
Proxedo API Security based on VM
environment: Administration Guide

Copyright © 2019 Balasys IT Ltd.. All rights reserved. This document is protected by copyright and is
distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
document may be reproduced in any form by any means without prior written authorization of Balasys.

This documentation and the product it describes are considered protected by copyright according to the
applicable laws.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/). This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com)

Linux™ is a registered trademark of Linus Torvalds.

Windows™ 10 is registered trademarks of Microsoft Corporation.

The Balasys™ name and the Balasys™ logo are registered trademarks of Balasys IT Ltd.

The Proxedo™ name and the Proxedo™ logo are registered trademarks of Balasys IT Ltd.

AMD Ryzen™ and AMD EPYC™ are registered trademarks of Advanced Micro Devices, Inc.

Intel® Core™ and Intel® Xeon™ are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries.

All other product names mentioned herein are the trademarks of their respective owners.

DISCLAIMER

Balasys is not responsible for any third-party websites mentioned in this document. Balasys does not
endorse and is not responsible or liable for any content, advertising, products, or other material on or
available from such sites or resources. Balasys will not be responsible or liable for any damage or loss
caused or alleged to be caused by or in connection with use of or reliance on any such content, goods, or
services that are available on or through any such sites or resources.

2024-05-13

Administration Guide

4.10.0 1

http://www.openssl.org/
mailto:eay@cryptsoft.com

Preface

Typographical conventions
Before you start using this guide, it is important to understand the terms and typographical conventions used in
the documentation. For more information on specialized terms and abbreviations used in the documentation, see
the Glossary at the end of this document.

The following text formatting principles and icons identify special information in the document.

 Tips provide best practices and recommendations.


Notes provide additional information on a topic, and emphasize important facts and
considerations.


Warnings mark situations where loss of data or misconfiguration of the device is possible if the
instructions are not obeyed.

Command

Commands you have to execute.

Emphasis
Reference items, additional readings.

/path/to/file

File names.

Parameters
Parameter and attribute names.

Additional marks used specifically in the Web User Interface (UI):

Key Description

* The elements marked with * in the configuration reference tables are mandatory to
be configured.

(Default) For some of the configuration elements there are recommended default values,
marked as (Default). In case the value is not defined during the configuration, the
default value will be considered for the actual element.

+ By clicking this sign you can add the actual element to the list of configuration
elements.

Contact and support information
This product is developed and maintained by Balasys IT Ltd..

Contact:

Administration Guide Preface

4.10.0 2

Balasys IT Ltd.
4 Alíz Street
H-1117 Budapest, Hungary
Tel: +36 1 646 4740
E-mail: <info@balasys.hu>
Web: http://balasys.hu/

Sales contact
You can directly contact us with sales-related topics at the e-mail address <sales@balasys.hu>, or leave us your
contact information and we call you back.

Support contact
To access the Balasys Support System, sign up for an account at the Balasys Support System page. Online support
is available 24 hours a day.

Balasys Support System is available only for registered users with a valid support package.

Support e-mail address: <support@balasys.hu>.

Training
Balasys IT Ltd. holds courses on using its products for new and experienced users. For dates, details, and
application forms, visit the https://www.balasys.hu/en/services#training webpage.

1. Scope of this document
This document describes the Web User Interface for the Proxedo API Security in VM. The purpose of this document
is to present the designed approach and the usage for the configuration of Proxedo API Security via Web User
Interface (UI). The Web UI allows easy configuration for Proxedo API Security. All the functionalities are grouped
visually and logically into thematic units which follow the logical built up of Proxedo API Security’s configuration.
The primary intended audience of this document are system engineers and system designers for configuring
Proxedo API Security systems.

2. Introduction to Proxedo API Security

2.1. What is Proxedo API Security
The Proxedo API Security (PAS) is a security solution that protects API serving endpoints. It is positioned in the
network flow between consumers of the APIs (clients) and backend solutions serving the API (servers) as a
transparent HTTP proxy.

Proxedo API Security can:

• handle incoming Transport Layer Security v1 (TLS) connections from clients & outgoing TLS connections to
servers separately and selectively

• verify that the communication conforms to HTTP specifications

• verify that the content of the messages conform to their specified content type

• verify that the content of messages conform to API specification(s) as described in schemas

• evaluate the level of risk with regards to the API call using the data collected from call data

Administration Guide Sales contact

4.10.0 3

mailto:sales@balasys.hu
mailto:support@balasys.hu
https://www.balasys.hu/en/services#training
https://www.balasys.hu/en/services#training
https://www.balasys.hu/en/services#training
https://www.balasys.hu/en/services#training
https://www.balasys.hu/en/services#training
https://www.balasys.hu/en/services#training
https://www.balasys.hu/en/services#training

• provide rule-based protection against a variety of web-based application layer attacks

• extract parts of the content of the messages and relay them to external data stores such as log servers, SIEM
systems or other data warehouses

2.2. Where to start
Depending on what you need to do the following starting points are suggested:

• To understand what the product does and how, see Overview of Proxedo API Security.

◦ If you are familiar with API terminology jump right to Architecture for Proxedo API Security.

• See Installation of Proxedo API Security based on VMs if you need to set up a new PAS.

• The Operation of Proxedo API Security based on VMs chapter is about how to manage a working system on
the level of the operating system.

• Configuration of Proxedo API Security on the Web User Interface contains in-depth information about
everything that can be configured with the help of the Web User Interface.

• If you are already familiar with the system and need to find a component that suits your needs consult the
Matcher types, Comparators, Extractor types or Insight Target.

3. Overview of Proxedo API Security

3.1. Main features

3.1.1. TLS

Transport Layer Security v1 (TLS) (successor of the now obsoleted Secure Socket Layer v3 (SSL)) is a widely used
crypto protocol, guaranteeing data integrity and confidentiality in many PKI and e-commerce systems.

The TLS framework inspects TLS connections, and also any other connections embedded into the encrypted TLS
channel. TLS connections initiated from the client are terminated on the Proxedo API Security, and two separate
TLS connections are built: one between the client and the firewall, and one between the firewall and the server. If
both connections match the configuration settings of PAS (for example, the certificates are valid, and only the
allowed encryption algorithms are used), PAS inspects the protocol embedded into the secure channel as well.
Note that the configuration settings can be different for the two connections, for example, it is possible to permit
different protocol versions and encryption settings.

3.1.2. Enforcement

Proxedo API Security acts as an HTTP proxy and verifies that the traffic passing through conforms to HTTP’s
specifications. By using OpenAPI schemas, as defined in OpenAPI specifications (also known as Swagger), it also
verifies that the traffic passing through conforms to the API endpoint’s specification and can log or deny non-
conforming traffic.

PAS also provides its own versatile filtering system to control passing traffic.

3.1.3. Fraud Detection

The Fraud Detection module of Proxedo API Security reduces the number of fraudulent transactions by
harnessing device fingerprinting and enriching incoming data with alternate sources to provide the best accuracy
and details about transactions.

3.1.4. Rule-based Enforcement

Besides its positive security model approach, Proxedo API Security also has a web application firewall module.

Administration Guide 2.2. Where to start

4.10.0 4

The WAF Enforcer protects against a variety of application layer attacks including credential theft, code injection,
cross-site scripting (XSS), cookie poisoning, CSRF, SQL injection, DoS, ransomware, and more.

3.1.5. Insights

With Proxedo API Security it is possible to extract business-relevant information with extremely high resolution
from the traffic and relay it to external data stores where further analysis can be implemented.

Thus, it is possible to feed Log Management solutions, Monitoring and SIEM systems, Data visualization tools with
data extracted from the traffic, even to the level of specific fields deep inside API calls or URI parameters.

3.1.6. Security flow

The security flow binds most of PAS’s features together. It allows flexible configuration for handling the traffic.
Multiple Enforcement, Filter and Insight plugins can be mix-and-matched with control over error policies.

3.1.7. High Availability

Proxedo API Security offers the high availability (HA) feature optionally. With the help of this feature, two identical
PAS servers provide redundancy so that the network traffic is not disturbed in case any of the nodes fails. Support
for synchronizing configuration and setting remote services' state is also implemented.

3.1.8. Monitoring

The Monitoring system of Proxedo API Security core leverages the widely accepted Simple Network Management
Protocol (SNMP) to monitor its network components and to collect data on the components systematically. The
monitoring capability of PAS core relies on the SNMP daemon. The collected data, organized into an information
database and shared between the SNMP daemon and the Monitoring Manager is called Management Information
Base (MIB). For the analysis of the collected data, the BALASYS-SNMP-MIB and the PAS-SNMP-MIB Management
Information Base (MIB) documents can be downloaded from Balasys customer documentation. Further
recommended MIB files are, SNMPv2-MIB, IF-MIB and UCD-SNMP-MIB.


For the monitoring implementation, PAS depends on the snmpd service on the underlying host
operating system. Therefore if snmpd fails or is stopped, PAS also stops.

3.2. Main Concepts in Proxedo API Security
This chapter provides an overview of the Proxedo API Security solution, introduces its main concepts, and
explains the relationship of the various components.

API Endpoint
Proxedo API Security protects API endpoints. An API endpoint is the serving part of the communication
channel and is the collection of all functions of a service. It resides at a list of well-known top URIs under which
all the functions are accessible. APIs have well-defined HTTP Endpoints for all exposed calls, resources etc.,
usually through providing a schema that describes all parameters of these URI paths, including possible HTTP
response codes, the format and fields of the data structure in the request’s and response’s body.

Client
It is a consumer of API endpoints. It is the source of the requests.

Backend
The backend constitutes of one or more servers that serve the API endpoint. It receives the requests of the
client and sends the responses.

Administration Guide 3.2. Main Concepts in Proxedo API Security

4.10.0 5

HTTP message
It can be an HTTP request coming from the client or an HTTP response coming from the backend.

Call
An HTTP conversation constitutes of a request — response interchange of HTTP messages between the client
and the backend. Whenever the direction is irrelevant in the context — it applies to both requests and
responses — the message is named Call.

Listener
It is the part of PAS that listens to incoming traffic for given API Endpoints. It is bound to a network port.
Clients address this port when accessing API Endpoints through the gateway.

TLS
Transport Layer Security is the cryptographic protocol that secures HTTPS communications. PAS can apply
TLS encryption both when communicating with Clients and Backends. TLS encryption can also be used with
Syslog Insight Target and Elastic Insight Target.

Security flow
It provides a collection of security rules that PAS applies to a Call. It is two series of Plugins: one for requests
and one for responses.

Plugin
It is an element of the security flow that applies a specific security function. It has different types based on the
role they do.

Decompressor
A Plugin responsible for decompressing compressed content in the HTTP message’s body. This ensures
that the original content of the message is available for processing.

Compressor
A Plugin responsible for compressing the result of a flow and forwarding the compressed content.

Deserializer
A Plugin responsible for parsing the HTTP message’s body to structured data. This ensures that a message
is well-formed. The structured data will also be consumed by other Plugins that operate on the body of the
message.

Serializer
A Plugin responsible for serializing the structured data to the format of the HTTP message’s body.

Filter
A Plugin that rejects calls when they match defined rules.

Enforcer
A Plugin that validates calls against externally defined schemas.

Insight
A Plugin that extracts various data from the call and sends it to external systems (log servers, SIEMs, and
other data analysis tools).

Brick
They are reusable components of Plugins. They can be defined on their own and then shared by multiple
Plugins.

Error policy
It is a brick that defines what happens if the Plugin has found an error. It decides if calls are rejected or
merely logged, and defines the details of the HTTP error response sent to the client if a call is rejected.

Administration Guide 3.2. Main Concepts in Proxedo API Security

4.10.0 6

Matcher
It is a brick that decides if the Plugin should be executed for a given call by checking various data in the
HTTP message.

Selector
Selector is a brick that can extract a piece of information from a call. It is used by Insight plugins.

Insight Target
It is a brick that defines an external system to send extracted data to. It is used by Insight plugins.

High Availability
This feature enables two nodes serving as redundant PAS endpoints. It helps ensure service continuity in case
of a node failure while being transparent to clients.

3.3. Architecture for Proxedo API Security
Proxedo API Security is based on a micro-services architecture separated into three deployment units:
Management, Storage, and Core. These deployment units (or infrastructure components) can be scaled or moved
between hosts to accommodate different throughput and reliability requirements.

3.3.1. Management component

Responsible for handling the security component configuration of the Core component, while the data itself
resides in the Storage component. Contains the following services:

Config API
Exposes a configuration API that can be used to manage the product:

• Editing the security component configuration

• Applying the security component configuration

• Monitoring service status

Config WebUI
Provides a browser-based user interface to the configuration API.

3.3.2. Storage component

Stores and distributes different versions of the security component configuration to the Core component.
Contains the following services:

Consul
Stores the different versions of the security component configuration, and monitors the status of PAS services.

Blob Store
Stores file resources that are part of the security component configuration.

3.3.3. Core component

The Core services are each responsible for a well-defined subset of handling traffic between the client and the
backend. Contains the following services:

Transport Director
Manages the transport layer of API connections:

• Handles network connections from the client

Administration Guide 3.3. Architecture for Proxedo API Security

4.10.0 7

• Handles network connections towards the backends

• Handles TLS on these connections

• Load balances between multiple backend servers

• Load balances between multiple Flow Directors

• Enforces HTTP protocol validity in calls

Flow Director
Responsible for the execution of the Plugins in the Endpoints' flow and for applying Error Policies as necessary.

Insight Director
Manages the connections to Insight Targets. Responsible for sending the data collected by Insight plugins to
Insight Target systems.

Monitoring Manager
Provides monitoring data about the Core services and the host machine via an SNMP interface.

Content Filtering Director
Provides content filtering capabilities for the WAF Enforcer plugin.

High Availability Director
Responsible for maintaining the High Availability of the Core services.

3.3.4. The configuration process


While the configuration most commonly takes place on the Web UI, the process works the
same way through the configuration API.

1. When a user logs in to the Web UI, the currently running configuration is visible.

◦ When logging in to the Web UI for the first time after a fresh install, the current configuration is empty.
Only a few mandatory and default components are added, and some mandatory components must be
added to the configuration for the first configuration to become valid.

◦ The running configuration is always stored in the Storage component.

2. The user can edit the configuration: add new components, delete existing components, and change fields on
existing components.

◦ The changes the user makes are only visible to the user, other users can only see the running
configuration and their own changes.

◦ The user’s changes are always stored in the Storage component.

3. Individual components and the configuration as a whole are validated.

◦ Partially configured components can be saved with missing fields, but they won’t become valid until all
mandatory fields are properly filled.

◦ An invalid configuration is still saved, and can be fixed at a later time. Every user has their own set of
changes.

4. When the configuration is valid, it can be applied to the running system.

◦ When a user’s configuration is applied, the changes are merged with the running configuration.

◦ Applying the changes means reloading the Core services with the new configuration.

◦ The new running configuration becomes visible to every user.

3.3.5. Connection handling example

Administration Guide 3.3. Architecture for Proxedo API Security

4.10.0 8

Figure 1. PAS Architecture

1. Incoming connections are accepted by the Transport Director.

◦ It handles TLS with the client if necessary.

◦ Chooses the Endpoint based on the URL.

2. It hands over the connection to the Flow Director.

◦ The Flow Director applies the Endpoint specific Request Security Flow.

3. If an Insight plugin needs to send data to an external Insight Target it sends the collected data to the Insight
Director.

Administration Guide 3.3. Architecture for Proxedo API Security

4.10.0 9

4. The Insight Director sends the data further to the Insight Target with the appropriate protocol.

5. If a WAF Enforcer plugin is present in the Request Security Flow it sends data to the Content Filtering Director
and receives a verdict.

6. If a Fraud Detector plugin is present in the Request Security Flow it sends data to the external Fraud API and
receives a score.

7. The Flow Director hands the connection back to the Transport Director.

8. The Transport Director then sends the data to the Backend.

◦ It handles TLS with the backends if necessary.

◦ It performs load balancing among Backend servers if necessary.

The same procedure is executed with the response coming from the Backend.

3.3.6. Understanding processing flow

The figure on Proxedo API Security architecture and the steps following that describe how client connection is
handled. The following figure explains how calls are processed in more details:

Figure 2. PAS processing flow

1. As shown in the figure above, the incoming connection from the client is handled by the Transport Director,
applying TLS if needed.

2. The Transport Director then chooses the Endpoint based on the URL in the request. First endpoint that has a
matching URL is chosen.

3. The Transport Director hands over the connection to the Flow Director, indicating which Endpoint the
connection belongs to.

4. The Flow Director then starts applying the request part of the Security Flow definition.

5. For each Plugin the Flow Director:

◦ Checks if the Plugin's matcher matches the request.

◦ If so, it executes the Plugin, if not, it executes the next Plugin.

◦ If the Plugin indicates success it executes the next Plugin.

◦ If the Plugin indicates an error it applies the Plugin's error policy. If the policy dictates to abort the
connection:

Administration Guide 3.3. Architecture for Proxedo API Security

4.10.0 10

▪ It fills error details and hands back the connection to the Transport Director, aborting the execution of
the flow.

▪ The Transport Director closes the connection, sending error details to the client if allowed by the
policy.

6. Once the last Plugin has been executed the connection is handed back to the Transport Director.

7. The Transport Director initiates the connection towards the Backend:

◦ It handles load balancing if necessary.

◦ It handles TLS if necessary.

◦ It sends the request itself to the Backend server.

8. The Backend server sends its response to the Transport Director.

9. Once, the response has been received the Transport Director again hands over the connection to the Flow
Director.

10. The Flow Director then starts applying the response part of the Security Flow definition, executing the Plugins
as above.

11. Once, the last Plugin has been executed the connection is handed back to the Transport Director.

12. Finally, the Transport Director sends the response to the client.

Usually, Plugins are organized in the following manner:

• A Decompressor Plugin extracts the compressed body.

• A Deserializer Plugin processes the decompressed request to understand the details in the body.

• Filters are applied to filter unnecessary traffic.

• Enforcers are applied for detailed validation of calls.

• Insights are applied to collect data from the call.

• Serializer Plugin serializes the body

• Compressor Plugin compresses the serialized body

Though the order of the plugins can be changed based on the needs, note the followings:

• When a Plugin needs access to the request body it requires Deserialized data. It is therefore strongly
recommended that the first plugin is a Decompressor followed by a Deserializer.

• At the end of the flow it is strongly recommended to place a Serializer plugin followed by a Compressor.

• Generally Insights are applied after Filters and Enforcers so that they are not executed on possibly invalid
calls.

• Anything that operates on the HTTP headers or the body of the message will be aware of the call direction:
The same Plugin in the request and response flow will act on the request or response data.

• However, the Flow Director handles a request-response exchange together, so you can still use details from
the request in Plugins of the response flow. The most notable example of this is using URI or method matchers
in the response flow.

• Plugins in the request flow, however, cannot access details of the response flow (since they are not available
yet).

It is also worth noting that Insight Plugins instantly hand over data to the Insight Director, and let the execution
continue.

3.3.7. Architecture with High Availability

In case of HA operation, the core component is configured on both nodes participating in the HA operation. The
architecture and the process are identical on both nodes, but they are set up to work redundantly. Only one node
(the master) of the cluster is receiving traffic actively.

Administration Guide 3.3. Architecture for Proxedo API Security

4.10.0 11

This operation uses the following additional resources:

• two nodes with PAS core installed


At the moment, only clusters of two are supported. It also means, that you will need to
have a node with both management and core components installed, and a node with only
core installed.

• a virtual IP address through which the service is supposed to be accessible

The technical foundation of our HA solution is the Virtual Router Redundancy Protocol (VRRP). Once the
requirements are properly set up, it operates as follows:

• At startup, the nodes send keepalive messages to each other to see if the other node is available. Both of them
consider themselves to be in BACKUP state until they make sure the other node is not in MASTER state. If both
nodes are newly connected to the cluster, they participate in an election and the one with the higher priority
becomes the MASTER.

• After one of the nodes has become the MASTER, both of them keep sending keepalive messages so that they
notice when the other node disappears.

• A node (re)connecting to the cluster does not result in the reelection of the MASTER.

4. Installation of Proxedo API Security based on VMs
PAS is mainly distributed as Docker images, and is also completed with a .deb package that sets up the
operational environment.

You can install the management and the core components either on one single node in Standalone setup or on
two separate ones in Multi node setup using the automated deployment tool. The synchronization of the core
configuration is provided by the storage component.

The specific sections on the installation of the different components provide details on how to install them on a
node. The installation order of the components is described in section Installation scenarios.

For the multi node setup, we provide a core deployment tool along with the management component. Using that,
you can deploy and configure the core and the storage components on the remote node. The main starting points
of its usage are described in section Multi node setup using the automated deployment tool.

4.1. Prerequisites for installing PAS
The followings are needed prior to the installation of Proxedo API Security:

• the licence for PAS

• a technical user for accessing Balasys' download site and docker registry

• the PAS storage, core and management .deb packages

 You can download the .deb packages from the Balasys Download website.

• one or two servers with Ubuntu 22.04 Operating System installed. See Installation scenarios.


Make sure, that there is no user or group named "pas" in the environment where Proxedo API
Security is planned to be installed.

Administration Guide 4. Installation of Proxedo API Security based on VMs

4.10.0 12

https://download.balasys.hu/pas/

4.1.1. Minimum system requirements

Each server of the PAS installation must meet the following minimum system requirements:

Table 1. Minimum system requirements

Operating system Ubuntu 22.04 LTS

CPU cores 4

Memory 4 GB

Disk 40 GB

Network 1 interface, 1 Gbps


This minimum configuration can run a maximum of two Flow Director instances on servers with
the core component installed.

4.2. Installation scenarios

4.2.1. Standalone setup

For a standalone setup one server is needed.

There are two major installation methods available for the standalone setup:

• Simplified installation - This simplified installation method directs the user with prompt windows throughout
the installation process, offers default values.

Follow the instructions for simplified installation for standalone setup:

1. Simplified installation for the storage component

2. Simplified installation for the management component

3. Simplified installation for the core component

 The simplified installation method is only available for the standalone setup.

• Manual installation - For manual installation in a standalone setup, all of the components must be installed
on the same node in the following order:

1. Storage component

2. Management component

3. Core component

4.2.2. Multi node setup

For a multi node setup two servers are needed, one server for the PAS core and another server for the
management component.

In a multi node setup there will be a management node and another node with the core component. The storage
component must be installed and configured on both nodes. The installation must be done in the following order:

1. Management node

Administration Guide 4.2. Installation scenarios

4.10.0 13

a. Storage component

b. Management component

2. Core node

The core node can be set up with the automation tool or manually installing the components in the following
order:

a. Storage component

b. Core component

4.2.3. Multi node HA setup

Multi node HA setup is similar to the standard multi node setup, but in this scenario the management node will
run the core component, as well. The installation order is the following:

1. Management node

a. Storage component

b. Management component

c. Core component

2. Core node

Core node can be set up with the automation tool or manually installing the components in the following
order:

a. Storage component

b. Core component

The HA component is included in the core component, and it must be configured after the installation. See High
availability configuration.

4.3. Simplified installation method for the standalone setup
This simplified installation method is only available for the standalone setup. By choosing this installation
method, the user is directed through the installation with the help of prompt windows and suggested default
values.

4.3.1. Simplified installation for the storage component

1. Log in as root.

2. Update the OS' package list: apt update.

3. Install the PAS storage .deb package: apt install <path/to/deb>/proxedo-api-security-
storage_<version>.deb.

This will:

◦ Create a user named pas for running and configuring PAS, if it has not been created yet by the installation
of other components previously.

 pas user must not be created manually beforehand.

◦ Install the necessary configuration files and helper scripts under /opt/balasys.

Administration Guide4.3. Simplified installation method for the standalone setup

4.10.0 14

◦ Create systemd services for managing the PAS storage component.


You need to use apt to install the .deb package locally as it installs its dependencies as
well. dpkg will not resolve dependencies, and apt-get cannot install from a local file.
Also note that to install PAS from the current directory, you must use the path ./
before the .deb package, or apt will try to download the package from a repository.

4. Define the registry you want to download the docker images from. Define it in the following format:
example.com.

Figure 3. Registry to download the docker image from

5. Provide your user name for this registry.

Figure 4. User name for the docker registry

6. Define the password for the docker registry.

Figure 5. Password for the docker registry

7. Name the node.

This name will appear in the Service status dashboard. As this value is optional, you can leave it blank to skip

Administration Guide4.3. Simplified installation method for the standalone setup

4.10.0 15

naming the node.

Figure 6. Naming the node

8. Generate a TLS certificate to secure the storage access. Define the identifier to be used in the storage TLS
certificate.

Figure 7. Identifier for TLS certificate

9. Provide a valid DNS name for the storage’s TLS certificate.

Figure 8. DNS name of the storage’s TLS certificate

10. Define if the existing configuration files need to be overwritten or not.

Administration Guide4.3. Simplified installation method for the standalone setup

4.10.0 16

Figure 9. Confirming the need of existing configuration details

If the login to the docker registry is not successful, the following warnings are displayed:

Figure 10. Docker login error warning

Figure 11. Automatic generation of storage component failed

11. Change to the PAS user: su - pas.

a. Run pas-storage-update to download the docker images.

b. Start PAS storage: systemctl start proxedo-api-security-storage.

 This service is enabled by default, so the service starts on system restart.

4.3.2. Simplified installation for the management component

1. Log in as root.

2. Update the OS' package list: apt update.

3. Install the PAS storage .deb package: apt install <path/to/deb>/proxedo-api-security-
mgmt_<version>.deb.

This will:

◦ Create a user named pas for running and configuring PAS, if it has not been created yet by the installation
of other components previously.

Administration Guide4.3. Simplified installation method for the standalone setup

4.10.0 17

 pas user must not be created manually beforehand.

◦ Install the necessary configuration files and helper scripts under /opt/balasys.

◦ Create systemd services for managing the PAS storage component.


You need to use apt to install the .deb package locally as it installs its dependencies as
well. dpkg will not resolve dependencies, and apt-get cannot install from a local file.
Also note that to install PAS from the current directory, you must use the path ./
before the .deb package, or apt will try to download the package from a repository.

4. Provide the number of the port where you want the PAS Web UI to be available at, over HTTP:

Figure 12. Defining port number for PAS Web UI over HTTP

5. Provide the number of the port where you want the PAS Web UI to be available at, over HTTPS:

Figure 13. Defining port number for PAS Web UI over HTTPS

6. Define if the existing configuration files shall be overwritten by this generated configuration.

Administration Guide4.3. Simplified installation method for the standalone setup

4.10.0 18

Figure 14. Defining if the existing configuration file shall be overwritten

7. Confirm if you want to manually specify an administrator password.

Figure 15. Confirming if manual administrator password is to be set

If the administrator selects 'No', that is, the administrator does not want to manually define the administrator
password, there are no further configuration windows.

8. Define the administrator password for the management component.

Figure 16. Defining password for the administrator

The following requirements must be met when defining the administrator’s password. The password must
contain:

• at least 12 characters

• only alphanumeric characters

• at least one lowercase character

• at least one uppercase character

• at least one number

9. Confirm your administrator password by reentering it.

Administration Guide4.3. Simplified installation method for the standalone setup

4.10.0 19

Figure 17. Confirming the administrator password

If the administrator password does not meet the requirements, an error window appears with the information
that the password verification failed.

Figure 18. Password verification failed

10. Change to the PAS user: su - pas.

a. Run pas-mgmt-update to download the docker images.

b. Run systemctl start proxedo-api-security-mgmt.

4.3.3. Simplified installation for the core component

1. Log in as root.

2. Update the OS' package list: apt update.

3. Install the PAS storage .deb package: apt install <path/to/deb>/proxedo-api-
security_<version>.deb.

This will:

◦ Create a user named pas for running and configuring PAS, if it has not been created yet by the installation
of other components previously.

 pas user must not be created manually beforehand.

◦ Install the necessary configuration files and helper scripts under /opt/balasys.

◦ Create systemd services for managing the PAS storage component.


You need to use apt to install the .deb package locally as it installs its dependencies as
well. dpkg will not resolve dependencies, and apt-get cannot install from a local file.
Also note that to install PAS from the current directory, you must use the path ./
before the .deb package, or apt will try to download the package from a repository.

Administration Guide4.3. Simplified installation method for the standalone setup

4.10.0 20

4. Provide the number of Flow Director instances to run:

Figure 19. Defining the number of Flow Director instances

5. Provide the lower bound for the Transport Director’s first port range:

Figure 20. Defining the lower bound for the Transport Director’s first port range

6. Provide the upper bound for the Transport Director’s first port range:

Figure 21. Defining the upper bound for the Transport Director’s first port range

7. Provide the lower bound for the Transport Director’s second port range:

Administration Guide4.3. Simplified installation method for the standalone setup

4.10.0 21

Figure 22. Defining the lower bound for the Transport Director’s second port range

8. Provide the upper bound for the Transport Director’s second port range:

Figure 23. Defining the upper bound for the Transport Director’s second port range

9. Define if the existing configuration files need to be overwritten or not.

Figure 24. Confirming the need of existing configuration details

10. Change to the PAS user: su - pas.

a. Run pas-update to download the docker images.

b. Run systemctl start proxedo-api-security.


Note that as a registry login takes place during the installation of the core storage component,
if the registry login fails, pas-update will also fail.

4.4. Installation steps for the storage component
1. Log in as root.

2. Update the OS' package list: apt update.

3. Install the PAS storage .deb package: apt install <path/to/deb>/proxedo-api-security-
storage_4.10.0_all.deb.

Administration Guide 4.4. Installation steps for the storage component

4.10.0 22

This will:

◦ Create a user named pas for running and configuring PAS, if it has not been created yet by the installation
of other components previously.

 pas user must not be created manually beforehand.

◦ Install the necessary configuration files and helper scripts under /opt/balasys.

◦ Create systemd services for managing the PAS storage component.


You need to use apt to install the .deb package locally as it installs its dependencies as
well. dpkg will not resolve dependencies, and apt-get cannot install from a local file.
Also note that to install PAS from the current directory, you must use the path ./
before the .deb package, or apt will try to download the package from a repository.

4. Change to the PAS user: su - pas.

5. Set up parameters in /opt/balasys/etc/infrastructure/storage/docker-compose.conf. For details,
see docker-compose.conf.

6. Run pas-storage-registry-login to set up authentication with the docker registry. Provide login
credentials on the prompt. Contact support if you need assistance with your credentials.


Docker will, by default, save your credentials unencrypted in the home directory of the pas
user. Using a password-management tool like pass is not enforced, but it is
recommended.

7. Run pas-storage-update to download the docker images.

8. Run pas-storage-consul-gossip-keygen to generate gossip encryption key, and note it down. This key will
be needed for the startup configuration. See Configuration options for the storage component.


This must be run only once, and the generated key must be used in the configuration of all
storage components.

9. Run pas-storage-consul-bootstrap-ca to generate CA certificate for storage-storage communication.


This must be run only once on the management node. Do not execute it during the manual
installation of the core node.

10. Run pas-storage-consul-gen-server-cert with --dns-name FQDN or with --ip-address IP parameter to
generate the TLS certificate for storage-storage communication.

FQDN is the domain name, IP is the IP address of the managament or the core node.


There is no difference between using DNS or IP in the certificate, choose the one you
prefer. Note, that in multi node setup the same DNS or IP address must be used in
join_hosts parameter of the storage component’s configuration, according to your choice.

Administration Guide 4.4. Installation steps for the storage component

4.10.0 23


This must be run on the management node, even in the case of installing the core node in
a multi node setup.

11. Set up startup configuration in /opt/balasys/etc/storage/config.yml.

For details, see Configuration options for the storage component.

12. Run pas-storage-checkconfig to validate the configuration.

13. Start PAS storage: systemctl start proxedo-api-security-storage.

 This service is enabled by default, so the service starts on system restart.

4.5. Installation steps for the management component
1. Log in as root.

2. Update the OS' package list: apt update.

3. Install the PAS management .deb package: apt install <path/to/deb>/proxedo-api-security-
mgmt_4.10.0_all.deb.

This will:

◦ Create a user named pas for running and configuring PAS, if it has not been created yet by the installation
of other components previously.

 pas user must not be created manually beforehand.

◦ Install the necessary configuration files and helper scripts under /opt/balasys.

◦ Create systemd services for managing the PAS management component.


You need to use apt to locally install the .deb package as it installs its dependencies as
well. dpkg will not resolve dependencies, and apt-get cannot install from a local file.
Also note that to install PAS from the current directory, you must use the path ./
before the .deb package, or apt will try to download the package from a repository.

4. Change to the PAS user: su - pas.

5. Set up MINIO_* parameters in /opt/balasys/etc/infrastructure/mgmt/docker-compose.conf. You can
also modify other parameters if necessary, including port numbers and the version. For details, see docker-
compose.conf.


MINIO_* parameters must be the same as defined in the config.yml of the storage
component.

6. Run pas-mgmt-registry-login to set up authentication with the docker registry. Provide login credentials
on the prompt. Contact support if you need assistance with your credentials.

 Docker will, by default, save your credentials unencrypted in the home directory of the pas
user. Using a password-management tool like pass is not enforced, but it is

Administration Guide 4.5. Installation steps for the management component

4.10.0 24

recommended.

The following requirements must be met when defining the administrator’s password. The password must
contain:

• at least 12 characters

• only alphanumeric characters

• at least one lowercase character

• at least one uppercase character

• at least one number

7. Run pas-mgmt-update to download the docker images.

8. Set up startup configuration in /opt/balasys/etc/mgmt/config.yml.

For details, see Configuration options for the management component

9. Run pas-mgmt-checkconfig to validate the configuration.

10. Start PAS management: systemctl start proxedo-api-security-mgmt.

 This service is enabled by default, so the service starts on system restart.

4.6. Installation steps for the core component
1. Log in as root.

2. Update the OS' package list: apt update.

3. Install the PAS .deb package: apt install <path/to/deb>/proxedo-api-security_4.10.0_all.deb.

This will:

◦ Create a user named pas for running and configuring PAS, if it has not been created yet by the installation
of other components previously.

 pas user must not be created manually beforehand.

◦ Install the necessary configuration files and helper scripts under /opt/balasys.

◦ Create systemd services for managing PAS.


You need to use apt to locally install the .deb package as it installs its dependencies as
well. dpkg will not resolve dependencies, and apt-get cannot install from a local file.
Also note that to install PAS from the current directory, you must use the path ./
before the .deb package, or apt will try to download the package from a repository.

4. Change to the PAS user: su - pas.

5. Set up MINIO_* parameters and the number of Flow Director instances to run in
/opt/balasys/etc/infrastructure/pas/docker-compose.conf. If necessary, also change the version you
want to follow. For details, see docker-compose.conf.

6. Copy license.txt to /opt/balasys/etc/pas.

Administration Guide 4.6. Installation steps for the core component

4.10.0 25

7. Run pas-registry-login to set up authentication with the docker registry. Provide login credentials on the
prompt. Contact support if you need assistance with your credentials.


Docker will, by default, save your credentials unencrypted in the home directory of the pas
user. Using a password-management tool like pass is not enforced, but it is
recommended.

8. Run pas-update to download the docker images.

9. Start PAS: systemctl start proxedo-api-security.


The core component will wait for a running config before starting. To create a running
config, please refer to Configuration of Proxedo API Security on the Web User Interface.

 This service is enabled by default, so the service starts on system restart.

10. If you configured Certificate Revocation List (CRL) verification in any of your Backends or Listeners you need
to enable CRL updates:

systemctl enable proxedo-api-security-crl-update.service
systemctl enable proxedo-api-security-crl-update.timer
systemctl start proxedo-api-security-crl-update.timer

4.7. Multi node setup using the automated deployment tool
For a multi node setup, you first need to have a functional management component installed on a node. Its
storage needs to be set up to work in cluster with the node the core component is going to be deployed to. Along
with the management component, you get the automated deployment tool that helps you manage your remote
node and the core component on it.

4.7.1. Configuring multi-node setup

To deploy a core component on a remote node, the following prerequisites need to be met:

• the core and the storage .deb packages are available on the management node

• the license file is downloaded on the management node

• a node with an Ubuntu is installed

• a TLS certificate for the storage-storage communication is generated, see step 10 in Installation steps for the
storage component

• a user on the remote node is configured who can run sudo without providing password


As running sudo without a password grants virtually limitless privileges over the machine,
it is strongly advised that SSH is only allowed using SSH keys.

To configure the automation and the remote nodes, you need to fill out three types of configuration files.
However, before filling out the /opt/balasys/etc/automation/common_vars.yml file, make sure that the
password to the docker registry is encrypted using Ansible Vault.

Administration Guide4.7. Multi node setup using the automated deployment tool

4.10.0 26

Example output for encryption

$ ansible-vault encrypt_string
New Vault password:
Confirm New Vault password:
Reading plaintext input from stdin. (ctrl-d to end input)
my_docker_password!vault |
 $ANSIBLE_VAULT;1.1;AES256
62623166386564303866653766656133616463633035643134313062383634336363633836336661
6566323331306635613034653062396166316262383535660a323433663261663435323962633430
32636236393966643636636534626466626166366337303936386339663335653739306661303731
6162633732366234630a373364343536376336383035666165383533313530653463653162316461
65323731633135613330343334663231316135343464373738383962303165393236
Encryption successful

The part displayed in the following example can be used as the encrypted docker registry password in the
/opt/balasys/etc/automation/common_vars.yml file.

Example output for encrypted password

!vault |
 $ANSIBLE_VAULT;1.1;AES256
62623166386564303866653766656133616463633035643134313062383634336363633836336661
6566323331306635613034653062396166316262383535660a323433663261663435323962633430
32636236393966643636636534626466626166366337303936386339663335653739306661303731
6162633732366234630a373364343536376336383035666165383533313530653463653162316461
65323731633135613330343334663231316135343464373738383962303165393236


pas-mgmt-deploy-core will request the Ansible Vault password that was used to encrypt the
password for the docker registry. For more details, see Deployment and remote management
commands.

Fill out the following three types of configuration files to configure the automation and the remote nodes:

• /opt/balasys/etc/automation/inventory.yml: It provides the details of the nodes to deploy the core
component to.

• /opt/balasys/etc/automation/common_vars.yml: It defines the variables that are common among all
nodes.

• /opt/balasys/etc/automation/host_vars: It defines the directory holding variables for host-specific
values. For each entry in inventory.yml, there must be a file in this directory. For example, if you have an
entry named pas-node-1 in your inventory, you need to have a file named pas-node-1.yml in the host_vars
directory.

The last step to do before deploying the core component on a remote node is to implement login. Complete the
following steps:

1. Generate an SSH key.

pas@pas-node-mgmt:~$ ssh-keygen -t rsa -b 4096 -C "pas-node-1"

2. Add the SSH key to the user on the remote node which can run sudo without password.

deployment@pas-node-1:~$ mkdir -p ~/.ssh
deployment@pas-node-1:~$ cat <<generated_public_key_here>> >> ~/.ssh/authorized_keys

Administration Guide4.7. Multi node setup using the automated deployment tool

4.10.0 27

deployment@pas-node-1:~$ chmod 700 ~/.ssh/
deployment@pas-node-1:~$ chmod 600 ~/.ssh/authorized_keys

4.7.2. Deployment and remote management commands

To deploy core and manage it on the remote node, you need to run the pas-mgmt-deploy-core command.
Running this command with different command line flags, you can execute different operations. See the list and
explanation of possible operations as follows, or run pas-mgmt-deploy-core --help.

--deploy-core Deploy the core component to all nodes. It will also be
 started if not already running.
--restart-core Restart the core component on all nodes. It will restart
 ha-director as well.
--stop-core Stop the core component on all nodes. It will stop
 ha-director as well.
--deploy-ha Deploy the HA component to all nodes. It will also be
 started if not already running.
--restart-ha Restart ha-director on all nodes.
--stop-ha Stop ha-director on all nodes.
--sync-ntp Copy NTP configuration to all nodes and restart the ntp
 service.

5. Base system configuration for PAS based on VMs
This chapter explains configuration details for setting up a working PAS. Configuration settings are detailed here,
provided by the .deb packages installed on an Ubuntu 22.04 LTS server.

The .deb packages carry convenience tools for managing the Proxedo API Security core and the management
component, the actual installation and execution is done by Docker and docker-compose.

5.1. Overview of configuration directories
PAS consists of multiple components and each may have multiple configuration files for both infrastructure
definition and bootstrapping. In this section, a general overview is provided about how the corresponding
configuration directories are structured.

As a rule of thumb, every configuration file for PAS is available under /opt/balasys/etc, and right after
installation of all the components, the directory tree looks like the following.

Tree of initial configuration files

/opt/balasys/etc/
├── automation
│ ├── common_vars.yml -> ../../usr/share/automation/roles/deploy-core/vars/main.yml
│ ├── host_vars -> ../../usr/share/automation/host_vars
│ └── inventory.yml -> ../../usr/share/automation/inventory.yml
├── ha
│ └── config.yml
├── infrastructure
│ ├── ha
│ │ └── docker-compose.yml
│ ├── mgmt
│ │ ├── docker-compose.conf
│ │ └── docker-compose.yml
│ ├── pas
│ │ ├── docker-compose.conf

Administration Guide 5. Base system configuration for PAS based on VMs

4.10.0 28

│ │ └── docker-compose.yml
│ └── storage
│ ├── docker-compose.conf
│ └── docker-compose.yml
├── mgmt
│ └── config.yml
├── pas
└── storage
 └── config.yml

In general, the following rules apply:

• /opt/balasys/etc/infrastructure holds the files to describe the infrastructure, the component will run in.
Exposed ports and used images are the two most important parameters set up in the files in this directory.

• /opt/balasys/etc/{ha,mgmt,pas,storage} hold the bootstrap configuration of the respective
components. By default, only configuration files are created, but certificates, the license file, etc. also reside in
these directories. They will be mounted to the containers so that the processes can use these files as well.

• /opt/balasys/etc/automation makes necessary configuration available for remote core deployment. As
seen in the directory tree, files in this directory are symbolic links to ease access to the actual files. During
debugging, or after installation, their original directories may also be useful to look at.

As there are more directories and subdirectories linked to each package, the following table defines the
corresponding directories for each package.

Table 2. Directories grouped by package ownership

Package Directories

proxedo-api-security • /opt/balasys/etc/ha

• /opt/balasys/etc/pas

• /opt/balasys/etc/infrastructure/ha

• /opt/balasys/etc/infrastructure/pas

proxedo-api-security-mgmt • /opt/balasys/etc/mgmt

• /opt/balasys/etc/automation

• /opt/balasys/etc/infrastructure/mgmt

proxedo-api-security-storage • /opt/balasys/etc/storage

• /opt/balasys/etc/infrastructure/storage

5.2. config.yml
The main configuration of the storage, management and HA components is defined in the following files:

• /opt/balasys/etc/storage/config.yml

• /opt/balasys/etc/mgmt/config.yml

• /opt/balasys/etc/ha/config.yml

The format of the files must adhere to the YAML 1.1 specification.

There are different sections in these configuration files, some of which, as for example, the 'common' section,
might not need specific configuration. However, the default values of these sections must be set by {}.

See configuration examples in Appendix B.

Administration Guide 5.2. config.yml

4.10.0 29

http://yaml.org/spec/1.1/

5.2.1. Configuration options for the storage component

The file /opt/balasys/etc/storage/config.yml controls:

• Standalone or Multi node setup

• Storage intercommunication

• Node name visible on Dashboard

• MinIO keys

The configuration file has three main sections, namely common, consul and blob-store.

The 'common' section has no required parameters, the defaults can be set by {}.

Table 3. Storage configuration common options

Key Default Description

standalone_mode true This parameter must be set to true. It denotes whether the storage is run
in standalone or in cluster mode. The non-standalone mode is not relevant
in Kubernetes environment, therefore it is not supported.

Table 4. Storage configuration consul options

Key Default Description

bind_cluster_addr The address to bind on as a cluster member. This will be used to
communicate with other members. This is a required parameter.

gossip_encryption_k
ey

The encryption key to use for the gossip protocol. It is a 32-byte
shared key encoded into base64 format. Use pas-storage-
consul-gossip-keygen to generate it. The same value must be
used on different nodes in a multi node setup. This is a required
parameter.

node_name The name of the consul node. It must be unique in the cluster. This
parameter sets the visible node name on the Status Dashboard.
This is a recommended parameter.

log_level INFO The log level of consul. The possible values are: TRACE, DEBUG,
INFO, WARN, ERR

server_tls N/A TLS settings for storage-storage communication. The certificates
must be created using the pas-storage-consul-bootstrap-ca
and pas-storage-consul-gen-server-cert scripts.

ca_path consul-agent-ca.pem The path of the CA file relative to /opt/balasys/etc/storage/.

cert_path dc1-server-consul-
0.pem

The path of the server cert file relative to
/opt/balasys/etc/storage/.

key_path dc1-server-consul-0-
key.pem

The path of the server key file relative to
/opt/balasys/etc/storage/.

join_hosts N/A The list of hosts to try for joining the cluster. Either the hostname
or the IP address can be specified, and a port number is also
necessary. Specify it on all nodes of the cluster.

hostname The hostname of the storage node to join.

ip_address The IP address of the storage node to join.

Administration Guide 5.2. config.yml

4.10.0 30

Key Default Description

port 8301 The port used for the storage cluster. Do not modify it unless the
port is changed in
/opt/balasys/etc/infrastructure/storage/docker-
compose.yml.


The options with ’N/A’ default value are such sections that cannot have exact values, only the
values described afterwards in the table.

Table 5. Storage configuration blob-store options

Key Default Description

access_key The access key used for connecting to MinIO. A preferably random
generated string must be provided. Min length: 3 This is a required
parameter.

secret_key The secret key used for connecting to MinIO. A preferably random
generated string must be provided. Min length: 8. This is a required
parameter.

join_hosts N/A A list of hosts to try for joining the cluster. Either of the hostname
or the ip_address can be specified, and a port number is also
necessary.

hostname The hostname of the storage node to join.

ip_address The IP address of storage nodes to join.

port 9000 The port used for the storage cluster. Do not modify unless the
port is changed in
/opt/balasys/etc/infrastructure/storage/docker-
compose.yml.


The options with ’N/A’ default value are such sections that cannot have exact values, only the
values described afterwards in the table.

For configuration examples, see section Minimal storage configuration.

5.2.2. Configuration options for the management component

The /opt/balasys/etc/mgmt/config.yml file controls:

• Web service parameters

• Authentication

• TLS settings

The configuration file has two main sections, namely frontend and configapi.

The default values for both frontend and configapi sections are automatically effective. If the attributes have to
be configured with specific values, other than the default values, the {} curly braces have to be deleted and the
new values have to be added.

Table 6. Management configuration frontend options

Administration Guide 5.2. config.yml

4.10.0 31

Key Default Description

server_name _ The hostname the web server should serve the requests on. The
default value means that the management interface will be served
regardless of the provided hostname.

tls N/A This section configures TLS settings.

certificate_path /tmp/tls/default.
crt

The path to the server certificate. It most likely resides somewhere
under /opt/balasys/etc/mgmt. The default path refers to an
automatically generated certificate. It must not be trusted.

key_path /tmp/tls/default.
key

The path to the server private key. It most likely resides somewhere
under /opt/balasys/etc/mgmt. The default path refers to an
automatically generated key. It must not be trusted.

hsts_max_age 63072000 The maximum age attribute of the strict transport security header.

cors_api N/A This section configures cross origin request sharing options for API
access.

allow_origin* The value of the Access-Control-Allow-Origin header. This is a
required parameter in case of enabled CORS API.


The options with ’N/A’ default value are such sections that cannot have exact values, only the
values described afterwards in the table.

Table 7. Management configuration log level setting options - configapi section

Key Default Description

log_level INFO The log level can be set to DEBUG, INFO,
WARNING, ERROR, CRITICAL.

Table 8. Management configuration user session options - configapi section

Key Default Description

session N/A This section configures the options for session lifetimes.

session_validity 600 The allowed lifetime of a login session token in seconds. It
determines the time period between group membership and user
existence checks. This DOES NOT control the length of a user
session.

renew_validity 36000 The validity of the renew token. It determines for how long session
tokens can be renewed. Therefore the maximum length of a user
session is the sum of the two parameters.


The options with ’N/A’ default value are such sections that cannot have exact values, only the
values described afterwards in the table.

For further details on configapi section parameters related to LDAP authentication, see Management
configuration LDAP authentication options - configapi section.

For configuration examples on the management component, see section Minimal management configuration and
section Management configuration with HTTPS (TLS) and LDAP authentication.

5.2.2.1. Configuring authentication and local users in PAS

Administration Guide 5.2. config.yml

4.10.0 32

There are two methods available to configure authentication in PAS:

• htpasswd authentication

• Lightweight Directory Access Protocol (LDAP) authentication

If there are no authentication rules configured for PAS, a file with an administrator user is automatically
generated. The password of the automatically generated administrator user can be found in the journal under the
pas-config-api identifier. Run journalctl --identifier pas-config-api | grep admin after the first start
of the management component to get the password from the journal.

Using htpasswd for authentication and for the configuration of local users

By using htpasswd authentication, the administrator can define individual user credentials directly in the
htpasswd file. This file is stored at /opt/balasys/etc/mgmt/users.htpass and its location cannot be
configured. As local users are stored in an htpasswd file, the standard htpasswd tool needs to be used.

It is not possible to configure user groups, or to define different access levels for the users with htpasswd
authentication, yet it is possible to define as many user credentials as necessary one by one. The user credentials
are encrypted in the configuration file using the bcrypt encryption method. If you want to add new users to the
htpasswd file, run the htpasswd /opt/balasys/etc/mgmt/users.htpass username command and provide the
password.

Example command and output

$ htpasswd -B /opt/balasys/etc/mgmt/users.htpass new-user
New password:
Re-type new password:
Adding password for user new-user

Consider the followings related to the command and the example output:

• /opt/balasys/etc/mgmt/users.htpass denotes the path of the htpasswd file.

• new-user is the name of the new user.

As a result, similar content is expected to appear in the referred file:

new-user:$2y$05$jsvtfYMP1HJZlWCNGVk6d.j4yWU5gJ4D97Vr6z8yK9A2wy80g1iD.

LDAP authentication

LDAP authentication is a more elaborate way to configure authentication for PAS. With LDAP authentication it is
possible to define user groups and attach different levels of access to these users, however, PAS does not support
different levels of authorization based on these attributes yet at the moment.


If LDAP authentication is used, only the administrator user - and no other user - can
authenticate with the htpasswd file.

The following configapi parameters, which are part of the configuration file’s configapi section, take part in LDAP
authentication:

Table 9. Management configuration LDAP authentication options - configapi section

Key Default Description

ldap N/A This section configures the options for LDAP authentication. LDAP
authentication is disabled by default.

Administration Guide 5.2. config.yml

4.10.0 33

Key Default Description

ldap_url* The URL of the LDAP server. It must start with ldap[s]://. This is
a required parameter in case of LDAP authentication.

bind_user* The service user to use for searching the LDAP server. If the
use_ntlm parameter is OFF, this must be the whole DN. If it is ON, it
must be the Active Directory domain and the username
concatenated by a backslash (eg. AD_domain\administrator).
This is a required parameter in case of LDAP authentication.

bind_password* The password of the service user. This is a required parameter in
case of LDAP authentication.

use_ntlm OFF Set this parameter to ON to use NTLM authentication. This is only
available when the LDAP server is Microsoft Active Directory.

tls_version TLSv1_2 The TLS version for the LDAPS connection. It must be one of the
following: SSLv23, TLS, TLS_CLIENT, TLS_SERVER, TLSv1, TLSv1_1,
TLSv1_2.

validate_cert no Set it to yes to validate certificates.

ca_certs_file This file contains the certificate files of the certificate authorities.
Provide the path and filename for the certificate file. The certificate
file must be in PEM format. See a single CA file configuration
example in Single CA file example.

In case a self-signed certificate is used, the server certificate must
also be included in this file.

In case a chain of certificates is used, the certificate of each level
must be included in this file, beginning with the certificate of the
signer of the server certificate, followed by the signer of that
certificate up to the root certificate. For example on a Certificate
chain with multiple CA, see Example on certificate chain with
multiple CAs.

In case multiple chains of certificates are used, the chains must be
concatenated in the same file. The first matching chain will be used
for verification.

The above details are based on the Python SSL library
documentation, available at https://docs.python.org/3.10/library/
ssl.html#certificates.

user_base_dn* The base DN under which users reside. This is a required
parameter in case of LDAP authentication.

username_attribute sAMAccountName The attribute that contains the name of the user.

user_object_class user The object class of the users.

memberof_attribute memberof The attribute that contains membership information (groups) on
user objects.

group_base_dn* The base DN under which groups reside. This is a required
parameter in case of LDAP authentication.

groupname_attribut
e

name The attribute that contains the name of the group.

Administration Guide 5.2. config.yml

4.10.0 34

https://docs.python.org/3.10/library/ssl.html#certificates
https://docs.python.org/3.10/library/ssl.html#certificates
https://docs.python.org/3.10/library/ssl.html#certificates
https://docs.python.org/3.10/library/ssl.html#certificates
https://docs.python.org/3.10/library/ssl.html#certificates
https://docs.python.org/3.10/library/ssl.html#certificates
https://docs.python.org/3.10/library/ssl.html#certificates
https://docs.python.org/3.10/library/ssl.html#certificates
https://docs.python.org/3.10/library/ssl.html#certificates

Key Default Description

member_attribute member The attribute that contains membership information (users) on
group objects.

group_object_class group The object class for groups.

allowed_groups* A list of group names (as contained by 'groupname_attribute')
allowed to log in. This is a required parameter in case of LDAP
authentication.

5.2.3. Configuration options for the HA component

The file /opt/balasys/etc/ha/config.yml controls:

• HA settings

The configuration file has a single section called ha, which does not have default values.

Table 10. HA configuration ha options

Key Default Description

interface The network interface to use for VRRP communication.

virtual_router_id 1 The router ID to use in VRRP messages. Min: 1; Max: 255

priority The VRRP priority of the node in the virtual router instance. Min: 1;
Max: 254. One node needs to have a priority higher by 50 compared
to all other nodes. For example: If the highest priority node has a
priority of 150, all other nodes must have a priority of 100 or lower.

auth_pass The authentication password to use in the VRRP protocol. It is an
alphanumerical string of up to 8 characters.

virtual_ip The virtual IP address to use for HA.

For a configuration example on HA, see section Minimal HA configuration.

5.3. docker-compose.yml
The main configuration of the running environment is defined in the following files:

• /opt/balasys/etc/infrastructure/storage/docker-compose.yml

• /opt/balasys/etc/infrastructure/pas/docker-compose.yml

• /opt/balasys/etc/infrastructure/mgmt/docker-compose.yml

• /opt/balasys/etc/infrastructure/ha/docker-compose.yml

They describe the containers running PAS.

The format of the files must adhere to the YAML 1.1 specification. For a brief overview of the YAML format look at
the example here. For an in-depth reference of docker-compose configuration see its documentation.

This file controls:

• the images to run the container from

• the persistent data storage (docker volumes) to attach to the containers

• the ports propagated to the containers

Administration Guide 5.3. docker-compose.yml

4.10.0 35

http://yaml.org/spec/1.1/
http://www.yaml.org/start.html
https://docs.docker.com/compose/compose-file

• the environment variables available inside the containers

• intra container communication channels (links)

• log Insight Target configuration

Unless inevitable, these files shall not be modified. There are two cases when they might need to be modified:

1. If the provided environment needs to be modified for the setup to be debugged.

2. If the default behavior of logging into the system’s journal needs to be changed, change the logging
parameters under all the services. See more details in docker-compose’s documentation.


If you modify these files, they will not be overwritten on package upgrade. Only interactive
installations will notify on that.


Do not use docker-compose directly to manage the installation. Always use systemctl as it
handles dependencies and scaling.

5.4. docker-compose.conf
Some aspects of how the services are run by docker-compose are configured through
/opt/balasys/etc/infrastructure/storage/docker-compose.conf,
/opt/balasys/etc/infrastructure/pas/docker-compose.conf and
/opt/balasys/etc/infrastructure/mgmt/docker-compose.conf.

The format of this file is a shell environment file format: a key-value pair in each line, separated by an equal sign
("=").

 There must not be spaces around the equal sign.

The configuration files of different components have a common portion along with other parameters that are only
valid in one of them. For details, see the following tables.

 There are no storage-specific configuration options.

Table 11. docker-compose.conf configuration common options

Key Default Description

PAS_IMAGE_TAG 4.10.0 The release track of Proxedo API Security to use. See
Tracking version.

COMPOSE_FILE /opt/balasys/etc/infra
structure/pas/docker-
compose.yml or
/opt/balasys/etc/infra
structure/mgmt/docker-
compose.yml

The path to the compose file. You must not modify the
default value.

COMPOSE_PROJECT_NAM
E

pas The name used for the compose project. It must be kept
synchronized over different files.

PAS_DOCKER_REGISTRY docker.balasys.hu The domain name of the docker registry to download
images from.

Administration Guide 5.4. docker-compose.conf

4.10.0 36

https://docs.docker.com/compose/compose-file/#logging

Table 12. docker-compose.conf configuration management-specific options

Key Default Description

PAS_MGMT_WEBUI_HTTP_
PORT

80 The port to expose for HTTP access of the management
web user interface.

PAS_MGMT_WEBUI_HTTPS
_PORT

443 The port to expose for HTTPS access of the
management web user interface.

MINIO_ACCESS_KEY The access key to be used for MinIO authentication. It
must be the same as defined in
/opt/balasys/etc/storage/config.yml.

MINIO_SECRET_KEY The secret key to be used for MinIO authentication. It
must be the same as defined in
/opt/balasys/etc/storage/config.yml.

Table 13. docker-compose.conf configuration core-specific options

Key Default Description

PAS_FLOW_DIRECTOR_SC
ALE

1 The number of Flow Director instances to run. For
details, see Scaling Flow Director.

PAS_TRANSPORT_DIRECT
OR_PORT_RANGE1

49000-49100 A port range to expose to Transport Director. Listeners
will work in this port range.

PAS_TRANSPORT_DIRECT
OR_PORT_RANGE2

49101-49200 An additional port range to expose to Transport
Director. Listeners will work in this port range.

MINIO_ACCESS_KEY The access key to be used for MinIO authentication. It
must be the same as defined in
/opt/balasys/etc/storage/config.yml.

MINIO_SECRET_KEY The secret key to be used for MinIO authentication. It
must be the same as defined in
/opt/balasys/etc/storage/config.yml.

Storage example:

PAS_IMAGE_TAG=4.10.0
COMPOSE_FILE=/opt/balasys/etc/infrastructure/storage/docker-compose.yml
COMPOSE_PROJECT_NAME=pas
PAS_DOCKER_REGISTRY=docker.balasys.hu

Management example:

PAS_IMAGE_TAG=4.10.0
COMPOSE_FILE=/opt/balasys/etc/infrastructure/mgmt/docker-compose.yml
COMPOSE_PROJECT_NAME=pas
PAS_DOCKER_REGISTRY=docker.balasys.hu

PAS_MGMT_WEBUI_HTTP_PORT=80
PAS_MGMT_WEBUI_HTTPS_PORT=443

MINIO_ACCESS_KEY=your_minio_access_key
MINIO_SECRET_KEY=your_minio_secret_key

Core example:

Administration Guide 5.4. docker-compose.conf

4.10.0 37

PAS_IMAGE_TAG=4.10.0
COMPOSE_FILE=/opt/balasys/etc/infrastructure/pas/docker-compose.yml
COMPOSE_PROJECT_NAME=pas
PAS_DOCKER_REGISTRY=docker.balasys.hu
PAS_FLOW_DIRECTOR_SCALE=1

PAS_TRANSPORT_DIRECTOR_PORT_RANGE1=49000-49100
PAS_TRANSPORT_DIRECTOR_PORT_RANGE2=49101-49200

MINIO_ACCESS_KEY=your_minio_access_key
MINIO_SECRET_KEY=your_minio_secret_key

 Changing any of the values requires the restart of the service.

5.5. PAS restart policy
PAS service lifecycle is managed by systemd and is by default set to restart if any of the components fails at any
point. To avoid infinite restarting, the number of restarts within a short period of time is also limited. As a result, if
PAS core or management stops with a non-zero exit code 3 times within 100 seconds, the corresponding systemd
unit will enter failed state.


The default restart policy and the options are identical for the storage, core and management
components.

The relevant part of the service file looks as follows:

[Unit]
StartLimitIntervalSec=100
StartLimitBurst=3

[Service]
Restart=on-failure

Modifying the restart policy is possible by editing the service file in override mode. To do so, run systemctl edit
proxedo-api-security-storage, systemctl edit proxedo-api-security or systemctl edit proxedo-
api-security-mgmt. This will open a text editor and will let you define the parameters you wish to override. For
example, if you want to switch off all default restart settings, enter the following text in the override editing
window:

[Unit]
StartLimitIntervalSec=
StartLimitBurst=

[Service]
Restart=no

Possible values for Restart= are documented by systemd. We recommend using no to avoid automatic restarting
by systemd or on-failure to make the service restart on non-zero exit codes. If you want a more fine-tuned
restart policy, please consult the systemd.service(5) man page and configure the desired options.

To discard your overrides, run systemctl revert proxedo-api-security-storage, systemctl revert
proxedo-api-security or systemctl revert proxedo-api-security-mgmt.

Administration Guide 5.5. PAS restart policy

4.10.0 38

 You only need to enter the parameters you want to change.

 Overriding systemd units is only possible as root user.

5.6. Systemd Journal log limit setting
Systemd journal settings, namely the configuration of the RateLimitBurst and the RateLimitIntervalSec parameters
limit the number of log messages. An insufficiently low number assigned to the number of RateLimitBurst
parameter unnecessarily limits the number of log messages sent. The recommended value is 1 000 000. The
interval value configured for RateLimitIntervalSec parameter also affects the rate limiting values for log messages.
If in the time interval, specified by the RateLimitIntervalSec parameter, more messages are logged than specified
in the RateLimitBurst parameter, than all further messages within that given time interval will be dropped. To turn
off rate limiting, either parameter can be set to value '0'.


Even if the Verbosity or the Message Filter Expression parameters are configured to a high value
in PAS, the above rate limitation settings still need to be considered.

Update this value in /etc/systemd/journald.conf.

[Journal]
RateLimitBurst=1000000

5.7. Tracking version
Proxedo API Security has a version number in the form of major.minor.patch. The docker image labels control
what version the services are running at. The version tags point to a specific release and will never be changed
once released. If the label is changed to a new version tag, the services will be upgraded at the restarts.

5.8. Scaling Flow Director
A single instance of Flow Director uses a single processor core. It is necessary to adjust the number of instances to
use all the available cores. This is controlled by the PAS_FLOW_DIRECTOR_SCALE variable. As the Flow Director
handles the most demanding duties among the components, it must be assigned most of the cores. If there are up
to four cores available, assign three cores to the Flow Director, and the remaining one core will be suitable for the
Transport and Insight Director. If there are more than four cores, assign two cores for the Transport and Insight
Director and assign the rest to the Flow Director.

5.9. Configuration of dockerd
The docker daemon is configured through /etc/docker/daemon.json. The full documentation can be found in
the official docker documentation.

Balasys recommends the use of the default configuration.

 Do not use /etc/default/docker as it is ignored when systemd is used.

5.10. High availability configuration

Administration Guide 5.6. Systemd Journal log limit setting

4.10.0 39

https://docs.docker.com/engine/reference/commandline/dockerd//#daemon-configuration-file

5.10.1. HA Director

The HA functionality is implemented by the HA Director included in the core component. It uses keepalived in
VRRP mode to provide the service.

It can be configured in two ways:

1. When installed and configured manually on the host running core, the configuration file
/opt/balasys/etc/ha/config.yml should be filled out.

2. When installed using the automation tool, the following configuration files need to be filled in on the
management node:

◦ /opt/balasys/etc/automation/common_vars.yml: Common HA parameters to be used on remote
hosts.

◦ /opt/balasys/etc/automation/host_vars: Host-specific HA parameters to be used on remote hosts.


As at the moment, only clusters of two are supported, you can only implement HA by installing
core alongside the management component as well. That instance you need to configure and
set up manually, while you can use the automated deployment tool to deploy core and HA on
the remote node.

5.10.2. HA restart policy

PAS service lifecycle is managed by systemd and is by default set to restart if any of the components fails at any
point. To avoid infinite restarting, the number of restarts within a short period of time is also limited. As a result, if
PAS core or management stops with a non-zero exit code 3 times within 100 seconds, the corresponding systemd
unit will enter failed state.


The default restart policy and the options are identical for the storage, core and management
components.

The relevant part of the service file looks as follows:

[Unit]
StartLimitIntervalSec=100
StartLimitBurst=3

[Service]
Restart=on-failure

Modifying the restart policy is possible by editing the service file in override mode. To do so, run systemctl edit
proxedo-api-security-storage, systemctl edit proxedo-api-security or systemctl edit proxedo-
api-security-mgmt. This will open a text editor and will let you define the parameters you wish to override. For
example, if you want to switch off all default restart settings, enter the following text in the override editing
window:

[Unit]
StartLimitIntervalSec=
StartLimitBurst=

[Service]
Restart=no

Administration Guide 5.10. High availability configuration

4.10.0 40

Possible values for Restart= are documented by systemd. We recommend using no to avoid automatic restarting
by systemd or on-failure to make the service restart on non-zero exit codes. If you want a more fine-tuned
restart policy, please consult the systemd.service(5) man page and configure the desired options.

To discard your overrides, run systemctl revert proxedo-api-security-storage, systemctl revert
proxedo-api-security or systemctl revert proxedo-api-security-mgmt.

 You only need to enter the parameters you want to change.

 Overriding systemd units is only possible as root user.

5.11. Setting up time synchronization
To ensure time synchronization on different nodes you need to configure NTP on them. The ntp package is
already installed as a dependency, but it must be configured We recommend adding the following configuration
to /etc/ntp.conf.

driftfile /var/lib/ntp/ntp.drift

restrict -4 default kod notrap nomodify nopeer noquery limited
restrict -6 default kod notrap nomodify nopeer noquery limited
restrict 127.0.0.1
restrict ::1

server time.nist.gov prefer
server ip-time-1.cern.ch


Use your own NTP servers in the server directives if you have any, or adjust the given values to
ones that are allowed by your policies.

After creating the configuration, run the following commands.

Disable systemd-timesyncd
timedatectl set-ntp false

Restart ntp
systemctl restart ntp

Enable ntp so that it starts on system startup
systemctl enable ntp

6. Configuration of Proxedo API Security on the Web
User Interface
This chapter explains configuration details for setting up a working Proxedo API Security (PAS) with the help of the
Web User Interface.

The Proxedo API Security Web User Interface (UI) is installed together with the installation of Proxedo API Security.
The URL for Proxedo API Security Web UI and the necessary credentials are generated when the management

Administration Guide 5.11. Setting up time synchronization

4.10.0 41

component is first started. The password for the administrator can be found in the journal under the pas-config-
api identifier.

For information on how to set up more users, see section Configuring authentication and local users in PAS.

By using OpenAPI schemas, as defined in OpenAPI specifications (also known as Swagger), Proxedo API Security
verifies that the traffic passing through conforms to the API endpoint’s specification. An OpenAPI Swagger schema
detailing the Configuration API is available at: <frontend_url>/api/v1/openapi. <frontend_url> here refers to
the URL address of the user’s Proxedo API Security Web User Interface.

6.1. Minimum configuration
It is possible to run PAS with a minimum, basic configuration. For a minimum configuration the following items
need to be configured in the Web UI:

• Listeners

◦ Port

◦ Endpoint
For more details on the Listener's parameters, see Listeners’ configuration options.

• Endpoint

◦ Name

◦ Url
For more details on the Endpoint's parameters, see Endpoint configuration.

• Security Flow

◦ Request

◦ Response

◦ Backend

This basic configuration can be further improved with the completion of more configuration units later. The
minimum configuration can also be used to test the installation settings.

6.2. Login Page
The main component of the Login page is the login form where the user needs to provide the credentials in order
to be authorized to use the Web UI of Proxedo API Security.

As part of the initial configuration of Proxedo API Security, the administrator defines the necessary credentials,
which can now be used.

Administration Guide 6.1. Minimum configuration

4.10.0 42

Figure 25. Login page for Proxedo API Security Web User Interface

For accessing the Web User Interface:

1. Enter the valid user credentials.

2. Click the Log In button.

After a successful login, the user has access to the Proxedo API Security Web UI.

6.3. Proxedo API Security Web User Interface main page
The configuration elements are organized into a logical order for easier usage.

Figure 26. Proxedo API Security Web User Interface main page

Administration Guide6.3. Proxedo API Security Web User Interface main page

4.10.0 43

6.3.1. Navigation

The PAS Web UI has the following navigation areas:

Figure 27. Navigation areas in the Proxedo API Security Web User Interface

The navigation areas are described here in more details:

Left navigation area (1)
This navigation area (1) presents the navigation units available for configuration.
When opening up the Proxedo API Security Web UI, three main navigation units are available, that is, BRICKS,
PLUGINS, and SERVICES.
These three main navigation units can be opened for further sub-navigation units by clicking on either the

navigation item itself or on the arrow icon next to it. Alternatively, when the sub-navigation units are not in
use, they can be hidden by clicking the arrow navigation icons next to the main navigation items, or similarly
by clicking on the navigation item itself.

Top navigation area (2)
This Top navigation area (2) presents the Changes, Status and Configuration Backup buttons in the top left
corner. For more information on these services, see Status information on the configuration of Proxedo API
Security services, Checking and finalizing changes in Proxedo API Security configuration and Backup and
restore running or user configuration for Proxedo API Security. The top right corner presents the Help button
and a Profile button that shows the current user’s name. The Logout option is present under the Profile button.

Main configuration area (3)
This is the main configuration area of the Web UI. Any navigation unit selected in the Left navigation area (1)
presents the configuration details in this Main configuration area (3). The configuration details can be edited in
this area.
In case there are already configured parameters, those are displayed in a table in the Main configuration area
(3).
In order to add more configuration details, select the New navigation button in the upper right corner.

The Main configuration area (3) provides the following navigation and activity options. Note that some of these
activities are also available when the configuration parameters are presented in list view:

Table 14. Navigation and activity options in the Main configuration area (3)

Administration Guide6.3. Proxedo API Security Web User Interface main page

4.10.0 44

Navigation option Description

By selecting the New navigation button on the active window of a component, a
new component can be configured.

By selecting the Pen navigation button next to a component, the Web UI
navigates back to the configuration page of the selected element. The so far
configured details can be changed or new configuration details can be added.

By selecting the Copy navigation button next to a component, the Web UI copies
all the information of that component into a new instance, which instance can be
saved with a new name, inheriting the same, copied parameters.

By selecting the Bin button next to a component, the configuration element can
be deleted. If an element is selected for deletion, a Warning appears, requesting
confirmation on the deletion of the element.

This icon is visible at the right side of every drop-down list during configuration.
By selecting this icon it is possible to unselect an item of the drop-down list and
to clear the selection field from any data. Clearing the field from data with the
help of this icon gains importance when an earlier selected drop-down list item,
saved in our configuration, has to be cleared from the configuration data.

By selecting the Next page button it is possible to navigate to the next page of the
parameter keys listed.

6.3.2. Naming Configuration components in the Web UI

When configuring the Proxedo API Security Web UI, name the configuration components with the usage of the
English alphabet and numerals. When the name is composed of more than one word, use underscore. It is not
allowed to use spacing or any special characters though.

6.4. BRICKS - Configuration units
Bricks are reusable components. They do not provide a complete security function themselves, instead, they are
used as building blocks elsewhere (hence the name). They can be used by Plugins (like Selectors), or utilized by
other bricks (like Extractors).

Certain bricks are so called default objects, which are in 'read-only' state and cannot be configured or modified.
Such default objects are listed in the following table:

Table 15. Default objects - BRICKS

Default object name Class

Always Matcher

Never Matcher

content_type_json Matcher

content_type_json_pattern Matcher

json_content Matcher

content_type_xml_base Matcher

content_type_xml_dtd Matcher

content_type_xml_ext_parsed Matcher

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 45

Default object name Class

content_type_xml_pattern Matcher

content_type_xml_text Matcher

content_type_xml_text_ext_parsed Matcher

xml_content Matcher

error_policy Error policy

enforcer_default Error policy

insight_default Error policy

client_address Selector

client_port Selector

server_address Selector

server_port Selector

These default objects are listed under the actual classes in the Web UI.

The BRICKS main page in the Web UI is as follows:

Figure 28. The BRICKS main page in the Web User Interface

1. Click on the BRICKS main configuration item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of BRICKS.

2. Click on the sub-navigation unit you would like to configure. The details of the sub-navigation menu open up
in the Main configuration area.

6.4.1. Error Policy

Error Policies define how to proceed if a Plugin decides to have found an error. For example, when an Enforcer
plugin decides that the call is invalid.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 46

It is the error policy that enables the user to act differently in case the error appears in a request or a response.

Every Plugin has a default error policy, namely, the 'error_policy', except for the Enforcer and the Insight Plugins,
which have their own default error policies already configured for usage, the enforcer_default and the
insight_default error policies.

6.4.1.1. Configuring Error Policies

1. Click on the BRICKS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of BRICKS.

2. Select Error Policy.

The configuration window that appears presents the default error policies, as listed in Default objects - BRICKS
and the configuration values already set by the user:

Figure 29. Error policy’s main page in the Web User Interface

3. Click on the New navigation button to create an Error Policy.

Error Policies have default values for each of their fields. They form a strict security policy: all errors are fatal, and
only errors made by the client are reported in detail.

4. Configure the necessary parameters for the error policy based on the details provided in the table Error policy
configuration options.

5. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

6. Save the component configuration by clicking the Save button.

The error policies configured here can be used in the Plugin’s configuration, by referencing their name.

The following values can be configured for the Error Policy Brick:

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 47

Figure 30. Configuring error policies in the Web User Interface

Table 16. Error policy configuration options

Key Values Default value Description

Name* Free text. Alphanumeric, may
contain underscores, may not
start with a number.

The name identifying the error policy. This
name of the error policy can be referenced
from other parts of the configuration, that is,
the error policy is reusable.

Request The available values are:

• Abort

• Log

Abort It defines what action shall take place if there is
an error on the request side:

• Abort: the request is denied if the Plugin
fails. Use the other parameters to control
the content of the error sent to the client.

• Log: the invalid requests are allowed, but
are logged.

Request Silent True or False. True When turned on, the Plugins do not report on
the denial of the invalid request. When turned
off, the Plugins have the ability to report the
error in detail in the body of the HTTP error
request.

Request Code The values are available from a
drop-down list. If the elements
of the drop-down list are
selected, it will make the list of
the actual request codes
visible. The applicable request
code can be selected.

422 The HTTP status code to be used when denying
invalid requests.

Request
Message

The message can be provided
in free text.

Request error The HTTP response line when denying invalid
requests.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 48

Key Values Default value Description

Response Response error mode:

• Abort

• Log

Abort It defines what action shall take place if there is
an error on the request side:

• Abort: the request is denied if the Plugin
fails. Use the other parameters to control
the content of the error sent to the client.

• Log: the invalid requests are allowed, but
are logged.

Response
Silent

True or False. True When turned on, the Plugins do not report on
the denial of the invalid response. When turned
off, the Plugins have the ability to report the
error in detail in the body of the HTTP error
response.

Response
Code

The values are available from a
drop-down list. Note that the
response codes are grouped,
so that if the elements of the
drop-down list are selected,
further groups of response
codes will be made visible in a
tree structure. The applicable
request code can be selected.

502 The HTTP status code to be used when denying
invalid requests.

Response
Message

The message can be provided
in free text.

Response
error

The HTTP response line when denying invalid
requests.

6.4.2. Matcher

Matchers decide if the Plugin should be executed for a given call by checking various data in the HTTP message.
They provide an extremely versatile way of defining the circumstances that must be met for the Plugin to execute.

Matchers need four pieces of information:

• Name: The Name field can be defined in free text and it is not related to the extractor that will be used. This
Name can be referenced in Plugins.

• Type: This parameter defines what part of the call needs to be checked.

• Comparator: The Comparator shows by what means the collected value of the call is compared with the
provided pattern. (Some comparators also take flags or arguments.)

• Expression: A regular expression specifies a set of strings that match it. A complete explanation on how to
write expressions is not in the scope of this document.

The matchers can be used in Plugin configurations' match option by referencing their name.



There are some named Matchers available without explicit configuration:

• always and never are instances of Always matcher and Never matcher.

• json_content that matches requests with the Content-Type headers representing JSON.

Also note that no other matchers can be defined with these names.

Matchers internally utilize Extractors to fetch the information from the call to compare with. The Type of the
matcher resembles the name of the extractor that will be used.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 49

All matchers have a default comparator that is applied implicitly.


If you want to use comparator parameters, the comparator name should be given even if the
default comparator is used.

6.4.2.1. Configuring Matchers

1. Click on the BRICKS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of BRICKS.

2. Select Matcher.

The configuration window that appears presents the default matchers, as listed in Default objects - BRICKS and
the configuration values already set by the user:

Figure 31. Matchers' main page in the Web User Interface

3. Click on the New navigation button to create a Matcher.

4. Provide the name of the matcher.

5. Choose the type of the matcher from the drop-down list.

6. Configure the necessary parameters with the help of the below tables.

7. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

8. Save the component configuration by clicking the Save button.

The following values can be configured for the Matcher Brick:

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 50

Figure 32. Configuring matchers in the Web User Interface

Table 17. Matcher configuration options

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

It can be
defined in free
text.

The Name of the matcher which can be referenced
in Plugins.

Type* For the available values,
see Matcher types.

The preferred matcher type has to be selected
from the drop-down list.

Matcher types
Depending on the choice of the matcher type, some more required configuration fields might appear on this
page. The following tables describe the matcher types in details and provide the necessary information for the
additional configuration fields, required for setting the matcher types:

• Matcher types and their settings - Simple matchers

• Matcher types and their settings - Compound matchers

• Matcher types and their settings - URI matchers

• Matcher types and their settings - SOAP matchers

Table 18. Matcher types and their settings - Simple matchers

Matcher
type

Description

Always This matcher always matches.

Never This matcher never matches. It can be used to turn off a Plugin.

Call
Direction

Matches the direction of the message (request or response).

Method Matches the HTTP method of the request. Note that the method is case insensitive by definition,
therefore the case will always be ignored.

When choosing the Method matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 51

Matcher
type

Description

Header It matches the value of an HTTP header. Some HTTP headers can be present more than once in a
call. To accommodate this, matching is completed against the value of each occurrence of the
header. Matching occurs if there is any match. For example, if the Accept header was repeated as
follows:

Accept: application/json
Accept: application/xml

Consequently, in this example above both header.accept: application/json and
header.accept: application/xml would match.

To match against the header named server the key will be header.server, possibly completed
with comparator specification, like header.server.regex.ignorecase.


While the values are not, the HTTP header names are case insensitive, so you can
write them all lowercase in the configuration key.

The syntax of this matcher differs from the others because the name of the Header must be added.


While the values are not, the HTTP header names are case insensitive, so you can
write them all lowercase in the configuration key.

Cookie Matches the value of a key in the Cookie HTTP header. A Cookie header key can be present more
than once in a call. To accommodate this, matching is completed against the value of each
occurrence of the key. Matching occurs if there is any match.

Content
Type

Matches the content type of the message. It is a more robust solution than using the Header
matcher on the Content-Type header because that can contain parameters as well.

When choosing the Content type matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Status Matches the status code of the response.


See the default Status class comparator which allows convenient matching on
HTTP status classes.

When choosing the Status matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Raw
Content

Matches the raw bytes of the request or response. It requires an expression in the form of a
hexadecimal string. For example, for matching a PNG image file, the expression shall be
'89504e470d0a1a0a', which is equivalent to '89 50 4e 47 0d 0a 1a 0a', as whitespaces can also be
used.

Text
Content

Matches the request’s or response’s content as a decoded string.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 52

Matcher
type

Description

Client
Address

Matches the client’s IP address (both IPv4 and IPv6).

Use the subnet type comparator with that matcher type. The subnet comparator examines if the IP
address of the Client is in the specified subnet. The format for the input of the subnet comparator is
the CIDR notation for IPv4 (for example, 192.0.2.0/24) and canonical prefix notation for IPv6 (for
example, 2001:db8::/32).

Client Port Matches the client’s port (TCP).

Server
Address

Matches the server’s IP address (both IPv4 and IPv6).

Use the subnet type comparator with that matcher type. The subnet comparator examines if the IP
address of the Server is in the specified subnet. The format for the input of the subnet comparator is
the CIDR notation for IPv4 (for example, 192.0.2.0/24) and canonical prefix notation for IPv6 (for
example, 2001:db8::/32).

Server
Port

Matches the server’s port (TCP).

XPath Matches the data from the body of an XML call with the help of the XPath expression.

XPath is a query language for XML. It is a very versatile tool for extracting the needed information
from the body of the call, and organizing it according to needs.

A complete explanation on how to write XPath expressions is not in the scope of this document. To
learn more about it visit the main website.

For more details on XPath configuration options, see XPath extractor configuration options.

JMESPath Matches the data from the body of a JSON call with the help of the JMESPath expression. JMESPath
is a query language for JSON. It is a very versatile tool for extracting the needed information from
the body of the call, and for organizing it according to needs. A complete explanation on how to
write JMESPath expressions is not in the scope of this document.

To learn more about it visit the JMESPath website:

• There is a tutorial.

• There are examples.

• There is also a formal specification.

When choosing the JMESPath matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.



The result of the JMESPath expression should be a string when using string
comparators (Equals, Starts with, etc.), and number when using number
comparators (Min, Max, Range). In case of boolean or complex types, convert to
string in the JMESPath expression and use the string representation of the result.
Example: instead of comparing the boolean result of address != '', use
to_string(address != '') with a string comparator.

Fraud
Detector
Score

Matches the score value provided by the Fraud Detector plugin.

Table 19. Matcher types and their settings - Compound matchers

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 53

https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://jmespath.org
https://jmespath.org/tutorial.html
https://jmespath.org/examples.html
https://jmespath.org/specification.html

Any Any is a Compound matcher that matches if any of its sub-matchers matches. The sub-matcher can
also be a compound matcher.

All All is a Compound matcher that matches if all of its sub-matchers match. The sub-matcher can also
be a compound matcher.

None None is a Compound matcher that matches if none of its sub-matchers match. The sub-matcher can
also be a compound matcher.

One One is a Compound matcher that matches if exactly one of its sub-matchers matches. The sub-
matcher can also be a compound matcher.

Table 20. Matcher types and their settings - URI matchers

Matcher
type

Description

URI
matchers

A range of matchers is available to match different parts of the URI.

The structure of an URI looks as follows:

scheme://[username[:password]@]host[:port][/path][?query][#fragment]

That is, for example:

https://john.doe:secret123@example.com:8443/some/resource?foo=bar&baz=qux#som
e-anchor


The fragment part is used by the client locally, and is never sent in the HTTP
requests, therefore PAS cannot do anything with it.

These matchers use the URI extractors. It has an extensive list of examples of what each extractor
extracts from the URI.

URI Matches against the whole request URI as received from the client.

When choosing the URI matcher from the drop-down list, additional parameters appear. For more
information on the configuration of these parameters, see Matcher types' additional configuration
options.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 54

Matcher
type

Description

URI netloc Matches the network location in the URI.

It includes:

• username and password if present

• host

• port if present unless scheme default


If the port is the default port for the scheme - that is 80 and 443 for HTTP and
HTTPS, respectively - the port will not be included even if explicitly sent by the
client. Therefore if the client used http://example.com:80/path then the
netloc would be http://example.com, not http://example.com:80.

When choosing the URI netloc matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI origin Matches the origin part of the URI.

It includes:

• scheme

• host

• port if present, unless the default port for the scheme is used


If the port is the default port for the scheme - that is 80 and 443 for HTTP and
HTTPS, respectively - the port will not be included, even if explicitly sent by the
client. Therefore if the client used http://example.com:80/path, then the
origin would be http://example.com, not http://example.com:80.

When choosing the URI origin matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI
scheme

Matches the scheme of request (http or https). Note that the scheme is case insensitive by
definition, therefore the case will always be ignored.

When choosing the URI scheme matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI
username

Matches the username in the request if present.

When choosing the URI username matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI
password

Matches the password in the request if present.

When choosing the URI password matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 55

Matcher
type

Description

URI host Matches the host in the request.

When choosing the URI host matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI port Matches the port of the request. Note that this matches the default port — that is 80 and 443 for
HTTP and HTTPS, respectively — even if it is not explicitly in the request.

When choosing the URI port matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI path Matches the path part of the URI.

The path is normalized to allow more robust matching and cleaner reporting. This means that:

• If the path is missing / it is extracted.

• Repeating forward-slash (/) characters are replaced with a single one.

• dot (.) and double-dot (..) path segments are resolved.

Consequently, if the path present in the URI was
//some/./nothere/../resource///./somewhere the path would be
/some/resource/somewhere.

If you need to match the path exactly as received, use URI raw path matcher.

When choosing the URI path matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI raw
path

Matches the path part of the URI, without the normalization of URI path matcher carried out.

 If the path is missing, the match still runs against a single forward slash ("/").

It is recommended to use URI path matcher unless there is an explicit need for matching the raw
path. One such example would be logging or filtering out badly formed requests.

When choosing the URI raw path matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI raw
query

Matches the query part of the URI as a string. It is recommended to use URI query parameter
matcher unless there is an explicit need for matching the raw string. An example on this might be if
there is a match on foo=barbar or tofoo=bar as well, even though it was not intended.

When choosing the URI raw query matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 56

Matcher
type

Description

URI query
parameter

Matches the value of a query parameter.

It is also valid for URIs to include a query parameter more than once. That is, it could be
foo=bar&qux=quz&foo=baz. To accommodate this, matching is done against the value of each
occurrence of the parameter. Matching occurs if any value is matched.

When choosing the URI query parameter matcher from the drop-down list, additional parameters
appear. For more information on the configuration of these parameters, see Matcher types'
additional configuration options.

Table 21. Matcher types and their settings - SOAP matchers

Matcher
type

Description

SOAP
Matchers

A range of matchers is available to match different parts of the SOAP message.

These matchers extend the XPath matcher with predefined expressions.

They use the SOAP extractors. It has an extensive list of examples of what each extractor extracts
from the SOAP message.

When choosing the SOAP Matchers matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

SOAP
version

Matches the SOAP message version. It identifies with the SOAP namespace.

The possible values are:

• soapv1_1 - the message version is SOAP v1.1

• soapv1_2 - the message version is SOAP v1.2

When choosing the SOAP version matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

SOAP
envelope

Matches the SOAP envelope.

When choosing the SOAP envelope matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

SOAP
header

Matches the SOAP header.

When choosing the SOAP header matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

SOAP body Matches the SOAP body.

When choosing the SOAP body matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 57

Matcher
type

Description

SOAP fault Matches the SOAP fault.

When choosing the SOAP fault matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

SOAP fault
code

Matches the SOAP fault 'code'. The expression depends on the SOAP version.

• faultcode - it is the SOAP v1.1 node tag.

• Code - it is the SOAP v1.2 node tag.

When choosing the SOAP fault code matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

SOAP fault
detail

Matches the SOAP fault 'detail'. The expression depends on the SOAP version.

• Detail - it is the SOAP v1.1 node tag.

• Detail - it is the SOAP v1.2 node tag.

When choosing the SOAP fault details matcher from the drop-down list, additional parameters
appear. For more information on the configuration of these parameters, see Matcher types'
additional configuration options.

SOAP 1.1
fault
faultstring

Matches the SOAP fault 'faultstring'. This matcher only works with SOAP version 1.1.

When choosing the SOAP 1.1 fault faultstring matcher from the drop-down list, additional
parameters appear. For more information on the configuration of these parameters, see Matcher
types' additional configuration options.

SOAP 1.1
fault
faultactor

Matches the SOAP fault 'faultactor'. This matcher only works with SOAP version 1.1.

When choosing the SOAP 1.1 fault faultactor matcher from the drop-down list, additional
parameters appear. For more information on the configuration of these parameters, see Matcher
types' additional configuration options.

SOAP 1.2
fault
reason

Matches the SOAP fault 'Reason'. This matcher only works with SOAP version 1.2.

When choosing the SOAP 1.2 fault reason matcher from the drop-down list, additional parameters
appear. For more information on the configuration of these parameters, see Matcher types'
additional configuration options.

SOAP 1.2
fault node

Matches the SOAP fault 'Node'. This matcher only works with SOAP version 1.2.

When choosing the SOAP 1.2 fault node matcher from the drop-down list, additional parameters
appear. For more information on the configuration of these parameters, see Matcher types'
additional configuration options.

SOAP 1.2
fault role

Matches the SOAP fault 'Role'. This matcher only works with SOAP version 1.2.

When choosing the SOAP 1.2 fault role matcher from the drop-down list, additional parameters
appear. For more information on the configuration of these parameters, see Matcher types'
additional configuration options.

For details on comparator types, see Types of comparators.

Depending on the matcher type selected, the administrator might need to fill in further parameters. These
parameters are described in the following table.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 58

Table 22. Matcher types' additional configuration options

Key Values Default value Description

Comparator The matchers need the information on the
Comparator, which shows by what means the
collected value of the call is compared with the
provided pattern.

Type The available
comparator types can be
checked from the drop-
down list.

Equals This configuration option has to be defined for the
Comparator. For details on the comparator types,
see Types of comparators.

Ignorecase True or False. False This configuration option has to be defined for the
Comparator. It sets the IGNORECASE flag for the
selected comparator type. For matcher types that
work with numeric data type or with IP addresses,
the 'Equals' and 'Not Equals' comparator types do
not have ignorecase field.

Expression* This configuration option has to be defined for the
Comparator. A regular expression specifies a set of
strings that match it.

JMESPath
Expression*

A valid JMESPath
expression in text.

A complete explanation on how to write JMESPath
expressions is not in the scope of this document.

To learn more about it visit the JMESPath website:

• There is a tutorial.

• There are examples.

• There is also a formal specification.

Query
Parameter

It is also valid for URIs to include a query
parameter more than once. That is, it could be
foo=bar&qux=quz&foo=baz. To accommodate this,
matching is done against the value of each
occurrence of the parameter. Matching occurs if
any value is matched.

Header Extracts the value of an HTTP header. It is valid for
some HTTP headers to be present more than once
in a call. In this case, all the values are extracted as
a list. It provides the name of the header in the
configuration.

Namespaces A list of key and
expression pairs, in text.

The namespaces to use during extraction.

XPath
Expression

A valid XPath expression
in text.

A complete explanation on how to write XPath
expressions is not in the scope of this document.

• There is a tutorial.

• There are examples.

• There is also a formal specification.

Multiline Sets the Multiline flag for the Regex comparator.

Minimum* Matches if the pattern is larger or equal to the
value.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 59

https://jmespath.org
https://jmespath.org/tutorial.html
https://jmespath.org/examples.html
https://jmespath.org/specification.html
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_examples.asp
https://www.w3.org/TR/xpath/

Key Values Default value Description

Maximum* Matches if the pattern is smaller or equal to the
value.

Source Plugin Reference to a Fraud
Detector Plugin or "Last".

Last: In case
there are more
Fraud Detector
plugins defined
in the Security
Flow, by using
this default
value, the
selector will use
the score value
provided for the
last run Fraud
Detector plugin.

The Fraud Detector plugin to be used in case there
are more than one defined.

6.4.3. Selector

Selectors are responsible for collecting information from the call. They utilize Extractor bricks for this purpose.

Most extractors return simple string values. However, some (might) return dictionaries. For example, you can get
all the HTTP headers, or all the URI query parameters.

They are used by Insight.

6.4.3.1. Configuring Selectors

1. Click on the BRICKS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of BRICKS.

2. Select Selector.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 33. Selector main page in the Web User Interface

3. Click on the New navigation button to create a Selector.

4. Name the Selector key.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 60

5. Fill in any more desired parameters.

6. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

7. Save the component configuration by clicking the Save button.

The following values can be configured for the Selector Brick:

Figure 34. Configuring Selector in the Web User Interface

Table 23. Selector configuration options

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name of the parameter can be referenced.

Type* Choose the selector type
from the drop-down list.
For more details on the
values, see Extractor
types.

Extractors are used to extract data from the call.
They are utilized by Selector (and Matcher as well).
Extractors are included by their type in Selectors,
and are used by a special syntax in matchers. For
details, see Extractors and Extractor types.

Save As The key under which the
results of a selector are
saved in the Insight
plugin’s dictionary.

Top If it is omitted, the result will be directly merged as
top level keys. Name the configuration
components with the usage of the English
alphabet and numerals. When the name is
composed of more than one word, use underscore.
It is not allowed to use spacing or any special
characters though.

Depending on what value is selected for the Type parameter, additional parameters might appear for
configuration. The following table provides details on these additional parameters.

Table 24. Additional Selector configuration options

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 61

Key Values Default value Description

Clear Text True or False. False When turned on, whitespaces are stripped from
the beginning and end of the result.

Namespaces A list of key and
expression pairs, in text.

The namespaces to use during extraction.

XPath
Expression

A valid XPath expression
in text.

A complete explanation on how to write XPath
expressions is not in the scope of this document.

• There is a tutorial.

• There are examples.

• There is also a formal specification.

JMESPath
Expression*

A valid JMESPath
expression in text.

A complete explanation on how to write JMESPath
expressions is not in the scope of this document.

To learn more about it visit the JMESPath website:

• There is a tutorial.

• There are examples.

• There is also a formal specification.

Expression* A regular expression specifies a set of strings that
match it.

Time Format A valid time format
string in text.

YYYY-MM-DDT
HH:mm:ss.SSSS
SSZZ
(line breaks for
display
purposes only)

The time format to use, see: Timestamp format
options.

Time Zone A time zone specifier in
text.

UTC The name of the time zone, or the time zone offset.
The time zone can be specified by using the name,
for example, "Europe/Budapest", or as the time
zone offset in +/-HH:MM format, for example,
+01:00.

Source Plugin Reference to a Fraud
Detector Plugin or "Last".

Last: In case
there are more
Fraud Detector
plugins defined
in the Security
Flow, by using
this default
value, the
selector will use
the score value
provided for the
last run Fraud
Detector plugin.

The Fraud Detector plugin to be used in case there
are more than one defined.

Include
Request
Counter

True or False. True When turned on, the request counter is included in
the Session ID. See [session-id] for details.

6.4.4. Insight Target

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 62

https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_examples.asp
https://www.w3.org/TR/xpath/
https://jmespath.org
https://jmespath.org/tutorial.html
https://jmespath.org/examples.html
https://jmespath.org/specification.html

Insight Target bricks define where the data collected by the Insight will be sent to.

The Insight Target configuration tree contains named Insight Targets with their respective configuration.


Unlike other bricks, Insight Target configurations cannot be put inline into a Plugin’s
configuration, they must always be configured here.

See the Insight Target configuration options for the available Insight Target types and their configuration options.

6.4.4.1. Data flattening

To ensure compatibility with a wide range of Insight Target types, the results collected by the Insight plugin are
flattened. The path inside the complex data structure is encoded into the key for each value:

• The merged key describes the path to the value in the data structure as a string.

• The parts of the path will be separated by a forward slash character ("/").

• Keys in nested dictionaries are added to the path by name.

• List items are added to the path by their index.


You can control the separator with the Flatten separator configuration key that every Insight
Target accepts.

6.4.4.2. Configuring Insight Targets

1. Click on the BRICKS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of BRICKS.

2. Select Insight Target.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 35. Insight Target main page in the Web User Interface

3. Click on the New navigation button to create an Insight Target.

4. Provide the name for your Insight Target configuration.

5. Select the Insight Target type.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 63

6. Continue with the Syslog, Elastic and Local log configurations with the help of the following tables: Syslog
Insight Target configuration parameters, Elastic Insight Target configuration parameters and Local log Insight
Target configuration parameters.

7. Configure any more desired parameter details.

8. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

9. Save the component configuration by clicking the Save button.

The following values can be configured for the Insight Target Brick:

Figure 36. Configuring Insight Target in the Web User Interface

Table 25. Insight Target configuration options

Key Values Default
value

Description

Name* Free text. Alphanumeric, may contain
underscores, may not start with a
number.

The name identifying the Insight Target.
This name of the Insight Target can be
referenced from other parts of the
configuration.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 64

Key Values Default
value

Description

Type* The values can be selected from the
drop-down list. The available values are:

• Local log

• Syslog

• Elastic

• Local log: Logs the result of the
insight in the local system log. For
more details on configuration
settings with Local log, see Local log
Insight Target configuration
parameters.

• Syslog: Sends the insight to a remote
syslog server using the IETF syslog
protocol defined in RFC5424. For
more details on configuration
settings with syslog, see table Syslog
Insight Target configuration
parameters.

• Elastic: Sends the insight to an
Elasticsearch engine in JSON. For
more details on configuration
settings with syslog, see Elastic
Insight Target configuration
parameters.

Flatten True or False. True Flatten the Insight Target message.

Flatten
Separator

/ The separator in the flattened message.

Level 3 The log level for the logged message.

Tag The value can be selected from a drop-
down list.

info The log tag for the logged message.

Message The message
of the insight
if present,
otherwise it
is empty.

The message part of the log message.

The following table presents the configuration parameters for the Local log Insight Target type:

Table 26. Local log Insight Target configuration parameters

Key Values Default value Description

Flatten True or False. True Flatten the Insight Target message.

Flatten
separator

/ The separator in the flattened message. Only
visible when Flatten is True.

Level 3 The log level for the logged message.

Tag info The log tag for the logged message.

Message The message of
the insight if
present,
otherwise it is
empty.

The message part of the log message.

The following table presents the configuration parameters for the syslog Insight Target type:

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 65

Table 27. Syslog Insight Target configuration parameters

Key Values Default value Description

Flatten True or False. True Flattens the Insight Target message. Only
visible when Data Format is JSON.

Flatten
Separator

/ The separator in the flattened message.
Only visible when Flatten is True.

Remote
Connection

• Host: Hostname or IP
address as text.

• Port: The available values are
integers.

• Protocol: The available
values are: TCP and UDP.

• IP Protocol: The available
values are: 4 and 6,
corresponding to IPv4 and
IPv6.

• Use TLS: True or False.

• Syslog TLS*: Reference to a
TLS Brick of type Syslog TLS.

• Protocol:
TCP, Port:
601 (6514 if
Use TLS is
True.)

• Protocol:
UDP, Port:
514

• IP Protocol:
4

• Use TLS:
False

• Host: The hostname or the IP address
of the syslog server.

• Port: Add the port number here to
connect to the remote system.

• Protocol: Add the transport protocol
to send messages over. The available
values are: TCP and UDP.

• IP Protocol: The internet protocol
version of the given driver.

• Use TLS: It enables using TLS for the
Syslog communication.

• Syslog TLS*: It is mandatory if the Use
TLS option is set to True.

Flush Lines It specifies how many lines are flushed to a
destination at a time. The Insights Director
waits for this number of lines to
accumulate and sends them off in a single
batch. Increasing this number increases
the throughput, as more messages are
sent in a single batch, but also increases
the message latency.

Data Format The possible values are: SData,
JSON.

SData This is the data format of the insight.

Second
Fraction Digits

Integer between 0 and 6 inclusive 3 The number of digits representing the
fractions of seconds in the Syslog
timestamp.

Time Zone See table Time zones for time
zone names.

GMT The name of the time zone (for example,
"Europe/Budapest") or the time zone
offset in +/-HH:MM format (for example,
+01:00).

Report Config
Load

True or False. False It reports the event of a configuration
being loaded with a cryptographic hash of
the loaded configuration. This informs the
Insight Target about changes in the
configuration.

Mask Credit
Card Numbers

True or False. False It masks the middle section of recognised
credit card numbers in any fields of the log
message. Recognised credit cards are
from one of the following issuers:
American Express, Discover Card,
Mastercard, VISA.

Enable
Heartbeat

True or False. False It enables sending heartbeat (-- MARK --)
messages to the Insight Target.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 66

Key Values Default value Description

Heartbeat • Frequency: A number greater
than or equal to 1.

• Mode: The possible values
are: 'idle' (heartbeat
messages are only sent when
there is no traffic towards the
Insight Target) and
'periodical' (heartbeat
messages are sent regardless
of activity).

• Frequency:
30

• Mode:
'periodical'

• Frequency: The number of seconds
between heartbeat messages.

• Mode: The operation mode of the
heartbeat functionality.

The following table presents the configuration parameters for the Elastic Insight Target type:

Table 28. Elastic Insight Target configuration parameters

Key Values Default value Description

Flatten True or False. True It flattens the Insight Target message.

Flatten
Separator

/ The separator in the flattened message. Only
visible when Flatten is True.

Remote
Connection

Settings related to the remote connection.

Username* The username to authenticate with on the servers.

Password* The password to authenticate with on the servers.

Servers* There are two values to
be configured:

• Host*: The
hostname or IP
address of the
Elasticsearch
instance.

• Port: The port on
host to connect to.
Defaults to 9200.
(Add the values by
clicking the '+' sign.)

The list of Elasticsearch servers. Messages will be
load balanced between servers if multiple servers
are given.

Index* The name of the index in the Elasticsearch
instance.

Use TLS True or False. False Enables using TLS in the connection towards the
Elastic servers.

Elastic TLS* Reference to a TLS Brick
of type Elastic TLS.

The TLS configuration towards the Elastic servers.
Mandatory if Use TLS is set to True.

Workers 4 The number of workers to use for communicating
with the Elasticsearch servers. Should at least
equal the number of servers.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 67

Key Values Default value Description

Mask Credit
Card Numbers

True or False. False It masks the middle section of recognised credit
card numbers in any fields of the log message.
Recognised credit cards are from one of the
following issuers: American Express, Discover Card,
Mastercard, VISA.

6.4.5. TLS

Transport Layer Security (TLS) is the cryptographic protocol that secures HTTPS communications. PAS can apply
TLS encryption both when communicating with Clients and Backends. TLS encryption can also be used with
Syslog and Elastic Insight Targets.

When HTTPS is used the TLS settings must be configured.


These parameters are used by the Insight Director and the Transport Director. For options that
reference a file the path is relative to /opt/balasys/var/persistent/ inside the Transport
Director container. This directory is a docker volume and by default mounted from the
/opt/balasys/var/persistent/transport-director directory in the host system.

6.4.5.1. Configuring TLS Bricks

1. Click on the BRICKS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of BRICKS.

2. Select TLS.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 37. TLS main page in the Web User Interface

3. Click on the New navigation button to create a TLS.

The following values can be configured for the TLS Brick:

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 68

Figure 38. Configuring TLS in the Web User Interface

The configuration of the first two parameters determines the TLS type and from these two steps on, it is either a
Backend TLS configuration, a Client TLS configuration, a Syslog TLS configuration or an Elastic TLS configuration.

6.4.5.1.1. Configuring Client TLS Bricks

The following parameters need to be configured for Client TLS:

Figure 39. Configuring Client TLS in the Web User Interface, TLS options

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 69

Figure 40. Configuring Client TLS in the Web User Interface, Certificate options

1. Name the Client TLS configuration.

2. Select the Type of the TLS, Client TLS in this case, from the drop-down list to configure TLS.

For details on these parameters, see the following table:

Table 29. TLS configuration

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name of the parameter can be referenced.

Type* Choose the required
value from the drop-
down list.

Client TLS, Backend TLS, Syslog TLS and Elastic
TLS configurations can be defined here.

3. Configure the mandatory parameters for Client TLS, based on the information provided in Table Client TLS
configuration.

Table 30. Client TLS configuration

Key Values Default value Description

Certificate Configuration for the X.509 certificate used for TLS
connections on the listener.

Certificate File* Reference to a File Brick
of type Server Certificate.

The certificate to be presented to clients.

Key File* Reference to a File Brick
of type TLS Key.

The private key corresponding to the certificate
file.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 70

Key Values Default value Description

Options TLS protocol options used on the listener.

Ciphers ECDHE-ECDSA-
AES128-GCM-
SHA256:
ECDHE-RSA-
AES128-GCM-
SHA256:
ECDHE-ECDSA-
AES256-GCM-
SHA384:
ECDHE-RSA-
AES256-GCM-
SHA384:
ECDHE-ECDSA-
CHACHA20-
POLY1305:
ECDHE-RSA-
CHACHA20-
POLY1305: DHE-
RSA-AES128-
GCM-SHA256:
DHE-RSA-
AES256-GCM-
SHA384

Specifies the allowed ciphers. Can be set to all,
high, medium, low, or a string representation of
the selected ciphers.

Minimum TLS
Version

Select one of the
following options in the
drop-down menu:

• TLS v1.0

• TLS v1.1

• TLS v1.2

• TLS v1.3

TLS v1.2 The minimum version of TLS. Minimum TLS version
must be less than or equal to the maximum TLS
version.

Maximum TLS
Version

Select one of the
following options in the
drop-down menu:

• TLS v1.0

• TLS v1.1

• TLS v1.2

• TLS v1.3

TLS v1.3 The maximum version of TLS. Maximum TLS
version must be greater than or equal to the
minimum TLS version.

Timeout 300 It drops idle connection if the timeout value (in
seconds) expires.

Enable Session
Cache

True or False. False Store session information in the session cache. Set
this option to 'On' to enable TLS session reuse.

Session Cache
Size

20480 The number of sessions stored in the session cache
for TLS session reuse.

Disable Ticket True or False. False Session tickets are a method for TLS session reuse,
described in RFC 5077. Set this option to 'On' to
disable TLS session reuse using session tickets.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 71

Key Values Default value Description

Cipher Server
Preference

True or False. True Use server and not client preference order when
determining which cipher suite, signature
algorithm or elliptic curve to use for an incoming
connection.

Disable
Renegotiation

True or False. True Set this parameter On to disable client-initiated
renegotiation.

Diffie-Hellman
Parameters File

Reference to a File Brick
of type Diffie-Hellman
Parameters.

Contains the Diffie-Hellman parameters to be used
by the TLS connection.

Prioritize
ChaCha20-
Poly1305

True or False. False Set this parameter On to prioritize using the
ChaCha20-Poly1305 encryption.

Enable
Verification

True or False. False It is an option for verifying client side X.509
certificates. By default no client verification takes
place.

Client
Verification

Client verification options

Trusted Certs Reference to a File Brick
of type Certificates.

A directory where trusted IP addresses-certificate
assignments are stored. When a peer from a
specific IP address shows the certificate stored in
this directory, it is accepted regardless of its
expiration or issuer CA. Each file in the directory
should contain a certificate in PEM format. The
filename must be the IP address.

Required True or False. True If it is set to True, PAS requires a certificate from
the peer.

Trust Level The values can be
selected from the drop-
down list. The available
values are:

• none

• untrusted

• full

full It defines the trust level for certificate verification:

• none: Accept even invalid certificates, for
example self-signed certificates.

• untrusted: Both trusted and untrusted
certificates are accepted.

• full: Only valid certificates signed by a trusted
CA are accepted.

Verify Depth 4 The length of the longest accepted CA verification
chain. PAS will automatically reject longer CA
chains.

CA Directory Reference to a File Brick
of type CA.

A directory where the trusted CA certificates are
stored. CA certificates are loaded on-demand from
this directory when PAS verifies the certificate of
the peer.

Verify CRL True or False. False If it is set to True, PAS checks the CRLs (Certificate
Revocation Lists) associated with trusted CAs. CRLs
will load automatically if PAS verifies the certificate
of the peer.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 72

Key Values Default value Description

Intermediate
Revocation
Check Type

The values can be
selected from the drop-
down list. The available
values are:

• none

• soft_fail

• hard_fail

hard_fail The revocation check type for all certificates in the
chain, except the Leaf Certificate:

• none: Ignore the result certificate revocation
status check

• soft_fail: It fails if the check is successful and
the certificate is revoked, it will pass otherwise

• hard_fail: It passes only if the check is
successful and the certificate is not revoked

Leaf
Revocation
Check Type

The values can be
selected from the drop-
down list. The available
values are:

• none

• soft_fail

• hard_fail

hard_fail The revocation check types for the Leaf certificate
are as follows:

• none: With this option the result of the
certificate revocation status check is ignored

• soft_fail: It fails if the check is successful and
the certificate is revoked, it passes otherwise

• hard_fail: It passes only if the check is
successful and the certificate is not revoked

4. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

5. Save the component configuration by clicking the Save button.

6.4.5.1.2. Configuring Backend TLS Bricks

The following parameters need to be configured for Backend TLS:

Figure 41. Configuring Backend TLS in the Web User Interface, TLS options

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 73

Figure 42. Configuring Backend TLS in the Web User Interface, Certificate options

1. Name the Backend TLS configuration.

2. Select Backend TLS from the drop-down list to configure Backend TLS.

For details on these parameters, see the following table:

Table 31. TLS configuration

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name of the parameter can be referenced.

Type* Choose the required
value from the drop-
down list.

Client TLS, Backend TLS, Syslog TLS and Elastic
TLS configurations can be defined here.

3. Configure the mandatory parameters for Backend TLS, based on the information provided in Table Backend
TLS configuration.

The configuration parameters are described in details in the following table:

Table 32. Backend TLS configuration

Key Values Default value Description

Enable
Certificate

True or False. False It is an option for enabling backend side X.509
certificates. By default no backend verification
takes place.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 74

Key Values Default value Description

Certificate Configuration for the X.509 certificate used for TLS
connections on the listener.

Certificate File* Reference to a File Brick
of type Client Certificate.

The certificate to be presented to the backend.

Key File* Reference to a File Brick
of type TLS Key.

The private key corresponding to the certificate
file.

Options TLS protocol options used on the listener.

Ciphers ECDHE-ECDSA-
AES128-GCM-
SHA256:
ECDHE-RSA-
AES128-GCM-
SHA256:
ECDHE-ECDSA-
AES256-GCM-
SHA384:
ECDHE-RSA-
AES256-GCM-
SHA384:
ECDHE-ECDSA-
CHACHA20-
POLY1305:
ECDHE-RSA-
CHACHA20-
POLY1305: DHE-
RSA-AES128-
GCM-SHA256:
DHE-RSA-
AES256-GCM-
SHA384

Specifies the allowed ciphers. Can be set to all,
high, medium, low, or a string representation of
the selected ciphers.

Minimum TLS
Version

Select one of the
following options in the
drop-down menu:

• TLS v1.0

• TLS v1.1

• TLS v1.2

• TLS v1.3

TLS v1.2 The minimum version of TLS. Minimum TLS version
must be less than or equal to the maximum TLS
version.

Maximum TLS
Version

Select one of the
following options in the
drop-down menu:

• TLS v1.0

• TLS v1.1

• TLS v1.2

• TLS v1.3

TLS v1.3 The maximum version of TLS. Maximum TLS
version must be greater than or equal to the
minimum TLS version.

Timeout 300 It drops idle connection if the timeout value (in
seconds) expires.

Enable Session
Cache

True or False. False Store session information in the session cache. Set
this option to 'On' to enable TLS session reuse.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 75

Key Values Default value Description

Session Cache
Size

20480 The number of sessions stored in the session cache
for TLS session reuse.

Disable Ticket True or False. False Session tickets are a method for TLS session reuse,
described in RFC 5077. Set this option to 'On' to
disable TLS session reuse using session tickets.

Enable
Verification

True or False. False It is an option for verifying Backend side X.509
certificates. By default no backend verification
takes place.

Backend
verification

Backend verification options

Trusted Certs Reference to a File Brick
of type Certificates.

A directory where trusted IP addresses-certificate
assignments are stored. When a peer from a
specific IP address shows the certificate stored in
this directory, it is accepted regardless of its
expiration or issuer CA. Each file in the directory
should contain a certificate in PEM format. The
filename must be the IP address.

Trust Level The values can be
selected from the drop-
down list. The available
values are:

• none

• untrusted

• full

full The trust level for certificate verification:

• none: Accept even invalid certificates, for
example self-signed certificates.

• untrusted: Both trusted and untrusted
certificates are accepted.

• full: Only valid certificates signed by a trusted
CA are accepted.

Verify Depth 4 It defines the length of the longest accepted CA
verification chain. PAS will automatically reject
longer CA chains.

CA Directory Reference to a File Brick
of type CA.

A directory where the trusted CA certificates are
stored. CA certificates are loaded on-demand from
this directory when PAS verifies the certificate of
the peer.

Verify CRL True or False. False If it is set to True PAS checks the CRLs (Certificate
Revocation Lists) associated with trusted CAs. CRLs
will load automatically if PAS verifies the certificate
of the peer.

Check Subject True or False. False If it is set to, PAS compares the subject of the
server-side certificate with application-layer
information (for example, it checks whether the
Subject matches the hostname in the URL).

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 76

Key Values Default value Description

Intermediate
Revocation
Check Type

The values can be
selected from the drop-
down list. The available
values are:

• none

• soft_fail

• hard_fail

soft_fail The revocation check types for all certificates in
the chain, except for the Leaf Certificate are as
follows:

• none: If this options is set, the certificate
revocation status check results are ignored

• soft_fail: If this option is set, the certificate
revocation check fails, if the check is successful
and the certificate is revoked. The check
passes otherwise.

• hard_fail: If this option is set, the check passes
only if the check is successful, and the
certificate is not revoked.

Leaf
Revocation
Check Type

The values can be
selected from the drop-
down list. The available
values are:

• none

• soft_fail

• hard_fail

soft_fail The revocation check type for the Leaf Certificate.

• none: The result of the Certificate Revocation
Status Check is ignored.

• soft_fail: If this option is set, the certificate
revocation check fails, if the check is successful
and the certificate is revoked. The check
passes otherwise.

• hard_fail: If this option is set, the check passes
only if the check is successful, and the
certificate is not revoked.

4. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

5. Save the component configuration by clicking the Save button.

6.4.5.1.3. Revocation checks for certificates

PAS tries to complete both CRL and OCSP-stapling checks for certificates.

The result for a certificate, according to the revocation check types is as follows:

Table 33. Certificate revocation checks

CRL check OCSP stapling check Soft fail result Hard fail result

PASS PASS PASS PASS

PASS unsuccessful PASS PASS

unsuccessful PASS PASS PASS

unsuccessful unsuccessful PASS FAIL

PASS FAIL FAIL FAIL

FAIL PASS FAIL FAIL

unsuccessful FAIL FAIL FAIL

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 77

CRL check OCSP stapling check Soft fail result Hard fail result

FAIL unsuccessful FAIL FAIL

FAIL FAIL FAIL FAIL

6.4.5.1.4. Configuring Syslog TLS Bricks

The following parameters need to be configured for Syslog TLS:

Figure 43. Configuring Syslog TLS in the Web User Interface

1. Name the Syslog TLS configuration.

2. Select the Type of the TLS, Syslog TLS in this case, from the drop-down list to configure TLS.

For details on these parameters, see the following table:

Table 34. TLS configuration

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name of the parameter can be referenced.

Type* Choose the required
value from the drop-
down list.

Client TLS, Backend TLS, Syslog TLS and Elastic
TLS configurations can be defined here.

3. Configure the mandatory parameters for Syslog TLS, based on the information provided in Table Syslog TLS
configuration.

Table 35. Syslog TLS configuration

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 78

Key Values Default value Description

Enable Client
TLS
Authentication

True or False. False Option for enabling TLS authentication towards
the server.

Client TLS
Authentication

Configuration for the X.509 certificate used for TLS
connections on the Insight Target.

Certificate File* Reference to a File Brick
of type Client Certificate.

The certificate to be used for the connection.

Key File* Reference to a File Brick
of type TLS Key.

The private key corresponding to the certificate
file. The private key file must not be encrypted.

Options TLS protocol options used on the Syslog Insight
target.

Ciphers Colon-separated list of
ciphers from the list
supported by OpenSSL
3.0.2.

ECDH+AESGCM:
DH+AESGCM:EC
DH+AES256:
DH+AES256:ECD
H+AES128:
DH+AES:!aNULL
:!MD5:
!DSS!aNULL:
!MD5: !DSS

Specifies the allowed ciphers.

Disable TLS
v1.2

True or False. False Disables the usage of TLSv1.2 in the connection.

Disable TLS
v1.3

True or False. False Disables the usage of TLSv1.3 in the connection.

ECDH Curve
List

Add the names of one or
more ECDH curves. The
possible values are the
ones supported by
OpenSSL 3.0.2.

empty list A list of curves permitted in the connection when
using Elliptic Curve Cryptography (ECC).

Peer Verify Select one of the
following options in the
drop-down menu:
optional-trusted,
optional-untrusted,
required-trusted,
required-untrusted

required-
trusted

Defines the verification method of the peer. The
four possible values are a combination of two
properties of validation: whether the peer is
required to provide a certificate (required or
optional prefix), and whether the certificate
provided needs to be valid (trusted or untrusted
suffix).

Diffie-Hellman
Parameters File

Reference to a File Brick
of type Diffie-Hellman
Parameters.

Contains the Diffie-Hellman parameters to be used
by the TLS connection.

Enable
Verification

True or False. False Option for enabling the verification of server side
X.509 certificates.

Server
Verification*

Server verification options are mandatory if Enable
Verification is set to True.

CA Directory Reference to a File Brick
of type CA.

A directory where the trusted CA certificates are
stored. CA certificates are loaded on-demand from
this directory when PAS verifies the certificate of
the peer.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 79

Key Values Default value Description

Verify CRL True or False. False Verifies that certificates used in the connection are
not revoked by any CRLs in the CA directory.

4. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

5. Save the component configuration by clicking the Save button.

6.4.5.1.5. Configuring Elastic TLS Bricks

The following parameters need to be configured for Elastic TLS:

Figure 44. Configuring Elastic TLS in the Web User Interface

1. Name the Elastic TLS configuration.

2. Select the Type of the TLS brick, Elastic TLS in this case, from the drop-down list to configure the encryption
used with the Elastic server.

For details on these parameters, see the following table:

Table 36. TLS configuration

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name of the parameter can be referenced.

Type* Choose the required
value from the drop-
down list.

Client TLS, Backend TLS, Syslog TLS and Elastic
TLS configurations can be defined here.

3. Configure the mandatory parameters for Elastic TLS, based on the information provided in Table Elastic TLS

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 80

configuration.

Table 37. Elastic TLS configuration

Key Values Default value Description

Enable Client
TLS
Authentication

True or False. False Option for enabling TLS authentication towards
the server.

Client TLS
Authentication

Configuration for the X.509 certificate used for TLS
connections on the Insight Target.

Certificate File* Reference to a File Brick
of type Client Certificate.

The certificate to be used for the connection.

Key File* Reference to a File Brick
of type TLS Key.

The private key corresponding to the certificate
file. The private key file must not be encrypted.

Options TLS protocol options used on the Elastic Insight
target.

Ciphers Colon-separated list of
ciphers from the list
supported by OpenSSL
3.0.2.

ECDH+AESGCM:
DH+AESGCM:EC
DH+AES256:
DH+AES256:ECD
H+AES128:
DH+AES:!aNULL
:!MD5:
!DSS!aNULL:
!MD5: !DSS

Specifies the allowed ciphers.

TLS Version Select one of the
following options in the
drop-down menu:

• TLS v1.0

• TLS v1.1

• TLS v1.2

• TLS v1.3

TLS v1.2 Defines the TLS version used in the connection.

Peer Verify True or False. True Defines whether the peer is verified. If set to true,
the peer is required to provide a certificate, and
the certificate provided needs to be valid.

Enable
Verification

True or False. False Option for enabling the verification of the X.509
certificate presented by the Elastic server.

CA Directory Reference to a File Brick
of type CA.

A directory where the trusted CA certificates are
stored. CA certificates are loaded on-demand from
this directory when PAS verifies the certificate of
the peer.

4. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

5. Save the component configuration by clicking the Save button.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 81

6.4.6. File

The File configuration element enables the administrator to upload files used by various plugins.

6.4.6.1. Configuring File Bricks

1. Click on the BRICKS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of BRICKS.

2. Select File.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 45. File main page in the Web User Interface

3. Click on the New navigation button to create a File Brick.

4. Choose the type of the file brick from the drop-down list.

5. Upload a file according to the selected type.

6. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

7. Save the component configuration by clicking the Save button.

The following values can be configured for the File Brick:

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 82

Figure 46. Configuring File in the Web User Interface

Table 38. File configuration parameters

Key Values Default Description

Name* Free text.
Alphanumeric, may
contain underscores,
may not start with a
number.

It defines the file-related configuration.

Type* The available values
are:

• Swagger

• OpenAPI 3.0

• OpenAPI 3.1

• XSD

• WSDL

• CA

• Certificates

• Diffie-Hellman
Parameters

• TLS Key

• Client Certificate

• Server
Certificate

See table
Requirements for
specific file types for
specific
requirements for
each type.

The type selected here defines by which
PLUGINS it can be used. The file uploaded
here with the Type Swagger, for example,
can be used by Swagger Plugins.

File* The required file can
be uploaded here.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 83

Key Values Default Description

Passphrase String value, could
be empty.

Only available for TLS Key files. The
passphrase to access an encrypted private
key. Leave empty if the private key is
unencrypted.

Table 39. Requirements for specific file types

File type Requirements

CA 1. The file must be a flat ZIP file with the CA certificates inside.

2. It can contain copies of the certificates named following the <hash>.0 format. The value of
the <hash> part can be produced with the following command: openssl x509 -noout
-hash -in /path/to/cert/file. These copies will be generated automatically after
saving if they are not present already, and the original File brick will be overwritten.

3. It can contain CRL files, and it also can contain the copies of them following the
<hash_of_the_related_ca_file>.r0 format. The hash can be produced as described
above. These copies will be generated automatically after saving if they are not present
already, and the original File brick will be overwritten.

Certificates 1. The file must be a flat ZIP file with the certificates inside.

2. The certificates must be named after IPv4 or IPv6 addresses.

Diffie-Hellman
Parameters

1. Must be in PEM format.

2. Must be a parameters file, such as one generated by the openssl dhparam utility.

TLS Key 1. Must be in PEM format.

2. Must be a private key file.

3. Could be encrypted or unencrypted. If the file is encrypted, the passphrase must be
provided in the Passphrase field.

Client
Certificate

1. Must be in PEM format.

2. Must be a certificate file.

3. Must have a Common Name attribute, and have the CLIENT_AUTH ExtendedKeyUsage.

Server
Certificate

1. Must be in PEM format.

2. Must be a certificate file.

3. Must have a Common Name attribute, and have the SERVER_AUTH ExtendedKeyUsage.

Swagger The file must be a Swagger schema as described in the OpenAPI 2.0 specification.

OpenAPI 3.0 The file must be an OpenAPI 3.0 schema as described in the OpenAPI 3.0 specification.

OpenAPI 3.1 The file must be an OpenAPI 3.1 schema as described in the OpenAPI 3.1 specification.

XSD The file must be an XML Schema Definition as described in XML Schema Part 1: Structures, XML
Schema Part 2: Datatypes, XSD 1.1 Part 1: Structures and XSD 1.1 Part 2: Datatypes.

WSDL The file must be a WSDL service descriptor as described in the Web Services Description
Language 1.1 specification or in the Web Services Description Language 2.0 specification.

File editor
Files in certain File brick types are editable when configuring the File brick. A File editor is available for the
following types:

• Swagger

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 84

https://swagger.io/specification/v2/
https://swagger.io/specification/v3/
https://swagger.io/specification/
https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/2001/NOTE-wsdl-20010315
https://www.w3.org/TR/2001/NOTE-wsdl-20010315
https://www.w3.org/TR/wsdl20

• OpenAPI 3.0

• OpenAPI 3.1

The uploaded file can be opened and edited by clicking the Edit button. The contents of the file open inside a new
window, with the Edit tab selected:

The editor can be closed without saving any changes to the file with the Close button. The changes are saved and
the editor is closed with the Save button.

The Overview tab shows errors if there are any, and the structure of the schema that the file describes:

6.4.7. Common configuration elements for BRICKS

6.4.7.1. Extractors

Extractors are used to extract data from the call.

Extractors are not independent configuration components, but common configuration elements that are utilized
by Matchers and Selectors. In fact, when configuring matchers and selectors, it is extractors that are listed at their
type fields. Extractors are configured and used as part of matchers and selectors. There are no named extractors.

Most extractors return simple string values. However, some (might) return dictionaries. For example, you can get

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 85

all the HTTP headers, or all the URI query parameters.

See the Extractor types for more details on extractors and their configuration options.

The following table provides details on extractor types:

Table 40. Extractor types

Key Description

Method Extracts the HTTP method of the request. It does not require configuration.

Status Extracts the status code of the response. It does not require configuration.

JMESPath Extracts data from the body of a JSON call with the help of a JMESPath expression.

JMESPath is a query language for JSON. It is a very versatile tool for extracting the
needed information from the body of the call, and organizing it according to
requirements. A complete explanation on how to write JMESPath expressions is not
in the scope of this document.

To learn more about it visit the JMESPath website:

• There is a tutorial.

• There are examples.

• There is also a formal specification.

Header Extracts the value of an HTTP header. It is valid for some HTTP headers to be present
more than once in a call. In this case, all the values are extracted as a list. It provides
the name of the header in the configuration.

Header Force List A Header extractor that returns a list even if there is only a single extracted value.

Header First A Header extractor that only returns the first extracted value even if there is a list of
extracted values.

Headers The Headers extractor returns all the headers from the call. The results are stored as
a dictionary, therefore it is recommended to omit the 'save as' key if you use this
from a selector. It is valid for some HTTP headers to be present more than once in a
call. In such cases all the values are stored under the header’s key as a list. It does
not require configuration.

Fraud Detector Score Extracts the score value provided by the Fraud Detector plugin.

URI Extracts the whole request URI as received from the client. It does not require
configuration.

URI Netloc Extracts the network location in the URI. It does not require configuration.

It includes:

• username and password if present

• host

• port if present unless scheme default



If the port is the default port for the scheme - that is 80 and 443
for HTTP and HTTPS, respectively - the port will not be included
even if explicitly sent by the client. Therefore if the client used
http://example.com:80/path then the netloc would be
http://example.com, not http://example.com:80.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 86

https://jmespath.org
https://jmespath.org/tutorial.html
https://jmespath.org/examples.html
https://jmespath.org/specification.html

Key Description

URI Origin Extracts the origin part of the URI. It does not require configuration.

It includes:

• scheme

• host

• port if present, unless the default port for the scheme is used



If the port is the default port for the scheme - that is 80 and 443
for HTTP and HTTPS, respectively - the port will not be included,
even if explicitly sent by the client. Therefore if the client used
http://example.com:80/path, then the origin would be
http://example.com, not http://example.com:80.

URI Scheme Extracts the scheme of the request (http or https). It does not require configuration.

URI Username Extracts the username in the request if present. It does not require configuration.

URI Password Extracts the password in the request if present. It does not require configuration.

URI Host Extracts the host in the request. It does not require configuration.

URI Port Extracts the port of the request, the default port — that is 80 and 443 for HTTP and
HTTPS, respectively — even if it is not not displayed explicitly in the request. It does
not require configuration.

URI Path Extracts the path part of the URI. It does not require configuration.

The path is normalized to allow more robust matching and cleaner reporting. This
means that:

• If the path is missing / it is extracted.

• Repeating forward-slash (/) characters are replaced with a single one.

• dot (.) and double-dot (..) path segments are resolved.

Consequently, if the path present in the URI was
//some/./nothere/../resource///./somewhere the path would be
/some/resource/somewhere.

If you need to extract the path exactly as received, use URI raw path parameter.

URI Raw Path Extracts the path part of the URI, without the normalization of URI path carried out.

NOTE: If the path is missing a single forward slash ("/") is extracted.

It does not require configuration.

URI Raw Query Extracts the query part of the URI as a string. It does not require configuration.

URI Query Extracts the query part of the URI. It does not require configuration.

URI Query Param Extracts the value of a query parameter. It is also valid for URIs to include a query
parameter more than once. That is, it could be 'foo=bar&qux=quz&foo=baz'. In this
case both values are extracted as a list. Provide the name of the parameter in the
configuration.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 87

Key Description

URI Query Param Force
List

An URI Query Param extractor that returns a list even if there is only a single
extracted value.

URI Query Param First An URI Query Param extractor that only returns the first extracted value even if there
is a list of extracted values.

Client Address Extracts the client’s IP address.

Client Port Extracts the client’s port (TCP).

Server Address Extracts the server’s IP address.

Server Port Extracts the server’s port (TCP).

Parsed Content Extracts the content. It does not require configuration.

Raw Content Extracts the raw bytes of the request or response. It saves the results as a base64
encoded string.

Text Content Extracts the request’s or response’s content as a decoded string.

Cookie Extracts the values for a given key from the Cookie HTTP header. It is valid for
multiple key-value pairs to be present in a Cookie header for the same key. In this
case, all the values are extracted as a list. It requires the name of the Cookie key in
the configuration.

Cookie Force List A Cookie extractor that returns a list even if there is only a single extracted value.

Cookie First A Cookie extractor that only returns the first extracted value even if there is a list of
extracted values.

Cookies The Cookies extractor returns all the key-value pairs from the Cookie header. The
results are stored as a dictionary, therefore it is recommended to omit the 'save as'
key if you use this from a selector. It is valid for multiple key-value pairs to be
present in a Cookie header for the same key. In such cases, all the values are stored
under the Cookie’s key as a list. It does not require configuration.

Content Type Extracts the content type from the HTTP header. It does not require configuration.

Content Type Charset Extracts the charset from the content type HTTP header. It does not require
configuration.

Call Direction Extracts the call direction (request, response). It does not require configuration.

Session Id Extracts the internal identifier of the HTTP session in keep-alive HTTP connections.
Its 'Include request counter' option enables adding a request counter representing
the number of requests in the session. See [session-id] for details.

Backend Response Time Extracts the time spent between the sending the request towards the server and
receiving the response from the server, in milliseconds. Only returns a value in a
response flow.

Backend Name Extracts the name of the Backend Service component handling the call.

Endpoint Name Extracts the name of the Endpoint Service component handling the call.

Static Extracts a string, integer, number, object, array, boolean as string from the
configuration.

Timestamp Extracts the current time. Also see the tables on Configuring timestamps and
Timestamp format options.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 88

Key Description

XPath Extracts data from the body of an XML call with the help of a XPath expression.

XPath is a query language for XML. It is a very versatile tool for extracting the needed
information from the body of the call, and organizing it according to needs.

A complete explanation on how to write XPath expressions is not in the scope of this
document. To learn more about it visit the main website.

Also see table XPath extractor configuration options.

Provide the XPath expression in the configuration. Depending on the expression, the
return value is a single node or a list of nodes. If you want a single value or a list
independent from the expression, use XPath First or XPath Force List.

XPath Force List Works like XPath but it returns a list even if there is only a single extracted value.

XPath First Works like XPath but it only returns the first extracted value even if there is a list of
extracted values.

SOAP Version Extends the XPath extractor with predefined expressions.

Extracts the SOAP message version. It identify with the SOAP namespace.

Possible values:

• soapv1_1 - the message version is SOAP v1.1

• soapv1_2 - the message version is SOAP v1.2

SOAP Envelope Extends the XPath extractor with predefined expressions.

Extracts the SOAP envelope.

SOAP Header Extracts the SOAP header.

Extends the XPath extractor with predefined expressions.

SOAP Body Extracts the SOAP body.

Extends the XPath extractor with predefined expressions.

SOAP Fault Extracts the SOAP fault.

Extends the XPath extractor with predefined expressions.

SOAP Fault Code Extracts the SOAP fault 'code'.

Extends the XPath extractor with predefined expressions.

This extractor expression depends on the SOAP version.

• faultcode - the SOAP v1.1 node tag

• Code - the SOAP v1.2 node tag

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 89

https://www.w3.org/TR/2017/REC-xpath-31-20170321/

Key Description

SOAP Fault Detail Extends the XPath extractor with predefined expressions.

Extracts the SOAP fault 'detail'. This matcher expression depends on the SOAP
version.

• Detail - the SOAP v1.1 node tag

• Detail - the SOAP v1.2 node tag

SOAP 1.1 Fault Faultstring Extends the XPath extractor with predefined expressions.

Extracts the SOAP fault 'faultstring'. This extractor only works with SOAP version 1.1.

SOAP 1.1 Fault Faultactor Extends the XPath extractor with predefined expressions.

Extracts the SOAP fault 'faultactor'. This extractor only works with SOAP version 1.1.

SOAP 1.2 Fault Reason Extends the XPath extractor with predefined expressions.

Extracts the SOAP fault 'Reason'. This extractor only works with SOAP version 1.2.

SOAP 1.2 Fault Node Extends the XPath extractor with predefined expressions.

Extracts the SOAP fault 'Node'. This extractor only works with SOAP version 1.2.

SOAP 1.2 Fault Role Extends the XPath extractor with predefined expressions.

Extracts the SOAP fault 'Role'. This extractor only works with SOAP version 1.2.


You can still use Save as for extractors returning dictionaries. For example, you can save all the
headers under the headers key and the URI query parameters under the parameters key.

Timestamp extractors can be configured as follows:

Table 41. Configuring timestamps

Name Default Description

Time Zone 'UTC' Set the time zone.

• An str describing a time zone, similar to ‘US/Pacific’, or
‘Europe/Berlin’. See: Time zones

• An str in ISO 8601 style, as in ‘+07:00’.

• An str, one of the following: ‘local’, ‘utc’, ‘UTC’.

Time Format YYYY-MM-DDT
HH:mm:ss.SSSSSSZZ
(line breaks for display purposes
only)

Set the format. See: Timestamp format options

Use Request
Start Time

True If set to True, uses the request’s start time. This value is set
once for each call. If set to False, uses the time when the
selector is processed during a session. This value can
change every time the selector’s value is queried during a
call.

Table 42. Timestamp format options

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 90

Name Token Output

Year YYYY
YY

2000, 2001, 2002 … 2012, 2013
00, 01, 02 … 12, 13

Month MMMM
MMM
MM
M

January, February, March
Jan, Feb, Mar
01, 02, 03 … 11, 12
1, 2, 3 … 11, 12

Day of Year DDDD
DDD

001, 002, 003 … 364, 365
1, 2, 3 … 364, 365

Day of Month DD
D
Do

01, 02, 03 … 30, 31
1, 2, 3 … 30, 31
1st, 2nd, 3rd … 30th, 31st

Day of Week dddd
ddd
d

Monday, Tuesday, Wednesday
Mon, Tue, Wed
1, 2, 3 … 6, 7

Hour HH
H
hh
h

00, 01, 02 … 23, 24
0, 1, 2 … 23, 24
01, 02, 03 … 11, 12
1, 2, 3 … 11, 12

AM / PM A
a

AM, PM, am, pm
am, pm

Minute mm
m

00, 01, 02 … 58, 59
0, 1, 2 … 58, 59

Second ss
s

00, 01, 02 … 58, 59
0, 1, 2 … 58, 59

Sub-second S… 0, 02, 003, 000006, 123123123123
the result is truncated to microseconds, with half-to-even
rounding

Time zone ZZZ
ZZ
Z

Asia/Baku, Europe/Warsaw, GMT
-07:00, -06:00 … +06:00, +07:00, +08, Z
-0700, -0600 … +0600, +0700, +08, Z

Seconds Timestamp X 1381685817, 1381685817.915482

ms or µs Timestamp x 1569980330813, 1569980330813221

Table 43. XPath extractor configuration options

Key Default Description

xpath_expression The expression to extract the node from the call to
match against.

namespaces Defines the XML namespaces.

clear_text False Whether to remove white spaces at the beginning and
at the end of the string.

6.4.7.2. Comparators

Comparators are used for comparing the pattern with the result of the XPath expression.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 91

Table 44. Types of comparators

Key Description Parameters

Equals Matches if the parameter is exactly the same as
the value matched. For matchers that work
with numeric data type or with IP addresses it
validates if the input is a valid number or IP
address.

Ignorecase: Case differences (lower case, upper
case) are ignored. When the present VaLuE
would match value. For matcher types that
work with numeric data type or with IP
addresses, the 'Equals' and 'Not Equals'
comparator types do not have ignorecase field.

Not equals Matches if the parameter is not exactly the
same as the value matched. For matchers that
work with numeric data type or with IP
addresses it validates if the input is a valid
number or IP address.

Ignorecase: Case differences are ignored. When
the present VaLuE would not match vAlUe. For
matcher types that work with numeric data
type or with IP addresses, the 'Equals' and 'Not
Equals' comparator types do not have
ignorecase field.

Starts with Matches if the value starts exactly with the
pattern.

Ignore case: Case differences are ignored. When
the present VaLuE would match value_given.

Ends with Matches if the value ends exactly with the
pattern.

Ignore case: Case differences are ignored. When
the present VaLuE would match given_value.

Contains Matches if the exact pattern is found
somewhere in the value.

Ignore case: Case differences are ignored. When
the present VaLuE would match some-value-
given.

Pattern The Pattern treats the input as Unix shell-style
wildcards. There are special characters used in
shell-style wildcards:

• '*' Matches everything.

• '?' Matches a single character.

• [seq] Matches any character in seq.



For a literal match, wrap the
meta-characters in
brackets. For example, [?]
matches a literal question-
mark (?).

Ignore case: Case differences are ignored. When
the present VaLuE would match some-value-
given.

Regex Regex treats input as a regular expression for
matching. Consult Python’s regular expression
documentation and their Regular Expression
HOWTO.

• Ignore case: It sets the IGNORECASE flag for
the regex.

• Multiline: It sets the MULTILINE flag for the
regex.

Minimum Matches if the pattern is larger or equal to the
value.

Maximum Matches if the pattern is smaller or equal to the
value.

Range Matches if the value is between the limits in the
pattern, including boundaries. The format of
the pattern must be minimum..maximum.

Administration Guide 6.4. BRICKS - Configuration units

4.10.0 92

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/howto/regex.html#regex-howto
https://docs.python.org/3/howto/regex.html#regex-howto

Key Description Parameters

Status class Status class is a special comparator for
conveniently matching HTTP status code
classes in a Status matcher. It takes the name
of the class and checks if the status code is in
the given range as stated in Checking status
code range.

Subnet The subnet comparator examines if an
extracted IP address is in the specified subnet.
The format for the input of the subnet
comparator is the CIDR notation for IPv4 (for
example, 192.0.2.0/24) and canonical prefix
notation for IPv6 (for example, 2001:db8::/32).

Table 45. Checking status code range

Pattern Status code range Description

Info 1xx Informational response

Success 2xx Successful response

Redirect 3xx Redirects

Client Error 4xx Client Errors

Server Error 5xx Server Errors

6.5. PLUGINS - Configuration units
A plugin is an element of the security flow that applies a specific security function. Plugins have different types
based on the role they do:

Figure 47. The PLUGINS main page in the Web User Interface

Plugins are named, so that they can be referenced in other parts of the configuration.

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 93

 This means that Plugin configurations are reusable.

Certain Plugins are so called default objects, which are in 'read-only' state and cannot be configured or modified.
Such default objects are listed in the following table:

Table 46. Default objects - PLUGINS

Default object name Key

default_json Serializer

default_xml Serializer

default_json Deserializer

default_xml Deserializer

default Compressor

default Decompressor

6.5.1. Common Plugin parameters

Regardless of what plugins do, all plugins share some common parameters.

Table 47. Plugins' common parameters

Key Values Default value Description

Matcher Reference to a Matcher
Brick.

Always: If the
value is not
defined, the
plugin is always
executed.

Optional parameter. It decides if the Plugin should
be executed based on the call’s details. If no
matcher is configured the Plugin is always
executed. For more details, see Matcher.

Error Policy Reference to an Error
Policy Brick.

Optional parameter. It defines a custom error
policy to be applied if the Plugin reports an error.
The settings of the Error policy here override the
Security Flow’s default error policy. If no error
policy is configured, the plugin type’s default error
policy is applied. For more details, see Error Policy.

Plugins are always named so that their names refer to a Plugin that represents a certain configuration. The names
themselves are referenced from the Security Flow.

6.5.2. Enforcer

An Enforcer Plugin validates calls against externally defined schemas.

The Plugin supports validation against OpenAPI (Swagger) schemas, XSD schemas, WSDL schema or WAF ruleset.

Understanding the format of these schemas is not in the scope of this document. Further information is available
at:

• The OpenAPI 2.0 format

• The OpenAPI 2.0 Specification

• The OpenAPI 3.0 format

• The OpenAPI 3.0 Specification

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 94

https://swagger.io/docs/specification/2-0/basic-structure/
https://swagger.io/specification/v2/
https://swagger.io/docs/specification/basic-structure/
https://swagger.io/specification/v3/

• The OpenAPI 3.1 Specification

• XSD 1.1 Specification

• XSD Tutorial

• WSDL Tutorial

• WSDL 1.1 Specification

• WSDL 2.0 Specification

The Enforcer Plugin uses its own default error policy, that is, the 'enforcer_default' error policy. The Plugin
overrides the following fields of the default error policy:

Table 48. Default Enforcer Error Policy

Policy Setting Default

request_code 422

request_message Request Error

Problems are considered errors that lead to the termination of the call. Problems in the request are reported back
to the client, while errors in the response are suppressed to avoid information leak.

See Error Policy to understand how defaults are applied.

6.5.2.1. Configuring Enforcer Plugins

1. Click on the PLUGINS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGINS.

2. Select Enforcer plugin.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 48. Enforcer Plugin’s main page in the Web User Interface

3. Click on the New navigation button to create an Enforcer.

4. Name the Enforcer Plugin.

5. Choose the type of the Enforcer plugin.

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 95

https://swagger.io/specification/
https://www.w3.org/TR/xmlschema11-1/
https://www.w3schools.com/xml/schema_intro.asp
https://www.w3schools.com/xml/xml_wsdl.asp
https://www.w3.org/TR/2001/NOTE-wsdl-20010315/
https://www.w3.org/TR/wsdl20/

6. Choose an Error policy from the drop-down list. The drop-down list will offer the error policy options
configured under BRICKS.

7. Choose a Matcher from the drop-down list. The drop-down list will offer the matcher options configured under
BRICKS.

8. Depending on the choice of the Enforcer plugin type selected earlier, different fields appear here for further
configuration:

◦ Swagger - Choose an uploaded Swagger file if the Enforcer type selected at the Type field was Swagger.

◦ OpenAPI 3.0 - Choose an uploaded OpenAPI 3.0 file if the Enforcer type selected at the Type field was
OpenAPI 3.0.

◦ OpenAPI 3.1 - Choose an uploaded OpenAPI 3.1 file if the Enforcer type selected at the Type field was
OpenAPI 3.1.

◦ WSDL - Choose an uploaded WSDL file if the Enforcer type selected at the Type field was WSDL.

◦ Operations - Fill in the Operations fields according to XSD enforcer plugin configuration options for
Operations if the Enforcer type selected at the Type field was XSD.

◦ Request Limit in Kilobytes - Fill in a number if you want to overwrite the default setting.

◦ Harden Additional Properties Defaults - Choose the desired setting.

9. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

10. Save the component configuration by clicking the Save button.

6.5.2.2. Swagger

The Swagger enforcer Plugin validates against OpenAPI 2.0 schemas.

The Plugin needs the schema definition file of the API Endpoint. This file must be in JSON or YML format.

6.5.2.3. OpenAPI 3.0

The OpenAPI 3.0 enforcer Plugin validates against OpenAPI 3.0 schemas.

The Plugin needs the schema definition file of the API Endpoint. This file must be in JSON or YML format.

6.5.2.4. OpenAPI 3.1

The OpenAPI 3.1 enforcer Plugin validates against OpenAPI 3.1 schemas.

The Plugin needs the schema definition file of the API Endpoint. This file must be in JSON or YML format.

6.5.2.5. XSD

XSD enforcer Plugin validates against XSD schemas. Both XSD 1.0 and 1.1 are supported.


As XSD enforcer requires parsed XML content an xml deserializer plugin needs to be included
before XSD enforcer.

In the XSD enforcer you can define operations. Each operation contains criteria for identifying the call, and path of
an XSD schema. If the HTTP message meets all criteria, its content will be validated using the schema.

XSD enforcer schema must contain at least one operation.

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 96

6.5.2.6. WSDL

WSDL enforcer Plugin validates against WSDL 1.0-2.0 schemas.


As WSDL enforcer requires parsed XML content, an xml deserializer plugin needs to be included
before WSDL enforcer.

The Enforcer Plugin uses its own default error policy, that is, the 'enforcer_default' error policy. The Plugin
overrides the following fields of the default error policy:

Table 49. Default Enforcer Error Policy

Policy Setting Default

request_code 422

request_message Request Error

Problems are considered errors that lead to the termination of the call. Problems in the request are reported back
to the client, while errors in the response are suppressed to avoid information leak.

See Error Policy to understand how defaults are applied.

The plugin needs the schema definition file. This file must be in XML format.


WSDL schema validates request and response as well. Make sure that wsdl enforcer included in
request and response flow as well.



In simple cases — when the listener/endpoint is serving a single version of a single API
endpoint — a matcher is usually not needed as the schemas define all known URLs in the API. If
however multiple API endpoints are consolidated under a single endpoint definition, you can
define multiple enforcers each matching on a sub-path by using an URI path matcher and
putting them all in the Security Flow.

6.5.2.7. WAF

The Web Application Firewall (WAF) enforcer Plugin protects against known attacks. The list of known attacks is
updated by the WAF Ruleset Updater.

The following values can be configured for the Enforcer Plugin:

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 97

Figure 49. Configuring an enforcer plugin in the Web User Interface

Table 50. Enforcer Plugin’s configuration options

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

This name identifies the Enforcer Plugin. The name
of the plugin can be referenced from other parts of
the configuration.

Type* Can be selected from the
drop-down list. The
available values are:

• Swagger

• OpenAPI 3.0

• OpenAPI 3.1

• XSD

• WSDL

• WAF

The type of the Enforcer plugin.

Matcher Reference to a Matcher
Brick.

Always: If the
value is not
defined the
plugin is always
executed.

It decides if the Plugin should be executed based
on the call’s details. For details see Matcher. If
omitted the Plugin is always executed.

Error Policy Reference to an Error
Policy Brick.

enforcer_defaul
t

It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security Flow’s default
error policy. For details see Error Policy.

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 98

Key Values Default value Description

Swagger*/Open
API
3.0*/OpenAPI
3.1*/WSDL*/Op
erations*

Depending on which
type of the component
was selected above, the
following values are
available:

• For Swagger,
OpenAPI 3.0,
OpenAPI 3.1, WSDL,
and XSD a reference
to a File Brick of the
appropriate type.

• For XSD the
configuration
options for
Operations can also
be selected here. For
details on
parameters for
Operations, see XSD
enforcer plugin
configuration
options for
Operations.

The Swagger enforcer Plugin validates against
OpenAPI 2.0 schemas. The OpenAPI 3.0 enforcer
Plugin validates against OpenAPI 3.0 schemas. The
OpenAPI 3.1 enforcer Plugin validates against
OpenAPI 3.1 schemas. WSDL enforcer Plugin
validates against WSDL 1.0-2.0 schemas. XSD
enforcer Plugin validates against XSD schemas.

Harden
Additional
Properties
Defaults

True or False. False Only available for OpenAPI 3.0 and OpenAPI 3.1
enforcers. If set to True, the Enforcer will check calls
as if the default value of additionalProperties
would be False for Schema Objects, triggering the
error policy if a non-specified property is present in
the call, unless additionalProperties=True is
explicitly set on the object. If set to False, the
original behavior of OpenAPI where
additionalProperties defaults to True is
retained.

Request Limit
in Kilobytes

100000 Only available for WAF enforcers. It defines the size
limit for requests in kilobytes.

XSD has the following configuration options for the Operations parameters:

Table 51. XSD enforcer plugin configuration options for Operations

Key Default Description

URI Path * The pattern for uri_path.

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 99

https://swagger.io/specification/#schema-object

Key Default Description

Choose Method The method of the HTTP message. The following values
are available for Method:

• get

• head

• post

• put

• delete

• connect

• options

• trace

• patch

Status The status of the HTTP message.

Choose Call Direction The direction of the message, which must be either
request or response.

Choose File The XSD schema.

6.5.3. Filter

Filter Plugins are lightweight alternatives of Enforcer Plugins for filtering unwanted traffic. They only consist of a
matcher and an error policy. If the matcher matches, the error policy is applied. This way you can use matchers
inline, instead of creating a whole schema-based Enforcer Plugin for the simple use cases.

6.5.3.1. Configuring Filter Plugins

1. Click on the PLUGINS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGINS.

2. Select Filter plugin.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 100

Figure 50. Filter Plugin’s main page in the Web User Interface


Make sure that any component referenced in the configuration of this component, for example
an Error policy or a Matcher selected from the drop-down lists, must remain part of the
configuration later as well. Removing any of the referenced components might lead to invalid
configuration.

3. Click on the New navigation button to create a Filter.

4. Add the name of the Filter Plugin.

5. Add the Body content for the error policy. (Optional)

6. Define the Content type.

7. Choose an error policy from the drop-down list. (Optional)

8. Choose a matcher from the drop-down list. (Optional)

9. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

10. Save the component configuration by clicking the Save button.

The Plugin does not override any of the default error policy options.

Problems are considered errors that lead to the termination of the call. Problems in the request are reported back
to the client, while errors in the response are suppressed to avoid information leak.

See Error Policy to understand how defaults are applied.


If you omit the matcher, the Plugin will always be executed. For Filter plugins this means
aborting all calls.

The following values can be configured for the Filter Plugin:

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 101

Figure 51. Configuring a filter plugin in the Web User Interface

Table 52. Filter Plugin’s configuration options

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name identifying the Filter Plugin. This name
of the plugin can be referenced from other parts of
the configuration.

Matcher Reference to a Matcher
Brick.

Always: If the
value is not
defined the
plugin is always
executed.

It decides if the Plugin should be executed based
on the call’s details. For details see Matcher. If
omitted the Plugin is always executed.

Error Policy Reference to an Error
Policy Brick.

error_policy It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security Flow’s default
error policy. For details see Error Policy.

Body Can be defined in free
text.

The body of the message sent in case an error
policy is applied.

Content Type The content type of HTTP error request sent, if the
filter stops the call. It can be referenced by its
name.

6.5.4. Fraud Detector

The Fraud Detector Plugin, leveraging the data collected from the calls by the selectors, evaluates the level of risk
with regards to the call. The risk calculated by the Fraud Detector plugin is translated to a score between 0.0 and
100.0. The lower the score is, the more secure and trustworthy the actual call is. Consequently, the value 0.0
means that the call is perfectly secure, until the value 100.0 identifies a malicious act with the call.

6.5.4.1. Configuring Fraud Detector Plugins

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 102

1. Click on the PLUGINS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGINS.

2. Select Fraud Detector plugin.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 52. Fraud Detector’s main page in the Web User Interface


Make sure that any component referenced in the configuration of this component, for example
an Error policy or a Matcher selected from the drop-down lists, must remain part of the
configuration later as well. Removing any of the referenced components might lead to invalid
configuration.

3. Click on the New navigation button to create a Fraud Detector.

4. Add the name of the Fraud Detector.

5. Choose an error policy from the drop-down list. (Optional)

6. Choose a matcher from the drop-down list. (Optional)

7. Choose a Selector from the drop-down list. When it is selected click on the plus sign to add it to the
configuration.

8. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

9. Save the component configuration by clicking the Save button.

See Error Policy to understand how they shall be applied here.

The following values can be configured for the Fraud Detector Plugin:

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 103

Figure 53. Configuring the Fraud Detector plugin in the Web User Interface

Table 53. Fraud Detector Plugin’s configuration options

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name identifying the Fraud Detector. This
name of the plugin can be referenced from other
parts of the configuration.

Matcher Reference to a Matcher
Brick.

Always: If the
value is not
defined the
plugin is always
executed.

It decides if the Plugin should be executed based
on the call’s details. For details see Matcher. If
omitted the Plugin is always executed.

Error Policy Reference to an Error
Policy Brick.

error_policy It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security Flow’s default
error policy. For details see Error Policy.

Selectors* A list of references to
Selector Bricks.

A list of Selector that collect information from the
call. Selectors can be configured as listed in
Selector configuration for the Fraud Detector
Plugin.



It is possible to add more data
from the selectors to the Fraud
Detector Plugin using custom
fields, apart from the list in
section Selector configuration
for the Fraud Detector Plugin. In
such cases contact the Balasys
Support team.

6.5.5. Insight

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 104

It is a Plugin that extracts various data from the call and sends it to external systems (log servers, SIEMs, and other
data analysis tools).

6.5.5.1. Configuring Insight Plugins

1. Click on the PLUGINS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGINS.

2. Select Insight plugin.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 54. Insight Plugin’s main page in the Web User Interface

3. Click on the New navigation button to create an Insight.

The Plugin uses the default Error policy by default, that is, the 'insight_default'.

The Plugin overrides the following fields of the default error policy:

Table 54. Default Insight Error Policy

Policy Setting Default

request log

response log

Problems are considered errors that only need to be logged. If that is overridden then problems in the request are
reported back to the client, while errors in the response are suppressed to avoid information leak.

See Error Policy to understand how defaults are applied.

The Plugin collects the information from all the selectors and sends them to all the targets.

The collected information from all the selectors is arranged into a dictionary: a list of key — value pairs. The key
can be configured in each selector. Certain selectors might return complex data structures, that are made up of
other dictionaries and/or lists. To ensure compatibility with a wide range of Insight Target types, such results are
flattened. The path inside the complex data structure is encoded into the key for each value. More details are
available on this in Data flattening.

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 105

4. Add the name of the Insight Plugin.

5. Choose an error policy from the drop-down list. (optional)

6. Choose a matcher from the drop-down list. (optional)

7. Add the message content for the error policy. (optional)

8. Choose a selector from the drop-down list.

9. Select the Insight Target.

10. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

11. Save the component configuration by clicking the Save button.

The following values can be configured for the Insight Plugin:

Figure 55. Configuring an insight plugin in the Web User Interface

Table 55. Insight Plugin’s configuration options

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name identifying the insight. This name of the
insight can be referenced from other parts of the
configuration.

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 106

Key Values Default value Description

Matcher Reference to a Matcher
Brick.

Always: If the
value is not
defined the
plugin is always
executed.

It decides if the Plugin should be executed based
on the call’s details. For details see Matcher. If
omitted the Plugin is always executed.

Error Policy Reference to an Error
Policy Brick.

insight_default It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security Flow’s default
error policy. For details see Error Policy.

Message Can be defined in free
text.

"" The message part of the log message.

Selectors* A list of references to
Selector Bricks.

A list of Selectors that collect information from the
call.

It is possible to multiselect more than one selector
in this list by clicking on them. The multiple
selected elements can then be added to the
configuration by clicking on the plus sign.

Targets* A list of references to
Insight Target Bricks.

A list of Insight Targets where the collected
information will be sent to.

6.5.6. Serializer

The Serializer Plugin is responsible for serializing the structured data to the format of the HTTP message’s body.

Serialization needs to be done before compression. A typical Security Flow configuration starts with a
Decompressor followed by a Deserializer and finishes with a Serializer followed by a Compressor. This ensures that
transferred HTTP bodies are syntactically correct and that they are reconstructed to avoid transferring potentially
crafted content.

The Serializer Plugin understands the Content-Type HTTP header and can work with JSON and XML content.

6.5.6.1. Configuring Serializer Plugins

1. Click on the PLUGINS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGINS.

2. Select Serializer.

The configuration window that appears presents the default Serializers, as listed in Default objects - PLUGINS and
the configuration values already set by the user:

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 107

Figure 56. The serializer main page in the Web User Interface

3. Click on the New navigation button to create a Serializer.

The Plugin does not override any of the default error policy options.

Problems are considered errors that lead to the termination of the call. Problems in the request are reported back
to the client, while errors in the response are suppressed to avoid information leak.

See Error Policy to understand how defaults are applied.

Continue configuring the serializer with the following steps:

4. Add the name of the serializer.

5. Select the type of the Serializer.

6. Choose an Error policy from the drop-down list.

7. Choose a Matcher from the drop-down list.

8. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

9. Save the component configuration by clicking the Save button.

The following values can be configured for the Serializer Plugin:

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 108

Figure 57. Configuring a serializer in the Web User Interface

Table 56. Serializers' configuration options

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name identifying the serializer. This name of
the serializer can be referenced from other parts of
the configuration, that is, the Plugin is reusable.

Type* The value can be
selected from a drop-
down list. The value can
be:

• JSON

• XML

There are two types of predefined (de)serializer
plugins.

Matcher Reference to a Matcher
Brick.

Depending on
which 'Type'
was selected for
the Serializer,
the default
value can be:
json_content or
xml_content.

It decides if the Plugin should be executed based
on the call’s details. For details see Matcher. If no
matcher is configured the Plugin is always
executed.

Error Policy Reference to an Error
Policy Brick.

error_policy It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security Flow’s default
error policy. If no error policy is configured, the
plugin type’s default error policy is applied. For
details see Error Policy.

6.5.7. Deserializer

It is a Plugin responsible for parsing the HTTP message’s body to structured data. This ensures that a message is
well-formed. The structured data will also be consumed by other Plugins that operate on the body of the
message.

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 109

A typical Security Flow configuration starts with a Decompressor followed by a Deserializer and finishes with a
Serializer followed by a Compressor. This ensures that transferred HTTP bodies are syntactically correct and that
they are reconstructed to avoid transferring potentially crafted content.

6.5.7.1. Configuring Deserializer Plugins

1. Click on the PLUGINS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGINS.

2. Select Deserializer plugin.

The configuration window that appears presents the default Deserializers, as listed in Default objects - PLUGINS
and the configuration values already set by the user:

Figure 58. The deserializer’s main page in the Web User Interface

2. Click on the New navigation button to create a Deserializer.

The Plugin does not override any of the default error policy options.

Problems are considered errors that lead to the termination of the call. Problems in the request are reported back
to the client, while errors in the response are suppressed to avoid information leak.

See Error Policy to understand how defaults are applied.

3. Add the name of the deserializer.

4. Select the Type of the Deserializer.

5. Choose an Error policy from the drop-down list.

6. Choose a Matcher from the drop-down list.

7. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

8. Save the component configuration by clicking the Save button.

The following values can be configured for the Deserializer Plugin:

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 110

Figure 59. Configuring a deserializer in the Web User Interface

Table 57. Deserializers' configuration options

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name identifying the deserializer. This name of
the deserializer can be referenced from other parts
of the configuration.

Type* The value can be
selected from a drop-
down list. The value can
be:

• JSON

• XML

There are two types of predefined (de)serializer
plugins.

Matcher Reference to a Matcher
Brick.

Depending on
which 'Type'
was selected for
the Deserializer,
the default
value can be:
json_content or
xml_content.

It decides if the Plugin should be executed based
on the call’s details. For details see Matcher. If
omitted the Plugin is always executed.

Error Policy Reference to an Error
Policy Brick.

error_policy It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security Flow’s default
error policy. For details see Error Policy.

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 111

Key Values Default value Description

Charset
Conflict

• drop: If this
parameter is set to
'drop', the
configuration
instructs to drop the
call in case there is
conflict for the
character set in the
message’s header.

• log: If the value is set
to 'log', the system
will use either type
of the character set
defined and will log
the error.

drop This parameter needs to be configured in case the
'Type' of the Deserializer is set to XML. In XML
messages, there might be a conflict in the
definition of the character set. The XML and the
HTTP headers might instruct to use different
character sets. The conflicting information on the
character set can be configured to be handled in
two different ways, that is the call dropped, or the
call maintained and the error logged, depending on
the settings of this parameter.

6.5.8. Compressor

The Compressor Plugin compresses the body of the HTTP message.

Compressors understand the Transfer-Encoding HTTP header and compress data by using the gzip, deflate and
brotli algorithms.

6.5.8.1. Configuring Compressor Plugins

1. Click on the PLUGINS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGINS.

2. Select Compressor.

The configuration window that appears presents the default Compressor, as listed in Default objects - PLUGINS
and the configuration values already set by the user:

Figure 60. The compressor main page in the Web User Interface

3. Click on the New navigation button to create a Compressor.

4. Add the name of the compressor.

5. Choose an Error policy from the drop-down list.

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 112

6. Choose a Matcher from the drop-down list.

7. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

8. Save the component configuration by clicking the Save button.

The following values can be configured for the Compressor Plugin:

Figure 61. Configuring a compressor in the Web User Interface

Table 58. The Compressors' configuration options

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name identifying the compressor. This name of
the compressor can be referenced from other parts
of the configuration, that is, the Plugin is reusable.

Matcher Reference to a Matcher
Brick.

Always: If the
value is not
defined the
plugin is always
executed.

It decides if the Plugin should be executed based
on the call’s details. For details see Matcher. If no
matcher is configured the Plugin is always
executed.

Error Policy Reference to an Error
Policy Brick.

The Plugin has a
default error
policy.

It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security Flow’s default
error policy. If no error policy is configured, the
plugin type’s default error policy is applied. For
details see Error Policy.

6.5.9. Decompressor

The Decompressor Plugin decompresses the body of the HTTP message.

Decompressors understand the Transfer-Encoding HTTP header and can work with content optionally
compressed by the gzip, deflate and brotli algorithms.

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 113

6.5.9.1. Configuring Decompressor Plugins

1. Click on the PLUGINS main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGINS.

2. Select Decompressor.

The configuration window that appears presents the default Decompressor, as listed in Default objects - PLUGINS
and the configuration values already set by the user:

Figure 62. The Decompressor’s main page in the Web User Interface

3. Click on the New navigation button to create a Deserializer.

4. Add the name of the decompressor.

5. Choose an Error policy from the drop-down list.

6. Choose a Matcher from the drop-down list.

7. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

8. Save the component configuration by clicking the Save button.

The following values can be configured for the Decompressor Plugin:

Administration Guide 6.5. PLUGINS - Configuration units

4.10.0 114

Figure 63. Configuring a decompressor in the Web User Interface

Table 59. The Decompressors' configuration options

Key Values Default value Description

Name* Free text. Alphanumeric,
may contain
underscores, may not
start with a number.

The name identifying the decompressor. This name
of the decompressor can be referenced from other
parts of the configuration, that is, the Plugin is
reusable.

Matcher Reference to a Matcher
Brick.

Always: If the
value is not
defined the
plugin is always
executed.

It decides if the Plugin should be executed based
on the call’s details. For details see Matcher. If no
matcher is configured the Plugin is always
executed.

Error Policy Reference to an Error
Policy Brick.

The Plugin has a
default error
policy.

It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security Flow’s default
error policy. If no error policy is configured, the
plugin type’s default error policy is applied. For
details see Error Policy.

6.6. SERVICES - Configuration units
Proxedo API Security is based on a micro-services architecture.

Administration Guide 6.6. SERVICES - Configuration units

4.10.0 115

Figure 64. The SERVICES main page in the Web User Interface

6.6.1. Backend

Backends are a set of servers for a given API endpoint.

Their configuration is made up of two main parts:

• a list of servers: port pairs and how to route traffic to them

• TLS configuration for talking to the servers

6.6.1.1. Configuring Backends

1. Click on the SERVICES main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of SERVICES.

2. Select Backend.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Administration Guide 6.6. SERVICES - Configuration units

4.10.0 116

Figure 65. The main page for Backend

3. Click on the New navigation button to create a Backend.

4. Name the Backend configuration.

5. Provide the values for the Servers parameter: Host and Port.

6. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

7. Save the component configuration by clicking the Save button.

The following values can be configured for the Backend Service:

Figure 66. Configuring backend in the Web User Interface

Table 60. Backend configuration

Administration Guide 6.6. SERVICES - Configuration units

4.10.0 117

Key Values Default
value

Description

Name* Free text. Alphanumeric, may contain
underscores, may not start with a
number.

The name identifying the backend. This
name of the backend can be referenced
from other parts of the configuration.

Servers* There are two values to be configured:

• Host: The name or IP address of the
host to connect to.

• Port: The port on host to connect to.
(You can add the values by clicking
the '+' sign.)

The list of servers that serve API
endpoint(s). See Backend servers'
configuration for details.

Load
Balancing
Method

One of the following methods can be
used:

• Failover: use the first server while
available, then fail over to the next

• Round Robin: use all servers in a
round-robin fashion

If the value is not configured the default
value will be added.

Failover Load balancing method to use.

Backend
Timeout

If the value is not configured the default
value will be added.

30000 The connection timeout in milliseconds
of a server that is down.

Backend
Retry In

If the value is not configured the default
value will be added.

600000 The timeout in milliseconds before a
server -that was down- is restarted again.

Use TLS True or False. False Enables using TLS in the connection
towards the backend servers.

Backend
TLS*

Reference to a File Brick of type Backend
TLS.

The TLS configuration towards the
backend servers. See Configuring
Backend TLS Bricks for details.
Mandatory if Use TLS is set to True.

6.6.2. Endpoint

An endpoint holds together all the policies that apply to a certain API endpoint:

• List of URLs

• The default error policy for the endpoint

• The backend to which requests will be forwarded

• The security flow that will be applied to the traffic

6.6.2.1. Security Flow

The Security Flow definition in an endpoint lists what happens to the traffic on a given endpoint.

To understand how requests flow through PAS, see Understanding processing flow. The Security Flow starts when
the Transport Director has already set up client connection and routed the request to the Flow Director. At this
point the TLS and HTTP layers are already processed, but the content in the body of the request is available only
in raw format and has not been parsed yet.

At this stage, the configuration security flow decides on what happens to the traffic by applying a list of Plugins

Administration Guide 6.6. SERVICES - Configuration units

4.10.0 118

one by one. Plugin is a collective name for Enforcers, Insights, Filters, etc. Once, all the plugins have processed the
request, the control is handed back to the Transport Director which routes the request to a backend server, and
comes back with the response after handling TLS and HTTP. At this point, the Flow Director applies another list of
Plugins to response, and once done, it hands back the response to the Transport Director which in turn returns
that to the client.

If at any point an error occurs, the error policy is applied — which might either mean to lead to logging the error or
to terminating processing and returning an error indication to the client.

Plugins can override the endpoint’s error policy.

Also note that different Plugins need different data. An Insight that applies a JMESPath query needs parsed JSON,
while one that extracts value from an HTTP header field does not. Other Plugins provide these required values,
like a JSON deserializer Plugin. It is important that the Plugins are configured in such an order that the required
data is made available beforehand.

6.6.2.2. Configuring Endpoints

1. Click on the SERVICES main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of SERVICES.

2. Select Endpoint.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 67. The main page for Endpoint

3. Click on the New navigation button to create an Endpoint.

4. Name the Endpoint Service.

5. Select the Backend parameter from the drop-down list. Backend servers are configured under the SERVICES
main navigation item.

6. Complete a Security Flow from the configured (and the default) plugins. For more details, see Security Flow.

◦ Choose the Request plugin from the drop-down list. The Plugin options available from the drop-down list
have been configured under the PLUGINS main navigation item.

◦ Choose the Response plugin from the drop-down list. The Plugin options available from the drop-down
list have been configured under the PLUGINS main navigation item.

7. Provide the URL to address the API endpoint.

8. Click the Validate button to check if the defined parameters are of the correct type and all required

Administration Guide 6.6. SERVICES - Configuration units

4.10.0 119

parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

9. Save the component configuration by clicking the Save button.


While ports must be unique, as only one listener can bind to a specific port, it is perfectly valid
to route incoming traffic from multiple listeners to the same endpoint.

A typical security flow is configured with the plugins in the following order:

• a Decompressor Plugin that decompresses the content of the request

• a Deserializer Plugin that parses the content of the request

• an Enforcer Plugins that ensure the call is valid

• Insight Plugins that extract important data from certain calls

• a Serializer Plugin that rebuilds the contents of the request

• a Compressor Plugin that compresses the content of the request

 The Plugin configurations are reusable.

The following values can be configured for the Endpoint Service:

Figure 68. Configuring endpoint in the Web User Interface

Table 61. Endpoint configuration

Administration Guide 6.6. SERVICES - Configuration units

4.10.0 120

Key Values Default
value

Description

Name* Free text. Alphanumeric, may contain
underscores, may not start with a
number.

The name identifying the endpoint. This
name of the endpoint can be referenced
from other parts of the configuration.

URLs* The URLs which the clients use to
address the API endpoint.

URL Rewrite
Rule

The URL by which the backend servers
understand incoming requests. When
set, two transformations take place:

• The original URL will be replaced by
the matching URL configured for the
Endpoint.

• The Host header will be replaced by
the host indicated in the URL rewrite
rule.

SNI Rewrite
Rule

<Dynamic> It can be used to rewrite the Server Name
Indication (SNI) field in a TLS handshake
towards the backends.

The <Dynamic> default value means that
the SNI value used towards the backend
will be the same as the value of the Host
header, either coming from the client or
defined in the URL Rewrite Rule.

Backend* Reference to a Backend Service. Backends are a set of servers for a given
API endpoint. For more details, see
Backend.

Failure
Policy

Two values have to be configured:

• Silent

• Code

Silent: True;
Code: 500

With the help of the Failure Policy, it can
be configured whether the client shall
receive notification or not, and whether
the notification shall contain the code on
the type of the failure. The values in
details are as follows:

• Silent: If the silent value is active, the
Failure policy is not reported. If the
silent value is inactive, the failure
policy is reported towards the user.

• Code: Code is an HTTP response
code here, that can be set manually
or from the provided drop-down list.

Administration Guide 6.6. SERVICES - Configuration units

4.10.0 121

Key Values Default
value

Description

Security
Flow*

The security flow process requires the
configuration of the following values,
each containing a list of Plugins.

• Request*

• Response*

The values in details are as follows:

• Request: The Transport Director sets
up client connection and routes the
request to the Flow Director. The
Request has numerous values to be
configured. For more details, see
Security Flow.

• Response: The Transport Director
routes the request to a backend
server, and comes back with the
response after handling TLS and
HTTP. For more details, see Security
Flow.

Note, that both for the Request and
Response parameters, it is possible to
multiselect more than one element in the
list by clicking on them. The multiple
selected elements can then be added to
the configuration by clicking on the plus
sign.

6.6.3. Listeners

Listeners are network endpoints where services are exposed to the network. They consist of:

• a listening port

• an optional client-side TLS configuration if HTTPS is used

• a list of endpoints that handle the traffic.

Since these are the entry points for client traffic it must be routed here on the network.

6.6.3.1. Configuring Listeners

1. Click on the SERVICES main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of SERVICES.

2. Select Listener.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Administration Guide 6.6. SERVICES - Configuration units

4.10.0 122

Figure 69. Listener’s main page in the Web User Interface

3. Click on the New navigation button to create a Listener.

At least one listener must always be configured in the Proxedo API Security configuration.

4. Name the Listener Service.

5. Select the Client TLS parameter from the drop-down list. The client side TLS parameter values have to be
defined previously under BRICKS.

6. Select the Endpoint from the drop-down list. The endpoint values have to be defined previously under
SERVICES/Endpoint.

 All endpoints in the list must have the same backend and backend URL configured.

7. Fill in the Port information. If it is not configured, the default value will be applied.


Ports must be unique, only one listener can bind to a specific port. It is however perfectly valid
to route incoming traffic from multiple listeners to the same endpoint.

8. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

9. Save the component configuration by clicking the Save button.

The following values can be configured for the Listener Service:

Administration Guide 6.6. SERVICES - Configuration units

4.10.0 123

Figure 70. Configuring a listener in the Web User Interface

Table 62. Listeners’ configuration options

Key Values Default
value

Description

Name* Free text. Alphanumeric, may contain
underscores, may not start with a
number.

The name identifying the listener. This
name of the listener can be referenced
from other parts of the configuration.

Port Any port value can be defined. Note that
the port value has to be within the range
configured in the docker.

49000 The number of the port the listener binds
to.

Endpoints* A list of references to Endpoint Services. The list of endpoint(s), as defined under
Endpoint that serve traffic coming in on
the listener.

Use TLS True or False. False Enables using TLS in the connection
towards the clients.

Client TLS* Reference to a File Brick of type Client
TLS.

The TLS configuration towards the
clients. See TLS for details. Mandatory if
Use TLS is set to True.

6.6.4. Log

If at any point an error occurs during the Security Flow, the error policy is applied and logging takes place if
configured so.

6.6.4.1. Configuring Log

1. Click on the SERVICES main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of SERVICES.

2. Select Log.

3. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

4. Save the component configuration by clicking the Save button.

Administration Guide 6.6. SERVICES - Configuration units

4.10.0 124


Increasing the verbosity hugely increases the amount of logs generated, and will reduce
performance.


The logs at the highest level of verbosity (9) might include sensitive information, such as
passwords.

The following values can be configured for the Log Service:

Figure 71. The main page for Logs

Table 63. Log configuration

Key Values Default
value

Description

Name* Log has a default name 'default', that
cannot be changed.

The name identifying the log
configuration.

Verbosity The value can take number format. 3 The verbosity of logging. It must be
between 1-9.

Message
Filter
Expression

A single message filter expression
consists of a wildcard matching log
category, a colon, and a number
specifying the verbosity level of that
given category. Categories match from
left to right. For example:
http.*:5,core.info:3. The last
matching entry will be used as the
verbosity of the given category. If no
match is found the default verbosity
specified with verbosity is used.

*.accounting
:4,core.sum
mary:4

Set verbosity mask on a per category
basis. Each log message has an assigned
multi-level category, where levels are
separated by a dot.

6.6.5. Transport Director

The Transport Director manages the transport layer of API connections:

• handles network connections from the client

• handles network connections towards the backends

• handles TLS on these connections

Administration Guide 6.6. SERVICES - Configuration units

4.10.0 125

• load-balances between multiple backend servers

• load-balances between multiple Flow Directors

• enforces HTTP protocol validity in calls

6.6.5.1. Configuring Transport Director

1. Click on the SERVICES main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of SERVICES.

2. Select Transport Director.

3. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

4. Save the component configuration by clicking the Save button.

The following values can be configured for the Transport Director Service:

Figure 72. The main page for Transport Director

Table 64. Transport Director configuration

Key Values Default value Description

Name* Transport Director has a
default name 'default',
that cannot be changed.

The name identifying the Transport Director
configuration. This name of the Transport Director
can be referenced from other parts of the
configuration.

Enable Core
Dump

True or False. False Enables core dumps on failures.

Threads 0 Set the maximum number of threads that can be
used in parallel. Note, that setting the value to zero
means that the number of threads that can be used
in parallel is unlimited.

6.6.6. Fraud Detector

The Fraud Detector, leveraging the data collected by the Fraud Detector plugin, establishes the actual connection

Administration Guide 6.6. SERVICES - Configuration units

4.10.0 126

with the Fraud API for an evaluation on the data of the calls.

Although the average response time of the Fraud API is half second, depending on the size and the complexity of
the traffic to be investigated the response time might increase up to three seconds. Consequently, it is
recommended to carefully identify the content selected for detection.

It is also recommended to consider that the API evaluates the maximum of 10 requests per second, therefore it is
important to carefully define the matcher for the fraud detection, so that the load of requests is not unnecessarily
high and the requests exceeding the value of 10 requests per second do not get dropped.

There are three recommended data types to be configured as selectors when configuring the Fraud Detector
plugin, namely the IP address, the phone number and the e-mail address. For more details on how to configure
Fraud Detector plugin, see Fraud Detector Plugin’s configuration options.

6.6.6.1. Configuring Fraud Detector

1. Click on the SERVICES main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of SERVICES.

2. Select Fraud Detector.

Continue with the steps if the Fraud Detector is required in active state:

3. Set the Fraud Detector service to active state. The Fraud Detector is set to 'inactive' state by default, as for the
'active' state license is required.

4. Define the API Endpoint destination.

5. Fill in the API key. The API Key is provided together with the license purchased for the Fraud Detector.

6. Add the value for the Connection Timeout parameter. The value has to be provided in seconds.

7. Provide the value for the Response Timeout parameter. The value has to be provided in seconds.

8. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

9. Save the component configuration by clicking the Save button.

The following values can be configured for the Fraud Detector Service:

Figure 73. The Fraud Detector’s main page in the Web User Interface

Administration Guide 6.6. SERVICES - Configuration units

4.10.0 127

Table 65. Fraud Detector’s configuration options

Key Values Default
value

Description

Name* Fraud Detector has a default name
'default', that cannot be changed.

default The name identifying the Fraud Detector.
This name of the Fraud Detector can be
referenced from other parts of the
configuration.

Active True or False. False If the license for the Fraud Detector is
purchased, the service can be activated.

If the Fraud Detector service is set to active, the following further parameters are available:

Figure 74. Configuring an active Fraud Detector in the Web User Interface

Table 66. The active Fraud Detector’s configuration options

Key Values Default
value

Description

Client
Configuratio
n

Configure the parameters of Fraud
Detector.

API
Endpoint

The default
value is as
follows:
https://fraud
-api.balasys.
hu/api.

The API endpoint.

API Key* The value for the API Key is provided by
the purchase of the Fraud Detector
license.

The API key is provided when the license
for the Fraud Detector is purchased.

Connection
Timeout

The value can be provided in seconds. 5 The time limit for establishing
connection with the provided URL.

Administration Guide 6.6. SERVICES - Configuration units

4.10.0 128

https://fraud-api.balasys.hu/api
https://fraud-api.balasys.hu/api
https://fraud-api.balasys.hu/api
https://fraud-api.balasys.hu/api
https://fraud-api.balasys.hu/api

Key Values Default
value

Description

Response
Timeout

The value can be provided in seconds. 10 The time limit for how long the PAS
awaits the answer from the Fraud API
after an established connection.

6.6.7. Monitoring Manager

The Monitoring manager systematically collects data on the components with the help of SNMP protocol. For the
analysis of that data, the BALASYS-SNMP-MIB and the PAS-SNMP-MIB Management Information Base (MIB)
documents can be downloaded from Balasys customer documentation. Further recommended MIB files for the
analysis of this data are SNMPv2-MIB, IF-MIB and UCD-SNMP-MIB.

To see how monitoring data can be accessed, see chapter Monitoring in PAS.

6.6.7.1. Configuring Monitoring Manager

1. Click on the SERVICES main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of SERVICES.

2. Select Monitoring Manager.

The following values can be configured for the Monitoring Manager Service:

Figure 75. The main page for Monitoring Manager

Table 67. Monitoring Manager configuration

Key Values Default value Description

Name* Monitoring Manager has
a default name 'default',
that cannot be changed.

The name identifying the Monitoring Manager
configuration.

Publish SNMP
v2

True or False. False Enables publishing monitoring data using the
SNMPv2 protocol. SNMPv2 is an improved SNMP
protocol with community-based authentication.

SNMP v2
Authentication

Authentication settings to access PAS and host-
related data.

Administration Guide 6.6. SERVICES - Configuration units

4.10.0 129

Key Values Default value Description

SNMP v2 PAS
Community
Strings*

A list of accepted
community strings.

The list of community strings to access data related
to PAS.

SNMP v2 Host
Community
Strings*

A list of accepted
community strings.

The list of community strings to access data related
to the host.

Publish SNMP
v3

True or False. False Enables publishing monitoring data using the
SNMPv3 protocol. SNMPv3 is an SNMP protocol
with user-based authentication and data
encryption. Note, that in case SNMPv3 is used, all
three parameters have to be filled in, that is,
Username, Authentication password and Privacy
password.

SNMP v3
Authentication

Authentication settings to access PAS and host-
related data. SNMPv3 authentication requires to
define all three values, such as Username,
Authentication password and Privacy password.

SNMP v3 Users* The Username, the
Authentication
password and the
Privacy password have
to be provided as well
for a complete SNMPv3
authentication.

Provide all the three values to achieve a secure
SNMPv3 authentication.

3. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

4. Save the component configuration by clicking the Save button.

6.6.8. WAF Ruleset Updater

The Web Application Firewall (WAF) Ruleset Updater Service is designed to automatically update the ruleset used
for WAF enforcers, it is thereby critical in ensuring real-time protection against zero-day attacks by maintaining an
up-to-date defense mechanism.

To activate this service, extra credentials will be necessary which can be obtained from the Balasys sales team.

6.6.8.1. Configuring WAF Ruleset Updater

1. Click on the SERVICES main navigation item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of SERVICES.

2. Select WAF Ruleset Updater.

Continue with the steps if the WAF Ruleset Updater is required in active state:

3. Set the WAF Ruleset Updater service to active state. To activate the WAF Ruleset Updater a license is required.
To acquire a license, contact our sales team at the e-mail address <sales@balasys.hu>.

4. Fill in the API Username. The API Username is provided together with the license purchased for the WAF API.

Administration Guide 6.6. SERVICES - Configuration units

4.10.0 130

mailto:sales@balasys.hu

5. Fill in the API Password. The API Password is provided together with the license purchased for the WAF API.

6. Add the value for the Poll Interval Seconds parameter. The value has to be provided in seconds.

7. Add the value for the Connection Timeout Seconds parameter. The value has to be provided in seconds.

8. Provide the value for the Response Timeout Seconds parameter. The value has to be provided in seconds.

9. Click the Validate button to check if the defined parameters are of the correct type and all required
parameters have been filled out for configuring the component. If the configuration is erroneous or
incomplete, the Web UI provides a warning that the 'Component validation failed'. Also a warning with
information on the missing or faulty elements appears at the problematic field. If the configuration of the
component is valid, after clicking the Validate button, a 'Component validation successful' notification is
shown.

10. Save the component configuration by clicking the Save button.

The following values can be configured for the WAF Ruleset Updater Service:

Figure 76. The WAF Ruleset Updater’s main page in the Web User Interface

Table 68. WAF Ruleset Updater’s configuration options

Key Values Default
value

Description

Name* WAF Ruleset Updater has a default name
'default', that cannot be changed.

default It is the name identifying the WAF Ruleset
Updater. This name of the WAF Ruleset
Updater can be referenced from other
parts of the configuration.

Active True or False. False The service needs to be activated only if a
WAF Enforcer is to be used.

If the WAF Ruleset Updater service is set to active, the following further parameters are available:

Administration Guide 6.6. SERVICES - Configuration units

4.10.0 131

Figure 77. Configuring an active WAF Ruleset Updater in the Web User Interface

Table 69. The active WAF Ruleset Updater’s configuration options

Key Values Default
value

Description

Updater
Configuratio
n

Configure the parameters of WAF Ruleset
Updater.

API
Username*

The username required to download and
update the WAF enforcer’s ruleset. The
value for the API Username is provided
with the purchase of the WAF license.

The API Username is provided when the
license for the WAF API is purchased.

API
Password*

The password required to download and
update the WAF enforcer’s ruleset. The
value for the API Password is provided
with the purchase of the WAF license.

The API Password is provided when the
license for the WAF API is purchased.

Poll Interval
Seconds

The value must be provided in seconds. 3600 The time between two ruleset updates.

Connection
Timeout
Seconds

The value must be provided in seconds. 5 The time limit for how long the PAS
awaits the answer from the WAF API to
establish the connection.

Response
Timeout
Seconds

The value must be provided in seconds. 10 The time limit for how long the PAS
awaits the answer from the WAF API after
an established connection.

6.7. Status information on the configuration of Proxedo API
Security services
The administrator can check the status of the services and their containers. Whether a certain service runs
properly or not might be a helpful piece of information in identifying some of the configuration problems.

Administration Guide6.7. Status information on the configuration of Proxedo API Security services

4.10.0 132

The status information is presented for each node separately. Open up the details for each node by clicking on the
plus sign next to the name of the node:

• Container: The component the PAS service runs in.

• Last reloaded: The exact timestamp of the last reload in ISO format.

• Reload success: Whether the reload was successful or not.

• Configuration load result: Whether loading the configuration was successful or not. The possible values are:

◦ Successful

◦ Failed

•
Action: Click the icon to delete the data for any configuration element.

Figure 78. Status information on the configuration of Proxedo API Security services

6.8. Checking and finalizing changes in Proxedo API Security
configuration
It is possible to list and check any changes made to the PAS configuration until the changes have not been applied
with the Apply Configuration button.

Click on the Changes button in the Top-left navigation area to list the changes made to the configuration.

The following pieces of information are displayed:

• configuration integrity problems

• changes made to any of the configuration components

Administration Guide6.8. Checking and finalizing changes in Proxedo API Security configuration

4.10.0 133

Figure 79. Checking changes made to the configuration

6.8.1. Configuration Integrity

For changes on configuration integrity, the following pieces of information are displayed in table format:

• Type: It denotes the type of the integrity problem, for example cycle detection.

• Description: Description provides details on the nature of the integrity change.

• Recommended action: A recommended action might be displayed here for the configuration integrity
problem.


Until the configuration integrity errors listed here are not corrected, the configuration cannot
be applied.

For details on configuration integrity errors, see the examples in section Integrity errors.

6.8.2. Configuration Changes

For changes on the configuration components, the following pieces of information are displayed in table format:

• Type: Type denotes the category (Brick, Plugin, Service) and the class (for example, Matcher, Filter, Log) of the
configuration component, for example Brick/Matcher.

• Name: The name of the configuration component is displayed here, to which the actual change has been
made.

• Change: The nature of the change made to the configuration component is provided here, that is, added,
edited, deleted or no (no change).

• Validity: This field informs the user on whether the configured component is valid or not, as follows:

◦ - Any instance marked with this sign is invalid.

◦
 - Any instance marked with this sign is valid.



Administration Guide6.8. Checking and finalizing changes in Proxedo API Security configuration

4.10.0 134

Click on the sign to see more information on why the instance was found invalid.

Invalid configuration components can be corrected and revalidated by using the Validate button, available at
each component’s configuration page. For more information, see section Component-level validation in chapter
Applying and validating Proxedo API Security configuration.

• Actions: This field provides possibility to edit the configuration data for a component or to undo any
configuration changes to a component. By selecting the undo icon, all changes made to the actual
component will be deleted.


If the edit button is disabled, that is, it is not active, it means that the instance has been
deleted. If the undo button is disabled, that is, it is not active, no changes have been made to
the actual component.

By selecting the Discard button, it is possible to discard all changes made to the configuration. However, the
default elements that are created by the system to ease configuration, or the changes that have been applied to
the configuration already cannot be discarded.

6.9. Applying and validating Proxedo API Security configuration
PAS configuration can be checked and validated on two levels:

• component-level validation

• validating the whole configuration

6.9.1. Component-level validation

Component-level validation takes place while configuring the actual elements of the configuration and by using
the Validate button on the Web UI page of the specific component.

If the configuration of the component is erroneous or not adequate, the Web UI provides a warning that the
Component validation failed. Also a warning with information on the missing details appears at the problematic
field for the user.

Figure 80. Component validation failed

If the configuration of the component is satisfactory, after clicking the Validate button, the user receives the
Component Validation successful notification. Click OK. For related errors see, section Validation errors.

Figure 81. Component validation successful

6.9.2. Validating the whole configuration

Configuration integrity errors can be viewed on the Changes page, along with a summary of valid and invalid
component changes. To make it available click the Changes button so that all the changes made to any
component by the user will be visible. For related errors, see section Validation errors.

Administration Guide6.9. Applying and validating Proxedo API Security configuration

4.10.0 135

6.9.3. Applying the whole configuration

The Apply Configuration button is available from the Changes page. To make it available click the Changes button
so that all the changes made to any component by the user will be visible. In order to take the changes into effect,
click the Apply Configuration button. The configuration can only be applied if all changes are valid. When applying
the configuration by using the Apply Configuration button, the Web UI provides either of the following messages:

• The configuration is applied successfully. Click OK.

Figure 82. Apply Configuration result - successful

• The configuration failed.
If applying the configuration failed, the Web UI also provides an additional pop-up window with the
description of the problem. The problems can be as follows:

◦ At least one of the services failed to start, the previous configuration settings have been restored.

◦ Restoring the original configuration was not successful.


During the process of applying the configuration, no changes can be completed to the
configuration. The process however shall not take more than 10 seconds.

6.9.4. Validation errors

In case the configuration could not be applied, the following result messages help the user to correct the
configuration and achieve a valid configuration.

6.9.4.1. Component-related errors

These errors are the results of the validation of the actual components. By correcting these the user can achieve a
functioning configuration.

6.9.4.1.1. Missing data for required fields

Each component has compulsory configuration fields that must be filled in. In case any of those fields are left
empty, the Web UI provides a Missing data for required field notification when the component is validated, that is,
the Validate button is used. Each compulsory field is highlighted with a * sign.

Example
The Insight Target component requires the Host field to be filled in, otherwise the component’s configuration is
not valid.

Error message: Missing data for required field.

Administration Guide6.9. Applying and validating Proxedo API Security configuration

4.10.0 136

Figure 83. Missing required field - Insight Target

6.9.4.1.2. Missing reference

This error indicates that the component references a non-existing component.

Example
The user creates an error policy, Error Policy A which error policy is referenced in a Filter. Following that, this
specific error policy, Error Policy A is deleted from the configuration. This results in a missing reference in the
Filter.

Error message: Reference to a non-existing component: Error Policy A.



To correct the missing reference, navigate to the Filter component. In order to clear the invalid

reference to the missing component, the icon has to be selected on the right side of
the error policy drop-down list. By clicking this icon, the configuration data is cleared from this
selection.

6.9.4.1.3. Port conflict

This error indicates that two or more Listeners are configured to use the same port. This leads to a failed
configuration.

Example
Two Listeners are configured to use the same port.

Administration Guide6.9. Applying and validating Proxedo API Security configuration

4.10.0 137

Error message: Listener A uses the same port as Listener B.

6.9.4.2. Integrity errors

6.9.4.2.1. Cycle detection

This error indicates that there is a cycle of references between the instances. The cycle of references can only be
configured in between compound matchers.

Example
If the compound matcher Matcher A is configured to reference the compound matcher Matcher B and the
compound matcher Matcher B is also referencing the compound matcher Matcher A, there will be a cycle of
references between these two compound matchers.

Error message: Cycle detected in configuration: BRICK/Matcher/Matcher A→BRICK/Matcher/Matcher
B→BRICK/Matcher/Matcher A.

6.9.4.2.2. Required Instance is missing

This error indicates that a required instance is not configured. It is required that at least one Listener service must
be configured.

Error message: At least one service/listener must be configured.

6.9.4.2.3. Fraud Detector Plugin configured with the Fraud Detector in inactive state

The following integrity error is indicated:

Figure 84. Fraud detector endpoint integrity error

This error indicates that there is a Fraud Detector Endpoint configured, however, the Fraud Detector service is not
activated. In order to solve this integrity error, either the Fraud Detector Endpoint has to be removed from the
configuration, or, in case the license for the Fraud Detector is purchased, the Fraud Detector service has to be
activated and configured.

Administration Guide6.9. Applying and validating Proxedo API Security configuration

4.10.0 138

6.10. Backup and restore running or user configuration for
Proxedo API Security
It is possible to backup and restore the Proxedo API Security configuration in the Web UI.

Figure 85. Backup and restore running or user configuration for Proxedo API Security

In order to export any configuration information from the system, complete the following steps:

1. Select the Configuration Backup button.

2. To export a configuration, select the type of the configuration to be exported at the Export configuration
button. The following options can be selected from the drop-down menu:

◦ Running: This export option downloads the configuration settings of the currently running configuration.

◦ User: This export option downloads the default configuration settings of the system.

The configuration will be downloaded in .zip file format.

3. To import an existing configuration file, select the empty field beside Import configuration. Only .zip file
formats can be uploaded.

4. Select the Download or the Upload buttons to finish the activity. The system will ask you to define the Insight
Target or source destination for the activity. Note that only files in .zip format can be downloaded or
uploaded.


In case of importing a configuration file, the system will notify the user that by importing a
configuration file, the existing configuration will be overwritten: 'This operation overwrites
user configuration. Are You sure?'

7. Operation of Proxedo API Security based on VMs

7.1. Operation of dockerd
Dockerd is managed through systemd, so common administration tasks are carried out through its interfaces.

Checking the status of docker
systemctl status docker

Example output

docker.service - Docker Application Container Engine
 Loaded: loaded (/usr/lib/systemd/system/docker.service; enabled; vendor preset:
disabled)
 Active: active (running) since Mon 2017-07-10 08:25:38 CEST; 4h 1min ago
 Docs: https://docs.docker.com
 Main PID: 2148 (dockerd)

Administration Guide6.10. Backup and restore running or user configuration for Proxedo API Security

4.10.0 139

 Tasks: 177 (limit: 4915)
 Memory: 119.1M
 CPU: 1min 36.272s
 CGroup: /system.slice/docker.service
 ├─2148 /usr/bin/dockerd
 ├─2185 docker-containerd -l unix:///var/run/docker/libcontainerd/docker-
containerd.sock --metrics-interval=0 --start-timeout 2m --state-dir
/var/run/docker/libcon
 ├─2542 docker-containerd-shim
fef20e5205c47b5cc18e612903a33e749ebd89a4bf30fd5bb8fb4a801450c84f
/var/run/docker/libcontainerd/fef20e5205c47b5cc18e612903a33e749ebd8
 ├─2582 docker-containerd-shim
410f0bc67c731635a7d60e9f259d2f62ef8a845e09595254217decd3b3885473
/var/run/docker/libcontainerd/410f0bc67c731635a7d60e9f259d2f62ef8a8
 ├─2704 /usr/bin/docker-proxy -proto tcp -host-ip 0.0.0.0 -host-port 5000
-container-ip 172.18.0.2 -container-port 5000
 ├─2732 docker-containerd-shim
3853efde62d1767e70372584812df07968a647f40039691d82ccd5cbc66ee32d
/var/run/docker/libcontainerd/3853efde62d1767e70372584812df07968a64
 ├─2770 /usr/bin/docker-proxy -proto tcp -host-ip 0.0.0.0 -host-port 8484
-container-ip 172.18.0.2 -container-port 443
 ├─2806 /usr/bin/docker-proxy -proto tcp -host-ip 0.0.0.0 -host-port 8181
-container-ip 172.18.0.2 -container-port 80
 ├─2832 /usr/bin/docker-proxy -proto tcp -host-ip 0.0.0.0 -host-port 2222
-container-ip 172.18.0.2 -container-port 22
 ├─2837 docker-containerd-shim
e24a8f2f189467601edb6bee0e63451e7230726feab50d43556e6c66a8f9fc56
/var/run/docker/libcontainerd/e24a8f2f189467601edb6bee0e63451e72307
 ├─2921 docker-containerd-shim
8ac62e1eee0d162e632eab95b08ea36aff69abd5d1eeac475bfee3f393cba179
/var/run/docker/libcontainerd/8ac62e1eee0d162e632eab95b08ea36aff69a
 ├─2974 docker-containerd-shim
6df61a17c29a132cb5886a494fc34e38ff38f2cf470919289c783fada579a70c
/var/run/docker/libcontainerd/6df61a17c29a132cb5886a494fc34e38ff38f
 ├─3043 docker-containerd-shim
d00a1de3994e2b11ecd93d938dc94702f4f6d0364d2f3c1c423ab2a1ec5c843a
/var/run/docker/libcontainerd/d00a1de3994e2b11ecd93d938dc94702f4f6d
 ├─3123 docker-containerd-shim
b9e93059835c2d343c912c7f7154b14625dcd2e8d242fd67328e9532e5829d64
/var/run/docker/libcontainerd/b9e93059835c2d343c912c7f7154b14625dcd
 ├─3187 docker-containerd-shim
2d058ab3987f2461c5f0029505eca264f94d34ed23c8464bfd83362ad9bcd142
/var/run/docker/libcontainerd/2d058ab3987f2461c5f0029505eca264f94d3
 └─3258 docker-containerd-shim
882c51a1a693230ea2d84f2f1a422655f9051d3a21a5f916a03e62614b17ed4a
/var/run/docker/libcontainerd/882c51a1a693230ea2d84f2f1a422655f9051

Starting docker
systemctl start docker

Stopping docker
systemctl stop docker

Configuring docker to start automatically
systemctl enable docker

Configuring docker not to start automatically
systemctl disable docker

7.2. Operation of services

Administration Guide 7.2. Operation of services

4.10.0 140

The services of PAS are consolidated under the user pas who has privileges for common administration tasks.


Unless otherwise noted administrative commands should therefore be run as pas and not as
root. This is especially true for docker-compose commands.

7.2.1. Helper scripts for PAS in general

To help administrators with frequent PAS-related operations, we provide helper scripts in /opt/balasys/bin. To
get the full list of helper scripts, just list this directory.

All script names are prefixed with the name of the component they correspond to. Therefore they follow the
scheme pas-<component-name>-script-name except for core where the component-name part is omitted.

7.2.2. Checking configuration with pas-*-checkconfig

Some components of PAS have a textual configuration file, and it is possible to check them without actually
starting the component. For different components, the following helper scripts are available.

Component Helper script

HA pas-ha-checkconfig

Storage pas-storage-checkconfig

Management pas-mgmt-checkconfig

pas-*-checkconfig can check the validity of PAS bootstrap configuration. Namely:

• it makes sure that the mandatory containers are defined in docker-compose.yml.

• it checks config.yml against the defined constraints one by one.


When running pas-storage-checkconfig on the management node, the output displays a
parameter value for bootstrap configuration. Note, that currently bootstrap parameter values
cannot be changed or configured and this warning is expected on the management node. See
the following output example:

BootstrapExpect is set to 1; this is the same as Bootstrap mode.
bootstrap = true: do not enable unless necessary

 docker-compose.yml is only checked for making sure that services have a proper image tag.

 Currently, there is no configuration checker script for the core component.

7.2.3. Checking services

7.2.3.1. Storage service

Checking the status of PAS storage
systemctl status proxedo-api-security-storage

Administration Guide 7.2. Operation of services

4.10.0 141

Listing the status of the services
docker-compose -f /opt/balasys/etc/infrastructure/storage/docker-compose.yml ps

Example output

 Name Command State Ports

pas_blob-store_1 /usr/bin/dumb-init /usr/lo ... Up 0.0.0.0:9000-
>9000/tcp,:::9000->9000/tcp
pas_consul_1 /usr/bin/dumb-init /usr/lo ... Up 0.0.0.0:8300-
>8300/tcp,:::8300->8300/tcp, [...]

Checking which images are used by the services
docker-compose -f /opt/balasys/etc/infrastructure/storage/docker-compose.yml images

Example output

 Container Repository Tag Image Id
Size

pas_blob-store_1 docker.balasys.hu/api-security/blob-store 4.7.0 40bdc2d7665e
434.4 MB
pas_consul_1 docker.balasys.hu/api-security/consul 4.7.0 afd247e1e8c4
565.4 MB

7.2.3.2. Management service

Checking the status of PAS management
systemctl status proxedo-api-security-mgmt

Listing the status of the services
docker-compose -f /opt/balasys/etc/infrastructure/mgmt/docker-compose.yml ps

Example output

 Name Command State Ports

pas_config-api_1 /usr/bin/dumb-init /usr/lo ... Up 8080/tcp
pas_frontend_1 /usr/bin/dumb-init /usr/lo ... Up 0.0.0.0:80->8080/tcp,
0.0.0.0:443->8443/tcp

Checking which images are used by the services
docker-compose -f /opt/balasys/etc/infrastructure/mgmt/docker-compose.yml images

Example output

 Container Repository Tag Image Id
Size

pas_config-api_1 docker.balasys.hu/api-security/config-api 4.7.0 025bf7529113
346.7 MB
pas_frontend_1 docker.balasys.hu/api-security/config-webui 4.7.0 1f2536bf1cf2
344.3 MB

Administration Guide 7.2. Operation of services

4.10.0 142

7.2.3.3. Core service

Checking the status of PAS
systemctl status proxedo-api-security

Listing the status of the services
docker-compose -f /opt/balasys/etc/infrastructure/pas/docker-compose.yml ps

Example output

 Name Command State
Ports

pas_content-filtering-director_1 /usr/bin/dumb-init /usr/lo ... Up 1318/tcp
pas_flow-director_1 /usr/bin/dumb-init /usr/lo ... Up
pas_flow-director_2 /usr/bin/dumb-init /usr/lo ... Up
pas_insight-director_1 /usr/bin/dumb-init /usr/lo ... Up
pas_monitoring-manager_1 /usr/bin/dumb-init /usr/lo ... Up 0.0.0.0:161-
>161/udp,:::161->161/udp
pas_transport-director_1 /usr/bin/dumb-init /usr/lo ... Up
0.0.0.0:49000->49000/tcp, 0.0.0.0:49001->49001/tcp

Checking which images are used by the services
docker-compose -f /opt/balasys/etc/infrastructure/pas/docker-compose.yml images

Example output

 Container Repository
Tag Image Id Size

pas_content-filtering-director_1 docker.balasys.hu/api-security/content-filtering-
director 4.7.0 f6edae8b2d1b 420.7 MB
pas_flow-director_1 docker.balasys.hu/api-security/flow-director
4.7.0 a2b7ccc88823 441 MB
pas_flow-director_2 docker.balasys.hu/api-security/flow-director
4.7.0 a2b7ccc88823 441 MB
pas_insight-director_1 docker.balasys.hu/api-security/insight-director
4.7.0 db005e0fa5b6 331.9 MB
pas_monitoring-manager_1 docker.balasys.hu/api-security/monitoring-manager
4.7.0 772becf42dbe 467.6 MB
pas_transport-director_1 docker.balasys.hu/api-security/transport-director
4.7.0 c53bfaed2db0 377.1 MB

7.2.4. Starting and stopping services


PAS will ensure that containers are always clean on startup, which means that manual changes
to the containers will not persist after a restart.

7.2.4.1. Storage service

Starting PAS storage
systemctl start proxedo-api-security-storage

Administration Guide 7.2. Operation of services

4.10.0 143

Stopping PAS storage
systemctl stop proxedo-api-security-storage

Restarting PAS storage
systemctl restart proxedo-api-security-storage


pas-storage-checkconfig is invoked prior to (re)starting and reloading the service. The
requested operation is interrupted if pas-storage-checkconfig fails.

Configuring PAS storage to start automatically
systemctl enable proxedo-api-security-storage

Configuring PAS storage not to start automatically
systemctl disable proxedo-api-security-storage

7.2.4.2. Management service

Starting PAS management
systemctl start proxedo-api-security-mgmt

Stopping PAS management
systemctl stop proxedo-api-security-mgmt

Restarting PAS management
systemctl restart proxedo-api-security-mgmt


pas-mgmt-checkconfig is invoked prior to (re)starting and reloading the service. The requested
operation is interrupted if pas-mgmt-checkconfig fails.

Configuring PAS management to start automatically
systemctl enable proxedo-api-security-mgmt

Configuring PAS management not to start automatically
systemctl disable proxedo-api-security-mgmt

7.2.4.3. Core service

Starting PAS
systemctl start proxedo-api-security

Stopping PAS
systemctl stop proxedo-api-security

Restarting PAS
systemctl restart proxedo-api-security

Configuring PAS to start automatically
systemctl enable proxedo-api-security

Configuring PAS not to start automatically
systemctl disable proxedo-api-security

Administration Guide 7.2. Operation of services

4.10.0 144

 The same operations are available for the proxedo-api-security-ha service.

7.2.5. Operational dependencies between the core and the HA services

As the proxedo-api-security-ha service makes PAS highly available, the two services have a specific
dependency relation. The proxedo-api-security-ha service can be started alone without PAS running to enable
debugging without having to deal with PAS as well.

Although, if the proxedo-api-security service is also started, the changes of its state affect the HA service too.
Stop and restart operations are propagated to the HA service and if the proxedo-api-security service enters
failed state, it will also stop the HA service. This is to ensure renouncing MASTER state unless PAS is up and
running.

7.2.6. Upgrading services

Prior to upgrading services, make sure that the image tags point to the right version. See section docker-
compose.conf for details.

 The upgrade process will cause a service disruption.

To upgrade PAS docker images, you need to run the update script of the corresponding components.

• pas-update

• pas-mgmt-update

• pas-storage-update


The update scripts can be called with a -y or --yes option to automatically confirm the
operation.

Major and minor version upgrades also include installing the new .deb package.

7.3. Checking Logs
All the container logs are collected in the system journal. Container logs are identified with the name of the
container such as pas-[transport|insight|flow|content-filtering|ha]-director, pas-monitoring-manager. Management
container identifiers are pas-[frontend|config-api]. Storage container identifiers are pas-[consul|blob-store].

You can check the system journal with the journalctl command. It accepts various possibilities for filtering,
consult its manual page for details.


When using the --unit option of journalctl, note that the services are docker containers and
their logs show up under the docker service, and not under proxedo-api-security.


One option for checking a specific container’s logs is to use the --identifier option for
journalctl and specify the identifier of the component.

7.3.1. Understanding logs

Administration Guide 7.3. Checking Logs

4.10.0 145

As multiple pieces of software run in each container, there are two layers of logs in each containers' output. The
first field is always an ISO formatted date. Then the name of the process inside the container follows. The
remaining fields are the output of the process itself. In the below example, we see logs from the flow-director
container. It prints output for processes called pre, pas-event-handler, flow-director and service-adaptor.

Container log output

2021-04-20T09:15:30 pre Container starts
2021-04-20T09:15:33 pre INFO:confgen: Generating configuration files
2021-04-20T09:15:34 pas-event-handler INFO:SupervisordEventDispatcher:Dispatching event;
processname='pre', eventname='PROCESS
2021-04-20T09:15:34 pas-event-handler INFO:SupervisordEventDispatcher:Process exited;
processname=pre, success=True
2021-04-20T09:15:34 pas-event-handler INFO:SupervisordEventDispatcher:Starting main
processes.
2021-04-20T09:15:34 pas-event-handler INFO:SupervisordEventDispatcher:Starting process;
process='flow-director'
[...]
2021-04-20T09:15:37 flow-director 2021-04-20T09:15:37+0200: flow_builder.info(3)
(nosession): Loaded plugin; [...]
2021-04-20T09:15:37 flow-director 2021-04-20T09:15:37+0200: flow_builder.info(3)
(nosession): Loaded plugin; [...]
2021-04-20T09:15:37 flow-director 2021-04-20T09:15:37+0200: flow_builder.info(3)
(nosession): Loaded plugin; [...]
2021-04-20T09:15:37 flow-director 2021-04-20T09:15:37+0200: flow_builder.info(3)
(nosession): Loaded plugin; [...]
2021-04-20T09:15:37 flow-director 2021-04-20T09:15:37+0200: flow_builder.info(3)
(nosession): Loaded plugin; [...]
2021-04-20T09:15:37 flow-director 2021-04-20T09:15:37+0200: flow_builder.info(3)
(nosession): Loaded plugin; [...]
2021-04-20T09:15:37 flow-director 2021-04-20T09:15:37+0200: flow_builder.info(3)
(nosession): Loaded plugin; [...]
2021-04-20T09:15:37 flow-director 2021-04-20T09:15:37+0200: flow_set.info(3) (nosession):
Start building flows
[...]
2021-04-20T09:15:39 pas-event-handler INFO:SupervisordEventDispatcher:Starting process;
process='service-adaptor'
[...]
2021-05-07T14:23:55 service-adaptor INFO:PASHealthCheck:All services are healthy.
2021-05-07T14:23:55 service-adaptor [pid: 47|app: 0|req: 223/223] 172.19.0.3 () {28 vars
in 350 bytes} [Fri May 7 14:23:55 2021] [...]

7.3.1.1. Flow Director and Transport Director logs

As from the API security perspective, the most important components are Flow Director and Transport Director, we
discuss their logs more in detail. There are two important concepts related to these logs: categories and Session
IDs.

• Categories help filtering logs based on their relevance. They are composed of a component, a tag, and a
severity, for example: http.info(3).

◦ The component helps to identify the part of the solution. For the Transport Director this is usually core or
http, for the Flow Director it is either core, or the Plugin’s type, such as serializer or enforcer.

◦ The tag helps to define the type of the message. Usually one of info, error, debug, policy or accounting.

◦ The severity defines how important the message is. It is a number between 1-9 where 1 is the highest.

• Session ID helps identifying log lines that belong to the same session. This is especially important as the calls
travel between the Transport Director and the Flow Director.

It is usually in the form of svc/default/<listener>:<transport-director-session>/default/http#<http-request-

Administration Guide 7.3. Checking Logs

4.10.0 146

count>/flow:<flow-director-id>/ch:<flow-director-channel>/<endpoint_name>/<plugin_type>/<plugin_name>, for
example: svc/default/httpbin:14/default/http#0/flow:1/ch:28/endpoint_test/enforcer/manualtest.

Information that is not available at the time, will be missing from the Session ID. Generally, the part until /flow:
belongs to the Transport Director. Consequently, the Transport Director will never see that part. The Flow Director
however will fetch and include that information. Nevertheless, in early phases it might not be available, and the
Session ID will start with flow.

Despite some parts not being always available, the ID is constructed in such a manner that grepping on any part
will find other messages with extra information as well.

7.4. Disabling firewall logs from storage containers
If firewall logs from the storage containers are deemed unnecessary, they can be disabled. To do that, create a file
at /etc/sysctl.d/20-pas-disable-container-iptables-logs.conf with the following content. Content of
/etc/sysctl.d/20-pas-disable-container-iptables-logs.conf

net.netfilter.nf_log_all_netns=1

7.5. Monitoring in PAS
Monitoring data in PAS can be accessed by using either SNMPv2 or SNMPv3 protocol versions. The metrics
collected with SNMPv2 and SNMPv3 in PAS form two distinctive groups:

• the PAS-related data, like container statuses and component versions

• the host-related data, like the version of the host Operating System and network statistics

The forthcoming sections introduce both the common and the distinctive configuration settings related to
SNMPv2 and SNMPv3.

7.5.1. Common client configuration options with SNMPv2 and SNMPv3

The configuration of the listed parameters are common for both SNMPv2 and SNMPv3 protocol versions:

• Port: If publishing monitoring data via SNMP is enabled, any SNMP client can query metrics on the UDP port
161.

• MIB: The BALASYS-SNMP-MIB and the PAS-SNMP-MIB Management Information Base (MIB) documents can be
downloaded from Balasys customer documentation. Further recommended MIB files for the analysis of this
data are SNMPv2-MIB, IF-MIB and UCD-SNMP-MIB.

7.5.2. SNMPv2 client configuration options

To access the collected metrics, consider the following notes on community strings related to SNMPv2:

• PAS-related data can be accessed using any PAS community string configured under SNMPv2 authentication.

• Host-related data can be accessed using any host community string configured under SNMPv2
authentication.

7.5.3. SNMPv3 client configuration options

Note that some of the parameters for SNMPv3 are predefined and mandatory. Consider the following
configuration details on the SNMPv3 parameters:

• Context name:

Administration Guide 7.4. Disabling firewall logs from storage containers

4.10.0 147

◦ PAS-related data can be accessed using the pas-context string.

◦ Host-related data can be accessed using the host-context string.

• Username: It is the username value of a user configured under SNMPv3 authentication.

• Security level: Use the predefined parameter priv here.

• Authentication protocol: Use the predefined parameter SHA.

• Authentication password: It is the authentication password value of a user, configured under SNMPv3
authentication.

• Privacy protocol: Use the predefined parameter AES.

• Privacy password: It is the privacy password value of a user configured under SNMPv3 authentication.

7.5.4. Example command line client usage

The following example presents querying all the available PAS-related metrics using SNMPv2:

Example output

snmpwalk -M <MIB file location> -m +PAS-SNMP-MIB -v2c -c <a PAS community string> <host
address>:161 1.3

The following example presents querying the major version of the PAS core component using SNMPv3:

Example output

snmpget -M <MIB file location> -m +PAS-SNMP-MIB -v3 -u <a username> -l priv -a SHA -A <an
authentication password> -x AES -X <a privacy password> -n pas-context <host address>:161
pasCoreMajorVersion

7.6. Backup and restore
Configuration

The following files and folders need to be backed up or restored:

• /opt/balasys/etc

Data
The following files or folders need to be backed up or restored:

• /opt/balasys/var/persistent

Process to backup files or folders
• Pack files or folders mentioned earlier (optional).

• Copy (packed) configuration and data to the backup server.

Process to restore files or folders
• Stop all PAS services.

• Copy (packed) configuration and data from the remote server.

• Unpack files or folders mentioned earlier (optional).

• Start all PAS services.

7.7. Recreating services

Administration Guide 7.6. Backup and restore

4.10.0 148

 Recreating services will cause a service disruption.

Factory reset for PAS services
Remove all persistent data from the host.

 This operation must be run as root.

• /opt/balasys/bin/pas-storage-factory-reset

• /opt/balasys/bin/pas-factory-reset

• /opt/balasys/bin/pas-mgmt-factory-reset

Resetting an individual service without removing persistent data
• Use docker ps to find the container name of the service, the container of which you want to reset.

• Stop the services by systemctl stop proxedo-api-security or systemctl stop proxedo-api-
security-mgmt or systemctl stop proxedo-api-security-storage.

• Remove the containers by docker rm <name-of-container>.

• Start the services by systemctl start proxedo-api-security or systemctl start proxedo-api-
security-mgmt or systemctl start proxedo-api-security-storage.

7.8. Troubleshooting docker services
The troubleshooting procedures are applicable to the following docker services:

PAS component Docker service

Storage component • consul

• blob-store

Management component • config-api

• frontend

Core component • content-filtering-director

• flow-director

• insight-director

• transport-director

• monitoring-manager

7.8.1. Inspect running processes inside docker services

• docker-compose -f /opt/balasys/etc/infrastructure/pas/docker-compose.yml top <Docker
service>

• docker-compose -f /opt/balasys/etc/infrastructure/mgmt/docker-compose.yml top <Docker
service>

• docker-compose -f /opt/balasys/etc/infrastructure/storage/docker-compose.yml top <Docker
service>

• docker-compose -f /opt/balasys/etc/infrastructure/ha/docker-compose.yml top <Docker
service>

Administration Guide 7.8. Troubleshooting docker services

4.10.0 149


You can list available docker services by running docker-compose -f <docker-compose-
file> ps <Docker service>.

Example output

pas_flow-director_1
UID PID PPID C STIME TTY TIME
CMD

root 26109 26052 0 13:46 ? 00:00:00 /usr/bin/dumb-init
/usr/local/bin/supervisord -c /opt/balasys/etc/supervisord.conf
[...]
root 26529 26252 0 13:46 ? 00:00:01 /usr/bin/python3
/usr/local/bin/twistd -ny /opt/balasys/etc/twisted.tac
[...]

pas_flow-director_2
UID PID PPID C STIME TTY TIME
CMD

root 26350 26314 0 13:46 ? 00:00:00 /usr/bin/dumb-init
/usr/local/bin/supervisord -c /opt/balasys/etc/supervisord.conf
[...]
root 26545 26434 0 13:46 ? 00:00:01 /usr/bin/python3
/usr/local/bin/twistd -ny /opt/balasys/etc/twisted.tac
[...]

7.8.2. Inspect files inside docker services

To find out what files are available with what content in docker services, use the appropriate pas-login
command. This command provides an interactive shell in the selected container in which file inspection and
editing tools are available.

The list of login commands are the following:

• pas-login <Docker service>

• pas-mgmt-login <Docker service>

• pas-storage-login <Docker service>

 Run these commands without parameters to get the list of available docker service names.

Example usage of the pas-login command

$ pas-login flow-director
root@f64d5a4c421c:/# ls -l /opt/balasys/etc/pas
total 4
-rw-rw-r-- 1 balasys balasys 4065 Mar 17 10:33 license.txt

7.8.3. Inspect process state and network traffic inside docker containers

To inspect process states and network traffic, use the appropriate pas-network-and-process-debug-login
command. This will start a debug container which has access to the processes and network traffic of the target

Administration Guide 7.8. Troubleshooting docker services

4.10.0 150

container.

The list of login commands are the following:

• pas-network-and-process-debug-login <Docker container>

• pas-mgmt-network-and-process-debug-login <Docker container>

• pas-storage-network-and-process-debug-login <Docker container>

 Run these commands without parameters to get the list of available docker container names.


Compared to the pas-login commands, these ones work with docker containers, not services.
This is to enable inspecting different instances of Flow Director.

Example usage of the pas-network-and-process-debug-login

$ pas-network-and-process-debug-login pas_flow-director_1
root@f64d5a4c421c:/# ps x
 PID TTY STAT TIME COMMAND
 1 ? Ss 0:00 /usr/bin/dumb-init [...]
 6 ? Ss 0:01 /usr/bin/python3 [...]
 7 ? S 0:00 /usr/bin/python3 [...]
 8 ? Sl 0:00 /usr/sbin/syslog-ng [...]
 28 ? Sl 0:01 /usr/bin/python3 [...]
 29 ? S 0:00 uwsgi [...]
 30 ? Sl 0:00 uwsgi [...]
 539 pts/0 Ss 0:00 /bin/bash
 597 pts/0 R+ 0:00 ps x

Appendix A: config.yml examples

A.1. Minimal storage configuration
The configuration example is set as follows:

• Standalone server is used, not joining to a cluster

• Default TLS settings are used for storage-storage configuration

• Certificates and encryption key are generated by pas-storage-consul-* commands

• INFO log level is defined

Example /opt/balasys/etc/storage/config.yml

common:
 standalone_mode: true

consul:
 bind_cluster_addr: 192.168.1.220
 gossip_encryption_key: lzT4l6mS4O7lj9Y9KeJYcABpn9q5GczbsoMG7fRuAfE=
 node_name: mgmt

blob_store:
 access_key: your_access_key

Administration Guide Appendix A: config.yml examples

4.10.0 151

 secret_key: your_secret_key

A.2. Minimal management configuration
The configuration example is set as follows:

• Only HTTP access is set for the web interface, no TLS is used

• htpasswd authentication is used, no LDAP is set

Example /opt/balasys/etc/mgmt/config.yml

frontend: {}

configapi: {}

A.3. Management configuration with HTTPS (TLS) and LDAP
authentication
The configuration example is set as follows:

• A certificate for the web service must be generated and copied to the management node beforehand.

• LDAP authentication is configured without TLS.

• The authentication configuration was tested using Microsoft Active Directory.

Example /opt/balasys/etc/mgmt/config.yml with NTLM on

frontend:
 tls:
 certificate_path: '/opt/balasys/etc/mgmt/pas.example.com.crt'
 key_path: '/opt/balasys/etc/mgmt/pas.example.com.key'

configapi:
 ldap:
 ldap_url: ldap://ad.example.com
 use_ntlm: on
 bind_user: AD_domain\administrator # The name of the user follows the domain.
 bind_password: your_administrator_password
 user_base_dn: CN=Users,DC=example,DC=com
 group_base_dn: CN=Users,CN=Builtin,DC=example,DC=com
 allowed_groups:
 - Users

Example /opt/balasys/etc/mgmt/config.yml with NTLM off

frontend:
 tls:
 certificate_path: '/opt/balasys/etc/mgmt/pas.example.com.crt'
 key_path: '/opt/balasys/etc/mgmt/pas.example.com.key'

configapi:
 ldap:
 ldap_url: ldap://ad.example.com
 use_ntlm: off
 bind_user: CN=administrator,CN=Users,DC=example,DC=com # This must be the DN of the
user

Administration Guide A.2. Minimal management configuration

4.10.0 152

 bind_password: your_administrator_password
 user_base_dn: CN=Users,DC=example,DC=com
 group_base_dn: CN=Users,CN=Builtin,DC=example,DC=com
 allowed_groups:
 - Users

A.4. Minimal HA configuration
The configuration example is set as follows:

• HA node with the highest priority (other node must have priority less than 200)

Example /opt/balasys/etc/ha/config.yml

ha:
 interface: eth0
 priority: 250
 auth_pass: your_ha_password
 virtual_ip: 192.168.1.254

Appendix B: LDAP certificate examples
Single CA file example

-----BEGIN CERTIFICATE-----
... (the certificate for the CA)...
-----END CERTIFICATE-----

Example on certificate chain with multiple CAs

-----BEGIN CERTIFICATE-----
... (the certificate for the CA)...
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
... (the root certificate for the CA's issuer)...
-----END CERTIFICATE-----

Appendix C: Selector configuration for the Fraud
Detector Plugin
The following fields can be defined in the Save as field when creating a new Selector. The saved Selector can be
used by the Fraud Detector plugin.


The data type selected in the API for the actual selector option shall be the one listed in this
table as Type for the actual selector. Currently, no data type conversion is possible for
selectors.

Table 70. Selector configuration for the Fraud Detector Plugin

Administration Guide A.4. Minimal HA configuration

4.10.0 153

Values for Save as field Data type Description Example

action_type string The type of the user action being scored. Any
string can be valid.

update_content,
verification or
account_login_fail

client_address string The user’s IP address at the time of the
transaction. It shall include the full IPv4 or IPv6
address.

transaction_id string A unique identifier for the transaction, as found
in the system. If it is not specified, it is
automatically generated.

98db9a56b2e3

affiliate_id string The user’s unique affiliate identifier in the
system.

affiliate_name string The name of the affiliate for the registered user.
Can be ASCII-encoded via a secure hash
algorithm, such as MD5 or SHA-2.

jdoe345

order_memo string The description of the transaction found in the
system.

email string The full email address of the registered user.

email_domain string The email address domain of the registered
user.

password_hash string The hash of the user’s password in ASCII
encoding (we recommend using HMAC-SHA256
or RSA-SHA256).

user_fullname string The user’s registered full name. Can be hashed
in ASCII encoding as well (e.g. MD5, SHA-2
family).

John Doe

user_name string The user’s registered username. Can be hashed
in ASCII encoding as well (e.g. MD5, SHA-2
family).

jdoe325

user_id string The user’s unique identifier. If the request was
sent without a user_id value, a unique ID is
automatically generated based on the
user_name and/or the email fields, based on
which is available. If none of these identifiers
were included in the request, the user ID is
generated randomly.

00ab11-as2233

user_created integer The date when the user first registered to the
protected service, using the UNIX time format
and UTC time zone, without milliseconds.

1446370717 (Sun, 01
Nov 2015 09:38:37
+0000)

user_category string The user’s category. VIP

user_account_status string The user’s current account status. login_blocked

user_bank_account string The user’s bank account number for monetary
transfer.

IBAN number

user_bank_name string The name of the user’s bank account.

user_balance float The user’s current balance. 1010.25

Administration GuideAppendix C: Selector configuration for the Fraud Detector Plugin

4.10.0 154

Values for Save as field Data type Description Example

user_verification_leve
l

string The user’s verification level. ID_verified

user_dob date The user’s date of birth in the format of YYYY-
MM-DD.

1983-01-01

user_country string The country code for the user’s registered
address. Uses the two-character ISO 3166-1
format.

US, DE

user_city string The complete name of the city associated with
the user’s registered address.

London, New York

user_region string The state or region code for the user’s
registered address. Uses the two-character ISO
3166-2 format.

NY, DE

user_zip string The zip/postal code of the user’s registered
address.

10005, PH1 1EU

user_street string The first line of the user’s registered street
address. Can be hashed in ASCII encoding as
well.

MD5, SHA-2 family: 157
W 26th St

user_street2 string The second line of the user’s registered street
address. Can be hashed in ASCII encoding as
well.

MD5, SHA-2 family:
Apt.432

session_id string The session ID is a custom, unique ID that links
the user’s device data with the transactions. It
shall be based on the user’s current browsing
session, by tracking cookies for example. If
JavaScript Agent v4 is used, the encrypted
payload returned by the SDK (supported by JS
Agent v4, iOS SDK 3.0.0, Android SDK 3.0.0)
shall be sent in the session field, instead of the
session_id.

session string The base64 encoded session data returned by
the SDKs.

device_id string This field shall only be used if a device
fingerprinting solution is used already. This is
the ID that shall be linked to the transactions or
in case rules are required to be built on those
IDs.

payment_mode string The method of payment used. card, paypal, wire
transfer, bitcoin

payment_provider string The name of the payment service provider
related to the transaction.

skrill

card_fullname string The user’s full name found on the card. Can be
hashed in ASCII encoding as well.

MD5, SHA-2 family

card_bin string The first 4, 6 or 8 digits of the card number.

card_hash string The hash of the credit card used by the user in
ASCII encoding. We recommend using HMAC-
SHA256 or RSA-SHA256 formats and strictly
advise not to use MD5 hash format.

Administration GuideAppendix C: Selector configuration for the Fraud Detector Plugin

4.10.0 155

Values for Save as field Data type Description Example

card_expire string The card’s expiration date. 2022-01

card_last string The last 4 digits of the card number. These help
to identify the card.

avs_result string The standard Address verification Service (AVS)
codes sent by the credit card processor.

N, A

cvv_result boolean The Cad Verification Value (CVV) result. true, false

status_3d string The Cad Verification Value (CVV) result. true, false

sca_method string The result of the Strong Customer
Authentication method.

2FA

phone_number string The user’s registered phone number, including
the country code. Cannot include spaces or
hyphens, the + sign is optional. The maximum
length is 19 characters.

36704316088

transaction_type string The transaction type of the actual business. purchase, return

transaction_amount float The full transaction amount. As a decimal point
use '.' (full stop).

539.99

transaction_currency string The currency used by the user, in ISO 4217
format. Crypto currencies are also supported.

EUR, BTC, USDT

shipping_country string A two-character ISO 3166-1 country code for
the country associated with the user’s shipping
address.

US, DE

shipping_city string The full name of the city associated with the
user’s shipping address.

London, New York

shipping_region string The state or region code for the user’s shipping
address. Uses the two-character ISO 3166-2
format

NY, DE

shipping_zip string The zip/postal code of the user’s shipping
address.

10005, PH1 1EU

shipping_street string The first line of the user’s shipping street
address. Can be hashed in ASCII encoding as
well (e.g. MD5, SHA-2 family).

157 W 26th St

shipping_street2 string The second line of the user’s shipping street
address. Can be hashed in ASCII encoding as
well (e.g. MD5, SHA-2 family).

Apt.432

shipping_phone string The phone number associated with the user’s
shipping address, including the country code.
Cannot include spaces or hyphens, the + sign is
optional. The maximum length is 19 characters.

36704316088

shipping_fullname string The user’s registered full name. Can be hashed
in ASCII encoding as well (e.g. MD5, SHA-2
family).

John Doe

shipping_method string The type of the shipping method used by the
customer.

standard, UPS, FedEx

Administration GuideAppendix C: Selector configuration for the Fraud Detector Plugin

4.10.0 156

Values for Save as field Data type Description Example

billing_country string The country code for the user’s billing address.
Uses the two-character ISO 3166-1 format.

US, DE

billing_city string The full name of the city associated with the
user’s billing address.

London, New York

billing_region string The state or region code for the user’s billing
address. Uses the two-character ISO 3166-2
format

NY, DE

billing_zip string The zip/postal code of the user’s billing
address.

10005, PH1 1EU

billing_street string The user’s billing street address line 1. Can be
hashed in ASCII encoding as well (e.g. MD5,
SHA-2 family).

157 W 26th St

billing_street2 string The user’s billing street address line 2. Can be
hashed in ASCII encoding as well (e.g. MD5,
SHA-2 family).

Apt.432

billing_phone string The phone number associated with the user’s
billing address, including the country code.
Cannot include spaces or hyphens, the + sign is
optional. The maximum length is 19 characters.

36704316088

discount_code string The discount code that the user applied during
the checkout.

gift boolean The user can mark the order with true or false
value, dependent on if it is a gift or not.

gift_message boolean The user can mark the order with true or false
value, dependent on if the order has a gift
message or not.

merchant_category string The category of the merchant. digital_item_selle
r

merchant_id string The unique merchant identifier in case the
orders are from different merchants.

ab01-cd23-4567

merchant_created_at integer The date the merchant was created, using the
UNIX time format and UTC time zone.

1446370717 (Sun, 01
Nov 2015 09:38:37
+0000)

merchant_country string The country code for the merchant’s address.
Uses the two-character ISO 3166-1 format.

US, DE

receiver_fullname string The receiver’s full name for monetary transfer. IBAN number

details_url string The URL of the transaction in the management
platform.

regulation string The license or market name for gambling
operator.

MGA

bonus_campaign_id string The bonus campaign’s unique identifier. bonus100a

brand_id string The brand’s unique identifier. brand123

 The maximum length of all request parameters is 100 characters, except for the following: 500

Administration GuideAppendix C: Selector configuration for the Fraud Detector Plugin

4.10.0 157

characters for card_hash 64 characters for the session_id (sent directly or within the session
field) 19 characters for the phone_number 15 characters for card_bin 4 characters for
transaction_currency 50 characters for discount_code and shipping_method ** 255
characters for transaction_id

Appendix D: Time zones
Country Code Time zone Name

AD Europe/Andorra

AE Asia/Dubai

AF Asia/Kabul

AG America/Antigua

AI America/Anguilla

AL Europe/Tirane

AM Asia/Yerevan

AO Africa/Luanda

AQ Antarctica/McMurdo

AQ Antarctica/Casey

AQ Antarctica/Davis

AQ Antarctica/DumontDUrville

AQ Antarctica/Mawson

AQ Antarctica/Palmer

AQ Antarctica/Rothera

AQ Antarctica/Syowa

AQ Antarctica/Troll

AQ Antarctica/Vostok

AR America/Argentina/Buenos_Aires

AR America/Argentina/Cordoba

AR America/Argentina/Salta

AR America/Argentina/Jujuy

AR America/Argentina/Tucuman

AR America/Argentina/Catamarca

AR America/Argentina/La_Rioja

AR America/Argentina/San_Juan

AR America/Argentina/Mendoza

AR America/Argentina/San_Luis

Administration Guide Appendix D: Time zones

4.10.0 158

Country Code Time zone Name

AR America/Argentina/Rio_Gallegos

AR America/Argentina/Ushuaia

AS Pacific/Pago_Pago

AT Europe/Vienna

AU Australia/Lord_Howe

AU Antarctica/Macquarie

AU Australia/Hobart

AU Australia/Currie

AU Australia/Melbourne

AU Australia/Sydney

AU Australia/Broken_Hill

AU Australia/Brisbane

AU Australia/Lindeman

AU Australia/Adelaide

AU Australia/Darwin

AU Australia/Perth

AU Australia/Eucla

AW America/Aruba

AX Europe/Mariehamn

AZ Asia/Baku

BA Europe/Sarajevo

BB America/Barbados

BD Asia/Dhaka

BE Europe/Brussels

BF Africa/Ouagadougou

BG Europe/Sofia

BH Asia/Bahrain

BI Africa/Bujumbura

BJ Africa/Porto-Novo

BL America/St_Barthelemy

BM Atlantic/Bermuda

BN Asia/Brunei

BO America/La_Paz

BQ America/Kralendijk

Administration Guide Appendix D: Time zones

4.10.0 159

Country Code Time zone Name

BR America/Noronha

BR America/Belem

BR America/Fortaleza

BR America/Recife

BR America/Araguaina

BR America/Maceio

BR America/Bahia

BR America/Sao_Paulo

BR America/Campo_Grande

BR America/Cuiaba

BR America/Santarem

BR America/Porto_Velho

BR America/Boa_Vista

BR America/Manaus

BR America/Eirunepe

BR America/Rio_Branco

BS America/Nassau

BT Asia/Thimphu

BW Africa/Gaborone

BY Europe/Minsk

BZ America/Belize

CA America/St_Johns

CA America/Halifax

CA America/Glace_Bay

CA America/Moncton

CA America/Goose_Bay

CA America/Blanc-Sablon

CA America/Toronto

CA America/Nipigon

CA America/Thunder_Bay

CA America/Iqaluit

CA America/Pangnirtung

CA America/Atikokan

CA America/Winnipeg

Administration Guide Appendix D: Time zones

4.10.0 160

Country Code Time zone Name

CA America/Rainy_River

CA America/Resolute

CA America/Rankin_Inlet

CA America/Regina

CA America/Swift_Current

CA America/Edmonton

CA America/Cambridge_Bay

CA America/Yellowknife

CA America/Inuvik

CA America/Creston

CA America/Dawson_Creek

CA America/Fort_Nelson

CA America/Vancouver

CA America/Whitehorse

CA America/Dawson

CC Indian/Cocos

CD Africa/Kinshasa

CD Africa/Lubumbashi

CF Africa/Bangui

CG Africa/Brazzaville

CH Europe/Zurich

CI Africa/Abidjan

CK Pacific/Rarotonga

CL America/Santiago

CL America/Punta_Arenas

CL Pacific/Easter

CM Africa/Douala

CN Asia/Shanghai

CN Asia/Urumqi

CO America/Bogota

CR America/Costa_Rica

CU America/Havana

CV Atlantic/Cape_Verde

CW America/Curacao

Administration Guide Appendix D: Time zones

4.10.0 161

Country Code Time zone Name

CX Indian/Christmas

CY Asia/Nicosia

CY Asia/Famagusta

CZ Europe/Prague

DE Europe/Berlin

DE Europe/Busingen

DJ Africa/Djibouti

DK Europe/Copenhagen

DM America/Dominica

DO America/Santo_Domingo

DZ Africa/Algiers

EC America/Guayaquil

EC Pacific/Galapagos

EE Europe/Tallinn

EG Africa/Cairo

EH Africa/El_Aaiun

ER Africa/Asmara

ES Europe/Madrid

ES Africa/Ceuta

ES Atlantic/Canary

ET Africa/Addis_Ababa

FI Europe/Helsinki

FJ Pacific/Fiji

FK Atlantic/Stanley

FM Pacific/Chuuk

FM Pacific/Pohnpei

FM Pacific/Kosrae

FO Atlantic/Faroe

FR Europe/Paris

GA Africa/Libreville

GB Europe/London

GD America/Grenada

GE Asia/Tbilisi

GF America/Cayenne

Administration Guide Appendix D: Time zones

4.10.0 162

Country Code Time zone Name

GG Europe/Guernsey

GH Africa/Accra

GI Europe/Gibraltar

GL America/Godthab

GL America/Danmarkshavn

GL America/Scoresbysund

GL America/Thule

GM Africa/Banjul

GN Africa/Conakry

GP America/Guadeloupe

GQ Africa/Malabo

GR Europe/Athens

GS Atlantic/South_Georgia

GT America/Guatemala

GU Pacific/Guam

GW Africa/Bissau

GY America/Guyana

HK Asia/Hong_Kong

HN America/Tegucigalpa

HR Europe/Zagreb

HT America/Port-au-Prince

HU Europe/Budapest

ID Asia/Jakarta

ID Asia/Pontianak

ID Asia/Makassar

ID Asia/Jayapura

IE Europe/Dublin

IL Asia/Jerusalem

IM Europe/Isle_of_Man

IN Asia/Kolkata

IO Indian/Chagos

IQ Asia/Baghdad

IR Asia/Tehran

IS Atlantic/Reykjavik

Administration Guide Appendix D: Time zones

4.10.0 163

Country Code Time zone Name

IT Europe/Rome

JE Europe/Jersey

JM America/Jamaica

JO Asia/Amman

JP Asia/Tokyo

KE Africa/Nairobi

KG Asia/Bishkek

KH Asia/Phnom_Penh

KI Pacific/Tarawa

KI Pacific/Enderbury

KI Pacific/Kiritimati

KM Indian/Comoro

KN America/St_Kitts

KP Asia/Pyongyang

KR Asia/Seoul

KW Asia/Kuwait

KY America/Cayman

KZ Asia/Almaty

KZ Asia/Qyzylorda

KZ Asia/Qostanay

KZ Asia/Aqtobe

KZ Asia/Aqtau

KZ Asia/Atyrau

KZ Asia/Oral

LA Asia/Vientiane

LB Asia/Beirut

LC America/St_Lucia

LI Europe/Vaduz

LK Asia/Colombo

LR Africa/Monrovia

LS Africa/Maseru

LT Europe/Vilnius

LU Europe/Luxembourg

LV Europe/Riga

Administration Guide Appendix D: Time zones

4.10.0 164

Country Code Time zone Name

LY Africa/Tripoli

MA Africa/Casablanca

MC Europe/Monaco

MD Europe/Chisinau

ME Europe/Podgorica

MF America/Marigot

MG Indian/Antananarivo

MH Pacific/Majuro

MH Pacific/Kwajalein

MK Europe/Skopje

ML Africa/Bamako

MM Asia/Yangon

MN Asia/Ulaanbaatar

MN Asia/Hovd

MN Asia/Choibalsan

MO Asia/Macau

MP Pacific/Saipan

MQ America/Martinique

MR Africa/Nouakchott

MS America/Montserrat

MT Europe/Malta

MU Indian/Mauritius

MV Indian/Maldives

MW Africa/Blantyre

MX America/Mexico_City

MX America/Cancun

MX America/Merida

MX America/Monterrey

MX America/Matamoros

MX America/Mazatlan

MX America/Chihuahua

MX America/Ojinaga

MX America/Hermosillo

MX America/Tijuana

Administration Guide Appendix D: Time zones

4.10.0 165

Country Code Time zone Name

MX America/Bahia_Banderas

MY Asia/Kuala_Lumpur

MY Asia/Kuching

MZ Africa/Maputo

NA Africa/Windhoek

NC Pacific/Noumea

NE Africa/Niamey

NF Pacific/Norfolk

NG Africa/Lagos

NI America/Managua

NL Europe/Amsterdam

NO Europe/Oslo

NP Asia/Kathmandu

NR Pacific/Nauru

NU Pacific/Niue

NZ Pacific/Auckland

NZ Pacific/Chatham

OM Asia/Muscat

PA America/Panama

PE America/Lima

PF Pacific/Tahiti

PF Pacific/Marquesas

PF Pacific/Gambier

PG Pacific/Port_Moresby

PG Pacific/Bougainville

PH Asia/Manila

PK Asia/Karachi

PL Europe/Warsaw

PM America/Miquelon

PN Pacific/Pitcairn

PR America/Puerto_Rico

PS Asia/Gaza

PS Asia/Hebron

PT Europe/Lisbon

Administration Guide Appendix D: Time zones

4.10.0 166

Country Code Time zone Name

PT Atlantic/Madeira

PT Atlantic/Azores

PW Pacific/Palau

PY America/Asuncion

QA Asia/Qatar

RE Indian/Reunion

RO Europe/Bucharest

RS Europe/Belgrade

RU Europe/Kaliningrad

RU Europe/Moscow

UA Europe/Simferopol

RU Europe/Kirov

RU Europe/Astrakhan

RU Europe/Volgograd

RU Europe/Saratov

RU Europe/Ulyanovsk

RU Europe/Samara

RU Asia/Yekaterinburg

RU Asia/Omsk

RU Asia/Novosibirsk

RU Asia/Barnaul

RU Asia/Tomsk

RU Asia/Novokuznetsk

RU Asia/Krasnoyarsk

RU Asia/Irkutsk

RU Asia/Chita

RU Asia/Yakutsk

RU Asia/Khandyga

RU Asia/Vladivostok

RU Asia/Ust-Nera

RU Asia/Magadan

RU Asia/Sakhalin

RU Asia/Srednekolymsk

RU Asia/Kamchatka

Administration Guide Appendix D: Time zones

4.10.0 167

Country Code Time zone Name

RU Asia/Anadyr

RW Africa/Kigali

SA Asia/Riyadh

SB Pacific/Guadalcanal

SC Indian/Mahe

SD Africa/Khartoum

SE Europe/Stockholm

SG Asia/Singapore

SH Atlantic/St_Helena

SI Europe/Ljubljana

SJ Arctic/Longyearbyen

SK Europe/Bratislava

SL Africa/Freetown

SM Europe/San_Marino

SN Africa/Dakar

SO Africa/Mogadishu

SR America/Paramaribo

SS Africa/Juba

ST Africa/Sao_Tome

SV America/El_Salvador

SX America/Lower_Princes

SY Asia/Damascus

SZ Africa/Mbabane

TC America/Grand_Turk

TD Africa/Ndjamena

TF Indian/Kerguelen

TG Africa/Lome

TH Asia/Bangkok

TJ Asia/Dushanbe

TK Pacific/Fakaofo

TL Asia/Dili

TM Asia/Ashgabat

TN Africa/Tunis

TO Pacific/Tongatapu

Administration Guide Appendix D: Time zones

4.10.0 168

Country Code Time zone Name

TR Europe/Istanbul

TT America/Port_of_Spain

TV Pacific/Funafuti

TW Asia/Taipei

TZ Africa/Dar_es_Salaam

UA Europe/Kiev

UA Europe/Uzhgorod

UA Europe/Zaporozhye

UG Africa/Kampala

UM Pacific/Midway

UM Pacific/Wake

US America/New_York

US America/Detroit

US America/Kentucky/Louisville

US America/Kentucky/Monticello

US America/Indiana/Indianapolis

US America/Indiana/Vincennes

US America/Indiana/Winamac

US America/Indiana/Marengo

US America/Indiana/Petersburg

US America/Indiana/Vevay

US America/Chicago

US America/Indiana/Tell_City

US America/Indiana/Knox

US America/Menominee

US America/North_Dakota/Center

US America/North_Dakota/New_Salem

US America/North_Dakota/Beulah

US America/Denver

US America/Boise

US America/Phoenix

US America/Los_Angeles

US America/Anchorage

US America/Juneau

Administration Guide Appendix D: Time zones

4.10.0 169

Country Code Time zone Name

US America/Sitka

US America/Metlakatla

US America/Yakutat

US America/Nome

US America/Adak

US Pacific/Honolulu

UY America/Montevideo

UZ Asia/Samarkand

UZ Asia/Tashkent

VA Europe/Vatican

VC America/St_Vincent

VE America/Caracas

VG America/Tortola

VI America/St_Thomas

VN Asia/Ho_Chi_Minh

VU Pacific/Efate

WF Pacific/Wallis

WS Pacific/Apia

YE Asia/Aden

YT Indian/Mayotte

ZA Africa/Johannesburg

ZM Africa/Lusaka

ZW Africa/Harare

Glossary
API Application Programming Interface

CA Certification Authority

CRL Certificate Revocation List

HTTP HyperText Transport Protocol

HTTPS HyperText Transport Protocol Secure

JSON JavaScript Object Notation

LDAP Lightweight Directory Access Protocol

Administration Guide Glossary

4.10.0 170

MIB Management Information Base

NTLM NT LAN Manager

PEM Privacy Enhanced Mail

SNI Server Name Indication

SNMP Simple Network Management Protocol

SOAP Simple Object Access Protocol

SSL Secure Socket Layer

SIEM Security Information and Event Management

TLS Transport Layer Security

URI Universal Resource Indicator

URL Universal Resource Locator

WSDL Web Service Definition Language

XML Extensible Markup Language

XSD XML Schema Definition

Administration Guide Glossary

4.10.0 171

	Proxedo API Security based on VM environment: Administration Guide
	Preface
	Typographical conventions
	Contact and support information
	Sales contact
	Support contact
	Training

	1. Scope of this document
	2. Introduction to Proxedo API Security
	2.1. What is Proxedo API Security
	2.2. Where to start

	3. Overview of Proxedo API Security
	3.1. Main features
	3.2. Main Concepts in Proxedo API Security
	3.3. Architecture for Proxedo API Security

	4. Installation of Proxedo API Security based on VMs
	4.1. Prerequisites for installing PAS
	4.2. Installation scenarios
	4.3. Simplified installation method for the standalone setup
	4.4. Installation steps for the storage component
	4.5. Installation steps for the management component
	4.6. Installation steps for the core component
	4.7. Multi node setup using the automated deployment tool

	5. Base system configuration for PAS based on VMs
	5.1. Overview of configuration directories
	5.2. config.yml
	5.3. docker-compose.yml
	5.4. docker-compose.conf
	5.5. PAS restart policy
	5.6. Systemd Journal log limit setting
	5.7. Tracking version
	5.8. Scaling Flow Director
	5.9. Configuration of dockerd
	5.10. High availability configuration
	5.11. Setting up time synchronization

	6. Configuration of Proxedo API Security on the Web User Interface
	6.1. Minimum configuration
	6.2. Login Page
	6.3. Proxedo API Security Web User Interface main page
	6.4. BRICKS - Configuration units
	6.5. PLUGINS - Configuration units
	6.6. SERVICES - Configuration units
	6.7. Status information on the configuration of Proxedo API Security services
	6.8. Checking and finalizing changes in Proxedo API Security configuration
	6.9. Applying and validating Proxedo API Security configuration
	6.10. Backup and restore running or user configuration for Proxedo API Security

	7. Operation of Proxedo API Security based on VMs
	7.1. Operation of dockerd
	7.2. Operation of services
	7.3. Checking Logs
	7.4. Disabling firewall logs from storage containers
	7.5. Monitoring in PAS
	7.6. Backup and restore
	7.7. Recreating services
	7.8. Troubleshooting docker services

	Appendix A: config.yml examples
	A.1. Minimal storage configuration
	A.2. Minimal management configuration
	A.3. Management configuration with HTTPS (TLS) and LDAP authentication
	A.4. Minimal HA configuration

	Appendix B: LDAP certificate examples
	Appendix C: Selector configuration for the Fraud Detector Plugin
	Appendix D: Time zones
	Glossary

