2. The user can edit the configuration: add new components, delete existing components, and change fields on
existing components.

◦ The changes the user makes are only visible to the user, other users can only see the running
configuration and their own changes.

◦ The user’s changes are always stored in the Storage component.

3. Individual components and the configuration as a whole are validated.

◦ Partially configured components can be saved with missing fields, but they won’t become valid until all
mandatory fields are properly filled.

◦ An invalid configuration is still saved, and can be fixed at a later time. Every user has their own set of
changes.

4. When the configuration is valid, it can be applied to the running system.

◦ When a user’s configuration is applied, the changes are merged with the running configuration.

◦ Applying the changes means reloading the Core services with the new configuration.

◦ The new running configuration becomes visible to every user.

3.3.5. Connection handling example

Administration Guide 3.3. Architecture for Proxedo API Security

4.11.0 8

Figure 1. PAS Architecture

1. Incoming connections are accepted by the Transport Director.

◦ It handles TLS with the client if necessary.

◦ Chooses the Endpoint based on the URL.

2. It hands over the connection to the Flow Director.

◦ The Flow Director applies the Endpoint specific Request Security Flow.

3. If an Insight plugin needs to send data to an external Insight Target it sends the collected data to the Insight
Director.

Administration Guide 3.3. Architecture for Proxedo API Security

4.11.0 9

4. The Insight Director sends the data further to the Insight Target with the appropriate protocol.

5. If a WAF Enforcer plugin is present in the Request Security Flow it sends data to the Content Filtering Director
and receives a verdict.

6. If a Fraud Detector plugin is present in the Request Security Flow it sends data to the external Fraud API and
receives a score.

7. The Flow Director hands the connection back to the Transport Director.

8. The Transport Director then sends the data to the Backend.

◦ It handles TLS with the backends if necessary.

◦ It performs load balancing among Backend servers if necessary.

The same procedure is executed with the response coming from the Backend.

3.3.6. Understanding processing flow

The figure on Proxedo API Security architecture and the steps following that describe how client connection is
handled. The following figure explains how calls are processed in more details:

Figure 2. PAS processing flow

1. As shown in the figure above, the incoming connection from the client is handled by the Transport Director,
applying TLS if needed.

2. The Transport Director then chooses the Endpoint based on the URL in the request. First endpoint that has a
matching URL is chosen.

3. The Transport Director hands over the connection to the Flow Director, indicating which Endpoint the
connection belongs to.

4. The Flow Director then starts applying the request part of the Security Flow definition.

5. For each Plugin the Flow Director:

◦ Checks if the Plugin's matcher matches the request.

◦ If so, it executes the Plugin, if not, it executes the next Plugin.

◦ If the Plugin indicates success it executes the next Plugin.

◦ If the Plugin indicates an error it applies the Plugin's error policy. If the policy dictates to abort the
connection:

Administration Guide 3.3. Architecture for Proxedo API Security

4.11.0 10

▪ It fills error details and hands back the connection to the Transport Director, aborting the execution of
the flow.

▪ The Transport Director closes the connection, sending error details to the client if allowed by the
policy.

6. Once the last Plugin has been executed the connection is handed back to the Transport Director.

7. The Transport Director initiates the connection towards the Backend:

◦ It handles load balancing if necessary.

◦ It handles TLS if necessary.

◦ It sends the request itself to the Backend server.

8. The Backend server sends its response to the Transport Director.

9. Once, the response has been received the Transport Director again hands over the connection to the Flow
Director.

10. The Flow Director then starts applying the response part of the Security Flow definition, executing the Plugins
as above.

11. Once, the last Plugin has been executed the connection is handed back to the Transport Director.

12. Finally, the Transport Director sends the response to the client.

Usually, Plugins are organized in the following manner:

• A Decompressor Plugin extracts the compressed body.

• A Deserializer Plugin processes the decompressed request to understand the details in the body.

• Filters are applied to filter unnecessary traffic.

• Enforcers are applied for detailed validation of calls.

• Insights are applied to collect data from the call.

• Serializer Plugin serializes the body

• Compressor Plugin compresses the serialized body

Though the order of the plugins can be changed based on the needs, note the followings:

• When a Plugin needs access to the request body it requires Deserialized data. It is therefore strongly
recommended that the first plugin is a Decompressor followed by a Deserializer.

• At the end of the flow it is strongly recommended to place a Serializer plugin followed by a Compressor.

• Generally Insights are applied after Filters and Enforcers so that they are not executed on possibly invalid
calls.

• Anything that operates on the HTTP headers or the body of the message will be aware of the call direction:
The same Plugin in the request and response flow will act on the request or response data.

• However, the Flow Director handles a request-response exchange together, so you can still use details from
the request in Plugins of the response flow. The most notable example of this is using URI or method matchers
in the response flow.

• Plugins in the request flow, however, cannot access details of the response flow (since they are not available
yet).

It is also worth noting that Insight Plugins instantly hand over data to the Insight Director, and let the execution
continue.

4. Installation of Proxedo API Security in Kubernetes
environment

Administration Guide4. Installation of Proxedo API Security in Kubernetes environment

4.11.0 11

The forthcoming sections describe the installation of PAS in Kubernetes.

To manage Kubernetes (K8s) applications, Helm, the package manager for Kubernetes is used.
Packages are called charts in the Helm context.

4.1. Prerequisites for installing PAS
The followings are needed prior to the installation of PAS:

• a technical user for accessing Balasys' download site

• the Helm chart

Prior to the installation of the Helm chart, the Helm chart itself must be configured. For
minimum configuration of the Helm chart see section Minimum configuration settings for the
Helm chart.

4.1.1. Cluster components necessary for PAS

To make use of some of the features, PAS shall be deployed in a cluster, with the following components installed:

• metrics server for auto-scaling

• Persistent volume for storing configuration in the management component

Persistent Volume Claim parameters can be set up to match a manually managed Persistent
volume, so is Storage Class name.

• access for the target namespace to deploy PAS in

4.1.2. Tools necessary for the installation

To create the basic configuration for the installation, the following tools are necessary:

• openssl for storage certificate generation

• the htpasswd tool, which is part of the apache2-utils package on debian distributions, the httpd-tools
package on Red Hat based distributions

• the helm command line tool to manage the package installation

• the kubectl command line tool to communicate with the Kubernetes cluster

4.1.3. Minimum configuration settings for the Helm chart

The Helm chart contains the following:

• configuration parameters to bootstrap PAS in K8s

• definitions of

◦ pods

◦ services

◦ autoscaling configuration for the core component

Administration Guide 4.1. Prerequisites for installing PAS

4.11.0 12

https://helm.sh/

◦ a Persistent Volume Claim for the management

 Ingress configuration for any component is not included.

HTTP and HTTPS management access is recommended to be configured using an Ingress
(kubernetes object).

In order to be able to install the Helm chart the minimum configuration settings have to be
completed. The following sections contain the details only for the necessary minimum
configuration, however for checking further possible configuration options, see section Base
system configuration for PAS in Kubernetes.

The files detailed in the next sections need to be created and filled in prior to PAS installation.

4.1.3.1. Using values.yml file

1. Use the values.yml (values file) with the default and necessary values. Run the following command to output
the configuration options:

helm show values /path/to/chart/proxedo-api-security-4.11.0.tgz

2. Create a local values.yml file with the preferred values to overwrite the default values if required. The values
file with minimum configuration is as follows (with example values):

config:
 storage:
 consul:
 gossip_encryption_key: MhstT80sqle63WC7knOak+c7GfK7k5OY2n/4Qk/fSXs=
 blob_store:
 access_key: "8i8YJB3JhFmkT5KK6EV5EGw9dK10B4ZllWjEYlvUwKM="
 secret_key: "L/aLsKkoDFDFnMNdp8MFl1/CIkAQC1hrXV+HlbgKyOM="

3. Generate these necessary secrets with the help of the following command. The values above are examples,
they shall not be copied directly.

config.consul.gossip_encryption_key
$ openssl rand -base64 32
gI97yg2Zcq4XL20ne8NBwH2e0PbzkmXjqMFdp8jQZac=

config.blob_store.access_key
$ openssl rand -base64 32
+WDpoDV7EcJrgkRgK65M3y8OcLdrZmYBASVTFE1I8pg=

config.blob_store.secret_key
$ openssl rand -base64 32
ECuGiOwyJtjlB8Bl3yNgIgdk/nlb4HFmxE/4oiq5V+w=

4.1.3.2. Creating certificates for storage

For technical reasons, a TLS certificate is necessary for configuration storage purposes. Create the internal CAs

Administration Guide 4.1. Prerequisites for installing PAS

4.11.0 13

and signed certificates either with a preferred method, or else the necessary files can be created with the
following example commands as well.

1. Generate a CA key pair.

The -days parameter in the example commands define the validity period of the generated
certificates in days. Change it, if it is required.

The certificate files generated here and used with the Helm chart are sensitive pieces of
information, therefore handle those with attention.

openssl req -nodes -new -x509 -days +3650 -keyout storage-ca-key.pem -out storage-ca.pem
-subj "/CN=PAS Storage CA"

2. Generate a private server key and a Certificate Signing Request (CSR).

openssl req -nodes -new -keyout consul-0-key.pem -out consul-0.csr -days +3650 -subj
"/CN=storage.pas"

3. Sign the CSR using the CA.

openssl x509 -req -days +3650 -in consul-0.csr -CA storage-ca.pem -CAkey storage-ca-
key.pem -CAcreateserial -out consul-0.pem

With the help of the above examples, further files need to be generated. These files will need to be provided for
the Helm chart:

• consul-0.csr

• consul-0-key.pem

• consul-0.pem

• storage-ca-key.pem

• storage-ca.pem

4.1.3.3. Creating management users' file

For logging into the management component, the users.htpass file is required. Run the following command to
generate one, and provide the password.

htpasswd -B -c users.htpass username

4.2. Installing PAS in Kubernetes
The following sections and the example commands use the proxedo-api-security kubernetes namespace as an
example, but it can be replaced with any other namespace name.

 It is recommended to install PAS in a namespace separate from the backend application(s).

Administration Guide 4.2. Installing PAS in Kubernetes

4.11.0 14

To create a new namespace, run the following command:

kubectl create namespace proxedo-api-security

4.2.1. Setting up docker registry connection

1. Log in to the PAS docker registry to access the docker images of PAS.

2. Create the proxedo-api-security-registry-credentials secret using the following command to enable
kubernetes to access the docker images:

kubectl create --namespace proxedo-api-security \
 secret docker-registry proxedo-api-security-registry-credentials \
 --docker-server=docker.balasys.hu \
 --docker-username=<<your username>> \
 --docker-password="$(read -sp "Docker registry password: " DOCKER_PASSWORD; echo
$DOCKER_PASSWORD)"

4.2.2. Providing the necessary files for Helm installation

Provide the created files for the Helm install command, an example of which can be seen below (substitute your
values):

helm upgrade --install proxedo-api-security --namespace=proxedo-api-security \
 --values /path/to/config/files/values.yml \
 --set-file mgmt_users=/path/to/config/files/users.htpass \
 --set-file storage_ca_key=/path/to/config/files/storage-ca-key.pem \
 --set-file storage_ca_cert=/path/to/config/files/storage-ca.pem \
 --set-file storage_server_key=/path/to/config/files/consul-0-key.pem \
 --set-file storage_server_cert=/path/to/config/files/consul-0.pem \
 /path/to/chart/proxedo-api-security-4.11.0.tgz

4.3. Verifying the installation of PAS in Kubernetes
If everything is correct, the Helm command will present the following output:

NAME: proxedo-api-security
LAST DEPLOYED: Mon May 2 13:51:46 2022
NAMESPACE: proxedo-api-security
STATUS: deployed
REVISION: 1
TEST SUITE: None

1. Run the kubectl get pods --namespace=proxedo-api-security --selector=app=proxedo-api
-security command to investigate the running pods. The output shall be similar to the following example:

NAME READY STATUS
RESTARTS AGE
proxedo-api-security-blob-store-86ccc6d864-frc5k 1/1 Running
0 40s
proxedo-api-security-config-api-76d587d6cd-wpw5d 1/1 Running
0 40s
proxedo-api-security-consul-68c5c87f75-mvlct 1/1 Running

Administration Guide 4.3. Verifying the installation of PAS in Kubernetes

4.11.0 15

0 40s
proxedo-api-security-content-filtering-director-55b859df9-sztwp 1/1 Running
0 40s
proxedo-api-security-flow-director-5cddf58677-qxczd 0/1
ContainerCreating 0 40s
proxedo-api-security-frontend-676bfd8956-qrtm4 1/1 Running
0 40s
proxedo-api-security-insight-director-585cc5f86-j8rrz 0/1
ContainerCreating 0 40s
proxedo-api-security-transport-director-5bbdf58d7d-whzsq 0/1
ContainerCreating 0 40s

The core pod is missing the core configuration, therefore it will not enter the "Running" state until the first
configuration is applied in the management.

2. Run the following command to access the management component for verification.

kubectl port-forward --namespace=proxedo-api-security service/proxedo-api-security-
frontend 8080:80

3. Open the http://127.0.0.1:8080/ in the browser.

5. Base system configuration for PAS in Kubernetes
This chapter explains configuration details for setting up a working PAS. Configuration settings are detailed here,
which are based on the installation of the Helm chart.

The Helm chart carries Kubernetes manifest files for each component, and requires a set of parameters to be
configured by the user for the installation.

The values.yml file

The configuration of PAS components is condensed into a values.yml file. The default version of this file can be
printed by using the following command:

helm show values /path/to/chart/proxedo-api-security-4.11.0.tgz

To configure the necessary parameters and to overwrite the not suitable default values, save the output to a file,
and keep only those parts that has to be overwritten. The modified file can be provided as --values my-
values.yml to the Helm installation command.

There are two main sections of this file:

1. Infrastructure - This section defines the options necessary for kubernetes to deploy the components.

2. Configuration - This section defines the options for PAS itself. The main configuration of the storage and
management components is defined in this file.

The format of this file must adhere to the YAML 1.1 specification.

There are different sections in this configuration file, some of which, as for example, the 'config.mgmt.frontend'
section, might not need specific configuration. However, the default values of these sections must be set by {}.

For information on how to provide the custom values.yml file, see section Providing the necessary files for Helm
installation. See configuration examples in Appendix B.

5.1. Infrastructure configuration

Administration Guide 5. Base system configuration for PAS in Kubernetes

4.11.0 16

http://127.0.0.1:8080/
http://yaml.org/spec/1.1/

In this infrastructure part of the configuration, many parameter fields are directly associated with the
configuration attributes defined for the Kubernetes objects. For such parameters that have a Kubernetes
equivalent, the Kubernetes parameter is referenced in the format that can directly be used with the kubectl
explain command. This command provides the most specific documentation of each field. However, for using
this command, access to a cluster is required.

In case it is not feasible to use the kubectl explain command, the referenced format can also be used to
navigate to the correct object and field at the following site: Kubernetes API.

The following tables describe the infrastructure parameters and their Kubernetes equivalent if that exists.

Table 1. Docker-related parameters

Parameter field Default
value

Description

infrastructure.docker.registry docker.bal
asys.hu

The registry to download docker images from.

infrastructure.docker.pull_policy IfNotPrese
nt

This parameter has a Kubernetes equivalent in all
pods: pod.spec.containers.

infrastructure.docker.image_tag The image tag to use instead of the one
corresponding to the current PAS version.

Table 2. Storage-related infrastructure parameters

Parameter field Default
value

Description

infrastructure.storage.volume_claim This parameter has a Kubernetes equivalent:
PersistentVolumeClaim.

infrastructure.storage.storage_class_name This parameter has a Kubernetes equivalent:
PersistentVolumeClaim.spec.storageClassName.

infrastructure.storage.access_modes ReadWrite
Once

This parameter has a Kubernetes equivalent:
PersistentVolumeClaim.spec.accessModes.

infrastructure.storage.requests This parameter has a Kubernetes equivalent:
PersistentVolumeClaim.spec.resources.requests.

infrastructure.storage.requests.storage 100Mi This parameter has a Kubernetes equivalent:
PersistentVolumeClaim.spec.resources.requests.st
orage.

Table 3. Blob-store infrastructure parameters

Parameter field Default
value

Description

Resources

infrastructure.storage.blob_store.resources This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.

infrastructure.storage.blob_store.resources.auto
fill_limits

false When true and limits are not defined, limits will
be the same as the requests. When false and
limits are not defined, there are no limits. Setting
limits overrides this setting.

Administration Guide 5.1. Infrastructure configuration

4.11.0 17

https://kubernetes.io/docs/reference/kubernetes-api/

Parameter field Default
value

Description

infrastructure.storage.blob_store.resources.limit
s

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits. If this is
defined, either a CPU limit value, a memory limit
value, or both must be provided.

infrastructure.storage.blob_store.resources.limit
s.cpu

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.cpu.

infrastructure.storage.blob_store.resources.limit
s.memory

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.memory.

infrastructure.storage.blob_store.resources.limit
s.ephemeral_storage

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.ephemeral-
storage.

infrastructure.storage.blob_store.resources.requ
ests

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.

infrastructure.storage.blob_store.resources.requ
ests.cpu

350 m This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.cpu.

infrastructure.storage.blob_store.resources.requ
ests.memory

450 Mi This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.memory.

infrastructure.storage.blob_store.resources.requ
ests.ephemeral_storage

50Mi This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.ephemera
l-storage.

Table 4. Consul infrastructure parameters

Parameter field Default
value

Description

Resources

infrastructure.storage.consul.resources This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.

infrastructure.storage.consul.resources.autofill_l
imits

false When true and limits are not defined, limits will
be the same as the requests. When false and
limits are not defined, there are no limits. Setting
limits overrides this setting.

infrastructure.storage.consul.resources.limits This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits. If this is
defined, either a CPU limit value, a memory limit
value, or both must be provided.

infrastructure.storage.consul.resources.limits.cp
u

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.cpu.

infrastructure.storage.consul.resources.limits.m
emory

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.memory.

infrastructure.storage.consul.resources.limits.ep
hemeral_storage

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.ephemeral-
storage.

infrastructure.storage.consul.resources.requests This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.

Administration Guide 5.1. Infrastructure configuration

4.11.0 18

Parameter field Default
value

Description

infrastructure.storage.consul.resources.requests.
cpu

350 m This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.cpu.

infrastructure.storage.consul.resources.requests.
memory

450 Mi This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.memory.

infrastructure.storage.consul.resources.requests.
ephemeral_storage

50 Mi This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.ephemera
l-storage.

Table 5. Transport Director infrastructure parameters

Parameter field Default
value

Description

Service

infrastructure.core.transport_director.service This parameter has a Kubernetes equivalent:
service.

infrastructure.core.transport_director.service.ty
pe

ClusterIP This parameter has a Kubernetes equivalent:
service.spec.type.

infrastructure.core.transport_director.service.po
rts

This parameter has a Kubernetes equivalent:
service.spec.ports. A port with a specific
target_port value needs to be set up for each
listener port in the PAS configuration on the
management interface.

infrastructure.core.transport_director.service.po
rts.name

HTTP This parameter has a Kubernetes equivalent:
service.spec.ports.name.

infrastructure.core.transport_director.service.po
rts.port

80 This parameter has a Kubernetes equivalent:
service.spec.ports.port.

infrastructure.core.transport_director.service.po
rts.protocol

TCP This parameter has a Kubernetes equivalent:
service.spec.ports.protocol.

infrastructure.core.transport_director.service.po
rts.target_port

49 000 This parameter has a Kubernetes equivalent:
service.spec.ports.targetPort.

infrastructure.core.transport_director.service.po
rts.node_port

This parameter has a Kubernetes equivalent:
service.spec.ports.nodePort.

Resources

infrastructure.core.transport_director.resources This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.

infrastructure.core.transport_director.resources.
autofill_limits

false When true and limits are not defined, limits will
be the same as the requests. When false and
limits are not defined, there are no limits. Setting
limits overrides this setting.

infrastructure.core.transport_director.resources.
limits

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits. If this is
defined, either a CPU limit value, a memory limit
value, or both must be provided.

infrastructure.core.transport_director.resources.
limits.cpu

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.cpu.

Administration Guide 5.1. Infrastructure configuration

4.11.0 19

Parameter field Default
value

Description

infrastructure.core.transport_director.resources.
limits.memory

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.memory.

infrastructure.core.transport_director.resources.
limits.ephemeral_storage

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.ephemeral-
storage.

infrastructure.core.transport_director.resources.
requests

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.

infrastructure.core.transport_director.resources.
requests.cpu

250 m This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.cpu.

infrastructure.core.transport_director.resources.
requests.memory

450 Mi This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.memory.

infrastructure.core.transport_director.resources.
requests.ephemeral_storage

50 Mi This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.ephemera
l-storage.

Scaling

infrastructure.core.transport_director.scaling For scaling parameters, see the separate table on
scaling, Parameters for Scaling - Transport
Director, Flow Director, Insight Director.

Table 6. Flow Director infrastructure parameters

Parameter field Default
value

Description

Resources

infrastructure.core.flow_director.resources This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.

infrastructure.core.flow_director.resources.autof
ill_limits

false When true and limits are not defined, limits will
be the same as the requests. When false and
limits are not defined, there are no limits. Setting
limits overrides this setting.

infrastructure.core.flow_director.resources.limits This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits. If this is
defined, either a CPU limit value, a memory limit
value, or both must be provided.

infrastructure.core.flow_director.resources.limits
.cpu

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.cpu.

infrastructure.core.flow_director.resources.limits
.memory

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.memory.

infrastructure.core.flow_director.resources.limits
.ephemeral_storage

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.ephemeral-
storage.

infrastructure.core.flow_director.resources.requ
ests

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.

infrastructure.core.flow_director.resources.requ
ests.cpu

250 m This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.cpu.

Administration Guide 5.1. Infrastructure configuration

4.11.0 20

Parameter field Default
value

Description

infrastructure.core.flow_director.resources.requ
ests.memory

600 Mi This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.memory.

infrastructure.core.flow_director.resources.requ
ests.ephemeral_storage

200 Mi This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.ephemera
l-storage.

Scaling

infrastructure.core.flow_director.scaling For scaling parameters, see the separate table on
scaling, Parameters for Scaling - Transport
Director, Flow Director, Insight Director.

Table 7. Insight Director infrastructure parameters

Parameter field Default
value

Description

Resources

infrastructure.core.insight_director.resources This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.

infrastructure.core.insight_director.resources.au
tofill_limits

false When true and limits are not defined, limits will
be the same as the requests. When false and
limits are not defined, there are no limits. Setting
limits overrides this setting.

infrastructure.core.insight_director.resources.li
mits

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits. If this is
defined, either a CPU limit value, a memory limit
value, or both must be provided.

infrastructure.core.insight_director.resources.li
mits.cpu

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.cpu.

infrastructure.core.insight_director.resources.li
mits.memory

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.memory.

infrastructure.core.insight_director.resources.re
quests

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.

infrastructure.core.insight_director.resources.re
quests.cpu

120 m This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.cpu.

infrastructure.core.insight_director.resources.re
quests.memory

350 Mi This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.memory.

Scaling

infrastructure.core.insight_director.scaling For scaling parameters, see the separate table on
scaling, Parameters for Scaling - Transport
Director, Flow Director, Insight Director.

Table 8. Content Filtering Director infrastructure parameters

Parameter field Default
value

Description

Resources

Administration Guide 5.1. Infrastructure configuration

4.11.0 21

Parameter field Default
value

Description

infrastructure.core.content_filtering_director.res
ources

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.

infrastructure.core.content_filtering_director.res
ources.autofill_limits

false When true and limits are not defined, limits will
be the same as the requests. When false and
limits are not defined, there are no limits. Setting
limits overrides this setting.

infrastructure.core.content_filtering_director.res
ources.limits

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits. If this is
defined, either a CPU limit value, a memory limit
value, or both must be provided.

infrastructure.core.content_filtering_director.res
ources.limits.cpu

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.cpu.

infrastructure.core.content_filtering_director.res
ources.limits.memory

1 Gi This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.memory.

infrastructure.core.content_filtering_director.res
ources.limits.ephemeral_storage

20 Gi This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.ephemeral-
storage.

infrastructure.core.content_filtering_director.res
ources.requests

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.

infrastructure.core.content_filtering_director.res
ources.requests.cpu

250 m This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.cpu.

infrastructure.core.content_filtering_director.res
ources.requests.memory

600 Mi This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.memory.

infrastructure.core.content_filtering_director.res
ources.requests.ephemeral_storage

1 Gi This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.ephemera
l-storage.

Table 9. Parameters for Scaling - Transport Director, Flow Director, Insight Director

Parameter field Default
value

Description

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling

This parameter has a Kubernetes equivalent:
HorizontalPodAutoscaler.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.create_autoscaler

true This parameter defines whether to create the
HoizontalPodAutoscaler object with the
forthcoming configuration options. If it is set to
false, the HPA object to enable core autoscaling
will need to be created manually.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.min_replicas

1 This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.minReplicas.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.max_replicas

10 This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.maxReplicas.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.metrics

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.metrics.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.metrics.cpu

This parameter defines the CPU metric
configuration.

Administration Guide 5.1. Infrastructure configuration

4.11.0 22

Parameter field Default
value

Description

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.metrics.cpu.average_utilization

80 This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.metrics.resource.
target.averageUtilization.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.metrics.memory

This parameter defines the memory metric
configuration.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.metrics.memory.average_utilization

80 This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.metrics.resource.
target.averageUtilization.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.metrics.behavior

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior. If it is
defined, either scale_down or scale_up
parameter must be defined.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.metrics.behavior.scale_down

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleDow
n. If it is defined, all included parameters need to
be defined.

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_down.stabilizatio
n_window_seconds

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleDow
n. stabilizationWindowSeconds.

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_down.policies

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleDow
n. policies.

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_down.policies.typ
e

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleDow
n. policies.type.

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_down.policies.val
ue

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleDow
n. policies.value.

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_down.policies.per
iod_seconds

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleDow
n. policies.periodSeconds.

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_down.select_poli
cy

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleDow
n. selectPolicy.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.metrics.behavior.scale_up

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleUp. If
it is defined, all included parameters need to be
defined.

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_up.stabilization_
window_seconds

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleUp.
stabilizationWindowSeconds.

Administration Guide 5.1. Infrastructure configuration

4.11.0 23

Parameter field Default
value

Description

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.metrics.behavior.scale_up.policies

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleUp.
policies.

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_up.policies.type

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleUp.
policies.type.

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_up.policies.value

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleUp.
policies.value.

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_up.policies.perio
d_seconds

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleUp.
policies.periodSeconds.

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_up.select_policy

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleUp.
selectPolicy.

Table 10. Config-api infrastructure parameters

Parameter field Default
value

Description

Resources

infrastructure.mgmt.config_api.resources This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.

infrastructure.mgmt.config_api.resources.autofil
l_limits

false When true and limits are not defined, limits will
be the same as the requests. When false and
limits are not defined, there are no limits. Setting
limits overrides this setting.

infrastructure.mgmt.config_api.resources.limits This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits. If this is
defined, either a CPU limit value, a memory limit
value, or both must be provided.

infrastructure.mgmt.config_api.resources.limits.
cpu

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.cpu.

infrastructure.mgmt.config_api.resources.limits.
memory

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.memory.

infrastructure.mgmt.config_api.resources.limits.
ephemeral_storage

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.ephemeral-
storage.

infrastructure.mgmt.config_api.resources.reques
ts

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.

infrastructure.mgmt.config_api.resources.reques
ts.cpu

350 m This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.cpu.

infrastructure.mgmt.config_api.resources.reques
ts.memory

450 Mi This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.memory.

Administration Guide 5.1. Infrastructure configuration

4.11.0 24

Parameter field Default
value

Description

infrastructure.mgmt.config_api.resources.reques
ts.ephemeral_storage

100 Mi This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.ephemera
l-storage.

Table 11. Frontend infrastructure parameters

Parameter field Default
value

Description

Resources

infrastructure.mgmt.frontend.resources This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.

infrastructure.core.mgmt.frontend.resources.aut
ofill_limits

false When true and limits are not defined, limits will
be the same as the requests. When false and
limits are not defined, there are no limits. Setting
limits overrides this setting.

infrastructure.core.mgmt.frontend.resources.lim
its

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits. If this is
defined, either a CPU limit value, a memory limit
value, or both must be provided.

infrastructure.core.mgmt.frontend.resources.lim
its.cpu

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.cpu.

infrastructure.core.mgmt.frontend.resources.lim
its.memory

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.memory.

infrastructure.core.mgmt.frontend.resources.lim
its.ephemeral_storage

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.ephemeral-
storage.

infrastructure.core.mgmt.frontend.resources.req
uests

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.

infrastructure.core.mgmt.frontend.resources.req
uests.cpu

350 m This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.cpu.

infrastructure.core.mgmt.frontend.resources.req
uests.memory

450 Mi This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.memory.

infrastructure.core.mgmt.frontend.resources.req
uests.ephemeral_storage

70 Mi This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.ephemera
l-storage.

5.2. PAS configuration in Kubernetes

5.2.1. Configuration options for the storage component

The config.storage section controls keys to be used between the management and storage components.

The configuration file has three main sections, namely common, consul and blob-store.

The 'common' section has no required parameters, the defaults can be set by {}.

Table 12. Storage configuration common options

Administration Guide 5.2. PAS configuration in Kubernetes

4.11.0 25

Key Default Description

config.storage.common.standalone_mode true This parameter must be set to 'true'. It denotes
whether the storage is run in standalone or in
cluster mode. If it is set to true, the cluster-
related parameters are ignored. The required
parameters still need to be provided.

Table 13. Storage configuration consul options

Key Default Description

config.storage.consul.bind_cluster_addr 127.0.0.1 The address to bind on as a cluster member. This
will be used to communicate with other
members. This is a required parameter.

config.storage.consul.gossip_encryption_key The encryption key to use for the gossip protocol.
It is a 32-byte shared key encoded into base64
format. Use openssl rand -base64 32 to
generate it. For more information on the keys
produced as part of the configuration, see Using
values.yml file.

This is a required parameter.

config.storage.consul.log_level INFO The log level of consul. The possible values are:
TRACE, DEBUG, INFO, WARN, ERR

The options with ’N/A’ default value are such sections that cannot have exact values, only the
values described afterwards in the table.

Table 14. Storage configuration blob-store options

Key Default Description

config.storage.blob_store.access_key The access key used for connecting to MinIO. A
preferably random generated string must be
provided. Min length: 3 This is a required
parameter.

config.storage.blob_store.secret_key The secret key used for connecting to MinIO. A
preferably random generated string must be
provided. Min length: 8. This is a required
parameter.

The options with ’N/A’ default value are such sections that cannot have exact values, only the
values described afterwards in the table.

For configuration examples, see section Minimal configuration.

5.2.2. Configuration options for the management component

The config.mgmt section controls:

• Web service parameters

• Authentication

Administration Guide 5.2. PAS configuration in Kubernetes

4.11.0 26

The configuration file has two main sections, namely frontend and configapi.

The default values for both frontend and configapi sections are automatically effective. If the attributes have to
be configured with specific values, other than the default values, the {} curly braces have to be deleted and the
new values have to be added.

Table 15. Management configuration frontend options

Key Default Description

config.mgmt.frontend.server_name _ The hostname the web server should serve
the requests on. The default value means
that the management interface will be
served regardless of the provided
hostname.

config.mgmt.frontend.cors_api N/A This section configures cross origin request
sharing options for API access.

config.mgmt.frontend.allow_origin The value of the Access-Control-Allow-
Origin header. This is a required parameter
in case of enabled CORS API.

The options with ’N/A’ default value are such sections that cannot have exact values, only the
values described afterwards in the table.

Table 16. Management configuration log level setting options - configapi section

Key Default Description

config.mgmt.configapi.log_level INFO The log level can be set to DEBUG, INFO,
WARNING, ERROR, CRITICAL.

Table 17. Management configuration user session options - configapi section

Key Default Description

config.mgmt.configapi.session N/A This section configures the options for
session lifetimes.

config.mgmt.configapi.session.session_vali
dity

600 The allowed lifetime of a login session token
in seconds. It determines the time period
between group membership and user
existence checks. This DOES NOT control
the length of a user session.

config.mgmt.configapi.session.renew_validi
ty

36000 The validity of the renew token. It
determines for how long session tokens can
be renewed. Therefore the maximum length
of a user session is the sum of the two
parameters.

The options with ’N/A’ default value are such sections that cannot have exact values, only the
values described afterwards in the table.

For further details on configapi section parameters related to LDAP authentication, see Management
configuration LDAP authentication options - configapi section.

For configuration examples on the management component, see section Minimal configuration and section

Administration Guide 5.2. PAS configuration in Kubernetes

4.11.0 27

Management configuration with LDAP authentication.

5.2.2.1. Configuring authentication and local users in PAS

There are two methods available to configure authentication in PAS:

• htpasswd authentication

• Lightweight Directory Access Protocol (LDAP) authentication

It is required to provide the htpass file already for the Helm chart installation. See section
Providing the necessary files for Helm installation.

Using htpasswd for authentication and for the configuration of local users

By using htpasswd authentication, the administrator can define individual user credentials directly in the
htpasswd file. This file is created and provided for the Helm installation command. As local users are stored in an
htpasswd file, the standard htpasswd tool needs to be used.

It is not possible to configure user groups, or to define different access levels for the users with htpasswd
authentication, yet it is possible to define as many user credentials as necessary one by one. The user credentials
are encrypted in the configuration file using the bcrypt encryption method. If you want to add new users to the
htpasswd file, run the htpasswd users.htpass username command and provide the password.

Example command and output

$ htpasswd -B users.htpass new-user
New password:
Re-type new password:
Adding password for user new-user

Consider the followings related to the command and the example output:

• the htpasswd file is created and provided for the Helm installation command

• new-user is the name of the new user

As a result, similar content is expected to appear in the referred file:

new-user:$2y$05$jsvtfYMP1HJZlWCNGVk6d.j4yWU5gJ4D97Vr6z8yK9A2wy80g1iD.

LDAP authentication

LDAP authentication is a more elaborate way to configure authentication for PAS. With LDAP authentication it is
possible to define user groups and attach different levels of access to these users, however, PAS does not support
different levels of authorization based on these attributes yet at the moment.

If LDAP authentication is used, only the administrator user - and no other user - can
authenticate with the htpasswd file.

The following configapi parameters, which are part of the configuration file’s configapi section, take part in LDAP
authentication:

Table 18. Management configuration LDAP authentication options - configapi section

Administration Guide 5.2. PAS configuration in Kubernetes

4.11.0 28

Key Default Description

config.mgmt.configapi.ldap N/A This section configures the options for LDAP
authentication. LDAP authentication is
disabled by default.

config.mgmt.configapi.ldap.ldap_url The URL of the LDAP server. It must start
with ldap[s]://. This is a required
parameter in case of LDAP authentication.

config.mgmt.configapi.ldap.bind_user The service user to use, for searching the
LDAP server. If use_ntlm parameter is OFF,
this must be the whole DN. If it is ON, it must
be the Active Directory domain and the
username concatenated by a backslash (eg.
AD_domain\administrator). This is a
required parameter in case of LDAP
authentication.

config.mgmt.configapi.ldap.bind_passwor
d

The password of the service user. This is a
required parameter in case of LDAP
authentication.

config.mgmt.configapi.ldap.use_ntlm OFF Set this parameter to ON to use NTLM
authentication. This is only available when
the LDAP server is Microsoft Active
Directory.

config.mgmt.configapi.ldap.tls_version TLSv1_2 The TLS version for the LDAPS connection. It
must be one of the following: SSLv23, TLS,
TLS_CLIENT, TLS_SERVER, TLSv1, TLSv1_1,
TLSv1_2, TLSv1_3.

config.mgmt.configapi.ldap.validate_cert no Set it to yes to validate certificates.

Administration Guide 5.2. PAS configuration in Kubernetes

4.11.0 29

Key Default Description

config.mgmt.configapi.ldap.ca_certs_file /opt/balasys/etc/lda
p_ca_certs.pem

This file contains the certificate files of the
certificate authorities. Provide the path and
filename for the certificate file. The
certificate file must be in PEM format. See a
single CA file configuration example in
Single CA file example.

In case a self-signed certificate is used, the
server certificate must also be included in
this file.

In case a chain of certificates is used, the
certificate of each level must be included in
this file, beginning with the certificate of the
signer of the server certificate, followed by
the signer of that certificate up to the root
certificate. For example on a Certificate
chain with multiple CA, see Example on
certificate chain with multiple CAs.

In case multiple chains of certificates are
used, the chains must be concatenated in
the same file. The first matching chain will
be used for verification.

The above details are based on the Python
SSL library documentation, available at
https://docs.python.org/3.10/library/
ssl.html#certificates.

Use the --set-file
mgmt_ldap_ca_certs_file=<path/to/fil
e> command during helm installation to
specify this file. Also uncomment the
ca_certs_file parameter without
changing its value.

config.mgmt.configapi.ldap.user_base_dn The base DN under which users reside. This
is a required parameter in case of LDAP
authentication.

config.mgmt.configapi.ldap.username_attri
bute

sAMAccountName The attribute that contains the name of the
user.

config.mgmt.configapi.ldap.user_object_cla
ss

user The object class of the users.

config.mgmt.configapi.ldap.memberof_attri
bute

memberof The attribute that contains membership
information (groups) on user objects.

config.mgmt.configapi.ldap.group_base_d
n

The base DN under which groups reside.
This is a required parameter in case of
LDAP authentication.

config.mgmt.configapi.ldap.groupname_att
ribute

name The attribute that contains the name of the
group.

config.mgmt.configapi.ldap.member_attrib
ute

member The attribute that contains membership
information (users) on group objects.

Administration Guide 5.2. PAS configuration in Kubernetes

4.11.0 30

https://docs.python.org/3.10/library/ssl.html#certificates
https://docs.python.org/3.10/library/ssl.html#certificates
https://docs.python.org/3.10/library/ssl.html#certificates
https://docs.python.org/3.10/library/ssl.html#certificates
https://docs.python.org/3.10/library/ssl.html#certificates
https://docs.python.org/3.10/library/ssl.html#certificates
https://docs.python.org/3.10/library/ssl.html#certificates
https://docs.python.org/3.10/library/ssl.html#certificates
https://docs.python.org/3.10/library/ssl.html#certificates

Key Default Description

config.mgmt.configapi.ldap.group_object_c
lass

group The object class for groups.

config.mgmt.configapi.ldap.allowed_grou
ps

A list of group names (as contained by
'groupname_attribute') allowed to log in.
This is a required parameter in case of
LDAP authentication.

6. Configuration of Proxedo API Security on the Web
User Interface
This chapter explains configuration details for setting up a working Proxedo API Security (PAS) with the help of the
Web User Interface.

The Proxedo API Security Web User Interface (UI) is installed together with the installation of Proxedo API Security.
The URL for Proxedo API Security Web UI and the necessary credentials are generated when the management
component is first started. The password for the administrator can be found in the journal under the pas-config-
api identifier.

For information on how to set up more users, see section Configuring authentication and local users in PAS.

By using OpenAPI schemas, as defined in OpenAPI specifications (also known as Swagger), Proxedo API Security
verifies that the traffic passing through conforms to the API endpoint’s specification. An OpenAPI Swagger schema
detailing the Configuration API is available at: <frontend_url>/api/v1/openapi. <frontend_url> here refers to
the URL address of the user’s Proxedo API Security Web User Interface.

6.1. Minimum configuration
It is possible to run PAS with a minimum, basic configuration. For a minimum configuration the following items
need to be configured in the Web UI:

• BRICKS / File

◦ Name

◦ Type: License

◦ File
For more details on the License File's requirements, see File types.

• SYSTEM / License

◦ License File
For more details on the License's parameters, see License’s configuration.

• SERVICES / Backend

◦ Name

◦ Servers
For more details on the Backend's parameters, see Backend’s configuration.

• SERVICES / Endpoint

◦ Name

◦ URLs

◦ Backend

◦ Request

Administration Guide6. Configuration of Proxedo API Security on the Web User Interface

4.11.0 31

◦ Response
For more details on the Endpoint's parameters, see Security Flow and Endpoint’s configuration.

• SERVICES / Listener

◦ Name

◦ Endpoints
For more details on the Listener's parameters, see Listener’s configuration.

This basic configuration can be further improved with the completion of more configuration units later. The
minimum configuration can also be used to test the installation settings.

6.2. Login Page
The main component of the Login page is the login form where the user needs to provide the credentials in order
to be authorized to use the Web UI of Proxedo API Security.

As part of the initial configuration of Proxedo API Security, the administrator defines the necessary credentials,
which can now be used.

Figure 3. Login page for Proxedo API Security Web User Interface

For accessing the Web User Interface:

1. Enter the valid user credentials.

2. Click the Log In button.

After a successful login, the user has access to the Proxedo API Security Web UI.

6.3. Proxedo API Security Web User Interface main page
The configuration elements are organized into a logical order for easier usage.

Administration Guide 6.2. Login Page

4.11.0 32

Figure 4. Proxedo API Security Web User Interface main page

6.3.1. Navigation

The PAS Web UI has the following navigation areas:

Figure 5. Navigation areas in the Proxedo API Security Web User Interface

The navigation areas are described here in more details:

Left navigation area (1)
This navigation area (1) presents the navigation units available for configuration.
When opening up the Proxedo API Security Web UI, four main navigation units are available, that is, BRICKS,
PLUGINS, SERVICES, and SYSTEM.
These four main navigation units can be opened for further sub-navigation units by clicking on either the

navigation item itself or on the arrow icon next to it. Alternatively, when the sub-navigation units are not in
use, they can be hidden by clicking the arrow navigation icons next to the main navigation items, or similarly

Administration Guide6.3. Proxedo API Security Web User Interface main page

4.11.0 33

by clicking on the navigation item itself.

Top navigation area (2)
This Top navigation area (2) presents the Changes, Status and Configuration Backup buttons in the top left
corner. For more information on these services, see Checking and finalizing changes in Proxedo API Security
configuration, System-wide status information and Backup and restore running or user configuration for
Proxedo API Security. The top right corner presents the Help button and a Profile button that shows the current
user’s name. The Logout option is present under the Profile button.

Main configuration area (3)
This is the main configuration area of the Web UI. Any navigation unit selected in the Left navigation area (1)
presents the configuration details in this Main configuration area (3). The configuration details can be edited in
this area.
In case there are already configured parameters, those are displayed in a table in the Main configuration area
(3).
In order to add more configuration details, select the New navigation button in the upper right corner.

The Main configuration area (3) provides the following navigation and activity options. Note that some of these
activities are also available when the configuration parameters are presented in list view:

Table 19. Navigation and activity options in the Main configuration area (3)

Navigation option Description

By selecting the New navigation button on the active window of a component, a
new component can be configured.

By selecting the Pen navigation button next to a component, the Web UI
navigates back to the configuration page of the selected element. The so far
configured details can be changed or new configuration details can be added.

By selecting the Copy navigation button next to a component, the Web UI copies
all the information of that component into a new instance, which instance can be
saved with a new name, inheriting the same, copied parameters.

By selecting the Bin button next to a component, the configuration element can
be deleted. If an element is selected for deletion, a Warning appears, requesting
confirmation on the deletion of the element.

This icon is visible at the right side of every drop-down list during configuration.
By selecting this icon it is possible to unselect an item of the drop-down list and
to clear the selection field from any data. Clearing the field from data with the
help of this icon gains importance when an earlier selected drop-down list item,
saved in our configuration, has to be cleared from the configuration data.

By selecting the Next page button it is possible to navigate to the next page of the
parameter keys listed.

6.3.2. Naming Configuration components in the Web UI

When configuring the Proxedo API Security Web UI, name the configuration components with the usage of the
English alphabet and numerals. When the name is composed of more than one word, use underscore. It is not
allowed to use spacing or any special characters though.

6.4. BRICKS - Configuration units
Bricks are reusable components. They do not provide a complete security function themselves, instead, they are
used as building blocks elsewhere (hence the name). They can be used by Plugins (like Selectors), or utilized by

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 34

other bricks (like Extractors).

Certain bricks are so called default objects, which are in 'read-only' state and cannot be configured or modified.
Such default objects are listed in the following table:

Table 20. Default objects - BRICKS

Default object name Class

Always Matcher

Never Matcher

content_type_json Matcher

content_type_json_pattern Matcher

json_content Matcher

content_type_xml_base Matcher

content_type_xml_dtd Matcher

content_type_xml_ext_parsed Matcher

content_type_xml_pattern Matcher

content_type_xml_text Matcher

content_type_xml_text_ext_parsed Matcher

xml_content Matcher

error_policy Error policy

enforcer_default Error policy

insight_default Error policy

client_address Selector

client_port Selector

server_address Selector

server_port Selector

These default objects are listed under the actual classes in the Web UI.

The BRICKS main page in the Web UI is as follows:

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 35

Figure 6. The BRICKS main page in the Web User Interface

1. Click on the BRICKS main configuration item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of BRICKS.

2. Click on the sub-navigation unit you would like to configure. The details of the sub-navigation menu open up
in the Main configuration area.

6.4.1. Error Policy

Error Policies define how to proceed if a Plugin decides to have found an error. For example, when an Enforcer
plugin decides that the call is invalid.

It is the error policy that enables the user to act differently in case the error appears in a request or a response.

Every Plugin has a default error policy, namely, the 'error_policy', except for the Enforcer and the Insight Plugins,
which have their own default error policies already configured for usage, the enforcer_default and the
insight_default error policies.

6.4.1.1. Configuring Error Policies

1. Click on the BRICKS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of BRICKS.

2. Select Error Policy.

The configuration window that appears presents the default error policies, as listed in Default objects - BRICKS
and the configuration values already set by the user:

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 36

Figure 7. Error policy’s main page in the Web User Interface

3. Click on the New navigation button to create an Error Policy.

Error Policies have default values for each of their fields. They form a strict security policy: all errors are fatal, and
only errors made by the client are reported in detail.

4. Configure the necessary parameters for the error policy based on the details provided in the table Error policy
configuration options.

5. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

6. Save the component configuration by clicking the Save button.

The error policies configured here can be used in the Plugin’s configuration, by referencing their name.

The following values can be configured for the Error Policy Brick:

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 37

Figure 8. Configuring error policies in the Web User Interface

Table 21. Error policy configuration options

Key Values Default value Description

Name* Free text. Alphanumeric, may
contain underscores, may not
start with a number.

The name identifying the error policy. This
name of the error policy can be referenced
from other parts of the configuration, that is,
the error policy is reusable.

Request The available values are:

• Abort

• Log

Abort It defines what action shall take place if there is
an error on the request side:

• Abort: the request is denied if the Plugin
fails. Use the other parameters to control
the content of the error sent to the client.

• Log: the invalid requests are allowed, but
are logged.

Request Silent True or False. True When turned on, the Plugins do not report on
the denial of the invalid request. When turned
off, the Plugins have the ability to report the
error in detail in the body of the HTTP error
request.

Request Code The values are available from a
drop-down list. If the elements
of the drop-down list are
selected, it will make the list of
the actual request codes
visible. The applicable request
code can be selected.

422 The HTTP status code to be used when denying
invalid requests.

Request
Message

The message can be provided
in free text.

Request error The HTTP response line when denying invalid
requests.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 38

Key Values Default value Description

Response Response error mode:

• Abort

• Log

Abort It defines what action shall take place if there is
an error on the request side:

• Abort: the request is denied if the Plugin
fails. Use the other parameters to control
the content of the error sent to the client.

• Log: the invalid requests are allowed, but
are logged.

Response
Silent

True or False. True When turned on, the Plugins do not report on
the denial of the invalid response. When turned
off, the Plugins have the ability to report the
error in detail in the body of the HTTP error
response.

Response
Code

The values are available from a
drop-down list. Note that the
response codes are grouped,
so that if the elements of the
drop-down list are selected,
further groups of response
codes will be made visible in a
tree structure. The applicable
request code can be selected.

502 The HTTP status code to be used when denying
invalid requests.

Response
Message

The message can be provided
in free text.

Response
error

The HTTP response line when denying invalid
requests.

6.4.2. Matcher

Matchers decide if the Plugin should be executed for a given call by checking various data in the HTTP message.
They provide an extremely versatile way of defining the circumstances that must be met for the Plugin to execute.

Matchers need four pieces of information:

• Name: The Name field can be defined in free text and it is not related to the extractor that will be used. This
Name can be referenced in Plugins.

• Type: This parameter defines what part of the call needs to be checked.

• Comparator: The Comparator shows by what means the collected value of the call is compared with the
provided pattern. (Some comparators also take flags or arguments.)

• Expression: A regular expression specifies a set of strings that match it. A complete explanation on how to
write expressions is not in the scope of this document.

The matchers can be used in Plugin configurations' match option by referencing their name.

There are some named Matchers available without explicit configuration:

• always and never are instances of Always matcher and Never matcher.

• json_content that matches requests with the Content-Type headers representing JSON.

Also note that no other matchers can be defined with these names.

Matchers internally utilize Extractors to fetch the information from the call to compare with. The Type of the
matcher resembles the name of the extractor that will be used.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 39

All matchers have a default comparator that is applied implicitly.

If you want to use comparator parameters, the comparator name should be given even if the
default comparator is used.

6.4.2.1. Configuring Matchers

1. Click on the BRICKS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of BRICKS.

2. Select Matcher.

The configuration window that appears presents the default matchers, as listed in Default objects - BRICKS and
the configuration values already set by the user:

Figure 9. Matchers' main page in the Web User Interface

3. Click on the New navigation button to create a Matcher.

4. Provide the name of the matcher.

5. Choose the type of the matcher from the drop-down list.

6. Configure the necessary parameters with the help of the below tables.

7. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

8. Save the component configuration by clicking the Save button.

The following values can be configured for the Matcher Brick:

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 40

Figure 10. Configuring matchers in the Web User Interface

Table 22. Matcher configuration options

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

It can be
defined in free
text.

The Name of the matcher which can be referenced
in Plugins.

Type* For the available values,
see Matcher types.

The preferred matcher type has to be selected
from the drop-down list.

Matcher types
Depending on the choice of the matcher type, some more required configuration fields might appear on this
page. The following tables describe the matcher types in details and provide the necessary information for the
additional configuration fields, required for setting the matcher types:

• Matcher types and their settings - Simple matchers

• Matcher types and their settings - Compound matchers

• Matcher types and their settings - URI matchers

• Matcher types and their settings - SOAP matchers

Table 23. Matcher types and their settings - Simple matchers

Matcher
type

Description

Always This matcher always matches.

Never This matcher never matches. It can be used to turn off a Plugin.

Call
Direction

Matches the direction of the message (request or response).

Backend
Response
Time

Matches the time spent between the sending the request towards the server and receiving the
response from the server, in milliseconds. Only matches in a response flow.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 41

Matcher
type

Description

Method Matches the HTTP method of the request. Note that the standard and the practice differs regarding
upper and lower casing, set case sensitivity according to needs.

When choosing the Method matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Header It matches the value of an HTTP header. Some HTTP headers can be present more than once in a
call. To accommodate this, matching is completed against the value of each occurrence of the
header. Matching occurs if there is any match. For example, if the Accept header was repeated as
follows:

Accept: application/json
Accept: application/xml

Consequently, in this example above both header.accept: application/json and
header.accept: application/xml would match.

To match against the header named server the key will be header.server, possibly completed
with comparator specification, like header.server.regex.ignorecase.

While the values are not, the HTTP header names are case insensitive, so you can
write them all lowercase in the configuration key.

The syntax of this matcher differs from the others because the name of the Header must be added.

While the values are not, the HTTP header names are case insensitive, so you can
write them all lowercase in the configuration key.

Cookie Matches the value of a key in the Cookie HTTP header. A Cookie header key can be present more
than once in a call. To accommodate this, matching is completed against the value of each
occurrence of the key. Matching occurs if there is any match.

Content
Type

Matches the content type of the message. It is a more robust solution than using the Header
matcher on the Content-Type header because that can contain parameters as well.

When choosing the Content type matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Status Matches the status code of the response.

See the default Status class comparator which allows convenient matching on
HTTP status classes.

When choosing the Status matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 42

Matcher
type

Description

Raw
Content

Matches the raw bytes of the request or response. It requires an expression in the form of a
hexadecimal string. For example, for matching a PNG image file, the expression shall be
'89504e470d0a1a0a', which is equivalent to '89 50 4e 47 0d 0a 1a 0a', as whitespaces can also be
used.

Text
Content

Matches the request’s or response’s content as a decoded string.

Client
Address

Matches the client’s IP address (both IPv4 and IPv6).

Use the subnet type comparator with that matcher type. The subnet comparator examines if the IP
address of the Client is in the specified subnet. The format for the input of the subnet comparator is
the CIDR notation for IPv4 (for example, 192.0.2.0/24) and canonical prefix notation for IPv6 (for
example, 2001:db8::/32).

Client Port Matches the client’s port (TCP).

Server
Address

Matches the server’s IP address (both IPv4 and IPv6).

Use the subnet type comparator with that matcher type. The subnet comparator examines if the IP
address of the Server is in the specified subnet. The format for the input of the subnet comparator is
the CIDR notation for IPv4 (for example, 192.0.2.0/24) and canonical prefix notation for IPv6 (for
example, 2001:db8::/32).

Server
Port

Matches the server’s port (TCP).

XPath Matches the data from the body of an XML call with the help of the XPath expression.

XPath is a query language for XML. It is a very versatile tool for extracting the needed information
from the body of the call, and organizing it according to needs.

A complete explanation on how to write XPath expressions is not in the scope of this document. To
learn more about it visit the main website.

For more details on XPath configuration options, see XPath extractor configuration options.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 43

https://www.w3.org/TR/2017/REC-xpath-31-20170321/

Matcher
type

Description

JMESPath Matches the data from the body of a JSON call with the help of the JMESPath expression. JMESPath
is a query language for JSON. It is a very versatile tool for extracting the needed information from
the body of the call, and for organizing it according to needs. A complete explanation on how to
write JMESPath expressions is not in the scope of this document.

To learn more about it visit the JMESPath website:

• There is a tutorial.

• There are examples.

• There is also a formal specification.

When choosing the JMESPath matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

The result of the JMESPath expression should be a string when using string
comparators (Equals, Starts with, etc.), and number when using number
comparators (Min, Max, Range). In case of boolean or complex types, convert to
string in the JMESPath expression and use the string representation of the result.
Example: instead of comparing the boolean result of address != '', use
to_string(address != '') with a string comparator.

Fraud
Detector
Score

Matches the score value provided by the Fraud Detector plugin.

Table 24. Matcher types and their settings - Compound matchers

Any Any is a Compound matcher that matches if any of its sub-matchers matches. The sub-matcher can
also be a compound matcher.

All All is a Compound matcher that matches if all of its sub-matchers match. The sub-matcher can also
be a compound matcher.

None None is a Compound matcher that matches if none of its sub-matchers match. The sub-matcher can
also be a compound matcher.

One One is a Compound matcher that matches if exactly one of its sub-matchers matches. The sub-
matcher can also be a compound matcher.

Table 25. Matcher types and their settings - URI matchers

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 44

https://jmespath.org
https://jmespath.org/tutorial.html
https://jmespath.org/examples.html
https://jmespath.org/specification.html

Matcher
type

Description

URI
matchers

A range of matchers is available to match different parts of the URI.

The structure of an URI looks as follows:

scheme://[username[:password]@]host[:port][/path][?query][#fragment]

That is, for example:

https://john.doe:secret123@example.com:8443/some/resource?foo=bar&baz=qux#som
e-anchor

The fragment part is used by the client locally, and is never sent in the HTTP
requests, therefore PAS cannot do anything with it.

These matchers use the URI extractors. It has an extensive list of examples of what each extractor
extracts from the URI.

URI Matches against the whole request URI as received from the client.

When choosing the URI matcher from the drop-down list, additional parameters appear. For more
information on the configuration of these parameters, see Matcher types' additional configuration
options.

URI netloc Matches the network location in the URI.

It includes:

• username and password if present

• host

• port if present unless scheme default

If the port is the default port for the scheme - that is 80 and 443 for HTTP and
HTTPS, respectively - the port will not be included even if explicitly sent by the
client. Therefore if the client used http://example.com:80/path then the
netloc would be http://example.com, not http://example.com:80.

When choosing the URI netloc matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 45

Matcher
type

Description

URI origin Matches the origin part of the URI.

It includes:

• scheme

• host

• port if present, unless the default port for the scheme is used

If the port is the default port for the scheme - that is 80 and 443 for HTTP and
HTTPS, respectively - the port will not be included, even if explicitly sent by the
client. Therefore if the client used http://example.com:80/path, then the
origin would be http://example.com, not http://example.com:80.

When choosing the URI origin matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI
scheme

Matches the scheme of request (http or https). Note that the scheme is case insensitive by
definition, therefore the case will always be ignored.

When choosing the URI scheme matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI
username

Matches the username in the request if present.

When choosing the URI username matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI
password

Matches the password in the request if present.

When choosing the URI password matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI host Matches the host in the request.

When choosing the URI host matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI port Matches the port of the request. Note that this matches the default port — that is 80 and 443 for
HTTP and HTTPS, respectively — even if it is not explicitly in the request.

When choosing the URI port matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 46

Matcher
type

Description

URI path Matches the path part of the URI.

The path is normalized to allow more robust matching and cleaner reporting. This means that:

• If the path is missing / it is extracted.

• Repeating forward-slash (/) characters are replaced with a single one.

• dot (.) and double-dot (..) path segments are resolved.

Consequently, if the path present in the URI was
//some/./nothere/../resource///./somewhere the path would be
/some/resource/somewhere.

If you need to match the path exactly as received, use URI raw path matcher.

When choosing the URI path matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI raw
path

Matches the path part of the URI, without the normalization of URI path matcher carried out.

 If the path is missing, the match still runs against a single forward slash ("/").

It is recommended to use URI path matcher unless there is an explicit need for matching the raw
path. One such example would be logging or filtering out badly formed requests.

When choosing the URI raw path matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI raw
query

Matches the query part of the URI as a string. It is recommended to use URI query parameter
matcher unless there is an explicit need for matching the raw string. An example on this might be if
there is a match on foo=barbar or tofoo=bar as well, even though it was not intended.

When choosing the URI raw query matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI query
parameter

Matches the value of a query parameter.

It is also valid for URIs to include a query parameter more than once. That is, it could be
foo=bar&qux=quz&foo=baz. To accommodate this, matching is done against the value of each
occurrence of the parameter. Matching occurs if any value is matched.

When choosing the URI query parameter matcher from the drop-down list, additional parameters
appear. For more information on the configuration of these parameters, see Matcher types'
additional configuration options.

Table 26. Matcher types and their settings - SOAP matchers

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 47

Matcher
type

Description

SOAP
Matchers

A range of matchers is available to match different parts of the SOAP message.

These matchers extend the XPath matcher with predefined expressions.

They use the SOAP extractors. It has an extensive list of examples of what each extractor extracts
from the SOAP message.

When choosing the SOAP Matchers matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

SOAP
version

Matches the SOAP message version. It identifies with the SOAP namespace.

The possible values are:

• soapv1_1 - the message version is SOAP v1.1

• soapv1_2 - the message version is SOAP v1.2

When choosing the SOAP version matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

SOAP
envelope

Matches the SOAP envelope.

When choosing the SOAP envelope matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

SOAP
header

Matches the SOAP header.

When choosing the SOAP header matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

SOAP body Matches the SOAP body.

When choosing the SOAP body matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

SOAP fault Matches the SOAP fault.

When choosing the SOAP fault matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

SOAP fault
code

Matches the SOAP fault 'code'. The expression depends on the SOAP version.

• faultcode - it is the SOAP v1.1 node tag.

• Code - it is the SOAP v1.2 node tag.

When choosing the SOAP fault code matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 48

Matcher
type

Description

SOAP fault
detail

Matches the SOAP fault 'detail'. The expression depends on the SOAP version.

• Detail - it is the SOAP v1.1 node tag.

• Detail - it is the SOAP v1.2 node tag.

When choosing the SOAP fault details matcher from the drop-down list, additional parameters
appear. For more information on the configuration of these parameters, see Matcher types'
additional configuration options.

SOAP 1.1
fault
faultstring

Matches the SOAP fault 'faultstring'. This matcher only works with SOAP version 1.1.

When choosing the SOAP 1.1 fault faultstring matcher from the drop-down list, additional
parameters appear. For more information on the configuration of these parameters, see Matcher
types' additional configuration options.

SOAP 1.1
fault
faultactor

Matches the SOAP fault 'faultactor'. This matcher only works with SOAP version 1.1.

When choosing the SOAP 1.1 fault faultactor matcher from the drop-down list, additional
parameters appear. For more information on the configuration of these parameters, see Matcher
types' additional configuration options.

SOAP 1.2
fault
reason

Matches the SOAP fault 'Reason'. This matcher only works with SOAP version 1.2.

When choosing the SOAP 1.2 fault reason matcher from the drop-down list, additional parameters
appear. For more information on the configuration of these parameters, see Matcher types'
additional configuration options.

SOAP 1.2
fault node

Matches the SOAP fault 'Node'. This matcher only works with SOAP version 1.2.

When choosing the SOAP 1.2 fault node matcher from the drop-down list, additional parameters
appear. For more information on the configuration of these parameters, see Matcher types'
additional configuration options.

SOAP 1.2
fault role

Matches the SOAP fault 'Role'. This matcher only works with SOAP version 1.2.

When choosing the SOAP 1.2 fault role matcher from the drop-down list, additional parameters
appear. For more information on the configuration of these parameters, see Matcher types'
additional configuration options.

For details on comparator types, see Types of comparators.

Depending on the matcher type selected, the administrator might need to fill in further parameters. These
parameters are described in the following table.

Table 27. Matcher types' additional configuration options

Key Values Default value Description

Comparator The matchers need the information on the
Comparator, which shows by what means the
collected value of the call is compared with the
provided pattern.

Type The available
comparator types can be
checked from the drop-
down list.

Equals This configuration option has to be defined for the
Comparator. For details on the comparator types,
see Types of comparators.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 49

Key Values Default value Description

Ignorecase True or False. False This configuration option has to be defined for the
Comparator. It sets the IGNORECASE flag for the
selected comparator type. For matcher types that
work with numeric data type or with IP addresses,
the 'Equals' and 'Not Equals' comparator types do
not have ignorecase field.

Expression* This configuration option has to be defined for the
Comparator. A regular expression specifies a set of
strings that match it.

JMESPath
Expression*

A valid JMESPath
expression in text.

A complete explanation on how to write JMESPath
expressions is not in the scope of this document.

To learn more about it visit the JMESPath website:

• There is a tutorial.

• There are examples.

• There is also a formal specification.

Query
Parameter

It is also valid for URIs to include a query
parameter more than once. That is, it could be
foo=bar&qux=quz&foo=baz. To accommodate this,
matching is done against the value of each
occurrence of the parameter. Matching occurs if
any value is matched.

Header Extracts the value of an HTTP header. It is valid for
some HTTP headers to be present more than once
in a call. In this case, all the values are extracted as
a list. It provides the name of the header in the
configuration.

Namespaces A list of key and
expression pairs, in text.

The namespaces to use during extraction.

XPath
Expression

A valid XPath expression
in text.

A complete explanation on how to write XPath
expressions is not in the scope of this document.

• There is a tutorial.

• There are examples.

• There is also a formal specification.

Multiline Sets the Multiline flag for the Regex comparator.

Minimum* Matches if the pattern is larger or equal to the
value.

Maximum* Matches if the pattern is smaller or equal to the
value.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 50

https://jmespath.org
https://jmespath.org/tutorial.html
https://jmespath.org/examples.html
https://jmespath.org/specification.html
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_examples.asp
https://www.w3.org/TR/xpath/

Key Values Default value Description

Source Plugin Reference to a Fraud
Detector Plugin or "Last".

Last: In case
there are more
Fraud Detector
plugins defined
in the Security
Flow, by using
this default
value, the
selector will use
the score value
provided for the
last run Fraud
Detector plugin.

The Fraud Detector plugin to be used in case there
are more than one defined.

6.4.3. Selector

Selectors are responsible for collecting information from the call. They utilize Extractor bricks for this purpose.

Most extractors return simple string values. However, some (might) return dictionaries. For example, you can get
all the HTTP headers, or all the URI query parameters.

They are used by Insight.

6.4.3.1. Configuring Selectors

1. Click on the BRICKS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of BRICKS.

2. Select Selector.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 11. Selector main page in the Web User Interface

3. Click on the New navigation button to create a Selector.

4. Name the Selector key.

5. Fill in any more desired parameters.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 51

6. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

7. Save the component configuration by clicking the Save button.

The following values can be configured for the Selector Brick:

Figure 12. Configuring Selector in the Web User Interface

Table 28. Selector configuration options

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name of the parameter can be referenced.

Type* Choose the selector type
from the drop-down list.
For more details on the
values, see Extractor
types.

Extractors are used to extract data from the call.
They are utilized by Selector (and Matcher as well).
Extractors are included by their type in Selectors,
and are used by a special syntax in matchers. For
details, see Extractors and Extractor types.

Save As Key Text with ASCII
characters. Space, '=', '"'
and ']' are not allowed.

A special token,
"<Selector
Name>", which
will use the
Selector’s
name.

The key under which the results of a selector are
saved in the Insight plugin’s dictionary.

Depending on what value is selected for the Type parameter, additional parameters might appear for
configuration. The following table provides details on these additional parameters.

Table 29. Additional Selector configuration options

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 52

Key Values Default value Description

Save Under Key True or False. True When set to False, returned dictionaries are
merged into the Insight plugin’s dictionary instead
of being stored under a key. NOTE: this could lead
to conflicting keys if multiple selectors would
return the same key, in this case, keys could be
overwritten.

Clear Text True or False. False When turned on, whitespaces are stripped from
the beginning and end of the result.

Namespaces A list of key and
expression pairs, in text.

The namespaces to use during extraction.

XPath
Expression

A valid XPath expression
in text.

A complete explanation on how to write XPath
expressions is not in the scope of this document.

• There is a tutorial.

• There are examples.

• There is also a formal specification.

JMESPath
Expression*

A valid JMESPath
expression in text.

A complete explanation on how to write JMESPath
expressions is not in the scope of this document.

To learn more about it visit the JMESPath website:

• There is a tutorial.

• There are examples.

• There is also a formal specification.

Expression* A regular expression specifies a set of strings that
match it.

Time Format A valid time format
string in text.

YYYY-MM-DDT
HH:mm:ss.SSSS
SSZZ
(line breaks for
display
purposes only)

The time format to use, see: Timestamp format
options.

Time Zone A time zone specifier in
text.

UTC The name of the time zone, or the time zone offset.
The time zone can be specified by using the name,
for example, "Europe/Budapest", or as the time
zone offset in +/-HH:MM format, for example,
+01:00.

Source Plugin Reference to a Fraud
Detector Plugin or "Last".

Last: In case
there are more
Fraud Detector
plugins defined
in the Security
Flow, by using
this default
value, the
selector will use
the score value
provided for the
last run Fraud
Detector plugin.

The Fraud Detector plugin to be used in case there
are more than one defined.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 53

https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_examples.asp
https://www.w3.org/TR/xpath/
https://jmespath.org
https://jmespath.org/tutorial.html
https://jmespath.org/examples.html
https://jmespath.org/specification.html

Key Values Default value Description

Include
Request
Counter

True or False. True When turned on, the request counter is included in
the Session ID. See [session-id] for details.

6.4.4. Insight Target

Insight Target bricks define where the data collected by the Insight will be sent to.

The Insight Target configuration tree contains named Insight Targets with their respective configuration.

Unlike other bricks, Insight Target configurations cannot be put inline into a Plugin’s
configuration, they must always be configured here.

See the Insight Target configuration options for the available Insight Target types and their configuration options.

6.4.4.1. Data flattening

To ensure compatibility with a wide range of Insight Target types, the results collected by the Insight plugin can be
flattened. The path inside the complex data structure is encoded into the key for each value:

• The merged key describes the path to the value in the data structure as a string.

• The parts of the path will be separated by a separator character, forward slash by default ("/").

• Keys in nested dictionaries are added to the path by name.

• List items are added to the path by their index.

For example, take the following data structure:

{
 "a": 1,
 "b": 2,
 "c": [
 {
 "d": [2, 3, 4],
 "e": {
 "f": 5,
 "g": 6
 }
 }
]
}

This will be flattened to this:

{
 "a": 1,
 "b": 2,
 "c/0/d/0": 2,
 "c/0/d/1": 3,
 "c/0/d/2": 4,
 "c/0/e/f": 5,
 "c/0/e/g": 6

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 54

}

6.4.4.2. Configuring Insight Targets

1. Click on the BRICKS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of BRICKS.

2. Select Insight Target.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 13. Insight Target main page in the Web User Interface

3. Click on the New navigation button to create an Insight Target.

4. Provide the name for your Insight Target configuration.

5. Select the Insight Target type.

6. Continue with the Syslog, Elastic and Local log configurations with the help of the following tables: Syslog
Insight Target configuration parameters, Elastic Insight Target configuration parameters and Local log Insight
Target configuration parameters.

7. Configure any more desired parameter details.

8. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

9. Save the component configuration by clicking the Save button.

The following values can be configured for the Insight Target Brick:

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 55

Figure 14. Configuring Insight Target in the Web User Interface

Table 30. Insight Target configuration options

Key Values Default
value

Description

Name* Free text. Alphanumeric, may contain
underscores, may not start with a
number.

The name identifying the Insight Target.
This name of the Insight Target can be
referenced from other parts of the
configuration.

Type* The values can be selected from the
drop-down list. The available values are:

• Local log

• Syslog

• Elastic

• Local log: Logs the result of the
insight in the local system log. For
more details on configuration
settings with Local log, see Local log
Insight Target configuration
parameters.

• Syslog: Sends the insight to a remote
syslog server using the IETF syslog
protocol defined in RFC5424. For
more details on configuration
settings with syslog, see table Syslog
Insight Target configuration
parameters.

• Elastic: Sends the insight to an
Elasticsearch engine in JSON. For
more details on configuration
settings with syslog, see Elastic
Insight Target configuration
parameters.

Flatten True or False. True Flatten the Insight Target message.

Flatten
Separator

/ The separator in the flattened message.

Level 3 The log level for the logged message.

Tag The value can be selected from a drop-
down list.

info The log tag for the logged message.

The following table presents the configuration parameters for the Local log Insight Target type:

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 56

Table 31. Local log Insight Target configuration parameters

Key Values Default value Description

Flatten True or False. True Flatten the Insight Target message.

Flatten
separator

/ The separator in the flattened message. Only
visible when Flatten is True.

Level 3 The log level for the logged message.

Tag info The log tag for the logged message.

The following table presents the configuration parameters for the syslog Insight Target type:

Table 32. Syslog Insight Target configuration parameters

Key Values Default value Description

Flatten True or False. True Flattens the Insight Target message. Only
visible when Data Format is JSON.

Flatten
Separator

/ The separator in the flattened message.
Only visible when Flatten is True.

Remote
Connection

• Host: Hostname or IP
address as text.

• Port: The available values are
integers.

• Protocol: The available
values are: TCP and UDP.

• IP Protocol: The available
values are: 4 and 6,
corresponding to IPv4 and
IPv6.

• Use TLS: True or False.

• Syslog TLS*: Reference to a
TLS Brick of type Syslog TLS.

• Protocol:
TCP, Port:
601 (6514 if
Use TLS is
True.)

• Protocol:
UDP, Port:
514

• IP Protocol:
4

• Use TLS:
False

• Host: The hostname or the IP address
of the syslog server.

• Port: Add the port number here to
connect to the remote system.

• Protocol: Add the transport protocol
to send messages over. The available
values are: TCP and UDP.

• IP Protocol: The internet protocol
version of the given driver.

• Use TLS: It enables using TLS for the
Syslog communication.

• Syslog TLS*: It is mandatory if the Use
TLS option is set to True.

Flush Lines It specifies how many lines are flushed to a
destination at a time. The Insights Director
waits for this number of lines to
accumulate and sends them off in a single
batch. Increasing this number increases
the throughput, as more messages are
sent in a single batch, but also increases
the message latency.

Data Format The possible values are: SData,
JSON.

SData This is the data format of the insight.

Include
Message

True or False. False Whether to include the Insight plugin’s
Message field in the JSON output.

Message Key Free text. message The key where the Insight plugin’s
Message field will appear in the JSON
output.

Second
Fraction Digits

Integer between 0 and 6 inclusive 3 The number of digits representing the
fractions of seconds in the Syslog
timestamp.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 57

Key Values Default value Description

Time Zone See table Time zones for time
zone names.

GMT The name of the time zone (for example,
"Europe/Budapest") or the time zone
offset in +/-HH:MM format (for example,
+01:00).

Report Config
Load

True or False. False It reports the event of a configuration
being loaded with a cryptographic hash of
the loaded configuration. This informs the
Insight Target about changes in the
configuration.

Mask Credit
Card Numbers

True or False. False It masks the middle section of recognised
credit card numbers in any fields of the log
message. Recognised credit cards are
from one of the following issuers:
American Express, Discover Card,
Mastercard, VISA.

Enable
Heartbeat

True or False. False It enables sending heartbeat (-- MARK --)
messages to the Insight Target.

Heartbeat • Frequency: A number greater
than or equal to 1.

• Mode: The possible values
are: 'idle' (heartbeat
messages are only sent when
there is no traffic towards the
Insight Target) and
'periodical' (heartbeat
messages are sent regardless
of activity).

• Frequency:
30

• Mode:
'periodical'

• Frequency: The number of seconds
between heartbeat messages.

• Mode: The operation mode of the
heartbeat functionality.

The following table presents the configuration parameters for the Elastic Insight Target type:

Table 33. Elastic Insight Target configuration parameters

Key Values Default value Description

Flatten True or False. True It flattens the Insight Target message.

Flatten
Separator

/ The separator in the flattened message. Only
visible when Flatten is True.

Remote
Connection

Settings related to the remote connection.

Username* The username to authenticate with on the servers.

Password* The password to authenticate with on the servers.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 58

Key Values Default value Description

Servers* There are two values to
be configured:

• Host*: The
hostname or IP
address of the
Elasticsearch
instance.

• Port: The port on
host to connect to.
Defaults to 9200.
(Add the values by
clicking the '+' sign.)

The list of Elasticsearch servers. Messages will be
load balanced between servers if multiple servers
are given.

Index* The name of the index in the Elasticsearch
instance.

Use TLS True or False. False Enables using TLS in the connection towards the
Elastic servers.

Elastic TLS* Reference to a TLS Brick
of type Elastic TLS.

The TLS configuration towards the Elastic servers.
Mandatory if Use TLS is set to True.

Workers 4 The number of workers to use for communicating
with the Elasticsearch servers. Should at least
equal the number of servers.

Mask Credit
Card Numbers

True or False. False It masks the middle section of recognised credit
card numbers in any fields of the log message.
Recognised credit cards are from one of the
following issuers: American Express, Discover Card,
Mastercard, VISA.

6.4.5. TLS

Transport Layer Security (TLS) is the cryptographic protocol that secures HTTPS communications. PAS can apply
TLS encryption both when communicating with Clients and Backends. TLS encryption can also be used with
Syslog and Elastic Insight Targets.

When HTTPS is used the TLS settings must be configured.

These parameters are used by the Insight Director and the Transport Director. For options that
reference a file the path is relative to /opt/balasys/var/persistent/ inside the Transport
Director container. This directory is a docker volume and by default mounted from the
/opt/balasys/var/persistent/transport-director directory in the host system.

6.4.5.1. Configuring TLS Bricks

1. Click on the BRICKS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of BRICKS.

2. Select TLS.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 59

Figure 15. TLS main page in the Web User Interface

3. Click on the New navigation button to create a TLS.

The following values can be configured for the TLS Brick:

Figure 16. Configuring TLS in the Web User Interface

The configuration of the first two parameters determines the TLS type and from these two steps on, it is either a
Backend TLS configuration, a Client TLS configuration, a Syslog TLS configuration or an Elastic TLS configuration.

6.4.5.1.1. Configuring Client TLS Bricks

The following parameters need to be configured for Client TLS:

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 60

Figure 17. Configuring Client TLS in the Web User Interface, TLS options

Figure 18. Configuring Client TLS in the Web User Interface, Certificate options

1. Name the Client TLS configuration.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 61

2. Select the Type of the TLS, Client TLS in this case, from the drop-down list to configure TLS.

For details on these parameters, see the following table:

Table 34. TLS configuration

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name of the parameter can be referenced.

Type* Choose the required
value from the drop-
down list.

Client TLS, Backend TLS, Syslog TLS and Elastic
TLS configurations can be defined here.

3. Configure the mandatory parameters for Client TLS, based on the information provided in Table Client TLS
configuration.

Table 35. Client TLS configuration

Key Values Default value Description

Certificate Configuration for the X.509 certificate used for TLS
connections on the listener.

Certificate File* Reference to a File Brick
of type Server Certificate.

The certificate to be presented to clients.

Key File* Reference to a File Brick
of type TLS Key.

The private key corresponding to the certificate
file.

Options TLS protocol options used on the listener.

Ciphers ECDHE-ECDSA-
AES128-GCM-
SHA256:
ECDHE-RSA-
AES128-GCM-
SHA256:
ECDHE-ECDSA-
AES256-GCM-
SHA384:
ECDHE-RSA-
AES256-GCM-
SHA384:
ECDHE-ECDSA-
CHACHA20-
POLY1305:
ECDHE-RSA-
CHACHA20-
POLY1305: DHE-
RSA-AES128-
GCM-SHA256:
DHE-RSA-
AES256-GCM-
SHA384

Specifies the allowed ciphers. Can be set to all,
high, medium, low, or a string representation of
the selected ciphers.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 62

Key Values Default value Description

Minimum TLS
Version

Select one of the
following options in the
drop-down menu:

• TLS v1.0

• TLS v1.1

• TLS v1.2

• TLS v1.3

TLS v1.2 The minimum version of TLS. Minimum TLS version
must be less than or equal to the maximum TLS
version.

Maximum TLS
Version

Select one of the
following options in the
drop-down menu:

• TLS v1.0

• TLS v1.1

• TLS v1.2

• TLS v1.3

TLS v1.3 The maximum version of TLS. Maximum TLS
version must be greater than or equal to the
minimum TLS version.

Timeout 300 It drops idle connection if the timeout value (in
seconds) expires.

Enable Session
Cache

True or False. False Store session information in the session cache. Set
this option to 'On' to enable TLS session reuse.

Session Cache
Size

20480 The number of sessions stored in the session cache
for TLS session reuse.

Disable Ticket True or False. False Session tickets are a method for TLS session reuse,
described in RFC 5077. Set this option to 'On' to
disable TLS session reuse using session tickets.

Cipher Server
Preference

True or False. True Use server and not client preference order when
determining which cipher suite, signature
algorithm or elliptic curve to use for an incoming
connection.

Disable
Renegotiation

True or False. True Set this parameter On to disable client-initiated
renegotiation.

Diffie-Hellman
Parameters File

Reference to a File Brick
of type Diffie-Hellman
Parameters.

Contains the Diffie-Hellman parameters to be used
by the TLS connection.

Prioritize
ChaCha20-
Poly1305

True or False. False Set this parameter On to prioritize using the
ChaCha20-Poly1305 encryption.

Enable
Verification

True or False. False It is an option for verifying client side X.509
certificates. By default no client verification takes
place.

Client
Verification

Client verification options

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 63

Key Values Default value Description

Trusted Certs Reference to a File Brick
of type Certificates.

A directory where trusted IP addresses-certificate
assignments are stored. When a peer from a
specific IP address shows the certificate stored in
this directory, it is accepted regardless of its
expiration or issuer CA. Each file in the directory
should contain a certificate in PEM format. The
filename must be the IP address.

Required True or False. True If it is set to True, PAS requires a certificate from
the peer.

Trust Level The values can be
selected from the drop-
down list. The available
values are:

• none

• untrusted

• full

full It defines the trust level for certificate verification:

• none: Accept even invalid certificates, for
example self-signed certificates.

• untrusted: Both trusted and untrusted
certificates are accepted.

• full: Only valid certificates signed by a trusted
CA are accepted.

Verify Depth 4 The length of the longest accepted CA verification
chain. PAS will automatically reject longer CA
chains.

CA Directory Reference to a File Brick
of type CA.

A directory where the trusted CA certificates are
stored. CA certificates are loaded on-demand from
this directory when PAS verifies the certificate of
the peer.

Verify CRL True or False. False If it is set to True, PAS checks the CRLs (Certificate
Revocation Lists) associated with trusted CAs. CRLs
will load automatically if PAS verifies the certificate
of the peer.

Intermediate
Revocation
Check Type

The values can be
selected from the drop-
down list. The available
values are:

• none

• soft_fail

• hard_fail

hard_fail The revocation check type for all certificates in the
chain, except the Leaf Certificate:

• none: Ignore the result certificate revocation
status check

• soft_fail: It fails if the check is successful and
the certificate is revoked, it will pass otherwise

• hard_fail: It passes only if the check is
successful and the certificate is not revoked

Leaf
Revocation
Check Type

The values can be
selected from the drop-
down list. The available
values are:

• none

• soft_fail

• hard_fail

hard_fail The revocation check types for the Leaf certificate
are as follows:

• none: With this option the result of the
certificate revocation status check is ignored

• soft_fail: It fails if the check is successful and
the certificate is revoked, it passes otherwise

• hard_fail: It passes only if the check is
successful and the certificate is not revoked

4. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 64

information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

5. Save the component configuration by clicking the Save button.

6.4.5.1.2. Configuring Backend TLS Bricks

The following parameters need to be configured for Backend TLS:

Figure 19. Configuring Backend TLS in the Web User Interface, TLS options

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 65

Figure 20. Configuring Backend TLS in the Web User Interface, Certificate options

1. Name the Backend TLS configuration.

2. Select Backend TLS from the drop-down list to configure Backend TLS.

For details on these parameters, see the following table:

Table 36. TLS configuration

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name of the parameter can be referenced.

Type* Choose the required
value from the drop-
down list.

Client TLS, Backend TLS, Syslog TLS and Elastic
TLS configurations can be defined here.

3. Configure the mandatory parameters for Backend TLS, based on the information provided in Table Backend
TLS configuration.

The configuration parameters are described in details in the following table:

Table 37. Backend TLS configuration

Key Values Default value Description

Enable
Certificate

True or False. False It is an option for enabling backend side X.509
certificates. By default no backend verification
takes place.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 66

Key Values Default value Description

Certificate Configuration for the X.509 certificate used for TLS
connections on the listener.

Certificate File* Reference to a File Brick
of type Client Certificate.

The certificate to be presented to the backend.

Key File* Reference to a File Brick
of type TLS Key.

The private key corresponding to the certificate
file.

Options TLS protocol options used on the listener.

Ciphers ECDHE-ECDSA-
AES128-GCM-
SHA256:
ECDHE-RSA-
AES128-GCM-
SHA256:
ECDHE-ECDSA-
AES256-GCM-
SHA384:
ECDHE-RSA-
AES256-GCM-
SHA384:
ECDHE-ECDSA-
CHACHA20-
POLY1305:
ECDHE-RSA-
CHACHA20-
POLY1305: DHE-
RSA-AES128-
GCM-SHA256:
DHE-RSA-
AES256-GCM-
SHA384

Specifies the allowed ciphers. Can be set to all,
high, medium, low, or a string representation of
the selected ciphers.

Minimum TLS
Version

Select one of the
following options in the
drop-down menu:

• TLS v1.0

• TLS v1.1

• TLS v1.2

• TLS v1.3

TLS v1.2 The minimum version of TLS. Minimum TLS version
must be less than or equal to the maximum TLS
version.

Maximum TLS
Version

Select one of the
following options in the
drop-down menu:

• TLS v1.0

• TLS v1.1

• TLS v1.2

• TLS v1.3

TLS v1.3 The maximum version of TLS. Maximum TLS
version must be greater than or equal to the
minimum TLS version.

Timeout 300 It drops idle connection if the timeout value (in
seconds) expires.

Enable Session
Cache

True or False. False Store session information in the session cache. Set
this option to 'On' to enable TLS session reuse.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 67

Key Values Default value Description

Session Cache
Size

20480 The number of sessions stored in the session cache
for TLS session reuse.

Disable Ticket True or False. False Session tickets are a method for TLS session reuse,
described in RFC 5077. Set this option to 'On' to
disable TLS session reuse using session tickets.

Enable
Verification

True or False. False It is an option for verifying Backend side X.509
certificates. By default no backend verification
takes place.

Backend
verification

Backend verification options

Trusted Certs Reference to a File Brick
of type Certificates.

A directory where trusted IP addresses-certificate
assignments are stored. When a peer from a
specific IP address shows the certificate stored in
this directory, it is accepted regardless of its
expiration or issuer CA. Each file in the directory
should contain a certificate in PEM format. The
filename must be the IP address.

Trust Level The values can be
selected from the drop-
down list. The available
values are:

• none

• untrusted

• full

full The trust level for certificate verification:

• none: Accept even invalid certificates, for
example self-signed certificates.

• untrusted: Both trusted and untrusted
certificates are accepted.

• full: Only valid certificates signed by a trusted
CA are accepted.

Verify Depth 4 It defines the length of the longest accepted CA
verification chain. PAS will automatically reject
longer CA chains.

CA Directory Reference to a File Brick
of type CA.

A directory where the trusted CA certificates are
stored. CA certificates are loaded on-demand from
this directory when PAS verifies the certificate of
the peer.

Verify CRL True or False. False If it is set to True PAS checks the CRLs (Certificate
Revocation Lists) associated with trusted CAs. CRLs
will load automatically if PAS verifies the certificate
of the peer.

Check Subject True or False. False If it is set to, PAS compares the subject of the
server-side certificate with application-layer
information (for example, it checks whether the
Subject matches the hostname in the URL).

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 68

Key Values Default value Description

Intermediate
Revocation
Check Type

The values can be
selected from the drop-
down list. The available
values are:

• none

• soft_fail

• hard_fail

soft_fail The revocation check types for all certificates in
the chain, except for the Leaf Certificate are as
follows:

• none: If this options is set, the certificate
revocation status check results are ignored

• soft_fail: If this option is set, the certificate
revocation check fails, if the check is successful
and the certificate is revoked. The check
passes otherwise.

• hard_fail: If this option is set, the check passes
only if the check is successful, and the
certificate is not revoked.

Leaf
Revocation
Check Type

The values can be
selected from the drop-
down list. The available
values are:

• none

• soft_fail

• hard_fail

soft_fail The revocation check type for the Leaf Certificate.

• none: The result of the Certificate Revocation
Status Check is ignored.

• soft_fail: If this option is set, the certificate
revocation check fails, if the check is successful
and the certificate is revoked. The check
passes otherwise.

• hard_fail: If this option is set, the check passes
only if the check is successful, and the
certificate is not revoked.

4. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

5. Save the component configuration by clicking the Save button.

6.4.5.1.3. Revocation checks for certificates

PAS tries to complete both CRL and OCSP-stapling checks for certificates.

The result for a certificate, according to the revocation check types is as follows:

Table 38. Certificate revocation checks

CRL check OCSP stapling check Soft fail result Hard fail result

PASS PASS PASS PASS

PASS unsuccessful PASS PASS

unsuccessful PASS PASS PASS

unsuccessful unsuccessful PASS FAIL

PASS FAIL FAIL FAIL

FAIL PASS FAIL FAIL

unsuccessful FAIL FAIL FAIL

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 69

CRL check OCSP stapling check Soft fail result Hard fail result

FAIL unsuccessful FAIL FAIL

FAIL FAIL FAIL FAIL

6.4.5.1.4. Configuring Syslog TLS Bricks

The following parameters need to be configured for Syslog TLS:

Figure 21. Configuring Syslog TLS in the Web User Interface

1. Name the Syslog TLS configuration.

2. Select the Type of the TLS, Syslog TLS in this case, from the drop-down list to configure TLS.

For details on these parameters, see the following table:

Table 39. TLS configuration

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name of the parameter can be referenced.

Type* Choose the required
value from the drop-
down list.

Client TLS, Backend TLS, Syslog TLS and Elastic
TLS configurations can be defined here.

3. Configure the mandatory parameters for Syslog TLS, based on the information provided in Table Syslog TLS
configuration.

Table 40. Syslog TLS configuration

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 70

Key Values Default value Description

Enable Client
TLS
Authentication

True or False. False Option for enabling TLS authentication towards
the server.

Client TLS
Authentication

Configuration for the X.509 certificate used for TLS
connections on the Insight Target.

Certificate File* Reference to a File Brick
of type Client Certificate.

The certificate to be used for the connection.

Key File* Reference to a File Brick
of type TLS Key.

The private key corresponding to the certificate
file. The private key file must not be encrypted.

Options TLS protocol options used on the Syslog Insight
target.

Ciphers Colon-separated list of
ciphers from the list
supported by OpenSSL
3.0.2.

ECDH+AESGCM:
DH+AESGCM:EC
DH+AES256:
DH+AES256:ECD
H+AES128:
DH+AES:!aNULL
:!MD5:
!DSS!aNULL:
!MD5: !DSS

Specifies the allowed ciphers.

Disable TLS
v1.2

True or False. False Disables the usage of TLSv1.2 in the connection.

Disable TLS
v1.3

True or False. False Disables the usage of TLSv1.3 in the connection.

ECDH Curve
List

Add the names of one or
more ECDH curves. The
possible values are the
ones supported by
OpenSSL 3.0.2.

empty list A list of curves permitted in the connection when
using Elliptic Curve Cryptography (ECC).

Peer Verify Select one of the
following options in the
drop-down menu:
optional-trusted,
optional-untrusted,
required-trusted,
required-untrusted

required-
trusted

Defines the verification method of the peer. The
four possible values are a combination of two
properties of validation: whether the peer is
required to provide a certificate (required or
optional prefix), and whether the certificate
provided needs to be valid (trusted or untrusted
suffix).

Diffie-Hellman
Parameters File

Reference to a File Brick
of type Diffie-Hellman
Parameters.

Contains the Diffie-Hellman parameters to be used
by the TLS connection.

Enable
Verification

True or False. False Option for enabling the verification of server side
X.509 certificates.

Server
Verification*

Server verification options are mandatory if Enable
Verification is set to True.

CA Directory Reference to a File Brick
of type CA.

A directory where the trusted CA certificates are
stored. CA certificates are loaded on-demand from
this directory when PAS verifies the certificate of
the peer.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 71

Key Values Default value Description

Verify CRL True or False. False Verifies that certificates used in the connection are
not revoked by any CRLs in the CA directory.

4. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

5. Save the component configuration by clicking the Save button.

6.4.5.1.5. Configuring Elastic TLS Bricks

The following parameters need to be configured for Elastic TLS:

Figure 22. Configuring Elastic TLS in the Web User Interface

1. Name the Elastic TLS configuration.

2. Select the Type of the TLS brick, Elastic TLS in this case, from the drop-down list to configure the encryption
used with the Elastic server.

For details on these parameters, see the following table:

Table 41. TLS configuration

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name of the parameter can be referenced.

Type* Choose the required
value from the drop-
down list.

Client TLS, Backend TLS, Syslog TLS and Elastic
TLS configurations can be defined here.

3. Configure the mandatory parameters for Elastic TLS, based on the information provided in Table Elastic TLS

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 72

configuration.

Table 42. Elastic TLS configuration

Key Values Default value Description

Enable Client
TLS
Authentication

True or False. False Option for enabling TLS authentication towards
the server.

Client TLS
Authentication

Configuration for the X.509 certificate used for TLS
connections on the Insight Target.

Certificate File* Reference to a File Brick
of type Client Certificate.

The certificate to be used for the connection.

Key File* Reference to a File Brick
of type TLS Key.

The private key corresponding to the certificate
file. The private key file must not be encrypted.

Options TLS protocol options used on the Elastic Insight
target.

Ciphers Colon-separated list of
ciphers from the list
supported by OpenSSL
3.0.2.

ECDH+AESGCM:
DH+AESGCM:EC
DH+AES256:
DH+AES256:ECD
H+AES128:
DH+AES:!aNULL
:!MD5:
!DSS!aNULL:
!MD5: !DSS

Specifies the allowed ciphers.

TLS Version Select one of the
following options in the
drop-down menu:

• TLS v1.0

• TLS v1.1

• TLS v1.2

• TLS v1.3

TLS v1.2 Defines the TLS version used in the connection.

Peer Verify True or False. True Defines whether the peer is verified. If set to true,
the peer is required to provide a certificate, and
the certificate provided needs to be valid.

Enable
Verification

True or False. False Option for enabling the verification of the X.509
certificate presented by the Elastic server.

CA Directory Reference to a File Brick
of type CA.

A directory where the trusted CA certificates are
stored. CA certificates are loaded on-demand from
this directory when PAS verifies the certificate of
the peer.

4. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

5. Save the component configuration by clicking the Save button.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 73

6.4.6. File

The File configuration element enables the administrator to upload files used by various plugins.

6.4.6.1. Configuring File Bricks

1. Click on the BRICKS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of BRICKS.

2. Select File.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 23. File main page in the Web User Interface

3. Click on the New navigation button to create a File Brick.

4. Choose the type of the file brick from the drop-down list.

5. Upload a file according to the selected type.

6. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

7. Save the component configuration by clicking the Save button.

The following values can be configured for the File Brick:

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 74

Figure 24. Configuring File in the Web User Interface

Table 43. File configuration parameters

Key Values Default Description

Name* Free text.
Alphanumeric, may
contain underscores,
may not start with a
number.

It defines the file-related configuration.

Type* The available values
are:

• Swagger

• OpenAPI 3.0

• OpenAPI 3.1

• XSD

• WSDL

• CA

• Certificates

• Diffie-Hellman
Parameters

• TLS Key

• Client Certificate

• Server
Certificate

• License

See table
Requirements for
specific file types for
specific
requirements for
each type.

The type selected here defines by which
PLUGINS it can be used. The file uploaded
here with the Type Swagger, for example,
can be used by Swagger Plugins.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 75

Key Values Default Description

File* The required file can
be uploaded here.

Passphrase String value, could
be empty.

Only available for TLS Key files. The
passphrase to access an encrypted private
key. Leave empty if the private key is
unencrypted.

Table 44. Requirements for specific file types

File type Requirements

CA 1. The file must be a flat ZIP file with the CA certificates inside.

2. It can contain copies of the certificates named following the <hash>.0 format. The value of
the <hash> part can be produced with the following command: openssl x509 -noout
-hash -in /path/to/cert/file. These copies will be generated automatically after
saving if they are not present already, and the original File brick will be overwritten.

3. It can contain CRL files, and it also can contain the copies of them following the
<hash_of_the_related_ca_file>.r0 format. The hash can be produced as described
above. These copies will be generated automatically after saving if they are not present
already, and the original File brick will be overwritten.

Certificates 1. The file must be a flat ZIP file with the certificates inside.

2. The certificates must be named after IPv4 or IPv6 addresses.

Diffie-Hellman
Parameters

1. Must be in PEM format.

2. Must be a parameters file, such as one generated by the openssl dhparam utility.

TLS Key 1. Must be in PEM format.

2. Must be a private key file.

3. Could be encrypted or unencrypted. If the file is encrypted, the passphrase must be
provided in the Passphrase field.

Client
Certificate

1. Must be in PEM format.

2. Must be a certificate file.

3. Must have a Common Name attribute, and have the CLIENT_AUTH ExtendedKeyUsage.

Server
Certificate

1. Must be in PEM format.

2. Must be a certificate file.

3. Must have a Common Name attribute, and have the SERVER_AUTH ExtendedKeyUsage.

License 1. Must be a ZIP file with a single pas directory, with a single license.txt inside.

2. Must be a valid PAS license.

3. Expirations are not validated. Limits are validated in integrity checks based on the License
File brick selected in the License system.

Swagger The file must be a Swagger schema as described in the OpenAPI 2.0 specification.

OpenAPI 3.0 The file must be an OpenAPI 3.0 schema as described in the OpenAPI 3.0 specification.

OpenAPI 3.1 The file must be an OpenAPI 3.1 schema as described in the OpenAPI 3.1 specification.

XSD The file must be an XML Schema Definition as described in XML Schema Part 1: Structures, XML
Schema Part 2: Datatypes, XSD 1.1 Part 1: Structures and XSD 1.1 Part 2: Datatypes.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 76

https://swagger.io/specification/v2/
https://swagger.io/specification/v3/
https://swagger.io/specification/
https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/xmlschema11-2/

File type Requirements

WSDL The file must be a WSDL service descriptor as described in the Web Services Description
Language 1.1 specification or in the Web Services Description Language 2.0 specification.

File editor
Files in certain File brick types are editable when configuring the File brick. A File editor is available for the
following types:

• Swagger

• OpenAPI 3.0

• OpenAPI 3.1

The uploaded file can be opened and edited by clicking the Edit button. The contents of the file open inside a new
window, with the Edit tab selected:

The editor can be closed without saving any changes to the file with the Close button. The changes are saved and
the editor is closed with the Save button.

The Overview tab shows errors if there are any, and the structure of the schema that the file describes:

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 77

https://www.w3.org/TR/2001/NOTE-wsdl-20010315
https://www.w3.org/TR/2001/NOTE-wsdl-20010315
https://www.w3.org/TR/wsdl20

6.4.7. Common configuration elements for BRICKS

6.4.7.1. Extractors

Extractors are used to extract data from the call.

Extractors are not independent configuration components, but common configuration elements that are utilized
by Matchers and Selectors. In fact, when configuring matchers and selectors, it is extractors that are listed at their
type fields. Extractors are configured and used as part of matchers and selectors. There are no named extractors.

Most extractors return simple string values. However, some (might) return dictionaries. For example, you can get
all the HTTP headers, or all the URI query parameters.

See the Extractor types for more details on extractors and their configuration options.

The following table provides details on extractor types:

Table 45. Extractor types

Key Description

Method Extracts the HTTP method of the request. It does not require configuration.

Status Extracts the status code of the response. It does not require configuration.

JMESPath Extracts data from the body of a JSON call with the help of a JMESPath expression.

JMESPath is a query language for JSON. It is a very versatile tool for extracting the
needed information from the body of the call, and organizing it according to
requirements. A complete explanation on how to write JMESPath expressions is not
in the scope of this document.

To learn more about it visit the JMESPath website:

• There is a tutorial.

• There are examples.

• There is also a formal specification.

Header Extracts the value of an HTTP header. It is valid for some HTTP headers to be present
more than once in a call. In this case, all the values are extracted as a list. It provides
the name of the header in the configuration.

Header Force List A Header extractor that returns a list even if there is only a single extracted value.

Header First A Header extractor that only returns the first extracted value even if there is a list of
extracted values.

Headers The Headers extractor returns all the headers from the call. The results are stored as
a dictionary, therefore it is recommended to set 'Save Under Key' to False if you use
this from a Selector. It is valid for some HTTP headers to be present more than once
in a call. In such cases all the values are stored under the header’s key as a list. It
does not require configuration.

Fraud Detector Score Extracts the score value provided by the Fraud Detector plugin.

URI Extracts the whole request URI as received from the client. It does not require
configuration.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 78

https://jmespath.org
https://jmespath.org/tutorial.html
https://jmespath.org/examples.html
https://jmespath.org/specification.html

Key Description

URI Netloc Extracts the network location in the URI. It does not require configuration.

It includes:

• username and password if present

• host

• port if present unless scheme default

If the port is the default port for the scheme - that is 80 and 443
for HTTP and HTTPS, respectively - the port will not be included
even if explicitly sent by the client. Therefore if the client used
http://example.com:80/path then the netloc would be
http://example.com, not http://example.com:80.

URI Origin Extracts the origin part of the URI. It does not require configuration.

It includes:

• scheme

• host

• port if present, unless the default port for the scheme is used

If the port is the default port for the scheme - that is 80 and 443
for HTTP and HTTPS, respectively - the port will not be included,
even if explicitly sent by the client. Therefore if the client used
http://example.com:80/path, then the origin would be
http://example.com, not http://example.com:80.

URI Scheme Extracts the scheme of the request (http or https). It does not require configuration.

URI Username Extracts the username in the request if present. It does not require configuration.

URI Password Extracts the password in the request if present. It does not require configuration.

URI Host Extracts the host in the request. It does not require configuration.

URI Port Extracts the port of the request, the default port — that is 80 and 443 for HTTP and
HTTPS, respectively — even if it is not not displayed explicitly in the request. It does
not require configuration.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 79

Key Description

URI Path Extracts the path part of the URI. It does not require configuration.

The path is normalized to allow more robust matching and cleaner reporting. This
means that:

• If the path is missing / it is extracted.

• Repeating forward-slash (/) characters are replaced with a single one.

• dot (.) and double-dot (..) path segments are resolved.

Consequently, if the path present in the URI was
//some/./nothere/../resource///./somewhere the path would be
/some/resource/somewhere.

If you need to extract the path exactly as received, use URI raw path parameter.

URI Raw Path Extracts the path part of the URI, without the normalization of URI path carried out.

NOTE: If the path is missing a single forward slash ("/") is extracted.

It does not require configuration.

URI Raw Query Extracts the query part of the URI as a string. It does not require configuration.

URI Query Extracts the query part of the URI. The results are stored as a dictionary, therefore it
is recommended to set 'Save Under Key' to False if you use this from a Selector.

URI Query Param Extracts the value of a query parameter. It is also valid for URIs to include a query
parameter more than once. That is, it could be 'foo=bar&qux=quz&foo=baz'. In this
case both values are extracted as a list. Provide the name of the parameter in the
configuration.

URI Query Param Force
List

An URI Query Param extractor that returns a list even if there is only a single
extracted value.

URI Query Param First An URI Query Param extractor that only returns the first extracted value even if there
is a list of extracted values.

Client Address Extracts the client’s IP address.

Client Port Extracts the client’s port (TCP).

Server Address Extracts the server’s IP address.

Server Port Extracts the server’s port (TCP).

Parsed Content Extracts the content. It does not require configuration.

Raw Content Extracts the raw bytes of the request or response. It saves the results as a base64
encoded string.

Text Content Extracts the request’s or response’s content as a decoded string.

Cookie Extracts the values for a given key from the Cookie HTTP header. It is valid for
multiple key-value pairs to be present in a Cookie header for the same key. In this
case, all the values are extracted as a list. It requires the name of the Cookie key in
the configuration.

Cookie Force List A Cookie extractor that returns a list even if there is only a single extracted value.

Cookie First A Cookie extractor that only returns the first extracted value even if there is a list of
extracted values.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 80

Key Description

Cookies The Cookies extractor returns all the key-value pairs from the Cookie header. The
results are stored as a dictionary, therefore it is recommended to set 'Save Under
Key' to False if you use this from a Selector. It is valid for multiple key-value pairs to
be present in a Cookie header for the same key. In such cases, all the values are
stored under the Cookie’s key as a list. It does not require configuration.

Content Type Extracts the content type from the HTTP header. It does not require configuration.

Content Type Charset Extracts the charset from the content type HTTP header. It does not require
configuration.

Call Direction Extracts the call direction (request, response). It does not require configuration.

Session Id Extracts the internal identifier of the HTTP session in keep-alive HTTP connections.
Its 'Include request counter' option enables adding a request counter representing
the number of requests in the session. See [session-id] for details.

Backend Response Time Extracts the time spent between the sending the request towards the server and
receiving the response from the server, in milliseconds. Only returns a value in a
response flow.

Backend Name Extracts the name of the Backend Service component handling the call.

Endpoint Name Extracts the name of the Endpoint Service component handling the call.

Static Extracts a string, integer, number, object, array, boolean as string from the
configuration.

Timestamp Extracts the current time. Also see the tables on Configuring timestamps and
Timestamp format options.

XPath Extracts data from the body of an XML call with the help of a XPath expression.

XPath is a query language for XML. It is a very versatile tool for extracting the needed
information from the body of the call, and organizing it according to needs.

A complete explanation on how to write XPath expressions is not in the scope of this
document. To learn more about it visit the main website.

Also see table XPath extractor configuration options.

Provide the XPath expression in the configuration. Depending on the expression, the
return value is a single node or a list of nodes. If you want a single value or a list
independent from the expression, use XPath First or XPath Force List.

XPath Force List Works like XPath but it returns a list even if there is only a single extracted value.

XPath First Works like XPath but it only returns the first extracted value even if there is a list of
extracted values.

SOAP Version Extends the XPath extractor with predefined expressions.

Extracts the SOAP message version. It identify with the SOAP namespace.

Possible values:

• soapv1_1 - the message version is SOAP v1.1

• soapv1_2 - the message version is SOAP v1.2

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 81

https://www.w3.org/TR/2017/REC-xpath-31-20170321/

Key Description

SOAP Envelope Extends the XPath extractor with predefined expressions.

Extracts the SOAP envelope.

SOAP Header Extracts the SOAP header.

Extends the XPath extractor with predefined expressions.

SOAP Body Extracts the SOAP body.

Extends the XPath extractor with predefined expressions.

SOAP Fault Extracts the SOAP fault.

Extends the XPath extractor with predefined expressions.

SOAP Fault Code Extracts the SOAP fault 'code'.

Extends the XPath extractor with predefined expressions.

This extractor expression depends on the SOAP version.

• faultcode - the SOAP v1.1 node tag

• Code - the SOAP v1.2 node tag

SOAP Fault Detail Extends the XPath extractor with predefined expressions.

Extracts the SOAP fault 'detail'. This matcher expression depends on the SOAP
version.

• Detail - the SOAP v1.1 node tag

• Detail - the SOAP v1.2 node tag

SOAP 1.1 Fault Faultstring Extends the XPath extractor with predefined expressions.

Extracts the SOAP fault 'faultstring'. This extractor only works with SOAP version 1.1.

SOAP 1.1 Fault Faultactor Extends the XPath extractor with predefined expressions.

Extracts the SOAP fault 'faultactor'. This extractor only works with SOAP version 1.1.

SOAP 1.2 Fault Reason Extends the XPath extractor with predefined expressions.

Extracts the SOAP fault 'Reason'. This extractor only works with SOAP version 1.2.

SOAP 1.2 Fault Node Extends the XPath extractor with predefined expressions.

Extracts the SOAP fault 'Node'. This extractor only works with SOAP version 1.2.

SOAP 1.2 Fault Role Extends the XPath extractor with predefined expressions.

Extracts the SOAP fault 'Role'. This extractor only works with SOAP version 1.2.

You can still use Save As Key for extractors returning dictionaries. For example, you can save
all the headers under the headers key and the URI query parameters under the parameters
key.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 82

Timestamp extractors can be configured as follows:

Table 46. Configuring timestamps

Name Default Description

Time Zone 'UTC' Set the time zone.

• An str describing a time zone, similar to ‘US/Pacific’, or
‘Europe/Berlin’. See: Time zones

• An str in ISO 8601 style, as in ‘+07:00’.

• An str, one of the following: ‘local’, ‘utc’, ‘UTC’.

Time Format YYYY-MM-DDT
HH:mm:ss.SSSSSSZZ
(line breaks for display purposes
only)

Set the format. See: Timestamp format options

Use Request
Start Time

True If set to True, uses the request’s start time. This value is set
once for each call. If set to False, uses the time when the
selector is processed during a session. This value can
change every time the selector’s value is queried during a
call.

Table 47. Timestamp format options

Name Token Output

Year YYYY
YY

2000, 2001, 2002 … 2012, 2013
00, 01, 02 … 12, 13

Month MMMM
MMM
MM
M

January, February, March
Jan, Feb, Mar
01, 02, 03 … 11, 12
1, 2, 3 … 11, 12

Day of Year DDDD
DDD

001, 002, 003 … 364, 365
1, 2, 3 … 364, 365

Day of Month DD
D
Do

01, 02, 03 … 30, 31
1, 2, 3 … 30, 31
1st, 2nd, 3rd … 30th, 31st

Day of Week dddd
ddd
d

Monday, Tuesday, Wednesday
Mon, Tue, Wed
1, 2, 3 … 6, 7

Hour HH
H
hh
h

00, 01, 02 … 23, 24
0, 1, 2 … 23, 24
01, 02, 03 … 11, 12
1, 2, 3 … 11, 12

AM / PM A
a

AM, PM, am, pm
am, pm

Minute mm
m

00, 01, 02 … 58, 59
0, 1, 2 … 58, 59

Second ss
s

00, 01, 02 … 58, 59
0, 1, 2 … 58, 59

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 83

Name Token Output

Sub-second S… 0, 02, 003, 000006, 123123123123
the result is truncated to microseconds, with half-to-even
rounding

Time zone ZZZ
ZZ
Z

Asia/Baku, Europe/Warsaw, GMT
-07:00, -06:00 … +06:00, +07:00, +08, Z
-0700, -0600 … +0600, +0700, +08, Z

Seconds Timestamp X 1381685817, 1381685817.915482

ms or µs Timestamp x 1569980330813, 1569980330813221

Table 48. XPath extractor configuration options

Key Default Description

xpath_expression The expression to extract the node from the call to
match against.

namespaces Defines the XML namespaces.

clear_text False Whether to remove white spaces at the beginning and
at the end of the string.

6.4.7.2. Comparators

Comparators are used for comparing the pattern with the result of the XPath expression.

Table 49. Types of comparators

Key Description Parameters

Equals Matches if the parameter is exactly the same as
the value matched. For matchers that work
with numeric data type or with IP addresses it
validates if the input is a valid number or IP
address.

Ignorecase: Case differences (lower case, upper
case) are ignored. When the present VaLuE
would match value. For matcher types that
work with numeric data type or with IP
addresses, the 'Equals' and 'Not Equals'
comparator types do not have ignorecase field.

Not equals Matches if the parameter is not exactly the
same as the value matched. For matchers that
work with numeric data type or with IP
addresses it validates if the input is a valid
number or IP address.

Ignorecase: Case differences are ignored. When
the present VaLuE would not match vAlUe. For
matcher types that work with numeric data
type or with IP addresses, the 'Equals' and 'Not
Equals' comparator types do not have
ignorecase field.

Starts with Matches if the value starts exactly with the
pattern.

Ignore case: Case differences are ignored. When
the present VaLuE would match value_given.

Ends with Matches if the value ends exactly with the
pattern.

Ignore case: Case differences are ignored. When
the present VaLuE would match given_value.

Contains Matches if the exact pattern is found
somewhere in the value.

Ignore case: Case differences are ignored. When
the present VaLuE would match some-value-
given.

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 84

Key Description Parameters

Pattern The Pattern treats the input as Unix shell-style
wildcards. There are special characters used in
shell-style wildcards:

• '*' Matches everything.

• '?' Matches a single character.

• [seq] Matches any character in seq.

For a literal match, wrap the
meta-characters in
brackets. For example, [?]
matches a literal question-
mark (?).

Ignore case: Case differences are ignored. When
the present VaLuE would match some-value-
given.

Regex Regex treats input as a regular expression for
matching. Consult Python’s regular expression
documentation and their Regular Expression
HOWTO.

• Ignore case: It sets the IGNORECASE flag for
the regex.

• Multiline: It sets the MULTILINE flag for the
regex.

Minimum Matches if the pattern is larger or equal to the
value.

Maximum Matches if the pattern is smaller or equal to the
value.

Range Matches if the value is between the limits in the
pattern, including boundaries. The format of
the pattern must be minimum..maximum.

Status class Status class is a special comparator for
conveniently matching HTTP status code
classes in a Status matcher. It takes the name
of the class and checks if the status code is in
the given range as stated in Checking status
code range.

Subnet The subnet comparator examines if an
extracted IP address is in the specified subnet.
The format for the input of the subnet
comparator is the CIDR notation for IPv4 (for
example, 192.0.2.0/24) and canonical prefix
notation for IPv6 (for example, 2001:db8::/32).

Table 50. Checking status code range

Pattern Status code range Description

Info 1xx Informational response

Success 2xx Successful response

Redirect 3xx Redirects

Client Error 4xx Client Errors

Server Error 5xx Server Errors

Administration Guide 6.4. BRICKS - Configuration units

4.11.0 85

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/howto/regex.html#regex-howto
https://docs.python.org/3/howto/regex.html#regex-howto

6.5. PLUGINS - Configuration units
A plugin is an element of the security flow that applies a specific security function. Plugins have different types
based on the role they do:

Figure 25. The PLUGINS main page in the Web User Interface

Plugins are named, so that they can be referenced in other parts of the configuration.

 This means that Plugin configurations are reusable.

Certain Plugins are so called default objects, which are in 'read-only' state and cannot be configured or modified.
Such default objects are listed in the following table:

Table 51. Default objects - PLUGINS

Default object name Key

default_json Serializer

default_xml Serializer

default_json Deserializer

default_xml Deserializer

default Compressor

default Decompressor

6.5.1. Common Plugin parameters

Regardless of what plugins do, all plugins share some common parameters.

Table 52. Plugins' common parameters

Administration Guide 6.5. PLUGINS - Configuration units

4.11.0 86

Key Values Default value Description

Matcher Reference to a Matcher
Brick.

Always: If the
value is not
defined, the
plugin is always
executed.

Optional parameter. It decides if the Plugin should
be executed based on the call’s details. If no
matcher is configured the Plugin is always
executed. For more details, see Matcher.

Error Policy Reference to an Error
Policy Brick.

Optional parameter. It defines a custom error
policy to be applied if the Plugin reports an error.
The settings of the Error policy here override the
Security Flow’s default error policy. If no error
policy is configured, the plugin type’s default error
policy is applied. For more details, see Error Policy.

Plugins are always named so that their names refer to a Plugin that represents a certain configuration. The names
themselves are referenced from the Security Flow.

6.5.2. Enforcer

An Enforcer Plugin validates calls against externally defined schemas.

The Plugin supports validation against OpenAPI (Swagger) schemas, XSD schemas, WSDL schema or WAF ruleset.

Understanding the format of these schemas is not in the scope of this document. Further information is available
at:

• The OpenAPI 2.0 format

• The OpenAPI 2.0 Specification

• The OpenAPI 3.0 format

• The OpenAPI 3.0 Specification

• The OpenAPI 3.1 Specification

• XSD 1.1 Specification

• XSD Tutorial

• WSDL Tutorial

• WSDL 1.1 Specification

• WSDL 2.0 Specification

The Enforcer Plugin uses its own default error policy, that is, the 'enforcer_default' error policy. The Plugin
overrides the following fields of the default error policy:

Table 53. Default Enforcer Error Policy

Policy Setting Default

request_code 422

request_message Request Error

Problems are considered errors that lead to the termination of the call. Problems in the request are reported back
to the client, while errors in the response are suppressed to avoid information leak.

See Error Policy to understand how defaults are applied.

6.5.2.1. Configuring Enforcer Plugins

Administration Guide 6.5. PLUGINS - Configuration units

4.11.0 87

https://swagger.io/docs/specification/2-0/basic-structure/
https://swagger.io/specification/v2/
https://swagger.io/docs/specification/basic-structure/
https://swagger.io/specification/v3/
https://swagger.io/specification/
https://www.w3.org/TR/xmlschema11-1/
https://www.w3schools.com/xml/schema_intro.asp
https://www.w3schools.com/xml/xml_wsdl.asp
https://www.w3.org/TR/2001/NOTE-wsdl-20010315/
https://www.w3.org/TR/wsdl20/

1. Click on the PLUGINS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGINS.

2. Select Enforcer plugin.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 26. Enforcer Plugin’s main page in the Web User Interface

3. Click on the New navigation button to create an Enforcer.

4. Name the Enforcer Plugin.

5. Choose the type of the Enforcer plugin.

6. Choose an Error policy from the drop-down list. The drop-down list will offer the error policy options
configured under BRICKS.

7. Choose a Matcher from the drop-down list. The drop-down list will offer the matcher options configured under
BRICKS.

8. Depending on the choice of the Enforcer plugin type selected earlier, different fields appear here for further
configuration:

◦ Swagger - Choose an uploaded Swagger file if the Enforcer type selected at the Type field was Swagger.

◦ OpenAPI 3.0 - Choose an uploaded OpenAPI 3.0 file if the Enforcer type selected at the Type field was
OpenAPI 3.0.

◦ OpenAPI 3.1 - Choose an uploaded OpenAPI 3.1 file if the Enforcer type selected at the Type field was
OpenAPI 3.1.

◦ WSDL - Choose an uploaded WSDL file if the Enforcer type selected at the Type field was WSDL.

◦ Operations - Fill in the Operations fields according to XSD enforcer plugin configuration options for
Operations if the Enforcer type selected at the Type field was XSD.

◦ Request Limit in Kilobytes - Fill in a number if you want to overwrite the default setting.

◦ Harden Additional Properties Defaults - Choose the desired setting.

9. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

Administration Guide 6.5. PLUGINS - Configuration units

4.11.0 88

10. Save the component configuration by clicking the Save button.

6.5.2.2. Swagger

The Swagger enforcer Plugin validates against OpenAPI 2.0 schemas.

The Plugin needs the schema definition file of the API Endpoint. This file must be in JSON or YML format.

6.5.2.3. OpenAPI 3.0

The OpenAPI 3.0 enforcer Plugin validates against OpenAPI 3.0 schemas.

The Plugin needs the schema definition file of the API Endpoint. This file must be in JSON or YML format.

6.5.2.4. OpenAPI 3.1

The OpenAPI 3.1 enforcer Plugin validates against OpenAPI 3.1 schemas.

The Plugin needs the schema definition file of the API Endpoint. This file must be in JSON or YML format.

6.5.2.5. XSD

XSD enforcer Plugin validates against XSD schemas. Both XSD 1.0 and 1.1 are supported.

As XSD enforcer requires parsed XML content an xml deserializer plugin needs to be included
before XSD enforcer.

In the XSD enforcer you can define operations. Each operation contains criteria for identifying the call, and path of
an XSD schema. If the HTTP message meets all criteria, its content will be validated using the schema.

XSD enforcer schema must contain at least one operation.

6.5.2.6. WSDL

WSDL enforcer Plugin validates against WSDL 1.0-2.0 schemas.

As WSDL enforcer requires parsed XML content, an xml deserializer plugin needs to be included
before WSDL enforcer.

The Enforcer Plugin uses its own default error policy, that is, the 'enforcer_default' error policy. The Plugin
overrides the following fields of the default error policy:

Table 54. Default Enforcer Error Policy

Policy Setting Default

request_code 422

request_message Request Error

Problems are considered errors that lead to the termination of the call. Problems in the request are reported back
to the client, while errors in the response are suppressed to avoid information leak.

See Error Policy to understand how defaults are applied.

The plugin needs the schema definition file. This file must be in XML format.

Administration Guide 6.5. PLUGINS - Configuration units

4.11.0 89

WSDL schema validates request and response as well. Make sure that wsdl enforcer included in
request and response flow as well.

In simple cases — when the listener/endpoint is serving a single version of a single API
endpoint — a matcher is usually not needed as the schemas define all known URLs in the API. If
however multiple API endpoints are consolidated under a single endpoint definition, you can
define multiple enforcers each matching on a sub-path by using an URI path matcher and
putting them all in the Security Flow.

6.5.2.7. WAF

The Web Application Firewall (WAF) enforcer Plugin protects against known attacks. The list of known attacks is
updated by the WAF Ruleset Updater.

The following values can be configured for the Enforcer Plugin:

Figure 27. Configuring an enforcer plugin in the Web User Interface

Table 55. Enforcer Plugin’s configuration options

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

This name identifies the Enforcer Plugin. The name
of the plugin can be referenced from other parts of
the configuration.

Administration Guide 6.5. PLUGINS - Configuration units

4.11.0 90

Key Values Default value Description

Type* Can be selected from the
drop-down list. The
available values are:

• Swagger

• OpenAPI 3.0

• OpenAPI 3.1

• XSD

• WSDL

• WAF

The type of the Enforcer plugin.

Matcher Reference to a Matcher
Brick.

Always: If the
value is not
defined the
plugin is always
executed.

It decides if the Plugin should be executed based
on the call’s details. For details see Matcher. If
omitted the Plugin is always executed.

Error Policy Reference to an Error
Policy Brick.

enforcer_defaul
t

It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security Flow’s default
error policy. For details see Error Policy.

Swagger*/Open
API
3.0*/OpenAPI
3.1*/WSDL*/Op
erations*

Depending on which
type of the component
was selected above, the
following values are
available:

• For Swagger,
OpenAPI 3.0,
OpenAPI 3.1, WSDL,
and XSD a reference
to a File Brick of the
appropriate type.

• For XSD the
configuration
options for
Operations can also
be selected here. For
details on
parameters for
Operations, see XSD
enforcer plugin
configuration
options for
Operations.

The Swagger enforcer Plugin validates against
OpenAPI 2.0 schemas. The OpenAPI 3.0 enforcer
Plugin validates against OpenAPI 3.0 schemas. The
OpenAPI 3.1 enforcer Plugin validates against
OpenAPI 3.1 schemas. WSDL enforcer Plugin
validates against WSDL 1.0-2.0 schemas. XSD
enforcer Plugin validates against XSD schemas.

Harden
Additional
Properties
Defaults

True or False. False Only available for OpenAPI 3.0 and OpenAPI 3.1
enforcers. If set to True, the Enforcer will check calls
as if the default value of additionalProperties
would be False for Schema Objects, triggering the
error policy if a non-specified property is present in
the call, unless additionalProperties=True is
explicitly set on the object. If set to False, the
original behavior of OpenAPI where
additionalProperties defaults to True is
retained.

Administration Guide 6.5. PLUGINS - Configuration units

4.11.0 91

https://swagger.io/specification/#schema-object

Key Values Default value Description

Request Limit
in Kilobytes

100000 Only available for WAF enforcers. It defines the size
limit for requests in kilobytes.

XSD has the following configuration options for the Operations parameters:

Table 56. XSD enforcer plugin configuration options for Operations

Key Default Description

URI Path * The pattern for uri_path.

Choose Method The method of the HTTP message. The following values
are available for Method:

• get

• head

• post

• put

• delete

• connect

• options

• trace

• patch

Status The status of the HTTP message.

Choose Call Direction The direction of the message, which must be either
request or response.

Choose File The XSD schema.

6.5.3. Filter

Filter Plugins are lightweight alternatives of Enforcer Plugins for filtering unwanted traffic. They only consist of a
matcher and an error policy. If the matcher matches, the error policy is applied. This way you can use matchers
inline, instead of creating a whole schema-based Enforcer Plugin for the simple use cases.

6.5.3.1. Configuring Filter Plugins

1. Click on the PLUGINS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGINS.

2. Select Filter plugin.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Administration Guide 6.5. PLUGINS - Configuration units

4.11.0 92

Figure 28. Filter Plugin’s main page in the Web User Interface

Make sure that any component referenced in the configuration of this component, for example
an Error policy or a Matcher selected from the drop-down lists, must remain part of the
configuration later as well. Removing any of the referenced components might lead to invalid
configuration.

3. Click on the New navigation button to create a Filter.

4. Add the name of the Filter Plugin.

5. Add the Body content for the error policy. (Optional)

6. Define the Content type.

7. Choose an error policy from the drop-down list. (Optional)

8. Choose a matcher from the drop-down list. (Optional)

9. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

10. Save the component configuration by clicking the Save button.

The Plugin does not override any of the default error policy options.

Problems are considered errors that lead to the termination of the call. Problems in the request are reported back
to the client, while errors in the response are suppressed to avoid information leak.

See Error Policy to understand how defaults are applied.

If you omit the matcher, the Plugin will always be executed. For Filter plugins this means
aborting all calls.

The following values can be configured for the Filter Plugin:

Administration Guide 6.5. PLUGINS - Configuration units

4.11.0 93

Figure 29. Configuring a filter plugin in the Web User Interface

Table 57. Filter Plugin’s configuration options

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name identifying the Filter Plugin. This name
of the plugin can be referenced from other parts of
the configuration.

Matcher Reference to a Matcher
Brick.

Always: If the
value is not
defined the
plugin is always
executed.

It decides if the Plugin should be executed based
on the call’s details. For details see Matcher. If
omitted the Plugin is always executed.

Error Policy Reference to an Error
Policy Brick.

error_policy It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security Flow’s default
error policy. For details see Error Policy.

Body Can be defined in free
text.

The body of the message sent in case an error
policy is applied.

Content Type The content type of HTTP error request sent, if the
filter stops the call. It can be referenced by its
name.

6.5.4. Fraud Detector

The Fraud Detector Plugin, leveraging the data collected from the calls by the selectors, evaluates the level of risk
with regards to the call. The risk calculated by the Fraud Detector plugin is translated to a score between 0.0 and
100.0. The lower the score is, the more secure and trustworthy the actual call is. Consequently, the value 0.0
means that the call is perfectly secure, until the value 100.0 identifies a malicious act with the call.

6.5.4.1. Configuring Fraud Detector Plugins

Administration Guide 6.5. PLUGINS - Configuration units

4.11.0 94

1. Click on the PLUGINS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGINS.

2. Select Fraud Detector plugin.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 30. Fraud Detector’s main page in the Web User Interface

Make sure that any component referenced in the configuration of this component, for example
an Error policy or a Matcher selected from the drop-down lists, must remain part of the
configuration later as well. Removing any of the referenced components might lead to invalid
configuration.

3. Click on the New navigation button to create a Fraud Detector.

4. Add the name of the Fraud Detector.

5. Choose an error policy from the drop-down list. (Optional)

6. Choose a matcher from the drop-down list. (Optional)

7. Choose a Selector from the drop-down list. When it is selected click on the plus sign to add it to the
configuration.

8. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

9. Save the component configuration by clicking the Save button.

See Error Policy to understand how they shall be applied here.

The following values can be configured for the Fraud Detector Plugin:

Administration Guide 6.5. PLUGINS - Configuration units

4.11.0 95

Figure 31. Configuring the Fraud Detector plugin in the Web User Interface

Table 58. Fraud Detector Plugin’s configuration options

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name identifying the Fraud Detector. This
name of the plugin can be referenced from other
parts of the configuration.

Matcher Reference to a Matcher
Brick.

Always: If the
value is not
defined the
plugin is always
executed.

It decides if the Plugin should be executed based
on the call’s details. For details see Matcher. If
omitted the Plugin is always executed.

Error Policy Reference to an Error
Policy Brick.

error_policy It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security Flow’s default
error policy. For details see Error Policy.

Selectors* A list of references to
Selector Bricks.

A list of Selector that collect information from the
call. Selectors can be configured as listed in
Selector configuration for the Fraud Detector
Plugin.

It is possible to add more data
from the selectors to the Fraud
Detector Plugin using custom
fields, apart from the list in
section Selector configuration
for the Fraud Detector Plugin. In
such cases contact the Balasys
Support team.

6.5.5. Insight

Administration Guide 6.5. PLUGINS - Configuration units

4.11.0 96

It is a Plugin that extracts various data from the call and sends it to external systems (log servers, SIEMs, and other
data analysis tools).

6.5.5.1. Configuring Insight Plugins

1. Click on the PLUGINS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGINS.

2. Select Insight plugin.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 32. Insight Plugin’s main page in the Web User Interface

3. Click on the New navigation button to create an Insight.

The Plugin uses the default Error policy by default, that is, the 'insight_default'.

The Plugin overrides the following fields of the default error policy:

Table 59. Default Insight Error Policy

Policy Setting Default

request log

response log

Problems are considered errors that only need to be logged. If that is overridden then problems in the request are
reported back to the client, while errors in the response are suppressed to avoid information leak.

See Error Policy to understand how defaults are applied.

The Plugin collects the information from all the selectors and sends them to all the targets.

The collected information from all the selectors is arranged into a dictionary: a list of key — value pairs. The key
can be configured in each selector. Certain selectors might return complex data structures, that are made up of
other dictionaries and/or lists. To ensure compatibility with a wide range of Insight Target types, such results are
flattened. The path inside the complex data structure is encoded into the key for each value. More details are
available on this in Data flattening.

Administration Guide 6.5. PLUGINS - Configuration units

4.11.0 97

4. Add the name of the Insight Plugin.

5. Choose an error policy from the drop-down list. (optional)

6. Choose a matcher from the drop-down list. (optional)

7. Add the message content for the error policy. (optional)

8. Choose a selector from the drop-down list.

9. Select the Insight Target.

10. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

11. Save the component configuration by clicking the Save button.

The following values can be configured for the Insight Plugin:

Figure 33. Configuring an insight plugin in the Web User Interface

Table 60. Insight Plugin’s configuration options

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name identifying the insight. This name of the
insight can be referenced from other parts of the
configuration.

Administration Guide 6.5. PLUGINS - Configuration units

4.11.0 98

Key Values Default value Description

Matcher Reference to a Matcher
Brick.

Always: If the
value is not
defined the
plugin is always
executed.

It decides if the Plugin should be executed based
on the call’s details. For details see Matcher. If
omitted the Plugin is always executed.

Error Policy Reference to an Error
Policy Brick.

insight_default It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security Flow’s default
error policy. For details see Error Policy.

Message Can be defined in free
text.

The name of the
plugin.

The message part of the log message.

Selectors* A list of references to
Selector Bricks.

A list of Selectors that collect information from the
call.

It is possible to multiselect more than one selector
in this list by clicking on them. The multiple
selected elements can then be added to the
configuration by clicking on the plus sign.

Targets* A list of references to
Insight Target Bricks.

A list of Insight Targets where the collected
information will be sent to.

6.5.6. Serializer

The Serializer Plugin is responsible for serializing the structured data to the format of the HTTP message’s body.

Serialization needs to be done before compression. A typical Security Flow configuration starts with a
Decompressor followed by a Deserializer and finishes with a Serializer followed by a Compressor. This ensures that
transferred HTTP bodies are syntactically correct and that they are reconstructed to avoid transferring potentially
crafted content.

The Serializer Plugin understands the Content-Type HTTP header and can work with JSON and XML content.

6.5.6.1. Configuring Serializer Plugins

1. Click on the PLUGINS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGINS.

2. Select Serializer.

The configuration window that appears presents the default Serializers, as listed in Default objects - PLUGINS and
the configuration values already set by the user:

Administration Guide 6.5. PLUGINS - Configuration units

4.11.0 99

Figure 34. The serializer main page in the Web User Interface

3. Click on the New navigation button to create a Serializer.

The Plugin does not override any of the default error policy options.

Problems are considered errors that lead to the termination of the call. Problems in the request are reported back
to the client, while errors in the response are suppressed to avoid information leak.

See Error Policy to understand how defaults are applied.

Continue configuring the serializer with the following steps:

4. Add the name of the serializer.

5. Select the type of the Serializer.

6. Choose an Error policy from the drop-down list.

7. Choose a Matcher from the drop-down list.

8. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

9. Save the component configuration by clicking the Save button.

The following values can be configured for the Serializer Plugin:

Administration Guide 6.5. PLUGINS - Configuration units

4.11.0 100

Figure 35. Configuring a serializer in the Web User Interface

Table 61. Serializers' configuration options

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name identifying the serializer. This name of
the serializer can be referenced from other parts of
the configuration, that is, the Plugin is reusable.

Type* The value can be
selected from a drop-
down list. The value can
be:

• JSON

• XML

There are two types of predefined (de)serializer
plugins.

Matcher Reference to a Matcher
Brick.

Depending on
which 'Type'
was selected for
the Serializer,
the default
value can be:
json_content or
xml_content.

It decides if the Plugin should be executed based
on the call’s details. For details see Matcher. If no
matcher is configured the Plugin is always
executed.

Error Policy Reference to an Error
Policy Brick.

error_policy It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security Flow’s default
error policy. If no error policy is configured, the
plugin type’s default error policy is applied. For
details see Error Policy.

6.5.7. Deserializer

It is a Plugin responsible for parsing the HTTP message’s body to structured data. This ensures that a message is
well-formed. The structured data will also be consumed by other Plugins that operate on the body of the
message.

Administration Guide 6.5. PLUGINS - Configuration units

4.11.0 101

A typical Security Flow configuration starts with a Decompressor followed by a Deserializer and finishes with a
Serializer followed by a Compressor. This ensures that transferred HTTP bodies are syntactically correct and that
they are reconstructed to avoid transferring potentially crafted content.

6.5.7.1. Configuring Deserializer Plugins

1. Click on the PLUGINS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGINS.

2. Select Deserializer plugin.

The configuration window that appears presents the default Deserializers, as listed in Default objects - PLUGINS
and the configuration values already set by the user:

Figure 36. The deserializer’s main page in the Web User Interface

2. Click on the New navigation button to create a Deserializer.

The Plugin does not override any of the default error policy options.

Problems are considered errors that lead to the termination of the call. Problems in the request are reported back
to the client, while errors in the response are suppressed to avoid information leak.

See Error Policy to understand how defaults are applied.

3. Add the name of the deserializer.

4. Select the Type of the Deserializer.

5. Choose an Error policy from the drop-down list.

6. Choose a Matcher from the drop-down list.

7. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

8. Save the component configuration by clicking the Save button.

The following values can be configured for the Deserializer Plugin:

Administration Guide 6.5. PLUGINS - Configuration units

4.11.0 102

Figure 37. Configuring a deserializer in the Web User Interface

Table 62. Deserializers' configuration options

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name identifying the deserializer. This name of
the deserializer can be referenced from other parts
of the configuration.

Type* The value can be
selected from a drop-
down list. The value can
be:

• JSON

• XML

There are two types of predefined (de)serializer
plugins.

Matcher Reference to a Matcher
Brick.

Depending on
which 'Type'
was selected for
the Deserializer,
the default
value can be:
json_content or
xml_content.

It decides if the Plugin should be executed based
on the call’s details. For details see Matcher. If
omitted the Plugin is always executed.

Error Policy Reference to an Error
Policy Brick.

error_policy It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security Flow’s default
error policy. For details see Error Policy.

Administration Guide 6.5. PLUGINS - Configuration units

4.11.0 103

Key Values Default value Description

Charset
Conflict

• drop: If this
parameter is set to
'drop', the
configuration
instructs to drop the
call in case there is
conflict for the
character set in the
message’s header.

• log: If the value is set
to 'log', the system
will use either type
of the character set
defined and will log
the error.

drop This parameter needs to be configured in case the
'Type' of the Deserializer is set to XML. In XML
messages, there might be a conflict in the
definition of the character set. The XML and the
HTTP headers might instruct to use different
character sets. The conflicting information on the
character set can be configured to be handled in
two different ways, that is the call dropped, or the
call maintained and the error logged, depending on
the settings of this parameter.

6.5.8. Compressor

The Compressor Plugin compresses the body of the HTTP message.

Compressors understand the Transfer-Encoding HTTP header and compress data by using the gzip, deflate and
brotli algorithms.

6.5.8.1. Configuring Compressor Plugins

1. Click on the PLUGINS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGINS.

2. Select Compressor.

The configuration window that appears presents the default Compressor, as listed in Default objects - PLUGINS
and the configuration values already set by the user:

Figure 38. The compressor main page in the Web User Interface

3. Click on the New navigation button to create a Compressor.

4. Add the name of the compressor.

5. Choose an Error policy from the drop-down list.

Administration Guide 6.5. PLUGINS - Configuration units

4.11.0 104

6. Choose a Matcher from the drop-down list.

7. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

8. Save the component configuration by clicking the Save button.

The following values can be configured for the Compressor Plugin:

Figure 39. Configuring a compressor in the Web User Interface

Table 63. The Compressors' configuration options

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name identifying the compressor. This name of
the compressor can be referenced from other parts
of the configuration, that is, the Plugin is reusable.

Matcher Reference to a Matcher
Brick.

Always: If the
value is not
defined the
plugin is always
executed.

It decides if the Plugin should be executed based
on the call’s details. For details see Matcher. If no
matcher is configured the Plugin is always
executed.

Error Policy Reference to an Error
Policy Brick.

The Plugin has a
default error
policy.

It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security Flow’s default
error policy. If no error policy is configured, the
plugin type’s default error policy is applied. For
details see Error Policy.

6.5.9. Decompressor

The Decompressor Plugin decompresses the body of the HTTP message.

Decompressors understand the Transfer-Encoding HTTP header and can work with content optionally
compressed by the gzip, deflate and brotli algorithms.

Administration Guide 6.5. PLUGINS - Configuration units

4.11.0 105

6.5.9.1. Configuring Decompressor Plugins

1. Click on the PLUGINS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGINS.

2. Select Decompressor.

The configuration window that appears presents the default Decompressor, as listed in Default objects - PLUGINS
and the configuration values already set by the user:

Figure 40. The Decompressor’s main page in the Web User Interface

3. Click on the New navigation button to create a Deserializer.

4. Add the name of the decompressor.

5. Choose an Error policy from the drop-down list.

6. Choose a Matcher from the drop-down list.

7. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

8. Save the component configuration by clicking the Save button.

The following values can be configured for the Decompressor Plugin:

Administration Guide 6.5. PLUGINS - Configuration units

4.11.0 106

Figure 41. Configuring a decompressor in the Web User Interface

Table 64. The Decompressors' configuration options

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name identifying the decompressor. This name
of the decompressor can be referenced from other
parts of the configuration, that is, the Plugin is
reusable.

Matcher Reference to a Matcher
Brick.

Always: If the
value is not
defined the
plugin is always
executed.

It decides if the Plugin should be executed based
on the call’s details. For details see Matcher. If no
matcher is configured the Plugin is always
executed.

Error Policy Reference to an Error
Policy Brick.

The Plugin has a
default error
policy.

It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security Flow’s default
error policy. If no error policy is configured, the
plugin type’s default error policy is applied. For
details see Error Policy.

6.6. SERVICES - Configuration units
Proxedo API Security is based on a micro-services architecture.

Administration Guide 6.6. SERVICES - Configuration units

4.11.0 107

Figure 42. The SERVICES main page in the Web User Interface

6.6.1. Backend

Backends are a set of servers for a given API endpoint.

Their configuration is made up of two main parts:

• a list of servers: port pairs and how to route traffic to them

• TLS configuration for talking to the servers

6.6.1.1. Configuring Backends

1. Click on the SERVICES main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of SERVICES.

2. Select Backend.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Administration Guide 6.6. SERVICES - Configuration units

4.11.0 108

Figure 43. The main page for Backend

3. Click on the New navigation button to create a Backend.

4. Name the Backend configuration.

5. Provide the values for the Servers parameter: Host and Port.

6. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

7. Save the component configuration by clicking the Save button.

The following values can be configured for the Backend Service:

Figure 44. Configuring backend in the Web User Interface

Table 65. Backend configuration

Administration Guide 6.6. SERVICES - Configuration units

4.11.0 109

Key Values Default
value

Description

Name* Free text. Alphanumeric, may contain
underscores, may not start with a
number.

The name identifying the backend. This
name of the backend can be referenced
from other parts of the configuration.

Servers* There are two values to be configured:

• Host: The name or IP address of the
host to connect to.

• Port: The port on host to connect to.
(You can add the values by clicking
the '+' sign.)

The list of servers that serve API
endpoint(s). See Backend servers'
configuration for details.

Load
Balancing
Method

One of the following methods can be
used:

• Failover: use the first server while
available, then fail over to the next

• Round Robin: use all servers in a
round-robin fashion

If the value is not configured the default
value will be added.

Failover Load balancing method to use.

Backend
Timeout

If the value is not configured the default
value will be added.

30000 The connection timeout in milliseconds
of a server that is down.

Backend
Retry In

If the value is not configured the default
value will be added.

600000 The timeout in milliseconds before a
server -that was down- is restarted again.

Use TLS True or False. False Enables using TLS in the connection
towards the backend servers.

Backend
TLS*

Reference to a File Brick of type Backend
TLS.

The TLS configuration towards the
backend servers. See Configuring
Backend TLS Bricks for details.
Mandatory if Use TLS is set to True.

6.6.2. Endpoint

An endpoint holds together all the policies that apply to a certain API endpoint:

• List of URLs

• The default error policy for the endpoint

• The backend to which requests will be forwarded

• The security flow that will be applied to the traffic

6.6.2.1. Security Flow

The Security Flow definition in an endpoint lists what happens to the traffic on a given endpoint.

To understand how requests flow through PAS, see Understanding processing flow. The Security Flow starts when
the Transport Director has already set up client connection and routed the request to the Flow Director. At this
point the TLS and HTTP layers are already processed, but the content in the body of the request is available only
in raw format and has not been parsed yet.

At this stage, the configuration security flow decides on what happens to the traffic by applying a list of Plugins

Administration Guide 6.6. SERVICES - Configuration units

4.11.0 110

one by one. Plugin is a collective name for Enforcers, Insights, Filters, etc. Once, all the plugins have processed the
request, the control is handed back to the Transport Director which routes the request to a backend server, and
comes back with the response after handling TLS and HTTP. At this point, the Flow Director applies another list of
Plugins to response, and once done, it hands back the response to the Transport Director which in turn returns
that to the client.

If at any point an error occurs, the error policy is applied — which might either mean to lead to logging the error or
to terminating processing and returning an error indication to the client.

Plugins can override the endpoint’s error policy.

Also note that different Plugins need different data. An Insight that applies a JMESPath query needs parsed JSON,
while one that extracts value from an HTTP header field does not. Other Plugins provide these required values,
like a JSON deserializer Plugin. It is important that the Plugins are configured in such an order that the required
data is made available beforehand.

6.6.2.2. Configuring Endpoints

1. Click on the SERVICES main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of SERVICES.

2. Select Endpoint.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 45. The main page for Endpoint

3. Click on the New navigation button to create an Endpoint.

4. Name the Endpoint Service.

5. Select the Backend parameter from the drop-down list. Backend servers are configured under the SERVICES
main navigation item.

6. Complete a Security Flow from the configured (and the default) plugins. For more details, see Security Flow.

◦ Choose the Request plugin from the drop-down list. The Plugin options available from the drop-down list
have been configured under the PLUGINS main navigation item.

◦ Choose the Response plugin from the drop-down list. The Plugin options available from the drop-down
list have been configured under the PLUGINS main navigation item.

7. Provide the URL to address the API endpoint.

8. Click the Validate button to check if the defined parameters are of the correct type and all required

Administration Guide 6.6. SERVICES - Configuration units

4.11.0 111

parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

9. Save the component configuration by clicking the Save button.

While ports must be unique, as only one listener can bind to a specific port, it is perfectly valid
to route incoming traffic from multiple listeners to the same endpoint.

A typical security flow is configured with the plugins in the following order:

• a Decompressor Plugin that decompresses the content of the request

• a Deserializer Plugin that parses the content of the request

• an Enforcer Plugins that ensure the call is valid

• Insight Plugins that extract important data from certain calls

• a Serializer Plugin that rebuilds the contents of the request

• a Compressor Plugin that compresses the content of the request

 The Plugin configurations are reusable.

The following values can be configured for the Endpoint Service:

Figure 46. Configuring endpoint in the Web User Interface

Table 66. Endpoint configuration

Administration Guide 6.6. SERVICES - Configuration units

4.11.0 112

Key Values Default
value

Description

Name* Free text. Alphanumeric, may contain
underscores, may not start with a
number.

The name identifying the endpoint. This
name of the endpoint can be referenced
from other parts of the configuration.

URLs* The URLs which the clients use to
address the API endpoint.

URL Rewrite
Rule

The URL by which the backend servers
understand incoming requests. When
set, two transformations take place:

• The original URL will be replaced by
the matching URL configured for the
Endpoint.

• The Host header will be replaced by
the host indicated in the URL rewrite
rule.

SNI Rewrite
Rule

<Dynamic> It can be used to rewrite the Server Name
Indication (SNI) field in a TLS handshake
towards the backends.

The <Dynamic> default value means that
the SNI value used towards the backend
will be the same as the value of the Host
header, either coming from the client or
defined in the URL Rewrite Rule.

Backend* Reference to a Backend Service. Backends are a set of servers for a given
API endpoint. For more details, see
Backend.

Failure
Policy

Two values have to be configured:

• Silent

• Code

Silent: True;
Code: 500

With the help of the Failure Policy, it can
be configured whether the client shall
receive notification or not, and whether
the notification shall contain the code on
the type of the failure. The values in
details are as follows:

• Silent: If the silent value is active, the
Failure policy is not reported. If the
silent value is inactive, the failure
policy is reported towards the user.

• Code: Code is an HTTP response
code here, that can be set manually
or from the provided drop-down list.

Administration Guide 6.6. SERVICES - Configuration units

4.11.0 113

Key Values Default
value

Description

Security
Flow*

The security flow process requires the
configuration of the following values,
each containing a list of Plugins.

• Request*

• Response*

The values in details are as follows:

• Request: The Transport Director sets
up client connection and routes the
request to the Flow Director. The
Request has numerous values to be
configured. For more details, see
Security Flow.

• Response: The Transport Director
routes the request to a backend
server, and comes back with the
response after handling TLS and
HTTP. For more details, see Security
Flow.

Note, that both for the Request and
Response parameters, it is possible to
multiselect more than one element in the
list by clicking on them. The multiple
selected elements can then be added to
the configuration by clicking on the plus
sign.

6.6.3. Listeners

Listeners are network endpoints where services are exposed to the network. They consist of:

• a listening port

• an optional client-side TLS configuration if HTTPS is used

• a list of endpoints that handle the traffic.

Since these are the entry points for client traffic it must be routed here on the network.

6.6.3.1. Configuring Listeners

1. Click on the SERVICES main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of SERVICES.

2. Select Listener.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Administration Guide 6.6. SERVICES - Configuration units

4.11.0 114

Figure 47. Listener’s main page in the Web User Interface

3. Click on the New navigation button to create a Listener.

At least one listener must always be configured in the Proxedo API Security configuration.

4. Name the Listener Service.

5. Select the Client TLS parameter from the drop-down list. The client side TLS parameter values have to be
defined previously under BRICKS.

6. Select the Endpoint from the drop-down list. The endpoint values have to be defined previously under
SERVICES/Endpoint.

 All endpoints in the list must have the same backend and backend URL configured.

7. Fill in the Port information. If it is not configured, the default value will be applied.

Ports must be unique, only one listener can bind to a specific port. It is however perfectly valid
to route incoming traffic from multiple listeners to the same endpoint.

8. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

9. Save the component configuration by clicking the Save button.

The following values can be configured for the Listener Service:

Administration Guide 6.6. SERVICES - Configuration units

4.11.0 115

Figure 48. Configuring a listener in the Web User Interface

Table 67. Listeners’ configuration options

Key Values Default
value

Description

Name* Free text. Alphanumeric, may contain
underscores, may not start with a
number.

The name identifying the listener. This
name of the listener can be referenced
from other parts of the configuration.

Port Any port value can be defined. Note that
the port value has to be within the range
configured in the docker.

49000 The number of the port the listener binds
to.

Endpoints* A list of references to Endpoint Services. The list of endpoint(s), as defined under
Endpoint that serve traffic coming in on
the listener.

Use TLS True or False. False Enables using TLS in the connection
towards the clients.

Client TLS* Reference to a File Brick of type Client
TLS.

The TLS configuration towards the
clients. See TLS for details. Mandatory if
Use TLS is set to True.

6.7. SYSTEM - Configuration units

Administration Guide 6.7. SYSTEM - Configuration units

4.11.0 116

Figure 49. The SYSTEM main page in the Web User Interface

6.7.1. Log

If at any point an error occurs during the Security Flow, the error policy is applied and logging takes place if
configured so.

6.7.1.1. Configuring Log

1. {step_open_systems}

2. Select Log.

3. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

4. Save the component configuration by clicking the Save button.

Increasing the verbosity hugely increases the amount of logs generated, and will reduce
performance.

The logs at the highest level of verbosity (9) might include sensitive information, such as
passwords.

The following values can be configured for the Log System:

Administration Guide 6.7. SYSTEM - Configuration units

4.11.0 117

Figure 50. The main page for Logs

Table 68. Log configuration

Key Values Default
value

Description

Name* Log has a default name 'default', that
cannot be changed.

The name identifying the log
configuration.

Verbosity The value can take number format. 3 The verbosity of logging. It must be
between 1-9.

Message
Filter
Expression

A list of message filter expressions. A
single message filter expression consists
of a log category, a colon, and a number
specifying the verbosity level of that
given category. Categories match from
left to right and wildcards can be used.
For example: http.*:5,core.info:3.
The last matching entry will be used as
the verbosity of the given category. If no
match is found the default verbosity
specified with verbosity is used.

*.accounting
:4,
core.summa
ry:4

Set verbosity mask on a per category
basis. Each log message has an assigned
multi-level category, where levels are
separated by a dot.

6.7.2. Transport Director

The Transport Director manages the transport layer of API connections:

• handles network connections from the client

• handles network connections towards the backends

• handles TLS on these connections

• load-balances between multiple backend servers

• load-balances between multiple Flow Directors

• enforces HTTP protocol validity in calls

6.7.2.1. Configuring Transport Director

1. {step_open_systems}

2. Select Transport Director.

3. Click the Validate button to check if the defined parameters are of the correct type and all required

Administration Guide 6.7. SYSTEM - Configuration units

4.11.0 118

parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

4. Save the component configuration by clicking the Save button.

The following values can be configured for the Transport Director System:

Figure 51. The main page for Transport Director

Table 69. Transport Director configuration

Key Values Default value Description

Name* Transport Director has a
default name 'default',
that cannot be changed.

The name identifying the Transport Director
configuration. This name of the Transport Director
can be referenced from other parts of the
configuration.

Enable Core
Dump

True or False. False Enables core dumps on failures.

Threads 0 Set the maximum number of threads that can be
used in parallel. Note, that setting the value to zero
means that the number of threads that can be used
in parallel is unlimited.

6.7.3. Fraud Detector

The Fraud Detector, leveraging the data collected by the Fraud Detector plugin, establishes the actual connection
with the Fraud API for an evaluation on the data of the calls.

Although the average response time of the Fraud API is half second, depending on the size and the complexity of
the traffic to be investigated the response time might increase up to three seconds. Consequently, it is
recommended to carefully identify the content selected for detection.

It is also recommended to consider that the API evaluates the maximum of 10 requests per second, therefore it is
important to carefully define the matcher for the fraud detection, so that the load of requests is not unnecessarily
high and the requests exceeding the value of 10 requests per second do not get dropped.

There are three recommended data types to be configured as selectors when configuring the Fraud Detector
plugin, namely the IP address, the phone number and the e-mail address. For more details on how to configure
Fraud Detector plugin, see Fraud Detector Plugin’s configuration options.

Administration Guide 6.7. SYSTEM - Configuration units

4.11.0 119

6.7.3.1. Configuring Fraud Detector

1. {step_open_systems}

2. Select Fraud Detector.

Continue with the steps if the Fraud Detector is required in active state:

3. Set the Fraud Detector system to active state. The Fraud Detector is set to 'inactive' state by default, as for the
'active' state license is required.

4. Define the API Endpoint destination.

5. Fill in the API key. The API Key is provided together with the license purchased for the Fraud Detector.

6. Add the value for the Connection Timeout parameter. The value has to be provided in seconds.

7. Provide the value for the Response Timeout parameter. The value has to be provided in seconds.

8. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

9. Save the component configuration by clicking the Save button.

The following values can be configured for the Fraud Detector System:

Figure 52. The Fraud Detector’s main page in the Web User Interface

Table 70. Fraud Detector’s configuration options

Key Values Default
value

Description

Name* Fraud Detector has a default name
'default', that cannot be changed.

default The name identifying the Fraud Detector.
This name of the Fraud Detector can be
referenced from other parts of the
configuration.

Active True or False. False If the license for the Fraud Detector is
purchased, the system can be activated.

If the Fraud Detector system is set to active, the following further parameters are available:

Administration Guide 6.7. SYSTEM - Configuration units

4.11.0 120

Figure 53. Configuring an active Fraud Detector in the Web User Interface

Table 71. The active Fraud Detector’s configuration options

Key Values Default
value

Description

Client
Configuratio
n

Configure the parameters of Fraud
Detector.

API
Endpoint

The default
value is as
follows:
https://fraud
-api.balasys.
hu/api.

The API endpoint.

API Key* The value for the API Key is provided by
the purchase of the Fraud Detector
license.

The API key is provided when the license
for the Fraud Detector is purchased.

Connection
Timeout

The value can be provided in seconds. 5 The time limit for establishing
connection with the provided URL.

Response
Timeout

The value can be provided in seconds. 10 The time limit for how long the PAS
awaits the answer from the Fraud API
after an established connection.

6.7.4. WAF Ruleset Updater

The Web Application Firewall (WAF) Ruleset Updater System is designed to automatically update the ruleset used
for WAF enforcers, it is thereby critical in ensuring real-time protection against zero-day attacks by maintaining an
up-to-date defense mechanism.

To activate this system, extra credentials will be necessary which can be obtained from the Balasys sales team.

6.7.4.1. Configuring WAF Ruleset Updater

1. {step_open_systems}

Administration Guide 6.7. SYSTEM - Configuration units

4.11.0 121

https://fraud-api.balasys.hu/api
https://fraud-api.balasys.hu/api
https://fraud-api.balasys.hu/api
https://fraud-api.balasys.hu/api
https://fraud-api.balasys.hu/api

2. Select WAF Ruleset Updater.

Continue with the steps if the WAF Ruleset Updater is required in active state:

3. Set the WAF Ruleset Updater system to active state. To activate the WAF Ruleset Updater a license is required.
To acquire a license, contact our sales team at the e-mail address <sales@balasys.hu>.

4. Fill in the API Username. The API Username is provided together with the license purchased for the WAF API.

5. Fill in the API Password. The API Password is provided together with the license purchased for the WAF API.

6. Add the value for the Poll Interval Seconds parameter. The value has to be provided in seconds.

7. Add the value for the Connection Timeout Seconds parameter. The value has to be provided in seconds.

8. Provide the value for the Response Timeout Seconds parameter. The value has to be provided in seconds.

9. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

10. Save the component configuration by clicking the Save button.

The following values can be configured for the WAF Ruleset Updater System:

Figure 54. The WAF Ruleset Updater’s main page in the Web User Interface

Table 72. WAF Ruleset Updater’s configuration options

Key Values Default
value

Description

Name* WAF Ruleset Updater has a default name
'default', that cannot be changed.

default The name identifying the WAF Ruleset
Updater. This name of the WAF Ruleset
Updater can be referenced from other
parts of the configuration.

Active True or False. False The system needs to be activated only if
a WAF Enforcer is to be used.

If the WAF Ruleset Updater system is set to active, the following further parameters are available:

Administration Guide 6.7. SYSTEM - Configuration units

4.11.0 122

mailto:sales@balasys.hu

Figure 55. Configuring an active WAF Ruleset Updater in the Web User Interface

Table 73. The active WAF Ruleset Updater’s configuration options

Key Values Default
value

Description

Updater
Configuratio
n

Configure the parameters of WAF Ruleset
Updater.

API
Username*

The username required to download and
update the WAF enforcer’s ruleset. The
value for the API Username is provided
with the purchase of the WAF license.

The API Username is provided when the
license for the WAF API is purchased.

API
Password*

The password required to download and
update the WAF enforcer’s ruleset. The
value for the API Password is provided
with the purchase of the WAF license.

The API Password is provided when the
license for the WAF API is purchased.

Poll Interval
Seconds

The value must be provided in seconds. 3600 The time between two ruleset updates.

Connection
Timeout
Seconds

The value must be provided in seconds. 5 The time limit for how long the PAS
awaits the answer from the WAF API to
establish the connection.

Response
Timeout
Seconds

The value must be provided in seconds. 10 The time limit for how long the PAS
awaits the answer from the WAF API after
an established connection.

6.7.5. License

The License System holds the License File brick currently in use.

6.7.5.1. Configuring License

1. {step_open_systems}

Administration Guide 6.7. SYSTEM - Configuration units

4.11.0 123

2. Select License.

3. Choose an uploaded License File brick from the drop-down list.

4. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

5. Save the component configuration by clicking the Save button.

The following values can be configured for the License System:

Figure 56. The License’s main page in the Web User Interface

Table 74. License’s configuration options

Key Values Default
value

Description

Name* License has a default name 'default', that
cannot be changed.

default The name identifying the License. This
name of the License can be referenced
from other parts of the configuration.

License File* A reference to a File Brick of the License
type.

The License File that is to be used.

6.8. System-wide status information

Administration Guide 6.8. System-wide status information

4.11.0 124

Figure 57. System-wide status information

6.8.1. License details

Details on the active license are presented in a table.

• Serial: The unique ID of the license.

• Backend Limit: The number of configured Backends that this license supports.

• Endpoint Limit: The number of configured Endpoints that this license supports.

• Date: The date this license was issued.

• Customer: The customer this license was issued to.

• Valid Not Before: The license is not valid before this date.

• Valid Not After: The license is not valid after this date.

• License Type: The type of this license.

6.9. Checking and finalizing changes in Proxedo API Security
configuration
It is possible to list and check any changes made to the PAS configuration until the changes have not been applied
with the Apply Configuration button.

Click on the Changes button in the Top-left navigation area to list the changes made to the configuration.

The following pieces of information are displayed:

• configuration integrity problems

• changes made to any of the configuration components

Administration Guide6.9. Checking and finalizing changes in Proxedo API Security configuration

4.11.0 125

Figure 58. Checking changes made to the configuration

6.9.1. Configuration Integrity

For changes on configuration integrity, the following pieces of information are displayed in table format:

• Type: It denotes the type of the integrity problem, for example cycle detection.

• Description: Description provides details on the nature of the integrity change.

• Recommended action: A recommended action might be displayed here for the configuration integrity
problem.

Until the configuration integrity errors listed here are not corrected, the configuration cannot
be applied.

For details on configuration integrity errors, see the examples in section Integrity errors.

6.9.2. Configuration Changes

For changes on the configuration components, the following pieces of information are displayed in table format:

• Type: Type denotes the category (Brick, Plugin, Service, System) and the class (for example, Matcher, Filter,
Log) of the configuration component, for example Brick/Matcher.

• Name: The name of the configuration component is displayed here, to which the actual change has been
made.

• Change: The nature of the change made to the configuration component is provided here, that is, added,
edited, deleted or no (no change).

• Validity: This field informs the user on whether the configured component is valid or not, as follows:

◦ - Any instance marked with this sign is invalid.

◦
 - Any instance marked with this sign is valid.

Administration Guide6.9. Checking and finalizing changes in Proxedo API Security configuration

4.11.0 126

Click on the sign to see more information on why the instance was found invalid.

Invalid configuration components can be corrected and revalidated by using the Validate button, available at
each component’s configuration page. For more information, see section Component-level validation in chapter
Applying and validating Proxedo API Security configuration.

• Actions: This field provides possibility to edit the configuration data for a component or to undo any
configuration changes to a component. By selecting the undo icon, all changes made to the actual
component will be deleted.

If the edit button is disabled, that is, it is not active, it means that the instance has been
deleted. If the undo button is disabled, that is, it is not active, no changes have been made to
the actual component.

By selecting the Discard button, it is possible to discard all changes made to the configuration. However, the
default elements that are created by the system to ease configuration, or the changes that have been applied to
the configuration already cannot be discarded.

6.10. Applying and validating Proxedo API Security configuration
PAS configuration can be checked and validated on two levels:

• component-level validation

• validating the whole configuration

6.10.1. Component-level validation

Component-level validation takes place while configuring the actual elements of the configuration and by using
the Validate button on the Web UI page of the specific component.

If the configuration of the component is erroneous or not adequate, the Web UI provides a warning that the
Component validation failed. Also a warning with information on the missing details appears at the problematic
field for the user.

Figure 59. Component validation failed

If the configuration of the component is satisfactory, after clicking the Validate button, the user receives the
Component Validation successful notification. Click OK. For related errors see, section Validation errors.

Figure 60. Component validation successful

6.10.2. Validating the whole configuration

Configuration integrity errors can be viewed on the Changes page, along with a summary of valid and invalid
component changes. To make it available click the Changes button so that all the changes made to any
component by the user will be visible. For related errors, see section Validation errors.

Administration Guide6.10. Applying and validating Proxedo API Security configuration

4.11.0 127

6.10.3. Applying the whole configuration

The Apply Configuration button is available from the Changes page. To make it available click the Changes button
so that all the changes made to any component by the user will be visible. In order to take the changes into effect,
click the Apply Configuration button. The configuration can only be applied if all changes are valid. When applying
the configuration by using the Apply Configuration button, the Web UI provides either of the following messages:

• The configuration is applied successfully. Click OK.

Figure 61. Apply Configuration result - successful

• The configuration failed.
If applying the configuration failed, the Web UI also provides an additional pop-up window with the
description of the problem. The problems can be as follows:

◦ At least one of the services failed to start, the previous configuration settings have been restored.

◦ Restoring the original configuration was not successful.

During the process of applying the configuration, no changes can be completed to the
configuration. The process however shall not take more than 10 seconds.

6.10.4. Validation errors

In case the configuration could not be applied, the following result messages help the user to correct the
configuration and achieve a valid configuration.

6.10.4.1. Component-related errors

These errors are the results of the validation of the actual components. By correcting these the user can achieve a
functioning configuration.

6.10.4.1.1. Missing data for required fields

Each component has compulsory configuration fields that must be filled in. In case any of those fields are left
empty, the Web UI provides a Missing data for required field notification when the component is validated, that is,
the Validate button is used. Each compulsory field is highlighted with a * sign.

Example
The Insight Target component requires the Host field to be filled in, otherwise the component’s configuration is
not valid.

Error message: Missing data for required field.

Administration Guide6.10. Applying and validating Proxedo API Security configuration

4.11.0 128

Figure 62. Missing required field - Insight Target

6.10.4.1.2. Missing reference

This error indicates that the component references a non-existing component.

Example
The user creates an Error Policy, error_policy_1 which is referenced in a Filter. Following that, this specific Error
Policy, error_policy_1 is deleted from the configuration. This results in a missing reference in the Filter.

Error message: Reference to a non-existing component: error_policy_1.

To correct the missing reference, navigate to the Filter component. In order to clear the invalid

reference to the missing component, the icon has to be selected on the right side of
the Error Policy drop-down list. By clicking this icon, the configuration data is cleared from this
selection.

6.10.4.1.3. Port conflict

This error indicates that two or more Listeners are configured to use the same port. This leads to a failed
configuration.

Example
Two Listeners are configured to use the same port.

Error message: listener_1 uses the same port as listener_2.

Administration Guide6.10. Applying and validating Proxedo API Security configuration

4.11.0 129

6.10.4.2. Integrity errors

6.10.4.2.1. Cycle detection

Error message: Cycle detected in configuration:
brick/matcher/matcher_1→brick/matcher/matcher_2→brick/matcher/matcher_1.

This error indicates that there is a cycle of references between component instances.

Example
If the compound matcher matcher_1 is configured to reference the compound matcher matcher_2 and the
compound matcher matcher_2 is also referencing the compound matcher matcher_1, there will be a cycle of
references between these two matchers.

6.10.4.2.2. Required instance is missing

Error message: At least one service/listener must be configured.

This error indicates that a required instance is not configured.

6.10.4.2.3. Fraud Detector plugin configured with the Fraud Detector system in inactive state

Error message: Fraud Detector Plug-in must not be part of Security Flows while the Fraud Detector System is
disabled.

Figure 63. Fraud Detector plugin integrity error

This error indicates that there is a Fraud Detector plugin configured, however, the Fraud Detector system is not
activated. In order to solve this integrity error, either the Fraud Detector plugin has to be removed from the
configuration, or, in case the license for the Fraud Detector is purchased, the Fraud Detector system has to be
activated and configured.

6.10.4.2.4. WAF Enforcer plugin configured with the WAF Ruleset Updater system in inactive state

Administration Guide6.10. Applying and validating Proxedo API Security configuration

4.11.0 130

Error message: WAF Enforcer Plug-in cannot be cannot be configured if the WAF Ruleset Updater System is
disabled.

This error indicates that there is a WAF Enforcer plugin configured, however, the WAF Ruleset Updater system is
not activated. In order to solve this integrity error, either the WAF Enforcer plugin has to be removed from the
configuration, or, in case the license for the WAF Ruleset is purchased, the WAF Ruleset Updater system has to be
activated and configured.

6.10.4.2.5. Insight Message field collision

Error message: The message keys of some JSON formatted Syslog Insight Targets are in conflict with the Save
As Key fields of some Selectors.

This error indicates that there is an Insight that contains Selectors and Targets that have conflicting
configurations. Insight plugins have a Message field that can identify the originating plugin in a log. Certain Insight
Target bricks can be configured using the Include Message field to include this Message field in the log line even if
the data format does not support a dedicated field for this (JSON for example). In this case, the field where the
message should be keyed to can be configured using the Message Key field on the Insight Target. This key can
conflict with the Save As Key field of Selectors in the same Insight, leading to lost data.

6.10.4.2.6. License limit exceeded

Error message: The number of configured Backends (11) exceeds the limit allowed by the active license (10).

This error indicates that the Backend or Endpoint limit of the selected license is exceeded. Either a different
license should be purchased and configured in the License system, or fewer Backend or Endpoint services
configured to stay below the limit.

6.11. Backup and restore running or user configuration for
Proxedo API Security
It is possible to backup and restore the Proxedo API Security configuration in the Web UI.

Figure 64. Backup and restore running or user configuration for Proxedo API Security

In order to export any configuration information from the system, complete the following steps:

1. Select the Configuration Backup button.

2. To export a configuration, select the type of the configuration to be exported at the Export configuration
button. The following options can be selected from the drop-down menu:

◦ Running: This export option downloads the configuration settings of the currently running configuration.

◦ User: This export option downloads the default configuration settings of the system.

The configuration will be downloaded in .zip file format.

3. To import an existing configuration file, select the empty field beside Import configuration. Only .zip file
formats can be uploaded.

Administration Guide6.11. Backup and restore running or user configuration for Proxedo API Security

4.11.0 131

4. Select the Download or the Upload buttons to finish the activity. The system will ask you to define the Insight
Target or source destination for the activity. Note that only files in .zip format can be downloaded or
uploaded.

In case of importing a configuration file, the system will notify the user that by importing a
configuration file, the existing configuration will be overwritten: 'This operation overwrites
user configuration. Are You sure?'

7. Operation of Proxedo API Security in Kubernetes
environment
This section introduces different methods of inspecting a PAS service state. For inspecting a PAS service state, it is
recommended to use selectors, as selectors utilize all the three labels that are added to most objects of the PAS
installation.

The three labels are as follows:

• app: This label is present on each object with the value of proxedo-api-security.

• component: This label is present on all objects that can be associated with any of the three main components
of PAS, such as :

◦ mgmt for the management object

◦ core for the core objects

◦ storage for the storage objects

• subcomponent: This label is attached to all objects that are directly and exclusively associated with one
subcomponent (services, deployments, pods, network policies, etc.).
The value of this label is always the name of the subcomponent, for example, flow-director, blob-store, config-
api, etc. Since objects are named, using the proxedo-api-security-<subcomponent-name> convention, using
the proxedo-api-security-flow-director object name is most often equivalent to using the subcomponent=flow-
director selector. Using the selector can be more advantageous, especially with pods, if there are multiple
running instances. Since pod names are suffixed with dynamically changing hashes, using a specific pod name
can be both inconvenient and sometimes too narrow.

These labels are useful for semantically narrowing down the focus of queries about kubernetes objects.

7.1. Querying objects
By using the kubectl get command, objects can be queried with basic information about them.

Run the kubectl get pods --namespace=proxedo-api-security --selector=app=proxedo-api-security
command to get the list of pods related to PAS.

The output will be similar to the following example:

Example output for querying objects

NAME READY STATUS
RESTARTS AGE
proxedo-api-security-blob-store-768f54bddd-fpd2v 1/1 Running
0 20m
proxedo-api-security-config-api-5b8b845744-htswp 1/1 Running
0 20m
proxedo-api-security-consul-65f4c78f-26bsg 1/1 Running
0 20m

Administration Guide7. Operation of Proxedo API Security in Kubernetes environment

4.11.0 132

proxedo-api-security-content-filtering-director-55b859df9-sztwp 1/1 Running
0 20m
proxedo-api-security-flow-director-7459896d6c-k9ttm 0/1
ContainerCreating 0 20m
proxedo-api-security-frontend-84798447c4-svrvj 1/1 Running
0 20m
proxedo-api-security-insight-director-5756f4f4b4-jw4vv 0/1
ContainerCreating 0 20m
proxedo-api-security-transport-director-7d4f7fbdf-sh9kw 0/1
ContainerCreating 0 20m

In this example, the core components do not have configuration, as that is to be set on the Web UI, and for this
reason they are not in Running state in the example.

To get PAS services, network policies, and so on, the relevant part of the command referring to 'pods' needs to be
changed to the object type in question.

7.2. Inspecting objects
To get more detailed information about any specific kubernetes object, use the kubectl describe command.
Selectors can also be used with this command, however it is recommended to use this command with a specific
object name.

Based on the previous example where core pods were not in Running state, the kubectl kubectl
--namespace=proxedo-api-security describe pod proxedo-api-security-flow-director-7459896d6c-
k9ttm command can be used to find out the reason behind its malfunction.

The output will be similar to the following example:

Example output for inspecting objects

Name: proxedo-api-security-flow-director-7459896d6c-k9ttm
Namespace: mate
Priority: 0
Node: api-kube-node-2/10.90.31.63
Start Time: Mon, 04 Jul 2022 10:40:56 +0200
Labels: app=proxedo-api-security
 component=core
 pod-template-hash=7459896d6c
 subcomponent=flow-director
Annotations: <none>
Status: Pending
IP:
IPs: <none>
Controlled By: ReplicaSet/proxedo-api-security-flow-director-7459896d6c
Containers:
 flow-director:
 Container ID:
 Image: docker.balasys.hu/api-security/flow-director:4.11.0
 Image ID:
 Ports: 1318/TCP, 8080/TCP
 Host Ports: 0/TCP, 0/TCP
 State: Waiting
 Reason: ContainerCreating
 Ready: False
 Restart Count: 0
 Requests:
 cpu: 250m
 ephemeral-storage: 200Mi
 memory: 550Mi

Administration Guide 7.2. Inspecting objects

4.11.0 133

 Readiness: http-get http://:8000/health delay=0s timeout=2s period=10s
#success=1 #failure=1
 Startup: http-get http://:8000/health delay=0s timeout=2s period=1s
#success=1 #failure=30
 Environment:
 CONTENT_FILTERING_DIRECTOR_HOSTNAME: proxedo-api-security-content-filtering-
director
 INSIGHT_DIRECTOR_HOSTNAME: proxedo-api-security-insight-director
 SERVICE_ADAPTOR_PORT: 8000
 Mounts:
 /opt/balasys/etc/pas/k8s/configmap from config-configmap (ro)
 /opt/balasys/etc/pas/k8s/secret from config-secret (ro)
 /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-qbnnv (ro)
Conditions:
 Type Status
 Initialized True
 Ready False
 ContainersReady False
 PodScheduled True
Volumes:
 config-configmap:
 Type: ConfigMap (a volume populated by a ConfigMap)
 Name: proxedo-api-security-core-config
 Optional: false
 config-secret:
 Type: Secret (a volume populated by a Secret)
 SecretName: proxedo-api-security-core-config
 Optional: false
 kube-api-access-qbnnv:
 Type: Projected (a volume that contains injected data from
multiple sources)
 TokenExpirationSeconds: 3607
 ConfigMapName: kube-root-ca.crt
 ConfigMapOptional: <nil>
 DownwardAPI: true
QoS Class: Burstable
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute op=Exists for 300s
 node.kubernetes.io/unreachable:NoExecute op=Exists for 300s
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 37m default-scheduler Successfully assigned
mate/proxedo-api-security-flow-director-7459896d6c-k9ttm to api-kube-node-2
 Warning FailedMount 33m kubelet Unable to attach or mount
volumes: unmounted volumes=[config-configmap config-secret], unattached volumes=[config-
configmap config-secret kube-api-access-qbnnv]: timed out waiting for the condition
 Warning FailedMount 31m (x11 over 37m) kubelet MountVolume.SetUp failed
for volume "config-secret" : secret "proxedo-api-security-core-config" not found
 Warning FailedMount 17m (x5 over 31m) kubelet Unable to attach or mount
volumes: unmounted volumes=[config-configmap config-secret], unattached volumes=[config-
configmap config-secret kube-api-access-qbnnv]: timed out waiting for the condition
 Warning FailedMount 7m7s (x23 over 37m) kubelet MountVolume.SetUp failed
for volume "config-configmap" : configmap "proxedo-api-security-core-config" not found
 Warning FailedMount 106s (x4 over 35m) kubelet Unable to attach or mount
volumes: unmounted volumes=[config-secret config-configmap], unattached volumes=[config-
secret kube-api-access-qbnnv config-configmap]: timed out waiting for the condition

In this example, the Events section of the output shows (among other details) that two necessary configuration
objects do not exist, and therefore the pods cannot be started. It also describes the volumes, ports, environment
variables and many more attributes that can be helpful for finding out the reason behind its malfunction.

Administration Guide 7.2. Inspecting objects

4.11.0 134

7.3. Checking logs
Logs of PAS components are by default available through the kubectl logs command. An extract of the output
of kubectl logs --namespace=proxedo-api-security pods/proxedo-api-security-frontend-
84798447c4-svrvj command is displayed in the following example:

Example output for checking logs

2022-07-04T09:36:50 config-webui 192.168.235.192 - - [04/Jul/2022:09:36:50 +0000] "POST
/api/v1/auth/login HTTP/1.1" 200 1005 "http://api-kube-node-3.dev.balasys:30001/login"
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/103.0.5060.53 Safari/537.36"
2022-07-04T09:36:50 config-webui 192.168.235.192 - - [04/Jul/2022:09:36:50 +0000] "GET
/api/v1/ui-adaptor/menu HTTP/1.1" 200 1942 "http://api-kube-node-
3.dev.balasys:30001/login" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/103.0.5060.53 Safari/537.36"
2022-07-04T09:36:50 config-webui 192.168.235.192 - - [04/Jul/2022:09:36:50 +0000] "GET
/assets/outline/appstore.svg HTTP/1.1" 200 574 "http://api-kube-node-
3.dev.balasys:30001/" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/103.0.5060.53 Safari/537.36"
2022-07-04T09:36:50 config-webui 192.168.235.192 - - [04/Jul/2022:09:36:50 +0000] "GET
/assets/outline/api.svg HTTP/1.1" 200 1134 "http://api-kube-node-3.dev.balasys:30001/"
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/103.0.5060.53 Safari/537.36"
2022-07-04T09:36:50 config-webui 192.168.235.192 - - [04/Jul/2022:09:36:50 +0000] "GET
/assets/images/proxedo_API_transparent.svg HTTP/1.1" 200 3975 "http://api-kube-node-
3.dev.balasys:30001/changes" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/103.0.5060.53 Safari/537.36"
2022-07-04T09:36:50 config-webui 192.168.235.192 - - [04/Jul/2022:09:36:50 +0000] "GET
/assets/outline/setting.svg HTTP/1.1" 200 1873 "http://api-kube-node-
3.dev.balasys:30001/" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/103.0.5060.53 Safari/537.36"
2022-07-04T09:36:50 config-webui 192.168.235.192 - - [04/Jul/2022:09:36:50 +0000] "GET
/SourceSansPro-SemiBold.43cc81b496222dc9ce3c.ttf HTTP/1.1" 200 268280 "http://api-kube-
node-3.dev.balasys:30001/styles.e68c8c26486c2eba6127.css" "Mozilla/5.0 (X11; Linux
x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.5060.53 Safari/537.36"
2022-07-04T09:36:51 config-webui 192.168.235.192 - - [04/Jul/2022:09:36:51 +0000] "GET
/api/v1/ui-adaptor/config/changes HTTP/1.1" 200 1969 "http://api-kube-node-
3.dev.balasys:30001/changes" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/103.0.5060.53 Safari/537.36"
2022-07-04T09:36:51 config-webui 192.168.235.192 - - [04/Jul/2022:09:36:51 +0000] "GET
/assets/outline/rollback.svg HTTP/1.1" 200 265 "http://api-kube-node-
3.dev.balasys:30001/changes" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/103.0.5060.53 Safari/537.36"

The kubectl logs command can also be used with Selectors and other object types like deployments or services.
In this case, its scope is wider and can sometimes be more adequate.

7.3.1. Understanding logs

As multiple pieces of software run in each container, there are two layers of logs in each containers' output. The
first field is always an ISO formatted date. Then the name of the process inside the container follows. The
remaining fields are the output of the process itself. In the below example, we see logs from the flow-director
container. It prints output for processes called pre, pas-event-handler, flow-director and service-adaptor.

Container log output

2021-04-20T09:15:30 pre Container starts
2021-04-20T09:15:33 pre INFO:confgen: Generating configuration files
2021-04-20T09:15:34 pas-event-handler INFO:SupervisordEventDispatcher:Dispatching event;
processname='pre', eventname='PROCESS

Administration Guide 7.3. Checking logs

4.11.0 135

2021-04-20T09:15:34 pas-event-handler INFO:SupervisordEventDispatcher:Process exited;
processname=pre, success=True
2021-04-20T09:15:34 pas-event-handler INFO:SupervisordEventDispatcher:Starting main
processes.
2021-04-20T09:15:34 pas-event-handler INFO:SupervisordEventDispatcher:Starting process;
process='flow-director'
[...]
2021-04-20T09:15:37 flow-director 2021-04-20T09:15:37+0200: flow_builder.info(3)
(nosession): Loaded plugin; [...]
2021-04-20T09:15:37 flow-director 2021-04-20T09:15:37+0200: flow_builder.info(3)
(nosession): Loaded plugin; [...]
2021-04-20T09:15:37 flow-director 2021-04-20T09:15:37+0200: flow_builder.info(3)
(nosession): Loaded plugin; [...]
2021-04-20T09:15:37 flow-director 2021-04-20T09:15:37+0200: flow_builder.info(3)
(nosession): Loaded plugin; [...]
2021-04-20T09:15:37 flow-director 2021-04-20T09:15:37+0200: flow_builder.info(3)
(nosession): Loaded plugin; [...]
2021-04-20T09:15:37 flow-director 2021-04-20T09:15:37+0200: flow_builder.info(3)
(nosession): Loaded plugin; [...]
2021-04-20T09:15:37 flow-director 2021-04-20T09:15:37+0200: flow_builder.info(3)
(nosession): Loaded plugin; [...]
2021-04-20T09:15:37 flow-director 2021-04-20T09:15:37+0200: flow_set.info(3) (nosession):
Start building flows
[...]
2021-04-20T09:15:39 pas-event-handler INFO:SupervisordEventDispatcher:Starting process;
process='service-adaptor'
[...]
2021-05-07T14:23:55 service-adaptor INFO:PASHealthCheck:All services are healthy.
2021-05-07T14:23:55 service-adaptor [pid: 47|app: 0|req: 223/223] 172.19.0.3 () {28 vars
in 350 bytes} [Fri May 7 14:23:55 2021] [...]

7.3.1.1. Flow Director and Transport Director logs

As from the API security perspective, the most important components are Flow Director and Transport Director, we
discuss their logs more in detail. There are two important concepts related to these logs: categories and Session
IDs.

• Categories help filtering logs based on their relevance. They are composed of a component, a tag, and a
severity, for example: http.info(3).

◦ The component helps to identify the part of the solution. For the Transport Director this is usually core or
http, for the Flow Director it is either core, or the Plugin’s type, such as serializer or enforcer.

◦ The tag helps to define the type of the message. Usually one of info, error, debug, policy or accounting.

◦ The severity defines how important the message is. It is a number between 1-9 where 1 is the highest.

• Session ID helps identifying log lines that belong to the same session. This is especially important as the calls
travel between the Transport Director and the Flow Director.

It is usually in the form of svc/default/<listener>:<transport-director-session>/default/http#<http-request-
count>/flow:<flow-director-id>/ch:<flow-director-channel>/<endpoint_name>/<plugin_type>/<plugin_name>, for
example: svc/default/httpbin:14/default/http#0/flow:1/ch:28/endpoint_test/enforcer/manualtest.

Information that is not available at the time, will be missing from the Session ID. Generally, the part until /flow:
belongs to the Transport Director. Consequently, the Transport Director will never see that part. The Flow Director
however will fetch and include that information. Nevertheless, in early phases it might not be available, and the
Session ID will start with flow.

Despite some parts not being always available, the ID is constructed in such a manner that grepping on any part
will find other messages with extra information as well.

Administration Guide 7.3. Checking logs

4.11.0 136

7.4. Troubleshooting containers

7.4.1. Inspecting files

For inspecting file content inside PAS containers, it is recommended to log into a specific container and use the
shell for navigating in the file system and the available tools for reading them.

Example for inspecting container filesystem

kubectl --namespace proxedo-api-security exec --stdin --tty pods/proxedo-api-security-
config-api-579b59fc8d-59hqh -- /bin/bash
root@proxedo-api-security-config-api-579b59fc8d-59hqh:/# ls -1 /opt/balasys/etc/mgmt/
config.yml
users.htpass

7.4.2. Inspecting processes and network

Processes and network can best be troubleshot using the kubectl debug tool and the PAS debug image. This
image holds basic process and network debugging tools and enables installing new ones.

Example for inspecting processes and network traffic of containers

kubectl --namespace proxedo-api-security debug --stdin --tty
--image=docker.balasys.hu/api-security/container-debugger:4.11.0 pods/proxedo-api-
security-config-api-579b59fc8d-59hqh -- tcpdump -i any
Defaulting debug container name to debugger-wcrnx.
If you don't see a command prompt, try pressing enter.
[...]

7.5. Changing bootstrap configuration
Since bootstrap configuration is provided during Helm installation, the parameters used there can be changed in
the provided files. Moreover, all the input files may be changed. As soon as the changes are made, they can be
made effective by running the installation command, as displayed in Providing the necessary files for Helm
installation.

7.6. Backup and restore

7.6.1. Bootstrap configuration

As the whole bootstrap configuration is provided at the time of installation, the directory, in which the installation
was carried out, needs to be saved, so that the installation procedure can be repeated.

7.6.2. Running configuration

To completely backup the running configuration, the storage component’s Persistent Volume needs to be backed
up. This can be done by directly backing up the Persistent Volume that is assigned to the proxedo-api-security-
storage Persistent Volume Claim. This solution is specific to the Kubernetes Cluster and therefore it is the
responsibility of the cluster administrator. In this case, the cluster administrator also needs to make sure that the
restored Persistent Volume gets assigned to the new Persistent Volume Claim from the new PAS installation.

Another method for creating a backup of the running configuration is to use the backup mechanism available on
the Web UI, see Backup and restore running or user configuration for Proxedo API Security.

Administration Guide 7.4. Troubleshooting containers

4.11.0 137

7.7. Factory reset
In case a factory reset is necessary, the simplest solution is to delete the namespace, PAS is installed in. If that is
not feasible, an alternative is to explicitly delete Kubernetes objects related to PAS. To do so, two main steps are
required:

1. Uninstall the PAS Helm chart using the helm uninstall --namespace=proxedo-api-security proxedo-
api-security command. This will remove all kubernetes objects managed by the Helm charts, including the
Persistent Volume Claim associated with the storage components.

2. Delete the core configuration objects. These objects are not managed by the Helm chart but by the
management component. To complete this, run the following commands:

◦ kubectl --namespace=proxedo-api-security delete configmap proxedo-api-security-core-
config

◦ kubectl --namespace=proxedo-api-security delete secrets proxedo-api-security-core-
config proxedo-api-security-registry-credentials

Following these steps, PAS shall be installed from scratch. For more details, see Installation of Proxedo API
Security in Kubernetes environment.

Appendix A: Selector configuration for the Fraud
Detector Plugin
The following fields can be defined in the Save As Key field when creating a new Selector. The saved Selector can
be used by the Fraud Detector plugin.

The data type selected in the API for the actual selector option shall be the one listed in this
table as Type for the actual selector. Currently, no data type conversion is possible for
selectors.

Table 75. Selector configuration for the Fraud Detector Plugin

Values for Save As Key
field

Data type Description Example

action_type string The type of the user action being scored. Any
string can be valid.

update_content,
verification or
account_login_fail

client_address string The user’s IP address at the time of the
transaction. It shall include the full IPv4 or IPv6
address.

transaction_id string A unique identifier for the transaction, as found
in the system. If it is not specified, it is
automatically generated.

98db9a56b2e3

affiliate_id string The user’s unique affiliate identifier in the
system.

affiliate_name string The name of the affiliate for the registered user.
Can be ASCII-encoded via a secure hash
algorithm, such as MD5 or SHA-2.

jdoe345

order_memo string The description of the transaction found in the
system.

Administration Guide 7.7. Factory reset

4.11.0 138

Values for Save As Key
field

Data type Description Example

email string The full email address of the registered user.

email_domain string The email address domain of the registered
user.

password_hash string The hash of the user’s password in ASCII
encoding (we recommend using HMAC-SHA256
or RSA-SHA256).

user_fullname string The user’s registered full name. Can be hashed
in ASCII encoding as well (e.g. MD5, SHA-2
family).

John Doe

user_name string The user’s registered username. Can be hashed
in ASCII encoding as well (e.g. MD5, SHA-2
family).

jdoe325

user_id string The user’s unique identifier. If the request was
sent without a user_id value, a unique ID is
automatically generated based on the
user_name and/or the email fields, based on
which is available. If none of these identifiers
were included in the request, the user ID is
generated randomly.

00ab11-as2233

user_created integer The date when the user first registered to the
protected service, using the UNIX time format
and UTC time zone, without milliseconds.

1446370717 (Sun, 01
Nov 2015 09:38:37
+0000)

user_category string The user’s category. VIP

user_account_status string The user’s current account status. login_blocked

user_bank_account string The user’s bank account number for monetary
transfer.

IBAN number

user_bank_name string The name of the user’s bank account.

user_balance float The user’s current balance. 1010.25

user_verification_leve
l

string The user’s verification level. ID_verified

user_dob date The user’s date of birth in the format of YYYY-
MM-DD.

1983-01-01

user_country string The country code for the user’s registered
address. Uses the two-character ISO 3166-1
format.

US, DE

user_city string The complete name of the city associated with
the user’s registered address.

London, New York

user_region string The state or region code for the user’s
registered address. Uses the two-character ISO
3166-2 format.

NY, DE

user_zip string The zip/postal code of the user’s registered
address.

10005, PH1 1EU

Administration GuideAppendix A: Selector configuration for the Fraud Detector Plugin

4.11.0 139

Values for Save As Key
field

Data type Description Example

user_street string The first line of the user’s registered street
address. Can be hashed in ASCII encoding as
well.

MD5, SHA-2 family: 157
W 26th St

user_street2 string The second line of the user’s registered street
address. Can be hashed in ASCII encoding as
well.

MD5, SHA-2 family:
Apt.432

session_id string The session ID is a custom, unique ID that links
the user’s device data with the transactions. It
shall be based on the user’s current browsing
session, by tracking cookies for example. If
JavaScript Agent v4 is used, the encrypted
payload returned by the SDK (supported by JS
Agent v4, iOS SDK 3.0.0, Android SDK 3.0.0)
shall be sent in the session field, instead of the
session_id.

session string The base64 encoded session data returned by
the SDKs.

device_id string This field shall only be used if a device
fingerprinting solution is used already. This is
the ID that shall be linked to the transactions or
in case rules are required to be built on those
IDs.

payment_mode string The method of payment used. card, paypal, wire
transfer, bitcoin

payment_provider string The name of the payment service provider
related to the transaction.

skrill

card_fullname string The user’s full name found on the card. Can be
hashed in ASCII encoding as well.

MD5, SHA-2 family

card_bin string The first 4, 6 or 8 digits of the card number.

card_hash string The hash of the credit card used by the user in
ASCII encoding. We recommend using HMAC-
SHA256 or RSA-SHA256 formats and strictly
advise not to use MD5 hash format.

card_expire string The card’s expiration date. 2022-01

card_last string The last 4 digits of the card number. These help
to identify the card.

avs_result string The standard Address verification Service (AVS)
codes sent by the credit card processor.

N, A

cvv_result boolean The Cad Verification Value (CVV) result. true, false

status_3d string The Cad Verification Value (CVV) result. true, false

sca_method string The result of the Strong Customer
Authentication method.

2FA

phone_number string The user’s registered phone number, including
the country code. Cannot include spaces or
hyphens, the + sign is optional. The maximum
length is 19 characters.

36704316088

Administration GuideAppendix A: Selector configuration for the Fraud Detector Plugin

4.11.0 140

Values for Save As Key
field

Data type Description Example

transaction_type string The transaction type of the actual business. purchase, return

transaction_amount float The full transaction amount. As a decimal point
use '.' (full stop).

539.99

transaction_currency string The currency used by the user, in ISO 4217
format. Crypto currencies are also supported.

EUR, BTC, USDT

shipping_country string A two-character ISO 3166-1 country code for
the country associated with the user’s shipping
address.

US, DE

shipping_city string The full name of the city associated with the
user’s shipping address.

London, New York

shipping_region string The state or region code for the user’s shipping
address. Uses the two-character ISO 3166-2
format

NY, DE

shipping_zip string The zip/postal code of the user’s shipping
address.

10005, PH1 1EU

shipping_street string The first line of the user’s shipping street
address. Can be hashed in ASCII encoding as
well (e.g. MD5, SHA-2 family).

157 W 26th St

shipping_street2 string The second line of the user’s shipping street
address. Can be hashed in ASCII encoding as
well (e.g. MD5, SHA-2 family).

Apt.432

shipping_phone string The phone number associated with the user’s
shipping address, including the country code.
Cannot include spaces or hyphens, the + sign is
optional. The maximum length is 19 characters.

36704316088

shipping_fullname string The user’s registered full name. Can be hashed
in ASCII encoding as well (e.g. MD5, SHA-2
family).

John Doe

shipping_method string The type of the shipping method used by the
customer.

standard, UPS, FedEx

billing_country string The country code for the user’s billing address.
Uses the two-character ISO 3166-1 format.

US, DE

billing_city string The full name of the city associated with the
user’s billing address.

London, New York

billing_region string The state or region code for the user’s billing
address. Uses the two-character ISO 3166-2
format

NY, DE

billing_zip string The zip/postal code of the user’s billing
address.

10005, PH1 1EU

billing_street string The user’s billing street address line 1. Can be
hashed in ASCII encoding as well (e.g. MD5,
SHA-2 family).

157 W 26th St

billing_street2 string The user’s billing street address line 2. Can be
hashed in ASCII encoding as well (e.g. MD5,
SHA-2 family).

Apt.432

Administration GuideAppendix A: Selector configuration for the Fraud Detector Plugin

4.11.0 141

Values for Save As Key
field

Data type Description Example

billing_phone string The phone number associated with the user’s
billing address, including the country code.
Cannot include spaces or hyphens, the + sign is
optional. The maximum length is 19 characters.

36704316088

discount_code string The discount code that the user applied during
the checkout.

gift boolean The user can mark the order with true or false
value, dependent on if it is a gift or not.

gift_message boolean The user can mark the order with true or false
value, dependent on if the order has a gift
message or not.

merchant_category string The category of the merchant. digital_item_selle
r

merchant_id string The unique merchant identifier in case the
orders are from different merchants.

ab01-cd23-4567

merchant_created_at integer The date the merchant was created, using the
UNIX time format and UTC time zone.

1446370717 (Sun, 01
Nov 2015 09:38:37
+0000)

merchant_country string The country code for the merchant’s address.
Uses the two-character ISO 3166-1 format.

US, DE

receiver_fullname string The receiver’s full name for monetary transfer. IBAN number

details_url string The URL of the transaction in the management
platform.

regulation string The license or market name for gambling
operator.

MGA

bonus_campaign_id string The bonus campaign’s unique identifier. bonus100a

brand_id string The brand’s unique identifier. brand123

The maximum length of all request parameters is 100 characters, except for the following: 500
characters for card_hash 64 characters for the session_id (sent directly or within the session
field) 19 characters for the phone_number 15 characters for card_bin 4 characters for
transaction_currency 50 characters for discount_code and shipping_method ** 255
characters for transaction_id

Appendix B: Time zones
Country Code Time zone Name

AD Europe/Andorra

AE Asia/Dubai

AF Asia/Kabul

AG America/Antigua

Administration Guide Appendix B: Time zones

4.11.0 142

Country Code Time zone Name

AI America/Anguilla

AL Europe/Tirane

AM Asia/Yerevan

AO Africa/Luanda

AQ Antarctica/McMurdo

AQ Antarctica/Casey

AQ Antarctica/Davis

AQ Antarctica/DumontDUrville

AQ Antarctica/Mawson

AQ Antarctica/Palmer

AQ Antarctica/Rothera

AQ Antarctica/Syowa

AQ Antarctica/Troll

AQ Antarctica/Vostok

AR America/Argentina/Buenos_Aires

AR America/Argentina/Cordoba

AR America/Argentina/Salta

AR America/Argentina/Jujuy

AR America/Argentina/Tucuman

AR America/Argentina/Catamarca

AR America/Argentina/La_Rioja

AR America/Argentina/San_Juan

AR America/Argentina/Mendoza

AR America/Argentina/San_Luis

AR America/Argentina/Rio_Gallegos

AR America/Argentina/Ushuaia

AS Pacific/Pago_Pago

AT Europe/Vienna

AU Australia/Lord_Howe

AU Antarctica/Macquarie

AU Australia/Hobart

AU Australia/Currie

AU Australia/Melbourne

AU Australia/Sydney

Administration Guide Appendix B: Time zones

4.11.0 143

Country Code Time zone Name

AU Australia/Broken_Hill

AU Australia/Brisbane

AU Australia/Lindeman

AU Australia/Adelaide

AU Australia/Darwin

AU Australia/Perth

AU Australia/Eucla

AW America/Aruba

AX Europe/Mariehamn

AZ Asia/Baku

BA Europe/Sarajevo

BB America/Barbados

BD Asia/Dhaka

BE Europe/Brussels

BF Africa/Ouagadougou

BG Europe/Sofia

BH Asia/Bahrain

BI Africa/Bujumbura

BJ Africa/Porto-Novo

BL America/St_Barthelemy

BM Atlantic/Bermuda

BN Asia/Brunei

BO America/La_Paz

BQ America/Kralendijk

BR America/Noronha

BR America/Belem

BR America/Fortaleza

BR America/Recife

BR America/Araguaina

BR America/Maceio

BR America/Bahia

BR America/Sao_Paulo

BR America/Campo_Grande

BR America/Cuiaba

Administration Guide Appendix B: Time zones

4.11.0 144

Country Code Time zone Name

BR America/Santarem

BR America/Porto_Velho

BR America/Boa_Vista

BR America/Manaus

BR America/Eirunepe

BR America/Rio_Branco

BS America/Nassau

BT Asia/Thimphu

BW Africa/Gaborone

BY Europe/Minsk

BZ America/Belize

CA America/St_Johns

CA America/Halifax

CA America/Glace_Bay

CA America/Moncton

CA America/Goose_Bay

CA America/Blanc-Sablon

CA America/Toronto

CA America/Nipigon

CA America/Thunder_Bay

CA America/Iqaluit

CA America/Pangnirtung

CA America/Atikokan

CA America/Winnipeg

CA America/Rainy_River

CA America/Resolute

CA America/Rankin_Inlet

CA America/Regina

CA America/Swift_Current

CA America/Edmonton

CA America/Cambridge_Bay

CA America/Yellowknife

CA America/Inuvik

CA America/Creston

Administration Guide Appendix B: Time zones

4.11.0 145

Country Code Time zone Name

CA America/Dawson_Creek

CA America/Fort_Nelson

CA America/Vancouver

CA America/Whitehorse

CA America/Dawson

CC Indian/Cocos

CD Africa/Kinshasa

CD Africa/Lubumbashi

CF Africa/Bangui

CG Africa/Brazzaville

CH Europe/Zurich

CI Africa/Abidjan

CK Pacific/Rarotonga

CL America/Santiago

CL America/Punta_Arenas

CL Pacific/Easter

CM Africa/Douala

CN Asia/Shanghai

CN Asia/Urumqi

CO America/Bogota

CR America/Costa_Rica

CU America/Havana

CV Atlantic/Cape_Verde

CW America/Curacao

CX Indian/Christmas

CY Asia/Nicosia

CY Asia/Famagusta

CZ Europe/Prague

DE Europe/Berlin

DE Europe/Busingen

DJ Africa/Djibouti

DK Europe/Copenhagen

DM America/Dominica

DO America/Santo_Domingo

Administration Guide Appendix B: Time zones

4.11.0 146

Country Code Time zone Name

DZ Africa/Algiers

EC America/Guayaquil

EC Pacific/Galapagos

EE Europe/Tallinn

EG Africa/Cairo

EH Africa/El_Aaiun

ER Africa/Asmara

ES Europe/Madrid

ES Africa/Ceuta

ES Atlantic/Canary

ET Africa/Addis_Ababa

FI Europe/Helsinki

FJ Pacific/Fiji

FK Atlantic/Stanley

FM Pacific/Chuuk

FM Pacific/Pohnpei

FM Pacific/Kosrae

FO Atlantic/Faroe

FR Europe/Paris

GA Africa/Libreville

GB Europe/London

GD America/Grenada

GE Asia/Tbilisi

GF America/Cayenne

GG Europe/Guernsey

GH Africa/Accra

GI Europe/Gibraltar

GL America/Godthab

GL America/Danmarkshavn

GL America/Scoresbysund

GL America/Thule

GM Africa/Banjul

GN Africa/Conakry

GP America/Guadeloupe

Administration Guide Appendix B: Time zones

4.11.0 147

Country Code Time zone Name

GQ Africa/Malabo

GR Europe/Athens

GS Atlantic/South_Georgia

GT America/Guatemala

GU Pacific/Guam

GW Africa/Bissau

GY America/Guyana

HK Asia/Hong_Kong

HN America/Tegucigalpa

HR Europe/Zagreb

HT America/Port-au-Prince

HU Europe/Budapest

ID Asia/Jakarta

ID Asia/Pontianak

ID Asia/Makassar

ID Asia/Jayapura

IE Europe/Dublin

IL Asia/Jerusalem

IM Europe/Isle_of_Man

IN Asia/Kolkata

IO Indian/Chagos

IQ Asia/Baghdad

IR Asia/Tehran

IS Atlantic/Reykjavik

IT Europe/Rome

JE Europe/Jersey

JM America/Jamaica

JO Asia/Amman

JP Asia/Tokyo

KE Africa/Nairobi

KG Asia/Bishkek

KH Asia/Phnom_Penh

KI Pacific/Tarawa

KI Pacific/Enderbury

Administration Guide Appendix B: Time zones

4.11.0 148

Country Code Time zone Name

KI Pacific/Kiritimati

KM Indian/Comoro

KN America/St_Kitts

KP Asia/Pyongyang

KR Asia/Seoul

KW Asia/Kuwait

KY America/Cayman

KZ Asia/Almaty

KZ Asia/Qyzylorda

KZ Asia/Qostanay

KZ Asia/Aqtobe

KZ Asia/Aqtau

KZ Asia/Atyrau

KZ Asia/Oral

LA Asia/Vientiane

LB Asia/Beirut

LC America/St_Lucia

LI Europe/Vaduz

LK Asia/Colombo

LR Africa/Monrovia

LS Africa/Maseru

LT Europe/Vilnius

LU Europe/Luxembourg

LV Europe/Riga

LY Africa/Tripoli

MA Africa/Casablanca

MC Europe/Monaco

MD Europe/Chisinau

ME Europe/Podgorica

MF America/Marigot

MG Indian/Antananarivo

MH Pacific/Majuro

MH Pacific/Kwajalein

MK Europe/Skopje

Administration Guide Appendix B: Time zones

4.11.0 149

Country Code Time zone Name

ML Africa/Bamako

MM Asia/Yangon

MN Asia/Ulaanbaatar

MN Asia/Hovd

MN Asia/Choibalsan

MO Asia/Macau

MP Pacific/Saipan

MQ America/Martinique

MR Africa/Nouakchott

MS America/Montserrat

MT Europe/Malta

MU Indian/Mauritius

MV Indian/Maldives

MW Africa/Blantyre

MX America/Mexico_City

MX America/Cancun

MX America/Merida

MX America/Monterrey

MX America/Matamoros

MX America/Mazatlan

MX America/Chihuahua

MX America/Ojinaga

MX America/Hermosillo

MX America/Tijuana

MX America/Bahia_Banderas

MY Asia/Kuala_Lumpur

MY Asia/Kuching

MZ Africa/Maputo

NA Africa/Windhoek

NC Pacific/Noumea

NE Africa/Niamey

NF Pacific/Norfolk

NG Africa/Lagos

NI America/Managua

Administration Guide Appendix B: Time zones

4.11.0 150

Country Code Time zone Name

NL Europe/Amsterdam

NO Europe/Oslo

NP Asia/Kathmandu

NR Pacific/Nauru

NU Pacific/Niue

NZ Pacific/Auckland

NZ Pacific/Chatham

OM Asia/Muscat

PA America/Panama

PE America/Lima

PF Pacific/Tahiti

PF Pacific/Marquesas

PF Pacific/Gambier

PG Pacific/Port_Moresby

PG Pacific/Bougainville

PH Asia/Manila

PK Asia/Karachi

PL Europe/Warsaw

PM America/Miquelon

PN Pacific/Pitcairn

PR America/Puerto_Rico

PS Asia/Gaza

PS Asia/Hebron

PT Europe/Lisbon

PT Atlantic/Madeira

PT Atlantic/Azores

PW Pacific/Palau

PY America/Asuncion

QA Asia/Qatar

RE Indian/Reunion

RO Europe/Bucharest

RS Europe/Belgrade

RU Europe/Kaliningrad

RU Europe/Moscow

Administration Guide Appendix B: Time zones

4.11.0 151

Country Code Time zone Name

UA Europe/Simferopol

RU Europe/Kirov

RU Europe/Astrakhan

RU Europe/Volgograd

RU Europe/Saratov

RU Europe/Ulyanovsk

RU Europe/Samara

RU Asia/Yekaterinburg

RU Asia/Omsk

RU Asia/Novosibirsk

RU Asia/Barnaul

RU Asia/Tomsk

RU Asia/Novokuznetsk

RU Asia/Krasnoyarsk

RU Asia/Irkutsk

RU Asia/Chita

RU Asia/Yakutsk

RU Asia/Khandyga

RU Asia/Vladivostok

RU Asia/Ust-Nera

RU Asia/Magadan

RU Asia/Sakhalin

RU Asia/Srednekolymsk

RU Asia/Kamchatka

RU Asia/Anadyr

RW Africa/Kigali

SA Asia/Riyadh

SB Pacific/Guadalcanal

SC Indian/Mahe

SD Africa/Khartoum

SE Europe/Stockholm

SG Asia/Singapore

SH Atlantic/St_Helena

SI Europe/Ljubljana

Administration Guide Appendix B: Time zones

4.11.0 152

Country Code Time zone Name

SJ Arctic/Longyearbyen

SK Europe/Bratislava

SL Africa/Freetown

SM Europe/San_Marino

SN Africa/Dakar

SO Africa/Mogadishu

SR America/Paramaribo

SS Africa/Juba

ST Africa/Sao_Tome

SV America/El_Salvador

SX America/Lower_Princes

SY Asia/Damascus

SZ Africa/Mbabane

TC America/Grand_Turk

TD Africa/Ndjamena

TF Indian/Kerguelen

TG Africa/Lome

TH Asia/Bangkok

TJ Asia/Dushanbe

TK Pacific/Fakaofo

TL Asia/Dili

TM Asia/Ashgabat

TN Africa/Tunis

TO Pacific/Tongatapu

TR Europe/Istanbul

TT America/Port_of_Spain

TV Pacific/Funafuti

TW Asia/Taipei

TZ Africa/Dar_es_Salaam

UA Europe/Kiev

UA Europe/Uzhgorod

UA Europe/Zaporozhye

UG Africa/Kampala

UM Pacific/Midway

Administration Guide Appendix B: Time zones

4.11.0 153

Country Code Time zone Name

UM Pacific/Wake

US America/New_York

US America/Detroit

US America/Kentucky/Louisville

US America/Kentucky/Monticello

US America/Indiana/Indianapolis

US America/Indiana/Vincennes

US America/Indiana/Winamac

US America/Indiana/Marengo

US America/Indiana/Petersburg

US America/Indiana/Vevay

US America/Chicago

US America/Indiana/Tell_City

US America/Indiana/Knox

US America/Menominee

US America/North_Dakota/Center

US America/North_Dakota/New_Salem

US America/North_Dakota/Beulah

US America/Denver

US America/Boise

US America/Phoenix

US America/Los_Angeles

US America/Anchorage

US America/Juneau

US America/Sitka

US America/Metlakatla

US America/Yakutat

US America/Nome

US America/Adak

US Pacific/Honolulu

UY America/Montevideo

UZ Asia/Samarkand

UZ Asia/Tashkent

VA Europe/Vatican

Administration Guide Appendix B: Time zones

4.11.0 154

Country Code Time zone Name

VC America/St_Vincent

VE America/Caracas

VG America/Tortola

VI America/St_Thomas

VN Asia/Ho_Chi_Minh

VU Pacific/Efate

WF Pacific/Wallis

WS Pacific/Apia

YE Asia/Aden

YT Indian/Mayotte

ZA Africa/Johannesburg

ZM Africa/Lusaka

ZW Africa/Harare

Appendix C: values.yml examples

C.1. Minimal configuration
The configuration example is set as follows:

• Default TLS settings are used for storage-storage configuration

• Certificates and encryption key are generated by openssl commands

• INFO log level is defined

• If the parameters for the management configuration are not defined, the default values will be used.

Example values.yml file

config:
 storage:
 consul:
 gossip_encryption_key: MhstT80sqle63WC7knOak+c7GfK7k5OY2n/4Qk/fSXs=

 blob_store:
 access_key: your_access_key
 secret_key: your_secret_key

C.2. Management configuration with LDAP authentication
The configuration examples are set as follows:

• LDAP authentication is configured without TLS.

• The authentication configuration was tested using Microsoft Active Directory.

Administration Guide Appendix C: values.yml examples

4.11.0 155

Example values.yml with NTLM on

config:
 mgmt:
 configapi:
 ldap:
 ldap_url: ldap://ad.example.com
 use_ntlm: on
 bind_user: AD_domain\administrator # The name of the user follows the domain.
 bind_password: your_administrator_password
 user_base_dn: CN=Users,DC=example,DC=com
 group_base_dn: CN=Users,CN=Builtin,DC=example,DC=com
 allowed_groups:
 - Users

 storage:
 consul:
 gossip_encryption_key: MhstT80sqle63WC7knOak+c7GfK7k5OY2n/4Qk/fSXs=

 blob_store:
 access_key: your_access_key
 secret_key: your_secret_key

Example values.yml with NTLM off

config:
 mgmt:
 configapi:
 ldap:
 ldap_url: ldap://ad.example.com
 use_ntlm: off
 bind_user: CN=administrator,CN=Users,DC=example,DC=com # This must be the DN of
the user
 bind_password: your_administrator_password
 user_base_dn: CN=Users,DC=example,DC=com
 group_base_dn: CN=Users,CN=Builtin,DC=example,DC=com
 allowed_groups:
 - Users

 storage:
 consul:
 gossip_encryption_key: MhstT80sqle63WC7knOak+c7GfK7k5OY2n/4Qk/fSXs=

 blob_store:
 access_key: your_access_key
 secret_key: your_secret_key

Appendix D: LDAP certificate examples
Single CA file example

-----BEGIN CERTIFICATE-----
... (the certificate for the CA)...
-----END CERTIFICATE-----

Administration Guide Appendix D: LDAP certificate examples

4.11.0 156

Example on certificate chain with multiple CAs

-----BEGIN CERTIFICATE-----
... (the certificate for the CA)...
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
... (the root certificate for the CA's issuer)...
-----END CERTIFICATE-----

Glossary
API Application Programming Interface

CA Certification Authority

CRL Certificate Revocation List

HTTP HyperText Transport Protocol

HTTPS HyperText Transport Protocol Secure

JSON JavaScript Object Notation

LDAP Lightweight Directory Access Protocol

MIB Management Information Base

NTLM NT LAN Manager

PEM Privacy Enhanced Mail

SNI Server Name Indication

SNMP Simple Network Management Protocol

SOAP Simple Object Access Protocol

SSL Secure Socket Layer

SIEM Security Information and Event Management

TLS Transport Layer Security

URI Universal Resource Indicator

URL Universal Resource Locator

WSDL Web Service Definition Language

XML Extensible Markup Language

XSD XML Schema Definition

Administration Guide Glossary

4.11.0 157

	Proxedo API Security in Kubernetes: Administration Guide
	Preface
	Typographical conventions
	Contact and support information
	Sales contact
	Support contact
	Training

	1. Scope of this document
	2. Introduction to Proxedo API Security
	2.1. What is Proxedo API Security
	2.2. Where to start

	3. Overview of Proxedo API Security
	3.1. Main features
	3.2. Main Concepts in Proxedo API Security
	3.3. Architecture for Proxedo API Security

	4. Installation of Proxedo API Security in Kubernetes environment
	4.1. Prerequisites for installing PAS
	4.2. Installing PAS in Kubernetes
	4.3. Verifying the installation of PAS in Kubernetes

	5. Base system configuration for PAS in Kubernetes
	5.1. Infrastructure configuration
	5.2. PAS configuration in Kubernetes

	6. Configuration of Proxedo API Security on the Web User Interface
	6.1. Minimum configuration
	6.2. Login Page
	6.3. Proxedo API Security Web User Interface main page
	6.4. BRICKS - Configuration units
	6.5. PLUGINS - Configuration units
	6.6. SERVICES - Configuration units
	6.7. SYSTEM - Configuration units
	6.8. System-wide status information
	6.9. Checking and finalizing changes in Proxedo API Security configuration
	6.10. Applying and validating Proxedo API Security configuration
	6.11. Backup and restore running or user configuration for Proxedo API Security

	7. Operation of Proxedo API Security in Kubernetes environment
	7.1. Querying objects
	7.2. Inspecting objects
	7.3. Checking logs
	7.4. Troubleshooting containers
	7.5. Changing bootstrap configuration
	7.6. Backup and restore
	7.7. Factory reset

	Appendix A: Selector configuration for the Fraud Detector Plugin
	Appendix B: Time zones
	Appendix C: values.yml examples
	C.1. Minimal configuration
	C.2. Management configuration with LDAP authentication

	Appendix D: LDAP certificate examples
	Glossary

