
Proxedo API Security in Kubernetes
Administration Guide

Copyright (C) Balasys IT Ltd. 4.0.1, 2022-08-29

Copyright © 2019 Balasys IT Ltd.. All rights reserved. This document is protected by copyright and is
distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
document may be reproduced in any form by any means without prior written authorization of Balasys.

This documentation and the product it describes are considered protected by copyright according to the
applicable laws.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/). This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com)

Linuxª is a registered trademark of Linus Torvalds.

Windowsª 10 is registered trademarks of Microsoft Corporation.

The Balasysª name and the Balasysª logo are registered trademarks of Balasys IT Ltd.

The Zorpª name and the Zorpª logo are registered trademarks of Balasys IT Ltd.

The Proxedoª name and the Proxedoª logo are registered trademarks of Balasys IT Ltd.

AMD Ryzenª and AMD EPYCª are registered trademarks of Advanced Micro Devices, Inc.

Intel¨ Coreª and Intel¨ Xeonª are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries.

All other product names mentioned herein are the trademarks of their respective owners.

DISCLAIMER

Balasys is not responsible for any third-party websites mentioned in this document. Balasys does not
endorse and is not responsible or liable for any content, advertising, products, or other material on or
available from such sites or resources. Balasys will not be responsible or liable for any damage or loss
caused or alleged to be caused by or in connection with use of or reliance on any such content, goods, or
services that are available on or through any such sites or resources.

2022-08-29

Administration Guide

4.0.1 1

http://www.openssl.org/
mailto:eay@cryptsoft.com

Table of Contents
Preface. Ê4

Typographical conventions. Ê4

Contact and support information. Ê5

Sales contact. Ê5

Support contact . Ê5

Training. Ê5

1. Scope of this document. Ê5

2. Introduction to Proxedo API Security. Ê5

2.1. What is Proxedo API Security. Ê6

2.2. Where to start. Ê6

3. Overview of Proxedo API Security. Ê6

3.1. Main features. Ê6

3.1.1. TLS. Ê6

3.1.2. Enforcement. Ê6

3.1.3. Insights. Ê7

3.1.4. Security flow. Ê7

3.2. Main Concepts in Proxedo API Security. Ê7

3.3. Architecture for Proxedo API Security. Ê9

3.3.1. Understanding processing flow. Ê11

4. Installation of Proxedo API Security in Kubernetes environment. Ê13

4.1. Prerequisites for installing PAS. Ê13

4.1.1. Cluster components necessary for PAS. Ê13

4.1.2. Tools necessary for the installation. Ê13

4.1.3. Minimum configuration settings for the Helm chart. Ê14

4.2. Installing PAS in Kubernetes. Ê16

4.2.1. Setting up docker registry connection. Ê16

4.2.2. Providing the necessary files for Helm installation. Ê16

4.3. Verifying the installation of PAS in Kubernetes. Ê16

5. Base system configuration for PAS in Kubernetes. Ê17

5.1. Infrastructure configuration. Ê18

5.2. PAS configuration in Kubernetes. Ê22

5.2.1. Configuration options for the storage component. Ê22

5.2.2. Configuration options for the management component. Ê24

6. Configuration of Proxedo API Security on the Web User Interface. Ê28

6.1. Minimum configuration. Ê28

6.2. Login Page. Ê28

6.3. Proxedo API Security Web User Interface main page. Ê29

6.3.1. Navigation. Ê29

6.3.2. Naming Configuration components in the Web UI. Ê31

6.4. BRICK - Configuration units. Ê31

6.4.1. Error Policy. Ê32

6.4.2. Matcher. Ê35

6.4.3. Selector. Ê48

6.4.4. Insight Target. Ê51

Administration Guide Table of Contents

4.0.1 2

6.4.5. TLS. Ê56
6.4.6. Files. Ê70

6.4.7. Common configuration elements for BRICKS. Ê72

6.5. PLUGIN - Configuration units. Ê81

6.5.1. Common Plugin parameters. Ê82

6.5.2. Enforcer. Ê82

6.5.3. Filter. Ê87

6.5.4. Fraud Detector. Ê90

6.5.5. Insight. Ê93

6.5.6. Serializer. Ê95

6.5.7. Deserializer. Ê97

6.5.8. Compressor. Ê100

6.5.9. Decompressor. Ê102

6.6. SERVICE - Configuration units. Ê104

6.6.1. Backend. Ê105

6.6.2. Endpoint. Ê107

6.6.3. Listeners. Ê111

6.6.4. Log. Ê114

6.6.5. Transport Director. Ê115

6.6.6. Fraud Detector. Ê116

6.7. Checking and finalizing changes in Proxedo API Security configuration. Ê119

6.8. Applying and validating Proxedo API Security configuration. Ê120

6.8.1. Validation errors. Ê121

6.9. Backup and restore services for Proxedo API Security configuration. Ê124

7. Operation of Proxedo API Security in Kubernetes environment. Ê125

7.1. Querying objects. Ê125

7.2. Inspecting objects. Ê126

7.3. Checking logs. Ê128

7.3.1. Understanding logs. Ê129

7.4. Changing bootstrap configuration. Ê129

7.5. Backup and restore. Ê129

7.5.1. Bootstrap configuration. Ê129

7.5.2. Running configuration. Ê130

7.6. Factory reset. Ê130

Appendix A: Time zones. Ê130

Appendix B: values.yml examples. Ê143

B.1. Minimal configuration. Ê143

B.2. Management configuration with LDAP authentication. Ê143

Appendix C: LDAP configuration examples. Ê144

Glossary. Ê144

Administration Guide Table of Contents

4.0.1 3

Preface

Typographical conventions
Before you start using this guide, it is important to understand the terms and typographical conventions used in
the documentation. For more information on specialized terms and abbreviations used in the documentation, see
the Glossary at the end of this document.

The following text formatting principles and icons identify special information in the document.

! Tips provide best practices and recommendations.

! Notes provide additional information on a topic, and emphasize important facts and
considerations.

" Warnings mark situations where loss of data or misconfiguration of the device is possible if the
instructions are not obeyed.

Command

Commands you have to execute.

Emphasis
Reference items, additional readings.

/path/to/file

File names.

Parameters
Parameter and attribute names.

In the parameter listing tables the required parameters are also emphasized with bold text:

Key Description

param1 This is a required parameter.

param2 This is an optional parameter.

Additional marks used specifically in the Web User Interface (UI):

Key Description

* The elements marked with * in the configuration reference tables are mandatory to
be configured.

(Default) For some of the configuration elements there are recommended default values,
marked as (Default). In case the value is not defined during the configuration, the
default value will be considered for the actual element.

Administration Guide Preface

4.0.1 4

Key Description

+ By clicking this sign you can add the actual element to the list of configuration
elements.

Contact and support information
This product is developed and maintained by Balasys IT Ltd..

Contact:

Balasys IT Ltd.
4 Alíz Street
H-1117 Budapest, Hungary
Tel: +36 1 646 4740
E-mail: <info@balasys.hu>
Web: http://balasys.hu/

Sales contact
You can directly contact us with sales-related topics at the e-mail address <sales@balasys.hu>, or leave us your
contact information and we call you back.

Support contact
To access the Balasys Support System, sign up for an account at the Balasys Support System page. Online support
is available 24 hours a day.

Balasys Support System is available only for registered users with a valid support package.

Support e-mail address: <support@balasys.hu>.

Training
Balasys IT Ltd. holds courses on using its products for new and experienced users. For dates, details, and
application forms, visit the https://www.balasys.hu/en/services#training webpage.

1. Scope of this document
This document describes the Web User Interface for the Proxedo API Security in Kubernetes. The purpose of this
document is to present the designed approach and the usage for the configuration of Proxedo API Security via
Web User Interface (UI). The Web UI allows easy configuration for Proxedo API Security. All the functionalities are
grouped visually and logically into thematic units which follow the logical built up of Proxedo API SecurityÕs
configuration. The primary intended audience of this document are system engineers and system designers for
configuring Proxedo API Security systems.

2. Introduction to Proxedo API Security

Administration Guide Contact and support information

4.0.1 5

mailto:sales@balasys.hu
mailto:support@balasys.hu
https://www.balasys.hu/en/services#training
https://www.balasys.hu/en/services#training
https://www.balasys.hu/en/services#training
https://www.balasys.hu/en/services#training
https://www.balasys.hu/en/services#training
https://www.balasys.hu/en/services#training
https://www.balasys.hu/en/services#training

2.1. What is Proxedo API Security
The Proxedo API Security (PAS) is a security solution that protects API serving endpoints. It is positioned in the
network flow between consumers of the APIs (clients) and backend solutions serving the API (servers) as a
transparent HTTP proxy.

Proxedo API Security can:

¥ handle incoming Transport Layer Security v1 (TLS) connections from clients & outgoing TLS connections to
servers separately and selectively

¥ verify that the communication conforms to HTTP specifications

¥ verify that the content of the messages conform to their specified content type

¥ verify that the content of messages conform to API specification(s) as described in schemas

¥ extract parts of the content of the messages and relay them to external data stores such as log servers, SIEM
systems or other data warehouses

2.2. Where to start
Depending on what you need to do the following starting points are suggested:

¥ To understand what the product does and how, see Overview of Proxedo API Security.

! If you are familiar with API terminology jump right to Architecture for Proxedo API Security.

¥ See Installation of Proxedo API Security in Kubernetes environment if you need to set up a new PAS.

¥ The Operation of Proxedo API Security in Kubernetes environment chapter is about how to manage a working
system on the level of the operating system.

¥ Configuration of Proxedo API Security on the Web User Interface contains in-depth information about
everything that can be configured with the help of the Web User Interface.

¥ If you are already familiar with the system and need to find a component that suits your needs consult the
Matcher types, Comparators, Extractor types or Insight Target.

3. Overview of Proxedo API Security

3.1. Main features

3.1.1. TLS

Transport Layer Security v1 (TLS) (successor of the now obsoleted Secure Socket Layer v3 (SSL)) is a widely used
crypto protocol, guaranteeing data integrity and confidentiality in many PKI and e-commerce systems.

The TLS framework inspects TLS connections, and also any other connections embedded into the encrypted TLS
channel. TLS connections initiated from the client are terminated on the Proxedo API Security, and two separate
TLS connections are built: one between the client and the firewall, and one between the firewall and the server. If
both connections match the configuration settings of PAS (for example, the certificates are valid, and only the
allowed encryption algorithms are used), PAS inspects the protocol embedded into the secure channel as well.
Note that the configuration settings can be different for the two connections, for example, it is possible to permit
different protocol versions and encryption settings.

3.1.2. Enforcement

Proxedo API Security acts as an HTTP proxy and verifies that the traffic passing through conforms to HTTPÕs

Administration Guide 2.1. What is Proxedo API Security

4.0.1 6

specifications. By using OpenAPI schemas, as defined in OpenAPI specifications (also known as Swagger), it also
verifies that the traffic passing through conforms to the API enpointÕs specification and can log or deny non-
conforming traffic.

PAS also provides its own versatile filtering system to control passing traffic.

3.1.3. Insights

With Proxedo API Security it is possible to extract business-relevant information with extremely high resolution
from the traffic and relay it to external data stores where further analysis can be implemented.

Thus, it is possible to feed Log Management solutions, Monitoring and SIEM systems, Data visualization tools with
data extracted from the traffic, even to the level of specific fields deep inside API calls or URI parameters.

3.1.4. Security flow

The security flow binds most of PASÕs features together. It allows flexible configuration for handling the traffic.
Multiple Enforcement, Filter and Insight plugins can be mix-and-matched with control over error policies.

3.2. Main Concepts in Proxedo API Security
This chapter provides an overview of the Proxedo API Security solution, introduces its main concepts, and
explains the relationship of the various components.

API Endpoint
Proxedo API Security protects API endpoints. An API endpoint is the serving part of the communication
channel and is the collection of all functions of a service. It resides at a list of well-known top URIs under which
all the functions are accessible. APIs have well-defined HTTP Endpoints for all exposed calls, resources etc.,
usually through providing a schema that describes all parameters of these URI paths, including possible HTTP
response codes, the format and fields of the data structure in the requestÕs and responseÕs body.

Client
It is a consumer of API endpoints. It is the source of the requests.

Backend
The backend constitutes of one or more servers that serve the API endpoint. It receives the requests of the
client and sends the responses.

HTTP message
It can be an HTTP request coming from the client or an HTTP response coming from the backend.

Call
An HTTP conversation constitutes of a request"Ñ"response interchange of HTTP messages between the client
and the backend. Whenever the direction is irrelevant in the context"Ñ"it applies to both requests and
responses"Ñ"the message is named Call.

Listener
It is the part of PAS that listens to incoming traffic for given API Endpoints. It is bound to a network port.
Clients address this port when accessing API Endpoints through the gateway.

TLS
Transport Layer Security is the cryptographic protocol that secures HTTPS communications. PAS can apply
TLS encryption both when communicating with Clients and Backends. TLS encryption can also be used with
Syslog Insight Target.

Administration Guide 3.2. Main Concepts in Proxedo API Security

4.0.1 7

Security flow
It provides a collection of security rules that PAS applies to a Call. It is two series of Plugins: one for requests
and one for responses.

Plugin
It is an element of the security flow that applies a specific security function. It has different types based on the
role they do.

Decompressor
It is a Plugin responsible for decompressing compressed content in the HTTP messageÕs body. This ensures
that the original content of the message is available for processing.

Compressor
It is a Plugin responsible for compressing the result of a flow and forwarding the compressed content.

Deserializer
It is a Plugin responsible for parsing the HTTP messageÕs body to structured data. This ensures that a
message is well-formed. The structured data will also be consumed by other Plugins that operate on the
body of the message.

Serializer
It is a Plugin responsible for serializing the structured data to the format of the HTTP messageÕs body.

Filter
It is a Plugin that rejects calls when they match defined rules.

Enforcer
It is a Plugin that validates calls against externally defined schemas.

Insight
It is a Plugin that extracts various data from the call and sends it to external systems (log servers, SIEMs,
and other data analysis tools).

Brick
They are reusable components of Plugins. They can be defined on their own and then shared by multiple
Plugins.

Error policy
It is a brick that defines what happens if the Plugin has found an error. It decides if calls are rejected or
merely logged, and defines the details of the HTTP error response sent to the client if a call is rejected.

Matcher
It is a brick that decides if the Plugin should be executed for a given call by checking various data in the
HTTP message.

Selector
Selector is a brick that can extract a piece of information from a call. It is used by Insight plugins.

Insight Target
It is a brick that defines an external system to send extracted data to. It is used by Insight plugins.

Administration Guide 3.2. Main Concepts in Proxedo API Security

4.0.1 8

3.3. Architecture for Proxedo API Security
Proxedo API Security is based on a micro-services architecture.

The components of the architecture are each responsible for well-defined subset of handling traffic between the
client and the backend. Proxedo API Security is built up of three components:

Transport Director
It manages the transport layer of API connections:

¥ handles network connections from the client

¥ handles network connections towards the backends

¥ handles TLS on these connections

¥ load-balances between multiple backend servers

¥ load-balances between multiple Flow Directors

¥ enforces HTTP protocol validity in calls

Flow Director
It is responsible for the execution of the Plugins in the EndpointÕs flow and for applying Error Policies as
necessary.

Insight Director
It manages the connections to Insight Targets. It is responsible for sending the data collected by Insight plugins
to Insight Target systems.

The handling of a connection with the help of components is shown in this figure:

Administration Guide 3.3. Architecture for Proxedo API Security

4.0.1 9

Figure 1. PAS Architecture

1. Incoming connections are accepted by the Transport Director.

! It handles TLS with the client if necessary.

2. It hands over the connection to the Flow Director.

! The Flow Director chooses the Endpoint based on the URL.

! The Flow Director applies the Endpoint specific Request Security Flow.

3. If an Insight plugin needs to send data to an external Insight Target it sends the collected data to the Insight
Director.

Administration Guide 3.3. Architecture for Proxedo API Security

4.0.1 10

4. The Insight Director sends the data further to the Insight Target with the appropriate protocol.

5. The Flow Director hands the connection back to the Transport Director.

6. The Transport Director then sends the data to the Backend.

! It handles TLS with the backends if necessary.

! It performs load balancing among Backend servers if necessary.

The same procedure is executed with the response coming from the Backend.

3.3.1. Understanding processing flow

The figure on Proxedo API Security architecture and the steps following that describe how client connection is
handled. The following figure explains how calls are processed in more details:

Figure 2. PAS processing flow

1. As shown in the figure above, the incoming connection from the client is handled by the Transport Director,
applying TLS if needed.

2. The Transport Director hands over the connection to the Flow Director, indicating which Listener the
connection belongs to.

3. The Flow Director then chooses the Endpoint based on the URL in the request. First endpoint has matching
URL is chosen.

4. The Flow Director then starts applying the request part of the Security Flow definition.

5. For each Plugin the Flow Director:

! Checks if the Plugin's matcher matches the request.

! If so, it executes the Plugin, if not, it executes the next Plugin.

! If the Plugin indicates success it executes the next Plugin.

! If the Plugin indicates an error it applies the Plugin's error policy. If the policy dictates to abort the
connection:

It fills error details and hands back the connection to the Transport Director, aborting the execution of
the flow.

Administration Guide 3.3. Architecture for Proxedo API Security

4.0.1 11

The Transport Director closes the connection, sending error details to the client if allowed by the
policy.

6. Once, the last Plugin has been executed the connection is handed back to the Transport Director.

7. The Transport Director initiates the connection towards the Backend:

! It handles load balancing if necessary.

! It handles TLS if necessary.

! It sends the request itself to the Backend server.

8. The Backend server sends its response to the Transport Director.

9. Once, the response has been received the Transport Director again hands over the connection to the Flow
Director.

10. The Flow Director then starts applying the response part of the Security Flow definition, executing the Plugins
as above.

11. Once, the last Plugin has been executed the connection is handed back to the Transport Director.

12. Finally, the Transport Director sends the response to the client.

Usually, Plugins are organized in the following manner:

¥ A Decompressor Plugin extracts the compressed body.

¥ A Deserializer Plugin processes the decompressed request to understand the details in the body.

¥ Filters are applied to filter unnecessary traffic.

¥ Enforcers are applied for detailed validation of calls.

¥ Insights are applied to collect data from the call.

¥ Serializer Plugin serializes the body

¥ Compressor Plugin compresses the serialized body

Though the order of the plugins can be changed based on the needs, note the followings:

¥ When a Plugin needs access to the request body it requires Deserialized data. It is therefore strongly
recommended that the first plugin is a Decompressor followed by a Deserializer.

¥ At the end of the flow it is strongly recommended to place a Serializer plugin followed by a Compressor.

¥ Generally Insights are applied after Filters and Enforcers so that they are not executed on possibly invalid
calls.

¥ Anything that operates on the HTTP headers or the body of the message will be aware of the call direction:
The same Plugin in the request and response flow will act on the request or response data.

¥ However, the Flow Director handles a request-response exchange together, so you can still use details from
the request in Plugins of the response flow. The most notable example of this is using URI or method matchers
in the response flow.

¥ Plugins in the request flow, however, cannot access details of the response flow (since they are not available
yet.)

It is also worth noting that Insight Plugins instantly hand over data to the Insight Director, and let the execution
continue.

Administration Guide 3.3. Architecture for Proxedo API Security

4.0.1 12

4. Installation of Proxedo API Security in Kubernetes
environment
The forthcoming sections describe the installation of PAS in Kubernetes.

! To manage Kubenetes (K8s) applications, Helm, the package manager for Kubernetes is used.
Packages are called charts in the Helm context.

4.1. Prerequisites for installing PAS
The followings are needed prior to the installation of PAS:

¥ the license file for PAS

¥ a technical user for accessing Balasys' download site

¥ the Helm chart

!
Prior to the installation of the Helm chart, the Helm chart itself must be configured. For
minimum configuration of the Helm chart see section Minimum configuration settings for the
Helm chart.

4.1.1. Cluster components necessary for PAS

To make use of some of the features, PAS shall be deployed in a cluster, with the following components installed:

¥ metrics server for auto-scaling

¥ Persistent volume for storing configuration in the management component

! Persistent Volume Claim parameters can be set up to match a manually managed Persistent
volume, so is Storage Class name.

¥ access for the target namespace to deploy PAS in

4.1.2. Tools necessary for the installation

To create the basic configuration for the installation, the following tools are necessary:

¥ openssl for storage certificate generation

¥ the htpasswd tool, which is part of the apache2-utils package on debian distributions, the httpd-tools
package on Red Hat based distributions

¥ the helm command line tool to manage the package installation

¥ the kubectl command line tool to communicate with the Kubernetes cluster

Administration Guide4. Installation of Proxedo API Security in Kubernetes environment

4.0.1 13

https://helm.sh/

4.1.3. Minimum configuration settings for the Helm chart

The Helm chart contains the following:

¥ configuration parameters to bootstrap PAS in K8s

¥ definitions of

! pods

! services

! autoscaling configuration for the core component

! a Persistent Volume Claim for the management

! Ingress configuration for any component is not included.

! HTTP and HTTPS management access is recommended to be configured using an Ingress
(kubernetes object).

!
In order to be able to install the Helm chart the minimum configuration settings have to be
completed. The following sections contain the details only for the necessary minimum
configuration, however for checking further possible configuration options, see section Base
system configuration for PAS in Kubernetes.

The files detailed in the next sections need to be created and filled in prior to PAS installation.

4.1.3.1. Using values.yml file

1. Use the values.yml (values file) with the default and necessary values. Run the following command to output
the configuration options:

helm show values /path/to/chart/proxedo-api-security-4.0.1.tgz

2. Create a local values.yml file with the preferred values to overwrite the default values if required. The values
file with minimum configuration is as follows (with example values):

config:
Ê storage:
Ê consul:
Ê gossip_encryption_key: MhstT80sqle63WC7knOak+c7GfK7k5OY2n/4Qk/fSXs=
Ê blob_store:
Ê access_key: "8i8YJB3JhFmkT5KK6EV5EGw9dK10B4ZllWjEYlvUwKM="
Ê secret_key: "L/aLsKkoDFDFnMNdp8MFl1/CIkAQC1hrXV+HlbgKyOM="

3. Generate these necessary secrets with the help of the following command. The values above are examples,
they shall not be copied directly.

Administration Guide 4.1. Prerequisites for installing PAS

4.0.1 14

config.consul.gossip_encryption_key
$ openssl rand -base64 32
gI97yg2Zcq4XL20ne8NBwH2e0PbzkmXjqMFdp8jQZac=

consig.blob_store.access_key
$ openssl rand -base64 32
+WDpoDV7EcJrgkRgK65M3y8OcLdrZmYBASVTFE1I8pg=

config.blob_store.secret_key
$ openssl rand -base64 32
ECuGiOwyJtjlB8Bl3yNgIgdk/nlb4HFmxE/4oiq5V+w=

4.1.3.2. Creating certificates for storage

For technical reasons, a TLS certificate is necessary for configuration storage purposes. Create the internal CAs
and signed certificates either with a preferred method, or else the necessary files can be created with the
following example commands as well.

1. Generate a CA key pair.

! The -days parameter in the example commands define the validity period of the generated
certificates in days. Change it, if it is required.

The certificate files generated here and used with the Helm chart are sensitive pieces of
information, therefore handle those with attention.

openssl req -nodes -new -x509 -days +3650 -keyout storage-ca-key.pem -out storage-ca.pem
-subj "/CN=PAS Storage CA"

2. Generate a private server key and a Certificate Signing Request (CSR).

openssl req -nodes -new -keyout consul-0-key.pem -out consul-0.csr -days +3650 -subj
"/CN=storage.pas"

3. Sign the CSR using the CA.

openssl x509 -req -days +3650 -in consul-0.csr -CA storage-ca.pem -CAkey storage-ca-
key.pem -CAcreateserial -out consul-0.pem

With the help of the above examples, further files need to be generated. These files will need to be provided for
the Helm chart:

¥ consul-0.csr

¥ consul-0-key.pem

¥ consul-0.pem

¥ storage-ca-key.pem

¥ storage-ca.pem

Administration Guide 4.1. Prerequisites for installing PAS

4.0.1 15

4.1.3.3. Creating management users' file

For logging into the management component, the users.htpass file is required. Run the following command to
generate one, and provide the password.

htpasswd -c users.htpass username

4.2. Installing PAS in Kubernetes
The following sections and the example commands use the proxedo-api-security kubernetes namespace as an
example, but it can be replaced with any other namespace name.

To create a new namespace, run the following command:

kubectl create namespace proxedo-api-security

4.2.1. Setting up docker registry connection

1. Log in to the PAS docker registry to access the docker images of PAS.

2. Create the proxedo-api-security-registry-credentials secret using the following command to enable
kubernetes to access the docker images:

kubectl create --namespace proxedo-api-security \
Ê secret docker-registry proxedo-api-security-registry-credentials \
Ê --docker-server=docker.balasys.hu \
Ê --docker-username=<<your username>> \
Ê --docker-password="$(read -sp "Docker registry password: " DOCKER_PASSWORD; echo
$DOCKER_PASSWORD)"

4.2.2. Providing the necessary files for Helm installation

Provide the created files for the Helm install command, an example of which can be seen below (substitute your
values):

helm upgrade --install proxedo-api-security --namespace=<<namespace>> \
Ê --values /path/to/config/files/values.yml \
Ê --set-file license=/path/to/config/files/license.txt \
Ê --set-file mgmt_users=/path/to/config/files/users.htpass \
Ê --set-file storage_ca_key=/path/to/config/files/storage-ca-key.pem \
Ê --set-file storage_ca_cert=/path/to/config/files/storage-ca.pem \
Ê --set-file storage_server_key=/path/to/config/files/consul-0-key.pem \
Ê --set-file storage_server_cert=/path/to/config/files/consul-0.pem \
Ê /path/to/chart/proxedo-api-security-4.0.1.tgz

4.3. Verifying the installation of PAS in Kubernetes
If everything is correct, the Helm command will present the following output:

Administration Guide 4.2. Installing PAS in Kubernetes

4.0.1 16

NAME: proxedo-api-security
LAST DEPLOYED: Mon May 2 13:51:46 2022
NAMESPACE: proxedo-api-security
STATUS: deployed
REVISION: 1
TEST SUITE: None

1. Run the kubectl get pods --selector=app=proxedo-api-security command to investigate the running
pods. The output shall be similar to the following example:

NAME READY STATUS
RESTARTS AGE
proxedo-api-security-blob-store-86ccc6d864-frc5k 1/1 Running 0
40s
proxedo-api-security-config-api-76d587d6cd-wpw5d 1/1 Running 0
40s
proxedo-api-security-consul-68c5c87f75-mvlct 1/1 Running 0
40s
proxedo-api-security-flow-director-5cddf58677-qxczd 0/1 ContainerCreating 0
40s
proxedo-api-security-frontend-676bfd8956-qrtm4 1/1 Running 0
40s
proxedo-api-security-insight-director-585cc5f86-j8rrz 0/1 ContainerCreating 0
40s
proxedo-api-security-transport-director-5bbdf58d7d-whzsq 0/1 ContainerCreating 0
40s

The core pod is missing the core configuration, therefore it will not enter the "Running" state until the first
configuration is applied in the management.

2. Run the following command to access the management component for verification.

kubectl port-forward service/proxedo-api-security-frontend 8080:80

3. Open the http://127.0.0.1:8080/ in the browser.

5. Base system configuration for PAS in Kubernetes
This chapter explains configuration details for setting up a working PAS. Configuration settings are detailed here,
which are based on the installation of the Helm chart.

The Helm chart carries Kubernetes manifest files for each component, and requires a set of parameters to be
configured by the user for the installation.

The values.yml file

The configuration of PAS components is condensed into a values.yml file. The default version of this file can be
printed by using the following command:

helm show values /path/to/chart/proxedo-api-security-4.0.1.tgz

To configure the necessary parameters and to overwrite the not suitable default values, save the output to a file,
and keep only those parts that has to be overwritten. The modified file can be provided as --values my-
values.yml to the Helm installation command.

There are two main sections of this file:

Administration Guide 5. Base system configuration for PAS in Kubernetes

4.0.1 17

http://127.0.0.1:8080/

1. Infrastructure - This section defines the options necessary for kubernetes to deploy the components.

2. Configuration - This section defines the options for PAS itself. The main configuration of the storage and
management components is defined in this file.

The format of this file must adhere to the YAML 1.1 specification.

There are different sections in this configuration file, some of which, as for example, the 'config.mgmt.frontend'
section, might not need specific configuration. However, the default values of these sections must be set by {} .

For information on how to provide the custom values.yml file, see section Providing the necessary files for Helm
installation. See configuration examples in Appendix B.

5.1. Infrastructure configuration
In this infrastructure part of the configuration, many parameter fields are directly associated with the
configuration attributes defined for the Kubernetes objects. For such parameters that have a Kubernetes
equivalent, the Kubernetes parameter is referenced in the format that can directly be used with the kubectl
explain command. This command provides the most specific documentation of each field. However, for using
this command, access to a cluster is required.

In case it is not feasible to use the kubectl explain command, the referenced format can also be used to
navigate to the correct object and field at the following site: Kubernetes API.

The following tables describe the infrastructure parameters and their Kubernetes equivalent if that exists.

Table 1. Docker-related parameters

Parameter field Default
value

Description

infrastructure.docker.registry docker.bal
asys.hu

The registry to download docker images from.

infrastructure.docker.pull_policy IfNotPrese
nt

This parameter has a Kubernetes equivalent in all
pods: pod.spec.containers.

infrastructure.docker.image_tag The image tag to use instead of the one
corresponding to the current PAS version.

Table 2. Storage-related infrastructure parameters

Parameter field Default
value

Description

infrastructure.storage.volume_claim This parameter has a Kubernetes equivalent:
PersistentVolumeClaim.

infrastructure.storage.storage_class_name This parameter has a Kubernetes equivalent:
PersistentVolumeClaim.spec.storageClassName.

infrastructure.storage.access_modes ReadWrite
Once

This parameter has a Kubernetes equivalent:
PersistentVolumeClaim.spec.accessModes.

infrastructure.storage.requests This parameter has a Kubernetes equivalent:
PersistentVolumeClaim.spec.resources.requests.

infrastructure.storage.requests.storage 100Mi This parameter has a Kubernetes equivalent:
PersistentVolumeClaim.spec.resources.requests.st
orage.

Table 3. Transport Director infrastructure parameters

Administration Guide 5.1. Infrastructure configuration

4.0.1 18

http://yaml.org/spec/1.1/
https://kubernetes.io/docs/reference/kubernetes-api/

Parameter field Default
value

Description

Service

infrastructure.core.transport_director.service This parameter has a Kubernetes equivalent:
service.

infrastructure.core.transport_director.service.ty
pe

ClusterIP This parameter has a Kubernetes equivalent:
service.spec.type.

infrastructure.core.transport_director.service.po
rts

This parameter has a Kubernetes equivalent:
service.spec.ports. A port with a specific
target_port value needs to be set up for each
listener port in the PAS configuration on the
management interface.

infrastructure.core.transport_director.service.po
rts.name

HTTP This parameter has a Kubernetes equivalent:
service.spec.ports.name.

infrastructure.core.transport_director.service.po
rts.port

80 This parameter has a Kubernetes equivalent:
service.spec.ports.port.

infrastructure.core.transport_director.service.po
rts.protocol

TCP This parameter has a Kubernetes equivalent:
service.spec.ports.protocol.

infrastructure.core.transport_director.service.po
rts.target_port

49 000 This parameter has a Kubernetes equivalent:
service.spec.ports.targetPort.

infrastructure.core.transport_director.service.po
rts.node_port

This parameter has a Kubernetes equivalent:
service.spec.ports.nodePort.

Resources

infrastructure.core.transport_director.resources This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.

infrastructure.core.transport_director.resources.
limits

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits. If this is
defined, both CPU and memory limits need to be
defined.

infrastructure.core.transport_director.resources.
limits.cpu

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.cpu.

infrastructure.core.transport_director.resources.
limits.memory

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.memory.

infrastructure.core.transport_director.resources.
requests

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.

infrastructure.core.transport_director.resources.
requests.cpu

250 m This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.cpu.

infrastructure.core.transport_director.resources.
requests.memory

450 Mi This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.memory.

Scaling

infrastructure.core.transport_director.scaling For scaling parameters, see the separate table on
scaling, Parameters for Scaling - Transport
Director, Flow Director, Insight Director.

Table 4. Flow Director infrastructure parameters

Administration Guide 5.1. Infrastructure configuration

4.0.1 19

Parameter field Default
value

Description

Resources

infrastructure.core.flow_director.resources This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.

infrastructure.core.flow_director.resources.limits This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits. If this is
defined, both CPU and memory limits need to be
defined.

infrastructure.core.flow_director.resources.limits
.cpu

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.cpu.

infrastructure.core.flow_director.resources.limits
.memory

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.memory.

infrastructure.core.flow_director.resources.requ
ests

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.

infrastructure.core.flow_director.resources.requ
ests.cpu

250 m This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.cpu.

infrastructure.core.flow_director.resources.requ
ests.memory

550 Mi This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.memory.

Scaling

infrastructure.core.flow_director.scaling For scaling parameters, see the separate table on
scaling, Parameters for Scaling - Transport
Director, Flow Director, Insight Director.

Table 5. Insight Director infrastructure parameters

Parameter field Default
value

Description

Resources

infrastructure.core.insight_director.resources This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.

infrastructure.core.insight_director.resources.li
mits

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits. If this is
defined, both CPU and memory limits need to be
defined.

infrastructure.core.insight_director.resources.li
mits.cpu

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.limits.cpu.

infrastructure.core.insight_director.resources.li
mits.memory

This parameter has a Kubernetes
equivalent:_pod.spec.containers.resources.limits
.memory_.

infrastructure.core.insight_director.resources.re
quests

This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.

infrastructure.core.insight_director.resources.re
quests.cpu

120 m This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.cpu.

infrastructure.core.insight_director.resources.re
quests.memory

350 Mi This parameter has a Kubernetes equivalent:
pod.spec.containers.resources.requests.memory.

Administration Guide 5.1. Infrastructure configuration

4.0.1 20

Parameter field Default
value

Description

Scaling

infrastructure.core.insight_director.scaling For scaling parameters, see the separate table on
scaling, Parameters for Scaling - Transport
Director, Flow Director, Insight Director.

Table 6. Parameters for Scaling - Transport Director, Flow Director, Insight Director

Parameter field Default
value

Description

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling

This parameter has a Kubernetes equivalent:
HorizontalPodAutoscaler.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.create_autoscaler

true This parameter defines whether to create the
HoizontalPodAutoscaler object with the
forthcoming configuration options. If it is set to
false, the HPA object to enable core autoscaling
will need to be created manually.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.min_replicas

1 This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.minReplicas.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.max_replicas

10 This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.maxReplicas.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.metrics

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.metrics.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.metrics.cpu

This parameter defines the CPU metric
configuration.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.metrics.cpu.average_utilization

80 This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.metrics.resource.
target.averageUtilization.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.metrics.memory

This parameter defines the memory metric
configuration.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.metrics.memory.average_utilization

80 This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.metrics.resource.
target.averageUtilization.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.metrics.behavior

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior. If it is
defined, either scale_down or scale_up
parameter must be defined.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.metrics.behavior.scale_down

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleDow
n. If it is defined, all included parameters need to
be defined.

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_down.stabilizatio
n_window_seconds

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleDow
n. stabilizationWindowSeconds.

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_down.policies

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleDow
n. policies.

Administration Guide 5.1. Infrastructure configuration

4.0.1 21

Parameter field Default
value

Description

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_down.policies.typ
e

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleDow
n. policies.type.

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_down.policies.val
ue

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleDow
n. policies.value.

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_down.policies.per
iod_seconds

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleDow
n. policies.periodSeconds.

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_down.select_poli
cy

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleDow
n. selectPolicy.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.metrics.behavior.scale_up

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleUp. If
it is defined, all included parameters need to be
defined.

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_up.stabilization_
window_seconds

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleUp.
stabilizationWindowSeconds.

infrastructure.core.<transport/flow/insight>_dire
ctor. scaling.metrics.behavior.scale_up.policies

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleUp.
policies.

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_up.policies.type

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleUp.
policies.type.

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_up.policies.value

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleUp.
policies.value.

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_up.policies.perio
d_seconds

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleUp.
policies.periodSeconds.

infrastructure.core.<transport/flow/insight>_dire
ctor.
scaling.metrics.behavior.scale_up.select_policy

This parameter has a Kubernetes equivalent:
horizontalpodautoscaler.spec.behavior.scaleUp.
selectPolicy.

5.2. PAS configuration in Kubernetes

5.2.1. Configuration options for the storage component

The config.storage section controls keys to be used between the management and storage components.

The configuration file has three main sections, namely common, consul and blob-store.

Administration Guide 5.2. PAS configuration in Kubernetes

4.0.1 22

The 'common' section has no required parameters, the defaults can be set by {} .

Table 7. Storage configuration common options

Key Default Description

config.storage.common.standalone_mode true This parameter must be set to 'true'. It denotes
whether the storage is run in standalone or in
cluster mode. If it is set to true, the cluster-
related parameters are ignored. The required
parameters still need to be provided.

Table 8. Storage configuration consul options

Key Default Description

config.storage.consul.bind_cluster_addr 127.0.0.1 It denotes the address to bind on as a cluster
member. This will be used to communicate with
other members. This is a required paramater.

config.storage.consul.gossip_encryption_key This parameter denotes the encryption key to
use for the gossip protocol. It is a 32-byte shared
key encoded into base64 format. Use openssl
rand -base64 32 to generate it. For more
information on the keys produced as part of the
configuration, see Using values.yml file.

This is a required paramater.

config.storage.consul.log_level INFO It denotes the log level of consul. The possible
values are: TRACE, DEBUG, INFO, WARN, ERR

! The options with ÕN/AÕ default value are such sections that cannot have exact values, only the
values described afterwards in the table.

Table 9. Storage configuration blob-store options

Key Default Description

config.storage.blob_store.access_key It denotes the access key used for connecting to
MinIO. A preferably random generated string
must be provided. Min length: 3 This is a
required parameter.

config.storage.blob_store.secret_key It denotes the secret key used for connecting to
MinIO. A preferably random generated string
must be provided. Min length: 8. This is a
required parameter.

! The options with ÕN/AÕ default value are such sections that cannot have exact values, only the
values described afterwards in the table.

For configuration examples, see section Minimal configuration.

Administration Guide 5.2. PAS configuration in Kubernetes

4.0.1 23

5.2.2. Configuration options for the management component

The config.mgmt section controls:

¥ Web service parameters

¥ Authentication

The configuration file has two main sections, namely frontend and configapi.

The default values for both frontend and configapi sections are automatically effective. If the attributes have to
be configured with specific values, other than the default values, the {} curly braces have to be deleted and the
new values have to be added.

Table 10. Management configuration frontend options

Key Default Description

config.mgmt.frontend.server_name _ It is the hostname the web server should
serve the requests on. The default value
means that the management interface will
be served regardless of the provided
hostname.

config.mgmt.frontend.cors_api N/A This section configures cross origin request
sharing options for API access.

config.mgmt.frontend.allow_origin It denotes the value of the Access-Control-
Allow-Origin header. This is a required
parameter in case of enabled CORS API.

! The options with ÕN/AÕ default value are such sections that cannot have exact values, only the
values described afterwards in the table.

Table 11. Management configuration log level setting options - configapi section

Key Default Description

config.mgmt.configapi.log_level INFO The log level can be set to DEBUG, INFO,
WARNING, ERROR, CRITICAL.

Table 12. Management configuration user session options - configapi section

Key Default Description

config.mgmt.configapi.session N/A This section configures the options for
session lifetimes.

config.mgmt.configapi.session.session_vali
dity

7200 It denotes the allowed lifetime of a login
session token in seconds. It determines the
time period between group membership
and user existence checks. This DOES NOT
control the length of a user session.

config.mgmt.configapi.session.renew_validi
ty

36000 It denotes the validity of the renew token. It
determines for how long session tokens can
be renewed. Therefore the maximum length
of a user session is the sum of the two
parameters.

Administration Guide 5.2. PAS configuration in Kubernetes

4.0.1 24

! The options with ÕN/AÕ default value are such sections that cannot have exact values, only the
values described afterwards in the table.

For further details on configapi section parameters related to LDAP authentication, see Management
configuration LDAP authentication options - configapi section.

For configuration examples on the management component, see section Minimal configuration and section
Management configuration with LDAP authentication.

5.2.2.1. Configuring authentication and local users in PAS

There are two methods available to configure authentication in PAS:

¥ htpasswd authentication

¥ Lightweight Directory Access Protocol (LDAP) authentication

! It is required to provide the htpass file already for the Helm chart installation. See section
Providing the necessary files for Helm installation.

Using htpasswd for authentication and for the configuration of local users

By using htpasswd authentication, the administrator can define individual user credentials directly in the
htpasswd file. This file is created and provided for the Helm installation command. As local users are stored in an
htpasswd file, the standard htpasswd tool needs to be used.

It is not possible to configure user groups, or to define different access levels for the users with htpasswd
authentication, yet it is possible to define as many user credentials as necessary one by one. The user credentials
are encrypted in the configuration file. If you want to add new users to the htpasswd file, run the htpasswd
users.htpass username command and provide the password.

Example command and output

$ htpasswd users.htpass new-user
New password:
Re-type new password:
Adding password for user new-user

Consider the followings related to the command and the example output:

¥ the htpasswd file is created and provided for the Helm installation command

¥ new-user is the name of the new user

As a result, similar content is expected to appear in the referred file:

new-user:$apr1$GDRF00xV$DmqFFfl.O5GWFpDjQl6tJ .

LDAP authentication

LDAP authentication is a more elaborate way to configure authentication for PAS. With LDAP authentication it is
possible to define user groups and attach different levels of access to these users, however, PAS does not support
different levels of authorization based on these attributes yet at the moment.

Administration Guide 5.2. PAS configuration in Kubernetes

4.0.1 25

! If LDAP authentication is used, only the administrator user - and no other user - can
authenticate with the htpasswd file.

The following configapi parameters, which are part of the configuration fileÕs configapi section, take part in LDAP
authentication:

Table 13. Management configuration LDAP authentication options - configapi section

Key Default Description

config.mgmt.configapi.ldap N/A This section configures the options for LDAP
authentication. LDAP authentication is
disabled by default.

config.mgmt.configapi.ldap.ldap_url It is the URL of the LDAP server. It must start
with ldap[s]:// . This is a required
parameter in case of LDAP authentication.

config.mgmt.configapi.ldap.bind_user It denotes the service user to use, for
searching the LDAP server. If use_ntlm
parameter is OFF, this must be the whole
DN. If it is ON, it must be the username as
expected by the service. This is a required
parameter in case of LDAP authentication.

config.mgmt.configapi.ldap.bind_passwor
d

It denotes the password of the service user.
This is a required parameter in case of
LDAP authentication.

config.mgmt.configapi.ldap.use_ntlm OFF Set this parameter to ON to use NTLM
authentication.

config.mgmt.configapi.ldap.tls_version TLSv1_2 It denotes the TLS version for the LDAPS
connection. It must be one of the following:
SSLv23, TLS, TLS_CLIENT, TLS_SERVER,
TLSv1, TLSv1_1, TLSv1_2.

config.mgmt.configapi.ldap.validate_cert no Set it to yes to validate certificates.

Administration Guide 5.2. PAS configuration in Kubernetes

4.0.1 26

Key Default Description

config.mgmt.configapi.ldap.ca_certs_file /opt/balasys/etc/lda
p_ca_certs.pem

This file contains the certificate files of the
certificate authorities. Provide the path and
filename for the certificate file. The
certificate file must be in PEM format. See a
single CA file configuration exmaple in
Single CA file example.

In case a self-signed certificate is used, the
server certificate must also be included in
this file.

In case a chain of certificates is used, the
certificate of each level must be included in
this file, beginning with the certificate of the
signer of the server certificate, followed by
the signer of that certificate up to the root
certificate. For example on a Certificate
chain with multiple CA, see Example on
certificate chain with multiple CAs.

In case multiple chains of certificates are
used, the chains must be concatenated in
the same file. The first matching chain will
be used for verification.

The above details are based on the Python
SSL library documentation, available at
https://docs.python.org/3.6/library/
ssl.html#certificates.

Use the --set-file
mgmt_ldap_ca_certs_file=<path/to/fil
e> command during helm installation to
specify this file. Also uncomment the
ca_certs_file parameter without
changing its value.

config.mgmt.configapi.ldap.user_base_dn It is the base DN under which users reside.
This is a required parameter in case of
LDAP authentication.

config.mgmt.configapi.ldap.username_attri
bute

sAMAccountName It is the attribute that contains the name of
the user.

config.mgmt.configapi.ldap.user_object_cla
ss

user It is the object class of the users.

config.mgmt.configapi.ldap.memberof_attri
bute

memberof It is the attribute that contains membership
information (groups) on user objects.

config.mgmt.configapi.ldap.group_base_d
n

It is the base DN under which groups reside.
This is a required parameter in case of
LDAP authentication.

config.mgmt.configapi.ldap.groupname_att
ribute

name It is the attribute that contains the name of
the group.

config.mgmt.configapi.ldap.member_attrib
ute

member It is the attribute that contains membership
information (users) on group objects.

Administration Guide 5.2. PAS configuration in Kubernetes

4.0.1 27

https://docs.python.org/3.6/library/ssl.html#certificates
https://docs.python.org/3.6/library/ssl.html#certificates
https://docs.python.org/3.6/library/ssl.html#certificates
https://docs.python.org/3.6/library/ssl.html#certificates
https://docs.python.org/3.6/library/ssl.html#certificates
https://docs.python.org/3.6/library/ssl.html#certificates
https://docs.python.org/3.6/library/ssl.html#certificates
https://docs.python.org/3.6/library/ssl.html#certificates
https://docs.python.org/3.6/library/ssl.html#certificates

Key Default Description

config.mgmt.configapi.ldap.group_object_c
lass

group It is the object class for groups.

config.mgmt.configapi.ldap.allowed_grou
ps

It is a list of group names (as contained by
'groupname_attribute') allowed to log in.
This is a required parameter in case of
LDAP authentication.

6. Configuration of Proxedo API Security on the Web
User Interface
This chapter explains configuration details for setting up a working Proxedo API Security (PAS) with the help of the
Web User Interface.

The Proxedo API Security Web User Interface (UI) is installed together with the installation of Proxedo API Security.
The URL for Proxedo API Security Web UI and the necessary credentials are generated when the management
component is first started. The password for the administrator can be found in the journal under the pas-config-
api identifier.

For information on how to set up more users, see section Configuring authentication and local users in PAS.

6.1. Minimum configuration
It is possible to run PAS with a minimum, basic configuration. For a minimum configuration the following items
need to be configured in the Web UI:

¥ Listeners

! Port

! Endpoint
For more details on the Listener's parameters, see ListenersÕ configuration options.

¥ Endpoint

! Name

! Url
For more details on the Endpoint's parameters, see Endpoint configuration.

¥ Security Flow

! Request

! Response

! Backend

This basic configuration can be further improved with the completion of more configuration units later. The
minimum configuration can also be used to test the installation settings.

6.2. Login Page
The main component of the Login page is the login form where the user needs to provide the credentials in order
to be authorized to use the Web UI of Proxedo API Security.

As part of the initial configuration of Proxedo API Security, the administrator defines the necessary credentials,
which can now be used.

Administration Guide6. Configuration of Proxedo API Security on the Web User Interface

4.0.1 28

Figure 3. Login page for Proxedo API Security Web User Interface

For accessing the Web User Interface:

1. Enter the valid user credentials.

2. Click the Log In button.

After a successful login, the user has access to the Proxedo API Security Web UI.

6.3. Proxedo API Security Web User Interface main page
The configuration elements are organized into a logical order for easier usage.

Figure 4. Proxedo API Security Web User Interface main page

6.3.1. Navigation

The PAS Web UI has the following navigation areas:

Administration Guide6.3. Proxedo API Security Web User Interface main page

4.0.1 29

Figure 5. Navigation areas in the Proxedo API Security Web User Interface

The navigation areas are described here in more details:

Left navigation area (1)
This navigation area (1) presents the navigation units available for configuration.
When opening up the Proxedo API Security Web UI, three main navigation units are available, that is, BRICK,
PLUGIN, and SERVICE.
These three main navigation units can be opened for further sub-navigation units by clicking on either the

navigation item itself or on the arrow icon next to it. Alternatively, when the sub-navigation units are not in
use, they can be hidden by clicking the arrow navigation icons next to the main navigation items, or similarly
by clicking on the navigation item itself.

Top navigation area (2)
This Top navigation area (2) presents the Changes and the Config backup buttons in the top left corner and the
Logout button in the top right corner. For more information on these services, see Checking and finalizing
changes in Proxedo API Security configuration and Backup and restore services for Proxedo API Security
configuration.

Main configuration area (3)
This is the main configuration area of the Web UI. Any navigation unit selected in the Left navigation area (1)
presents the configuration details in this Main configuration area (3). The configuration details can be edited in
this area.
In case there are already configured parameters, those are displayed in a table in the Main configuration area
(3).
In order to add more configuration details, select the New navigation button in the upper right corner.

The Main configuration area (3) provides the following navigation and activity options. Note that some of these
activities are also available when the configuration parameters are presented in list view:

Table 14. Navigation and activity options in the Main configuration area (3)

Navigation option Description

By selecting the New navigation button, you can configure a new component,
previously selected from the Left navigation panel (1) for configuration.

Administration Guide6.3. Proxedo API Security Web User Interface main page

4.0.1 30

Navigation option Description

By selecting the Pen navigation button, the Web UI navigates back to the
configuration page of the selected element. You can change the so far configured
details or add new configuration details.

By selecting the Bin button, you can delete the configuration element active in
the window. If you select an element for deletion, a Warning appears, requesting
confirmation on the deletion of the element.

This icon is visible at the right side of every drop-down list during configuration.
By selecting this icon it is possible to unselect an item of the drop-down list and
to clear the selection field from any data. Clearing the field from data with the
help of this icon gains importance when an earlier selected drop-down list item,
saved in our configuration, has to be cleared from the configuration data.

By selecting the Next page button you can navigate to the next page of the
parameter keys listed.

6.3.2. Naming Configuration components in the Web UI

When configuring the Proxedo API Security Web UI, name the configuration components with the usage of the
English alphabet and numerals. When the name is composed of more than one word, use underscore. It is not
allowed to use spacing or any special characters though.

6.4. BRICK - Configuration units
Bricks are reusable components. They do not provide a complete security function themselves, instead, they are
used as building blocks elsewhere (hence the name). They can be used by Plugins (like Selectors), or utilized by
other bricks (like Extractors).

Certain bricks are so called default objects, which are in 'read-only' state and cannot be configured or modified.
Such default objects are listed in the following table:

Table 15. Default objects - BRICK

Default object name Class

Always Matcher

Never Matcher

content_type_json Matcher

content_type_json_regexp Matcher

json_content Matcher

content_type_xml_base Matcher

content_type_xml_dtd Matcher

content_type_xml_ext_parsed Matcher

content_type_xml_regexp Matcher

content_type_xml_text Matcher

Administration Guide 6.4. BRICK - Configuration units

4.0.1 31

Default object name Class

content_type_xml_text_ext_parsed Matcher

xml_content Matcher

error_policy Error policy

enforcer_default Error policy

insight_default Error policy

These default objects are listed under the actual classes in the Web UI.

The BRICK main page in the Web UI is as follows:

Figure 6. The BrickÕs main page in the Web User Interface

1. Click on the BRICK main configuration item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of BRICK.

2. Click on the sub-navigation unit you would like to configure. The details of the sub-navigation menu open up
in the Main configuration area.

6.4.1. Error Policy

Error Policies define how to proceed if a Plugin decides to have found an error. For example, when an Enforcer
plugin decides that the call is invalid.

It is the error policy that enables the user to act differently in case the error appears in a request or a response.

Every Plugin has a default error policy, namely, the 'error_policy', except for the Enforcer and the Insight Plugins,
which have their own default error policies already configured for usage, the enforcer_default and the
insight_default error policies.

6.4.1.1. Configuring Error policies

Error policies can be configured from the BRICK main menu item.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 32

1. Click on the BRICK main configuration item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of BRICK.

2. Select Error Policy.

The configuration window that appears presents the default error policies, as listed in Default objects - BRICK and
the configuration values already set by the user:

Figure 7. Error policyÕs main page in the Web User Interface

3. Click on the New navigation button to create an error policy.

Error Policies have default values for each of their fields.

An Error Policy contains the following settings:

Figure 8. Configuring error policies in the Web User Interface

The following table provides details on what values can be figured for an Error policy and what these values define
for an Error policy. Configure the following options:

Administration Guide 6.4. BRICK - Configuration units

4.0.1 33

Table 16. Error policy configuration options

Key Values Default value Description

Name* It is a mandatory value. It can
be defined in free text.

It is the name identifying the error policy. This
name of the error policy can be referenced
from other parts of the configuration, that is,
the error policy is reusable.

Request The available values are:

¥ abort

¥ log

Abort It defines what action shall take place if there is
an error on the request side:

¥ abort: the request is denied if the Plugin
fails. Use the other parameters to control
the content of the error sent to the client.

¥ log: the invalid requests are allowed, but
are logged.

Request code The values are available from a
drop-down list. If the elements
of the drop-down list are
selected, it will make the list of
the actual request codes
visible. The applicable request
code can be selected.

422 It provides the HTTP status code to be used
when denying invalid requests.

Request
message

The message can be provided
in free text.

Request error The reason is provided here in the HTTP
response line when denying invalid requests.

Request silent The parameter can be
configured by switching it on
or off. When it is switched on,
the Plugins do not report on
the denial of the invalid
request. When it is turned off,
the Plugins have the ability to
report the error in detail in the
body of the HTTP error
request.

true Do not report validation errors of the request
to the client.

Response Response error mode:

¥ abort

¥ log

Abort It defines what action shall take place if there is
an error on the request side:

¥ abort: the request is denied if the Plugin
fails. Use the other parameters to control
the content of the error sent to the client.

¥ log: the invalid requests are allowed, but
are logged.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 34

Key Values Default value Description

Response
code

The values are available from a
drop-down list. Note that the
response codes are grouped,
so that if the elements of the
drop-down list are selected,
further groups of response
codes will be made visible in a
tree structure. The applicable
request code can be selected.

502 It provides the HTTP status code to be used
when denying invalid requests.

Response
message

The message can be provided
in free text.

Response
error

The reason is provided here that can be used in
the HTTP response line when denying invalid
requests.

Response
silent

The parameter can be
configured by switching it on
or off. When it is switched on,
the Plugins do not report on
the denial of the invalid
response. When it is turned off,
the Plugins have the ability to
report the error in detail in the
body of the HTTP error
response.

true Do not report validation errors of the response
to the client.

The default values in the above table represent the hard coded default values. They form a strict security policy:
all errors are fatal, and only mistakes made by the client are reported in detail.

For configuring error policies, continue with completing the following steps:

4. Configure the necessary parameters for the error policy based on the details provided in the table Error policy
configuration options.

5. Click the Validate button to check if the defined parameters are suitable and adequate for configuring the
component. If the configuration of the component is erroneous or not adequate, the Web UI provides a
warning that the 'Component validation failed'. Also a warning with information on the missing details
appears at the problematic field for the user. If the configuration of the component is satisfactory, after
clicking the Validate button, the user receives the 'Component Validation successful' notification.

6. Click the Save button.

The error policies configured here can be used in the PluginÕs configuration, by referencing their name.

6.4.2. Matcher

Matchers decide if the Plugin should be executed for a given call by checking various data in the HTTP message.
They provide an extremely versatile way of defining the circumstances that must be met for the Plugin to execute.

Matchers need four pieces of information:

¥ Name: The Name field can be defined in free text and it is not related to the extractor that will be used. This
Name can be referenced in Plugins.

¥ Type: This parameter defines what part of the call needs to be checked.

¥ Comparator: The Comparator shows by what means the collected value of the call is compared with the
provided pattern. (Some comparators also take flags or arguments.)

¥ Expression: A regular expression specifies a set of strings that match it. A complete explanation on how to

Administration Guide 6.4. BRICK - Configuration units

4.0.1 35

write expressions is not in the scope of this document.

The matchers can be used in Plugin configurations' match option by referencing their name.

!

There are some named Matchers available without explicit configuration:

¥ always and never are instances of Always matcher and Never matcher.

¥ json_content that matches requests with the Content-Type headers representing JSON.

Also note that no other matchers can be defined with these names.

Matchers internally utilize Extractors to fetch the information from the call to compare with. The Type of the
matcher resembles the name of the extractor that will be used.

All matchers have a default comparator that is applied implicitly.

" If you want to use comparator parameters, the comparator name should be given even if the
default comparator is used.

6.4.2.1. Configuring Matchers

Matchers can be configured from the BRICK main navigation item.

1. Click on the BRICK main configuration item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of BRICK.

2. Select Matcher.

The configuration window that appears presents the default matchers, as listed in Default objects - BRICK and the
configuration values already set by the user:

Administration Guide 6.4. BRICK - Configuration units

4.0.1 36

Figure 9. Matchers' main page in the Web User Interface

3. Click on the New navigation button to configure a matcher.

The generic configuration page for matchers provides the following settings:

Figure 10. Configuring matchers in the Web User Interface

The configuration parameters for matchers are described in details in the following table:

Table 17. Matcher configuration options

Key Values Default value Description

Name* It is a mandatory value.
It can be defined in free
text.

It can be
defined in free
text.

The Name of the matcher which can be referenced
in Plugins.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 37

Key Values Default value Description

Type* It is a mandatory value.
For the available values,
see Matcher types.

The preferred matcher type has to be selected
from the drop-down list.

4. Provide the name of the matcher.

5. Choose the type of the matcher from the drop-down list.

Matcher types
Depending on the choice of the matcher type, some more required configuration fields might appear on this
page. The following tables describe the matcher types in details and provide the necessary information for the
additional configuration fields, required for setting the matcher types:

¥ Matcher types and their settings - Simple matchers

¥ Matcher types and their settings - Compound matchers

¥ Matcher types and their settings - URI matchers

¥ Matcher types and their settings - Soap matchers

Table 18. Matcher types and their settings - Simple matchers

Matcher
type

Description

Always This matcher always matches.

Never This matcher never matches. It can be used to turn off a Plugin.

Call
direction

It matches the direction of the message (request or response).

Method It matches the HTTP method of the request. Note that the method is case insensitive by definition,
therefore the case will always be ignored.

When choosing the Method matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 38

Matcher
type

Description

Header It matches the value of an HTTP header. Some HTTP headers can be present more than once in a
call. To accommodate this, matching is completed against the value of each occurrence of the
header. Matching occurs if there is any match. For example, if the Accept header was repeated as
follows:

Accept: application/json
Accept: application/xml

Consequently, in this example above both header.accept: application/json and
header.accept: application/xml would match.

To match against the header named server the key will be header.server , possibly completed
with comparator specification, like header.server.regex.ignorecase .

! While the values are not, the HTTP header names are case insensitive, so you can
write them all lowercase in the configuration key.

The syntax of this matcher differs from the others because the name of the Header must be added.

! While the values are not, the HTTP header names are case insensitive, so you can
write them all lowercase in the configuration key.

Content
type

It matches the content type of the message. It is a more robust solution than using the Header
matcher on the Content-Type header because that can contain parameters as well.

When choosing the Content type matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Status It matches the status code of the response.

! See the default Status class comparator which allows convenient matching on
HTTP status classes.

The available values for the Expression parameter are: Informational response, Successful response,
Redirects, Client errors, Server Errors.

When choosing the Status matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 39

Matcher
type

Description

Raw
content

It matches the original content of the message. If the content type is JSON, the body will be
decompressed but not parsed.

When choosing the Raw content matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Client_add
ress

It matches the clientÕs IP address (both IPv4 and IPv6).

Use the subnet type comparator with that matcher type. The subnet comparator examines if the IP
address of the Client is in the specified subnet. The format for the input of the subnet comparator is
the CIDR notation for IPv4 (for example, 192.0.2.0/24) and canonical prefix notation for IPv6 (for
example, 2001:db8::/32).

Client_por
t

It matches the clientÕs port (TCP).

Server_ad
dress

It matches the serverÕs IP address (both IPv4 and IPv6).

Use the subnet type comparator with that matcher type. The subnet comparator examines if the IP
address of the Server is in the specified subnet. The format for the input of the subnet comparator is
the CIDR notation for IPv4 (for example, 192.0.2.0/24) and canonical prefix notation for IPv6 (for
example, 2001:db8::/32).

Server_por
t

It mathces the serverÕs port (TCP).

xpath It matches the data from the body of an XML call with the help of the Xpath expression.

Xpath is a query language for XML. It is a very versatile tool for extracting the needed information
from the body of the call, and organizing it according to needs.

A complete explanation on how to write Xpath expressions is not in the scope of this document. To
learn more about it visit the main website.

For more details on xpath configuration options, see Xpath extractor configuration options.

JMESPath It matches the data from the body of a JSON call with the help of the JMESPath expression.
JMESPath is a query language for JSON. It is a very versatile tool for extracting the needed
information from the body of the call, and for organizing it according to needs. A complete
explanation on how to write JMESPath expressions is not in the scope of this document.

To learn more about it visit the: main website:

¥ There is a tutorial .

¥ There are examples.

¥ There is also a formal specification.

When choosing the JMESPath matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 40

https://www.w3.org/TR/2017/REC-xpath-31-20170321/
http://jmespath.org
http://jmespath.org/tutorial.html
http://jmespath.org/examples.html
http://jmespath.org/specification.html

Matcher
type

Description

Fraud_det
ector_scor
e

It matches the score value provided by the Fraud Detector plugin.

Table 19. Matcher types and their settings - Compound matchers

Any Any is a Compound matcher that matches if any of its sub-matchers matches. The sub-matcher can
also be a compound matcher.

All All is a Compound matcher that matches if all of its sub-matchers match. The sub-matcher can also
be a compound matcher.

None None is a Compound matcher that matches if none of its sub-matchers match. The sub-matcher can
also be a compound matcher.

One One is a Compound matcher that matches if exactly one of its sub-matchers matches. The sub-
matcher can also be a compound matcher.

Table 20. Matcher types and their settings - URI matchers

Matcher
type

Description

URI
matchers

A range of matchers is available to match different parts of the URI.

The structure of an URI looks as follows:

scheme://[username[:password]@]host[:port][/path][?query][#fragment]

That is, for example:

https://john.doe:secret123@example.com:8443/some/resource?foo=bar&baz=qux#som
e-anchor

! The fragment part is used by the client locally, and is never sent in the HTTP
requests, therefore PAS cannot do anything with it.

These matchers use the URI extractors. It has an extensive list of examples of what each extractor
extracts from the URI.

URI It matches against the whole request URI as received from the client.

When choosing the URI matcher from the drop-down list, additional parameters appear. For more
information on the configuration of these parameters, see Matcher types' additional configuration
options.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 41

Matcher
type

Description

URI netloc It matches the network location in the URI.

It includes:

¥ username and password if present

¥ host

¥ port if present unless scheme default

"
If the port is the default port for the scheme - that is 80 and 443 for HTTP and
HTTPS, respectively - the port will not be included even if explicitly sent by the
client. Therefore if the client used http://example.com:80/path then the
netloc would be http://example.com , not http://example.com:80 .

When choosing the URI netloc matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI origin It matches the origin part of the URI.

It includes:

¥ scheme

¥ host

¥ port if present, unless the default port for the scheme is used

"
If the port is the default port for the scheme - that is 80 and 443 for HTTP and
HTTPS, respectively - the port will not be included, even if explicitly sent by the
client. Therefore if the client used http://example.com:80/path , then the
origin would be http://example.com , not http://example.com:80 .

When choosing the URI origin matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI
scheme

It matches the scheme of request (http or https). Note that the scheme is case insensitive by
definition, therefore the case will always be ignored.

When choosing the URI scheme matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI
username

It matches the username in the request if present.

When choosing the URI username matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 42

Matcher
type

Description

URI
password

It matches the password in the request if present.

When choosing the URI password matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI host It matches the host in the request.

When choosing the URI host matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI port It matches the port of the request. Note that this matches the default port"Ñ" that is 80 and 443 for
HTTP and HTTPS, respectively"Ñ"even if it is not explicitly in the request.

When choosing the URI port matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI path It matches the path part of the URI.

The path is normalized to allow more robust matching and cleaner reporting. This means that:

¥ If the path is missing / it is extracted.

¥ Repeating forward-slash (/) characters are replaced with a single one.

¥ dot (.) and double-dot (..) path segments are resolved.

Consequently, if the path present in the URI was
//some/./nothere/../resource///./somewhere the path would be
/some/resource/somewhere .

If you need to match the path exactly as received, use URI raw path matcher.

When choosing the URI path matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI raw
path

It matches the path part of the URI, without the normalization of URI path matcher carried out.

! If the path is missing, the match still runs against a single forward slash ("/").

It is recommended to use URI path matcher unless there is an explicit need for matching the raw
path. One such example would be logging or filtering out badly formed requests.

When choosing the URI raw path matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 43

Matcher
type

Description

URI raw
query

It matches the query part of the URI as a string. It is recommended to use URI query parameter
matcher unless there is an explicit need for matching the raw string. An example on this might be if
there is a match on foo=barbar or tofoo=bar as well, even though it was not intended.

When choosing the URI raw query matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

URI query
parameter

It matches the value of a query parameter.

It is also valid for URIs to include a query parameter more than once. That is, it could be
foo=bar&qux=quz&foo=baz. To accommodate this, matching is done against the value of each
occurrence of the parameter. Matching occurs if any value is matched.

When choosing the URI query parameter matcher from the drop-down list, additional parameters
appear. For more information on the configuration of these parameters, see Matcher types'
additional configuration options.

Table 21. Matcher types and their settings - Soap matchers

Matcher
type

Description

Soap
Matchers

A range of matchers is available to match different parts of the SOAP message.

These matchers extend the xpath matcher with predefined expressions.

They use the soap extractors. It has an extensive list of examples of what each extractor extracts
from the SOAP message.

When choosing the SOAP Matchers matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Soap
version

Soap version matches the soap message version. It identifies with the soap namespace.

The possible values are:

¥ soapv1_1 - the message version is SOAP v1.1

¥ soapv1_2 - the message version is SOAP v1.2

When choosing the SOAP version matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Soap
envelope

It matches the soap envelope.

When choosing the SOAP envelope matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 44

Matcher
type

Description

Soap
header

It matches the soap header.

When choosing the SOAP header matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Soap body It matches the soap body.

When choosing the SOAP body matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Soap fault It matches the soap fault.

When choosing the SOAP fault matcher from the drop-down list, additional parameters appear. For
more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Soap fault
code

Soap matchers extend the xpath matcher with predefined expressions.

They use the SOAP extractors. It has an extensive list of examples of what each extractor extracts
from the SOAP message.

It matches the soap fault 'code'. The expression depends on the soap version.

¥ faultcode - it is the SOAP v1.1 node tag.

¥ Code - it is the SOAP v1.2 node tag.

When choosing the SOAP fault code matcher from the drop-down list, additional parameters appear.
For more information on the configuration of these parameters, see Matcher types' additional
configuration options.

Soap fault
detail

It matches the soap fault 'detail'. The expression depends on the soap version.

¥ Detail - it is the SOAP v1.1 node tag.

¥ Detail - it is the SOAP v1.2 node tag.

When choosing the SOAP fault details matcher from the drop-down list, additional parameters
appear. For more information on the configuration of these parameters, see Matcher types'
additional configuration options.

Soap 11
fault
faultstring

It matches the soap fault 'faultstring'. This matcher only works with soap version 1.1.

When choosing the Soap 11 fault faultstring matcher from the drop-down list, additional parameters
appear. For more information on the configuration of these parameters, see Matcher types'
additional configuration options.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 45

Matcher
type

Description

Soap 11
fault
faultactor

It matches the soap fault 'faultactor'. This matcher only works with soap version 1.1.

When choosing the Soap 11 fault faultactor matcher from the drop-down list, additional parameters
appear. For more information on the configuration of these parameters, see Matcher types'
additional configuration options.

Soap 12
fault
reason

It matches the soap fault 'Reason'. This matcher only works with soap version 1.2.

When choosing the Soap 12 fault reason matcher from the drop-down list, additional parameters
appear. For more information on the configuration of these parameters, see Matcher types'
additional configuration options.

Soap 12
fault node

It matches the soap fault 'Node'. This matcher only works with soap version 1.2.

When choosing the Soap 12 fault node matcher from the drop-down list, additional parameters
appear. For more information on the configuration of these parameters, see Matcher types'
additional configuration options.

Soap 12
fault role

It matches the soap fault 'Role'. This matcher only works with soap version 1.2.

When choosing the Soap 12 fault role matcher from the drop-down list, additional parameters
appear. For more information on the configuration of these parameters, see Matcher types'
additional configuration options.

For details on comparator types, see Types of comparators.

Depending on the matcher type selected, the administrator might need to fill in further parameters. These
parameters are described in the following table.

Table 22. Matcher types' additional configuration options

Key Values Default value Description

Comparator The matchers need the information on the
Comparator, which shows by what means the
collected value of the call is compared with the
provided pattern.

Type The available
comparator types can be
checked from the drop-
down list.

Equals This configuration option has to be defined for the
Comparator. For details on the comparator types,
see Types of comparators.

Ignorecase Off (False) This configuration option has to be defined for the
Comparator. It sets the IGNORECASE flag for the
selected comparator type. For matcher types that
work with numeric data type or with IP addresses,
the 'Equals' and 'Not Equals' comparator types do
not have ignorcase field.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 46

Key Values Default value Description

Expression* This configuration option has to be defined for the
Comparator. A regular expression specifies a set of
strings that match it.

JmesPath
Expression

A complete explanation on how to write JMESPath
expressions is not in the scope of this document.

To learn more about it visit the: main website:

¥ There is a tutorial .

¥ There are examples.

¥ There is also a formal specification.

Query
Parameter

It is also valid for URIs to include a query
parameter more than once. That is, it could be
foo=bar&qux=quz&foo=baz. To accommodate this,
matching is done against the value of each
occurrence of the parameter. Matching occurs if
any value is matched.

Header It extracts the value of an HTTP header. It is valid
for some HTTP headers to be present more than
once in a call. In this case, all the values are
extracted as a list. It provides the name of the
header in the configuration.

Namespaces It defines the XML namespaces.

Xpath
Expression*

The expression to extract the node from the call to
match against.

Multiline It sets the Multiline flag for the Regex comparator.

Minimum* It matches if the pattern is larger or equal to the
value.

Maximum* It matches if the pattern is smaller or equal to the
value.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 47

http://jmespath.org
http://jmespath.org/tutorial.html
http://jmespath.org/examples.html
http://jmespath.org/specification.html

Key Values Default value Description

Source Plugin Fraud Detector Plugins
can be referenced here
by selecting them from
the drop-down list.

Last: In case
there are more
Fraud Detector
plugins defined
in the Security
Flow, by using
this default
value, the
selector will use
the score value
provided for the
last run Fraud
Detector plugin.

This parameter defines which Fraud Detector
plugin shall be used in case there are more than
one defined.

6. Configure the necessary parameters with the help of the above tables.

7. Click the Validate button to check if the defined parameters are suitable and adequate for configuring the
component. If the configuration of the component is erroneous or not adequate, the Web UI provides a
warning that the 'Component validation failed'. Also a warning with information on the missing details
appears at the problematic field for the user. If the configuration of the component is satisfactory, after
clicking the Validate button, the user receives the 'Component Validation successful' notification.

8. Click the Save button to save the configured matcher.

6.4.3. Selector

Selectors are responsible for collecting information from the call. They utilize Extractor bricks for this purpose.

Most extractors return simple string values. However, some (might) return dictionaries. For example, you can get
all the HTTP headers, or all the URI query parameters.

They are used by Insight.

6.4.3.1. Configuring Selectors

The selector can be configured from the BRICK main navigation item.

1. Click on the BRICK main configuration item in the left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of BRICK.

2. Select Selectors.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Administration Guide 6.4. BRICK - Configuration units

4.0.1 48

Figure 11. Selector main page in the Web User Interface

3. Click on the New navigation button to configure the Selector.

The following configuration options appear for Selector:

Figure 12. Configuring Selector in the Web User Interface

The selector accepts the following configuration options:

Table 23. Selector configuration options

Key Values Default value Description

Name* It is a mandatory value.
It can be defined in free
text.

The name of the parameter can be referenced.

Type* Choose the selector type
from the drop-down list.
For more details on the
values, see Extractor
types.

Extractors are used to extract data from the call.
They are utilized by Selector (and Matcher as well).
Extractors are included by their type in Selectors,
and are used by a special syntax in matchers. For
details, see Extractors and Extractor types.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 49

Key Values Default value Description

Save as The key under which the
results of a selector are
saved in the Insight
pluginÕs dictionary.

Top If it is omitted, the result will be directly merged as
top level keys. Name the configuration
components with the usage of the English
alphabet and numerals. When the name is
composed of more than one word, use underscore.
It is not allowed to use spacing or any special
characters though.

Depending on what value is selected for the Type parameter, additional parameters might appear for
configuration. The following table provides details on these additional parameters.

Table 24. Additional Selector configuration options

Key Values Default value Description

Clear text It can be switched On or
Off.

Namespaces It defines the XML
namespaces.

Xpath
Expression

The expression to extract the node from the call to
match against.

JmesPath
Expression

A complete explanation on how to write JMESPath
expressions is not in the scope of this document.

To learn more about it visit the: main website:

¥ There is a tutorial .

¥ There are examples.

¥ There is also a formal specification.

Expression* A regular expression specifies a set of strings that
match it.

Time format 'YYYY-MM-
DDTHH:mm:ss.SSSSSSZ
Z'

Set the format.
See: Timestamp
format options

Time zone UTC It is the name of the time zone, or the time zone
offset.
The time zone can be specified by using the name,
for example, "Europe/Budapest", or as the time
zone offset in +/-HH:MM format, for example,
+01:00).

Administration Guide 6.4. BRICK - Configuration units

4.0.1 50

http://jmespath.org
http://jmespath.org/tutorial.html
http://jmespath.org/examples.html
http://jmespath.org/specification.html

Key Values Default value Description

Source Plugin Fraud Detector Plugins
can be referenced here
by selecting them from
the drop-down list.

Last: In case
there are more
Fraud Detector
plugins defined
in the Security
Flow, by using
this default
value, the
selector will use
the score value
provided for the
last run Fraud
Detector plugin.

This parameter defines which Fraud Detector
plugin shall be used in case there are more than
one defined.

4. Name the Selector key.

5. Fill in any more desired parameters.

6. Click the Validate button to check if the defined parameters are suitable and adequate for configuring the
component. If the configuration of the component is erroneous or not adequate, the Web UI provides a
warning that the 'Component validation failed'. Also a warning with information on the missing details
appears at the problematic field for the user. If the configuration of the component is satisfactory, after
clicking the Validate button, the user receives the 'Component Validation successful' notification.

7. Click the Save button if you have configured all the required parameters.

6.4.4. Insight Target

Insight Target bricks define where the data collected by the Insight will be sent to.

The Insight Target configuration tree contains named Insight Targets with their respective configuration.

" Unlike other bricks, Insight Target configurations cannot be put inline into a PluginÕs
configuration, they must always be configured here.

See the Insight Target configuration options for the available Insight Target types and their configuration options.

6.4.4.1. Data flattening

To ensure compatibility with a wide range of Insight Target types, the results collected by the Insight plugin are
flattened. The path inside the complex data structure is encoded into the key for each value:

¥ The merged key describes the path to the value in the data structure as a string.

¥ The parts of the path will be separated by a forward slash character ("/").

¥ Keys in nested dictionaries are added to the path by name.

¥ List items are added to the path by their index.

! You can control the separator with the Flatten separator configuration key that every Insight
Target accepts.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 51

6.4.4.2. Configuring Insight Targets

The Insight Target can be configured from the BRICK main navigation item.

1. Click on the BRICK main configuration item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of BRICK.

2. Select Insight Target.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 13. Insight Target main page in the Web User Interface

3. Click on the New navigation button to configure the Insight Target.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 52

Figure 14. Configuring Insight Target in the Web User Interface

The Insight Target accepts the following configuration options:

Table 25. Insight Target configuration options

Key Values Default
value

Description

Name* It is a mandatory value. It can be defined
in free text.

It is the name identifying the Insight
Target. This name of the Insight Target
can be referenced from other parts of the
configuration.

Type* It is a mandatory value. The values can
be selected from the drop-down list. The
available values are:

¥ Local log

¥ Syslog

¥ Elastic

¥ Local log: It logs the result of the
insight in the local system log. For
more details on configuration
settings with Local log, see Local log
Insight Target configuration
parameters.

¥ Syslog: It sends the insight to a
remote syslog server using the IETF
syslog protocol defined in RFC5424.
For more details on configuration
settings with syslog, see table Syslog
Insight Target configuration
parameters.

¥ Elastic: It sends the insight to an
Elasticsearch engine in JSON. For
more details on configuration
settings with syslog, see Elastic
Insight Target configuration
parameters.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 53

Key Values Default
value

Description

Flatten This parameter can be switched 'on' or
'off'.

On (True) Flatten the Insight Target message.

Flatten
separator

/ It is the separator in the flattened
message.

Level 3 It is the log level for the logged message.

Message It is the
message of
the insight if
present,
otherwise it
is empty.

It is the message part of the log message.

Tag The value can be selected from a drop-
down list.

info It is the log tag for the logged message.

4. Provide the name for your Insight Target configuration.

5. Select the Insight Target type.

6. Continue with the Syslog, Elastic and Local log configurations with the help of the following tables: Syslog
Insight Target configuration parameters, Elastic Insight Target configuration parameters and Local log Insight
Target configuration parameters.

The following table presents the configuration parameters for the Local log Insight Target type:

Table 26. Local log Insight Target configuration parameters

Key Values Default value Description

Flatten
separator

/ It is the separator in the flattened message.

Level 3 It provides the log level for the logged message.

Message The message of
the insight if
present,
otherwise it is
empty.

It is the message part of the log message.

Tag info It is the log tag for the logged message.

The following table presents the configuration parameters for the syslog Insight Target type:

Table 27. Syslog Insight Target configuration parameters

Key Values Default value Description

Data format The possible values are: sdata,
json.

sdata This is the data format of the insight.

Enable
heartbeat

False It enables sending heartbeat (-- MARK --)
messages to the Insight Target.

Flatten True It flattens the Insight Target message.

Flatten
Separator

/ It is the separator in the flattened
message.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 54

Key Values Default value Description

Flush lines It specifies how many lines are flushed to a
destination at a time. The Insights Director
waits for this number of lines to
accumulate and sends them off in a single
batch. Increasing this number increases
the throughput, as more messages are
sent in a single batch, but also increases
the message latency.

Heartbeat ¥ Frequency: A number greater
than or equal to 1.

¥ Mode: The possible values
are: 'idle' (heartbeat
messages are only sent when
there is no traffic towards the
Insight Target) and
'periodical' (heartbeat
messages are sent regardless
of activity).

¥ Frequency:
30

¥ Mode:
'periodical'

¥ Frequency: The number of seconds
between heartbeat messages.

¥ Mode: The operation mode of the
heartbeat functionality.

Host* It is the hostname or the IP address of the
syslog server.

IP protocol The possible values are 4 and 6,
corresponding to IPv4 and IPv6.

This determines the internet protocol
version of the given driver.

Mask credit
card numbers

False It masks the middle section of recognised
credit card numbers in any fields of the log
message. Recognised credit cards are
from one of the following issuers:
American Express, Discover Card,
Mastercard, VISA.

Remote
Connection

¥ Protocol: The available
values are: TCP and UDP.

¥ Port: The available values are
integers.

¥ Use TLS: The available values
are True or False.

¥ Syslog TLS*: Select the
Syslog TLS brick you want to
use for the Insight Target.

¥ Protocol:
TCP, Port
601

¥ Protocol:
UDP, Port:
514

¥ Use TLS:
False

¥ Protocol: Add the transport protocol
to send messages over. The available
values are: TCP and UDP.

¥ Port: Add the port number here to
connect to the remote system.

¥ Use TLS: It enables using TLS for the
Syslog communication.

¥ Syslog TLS*: It is mandatory if the Use
TLS option is set to True.

Report config
load

False It reports the event of a configuration
being loaded with a cryptographic hash of
the loaded configuration. This ingorms the
Insight Target about changes in the
configuration.

Second fraction
digits

Integer between 0 and 6 inclusive3 The number of digits representing the
fractions of seconds in the Syslog
timestamp.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 55

Key Values Default value Description

Time Zone See table Time zones for time
zone names.

GMT The name of the time zone (for example,
"Europe/Budapest") or the time zone
offset in +/-HH:MM format (for example,
+01:00).

The following table presents the configuration parameters for the elastic Insight Target type:

Table 28. Elastic Insight Target configuration parameters

Key Values Default value Description

Doc type _doc The doc type is used when sending the data.

Flatten True It flattens the Insight Target message.

Flatten
Separator

/ It is the separator in the flattened message.

Host* It is the hostname of the Elastic search instance.

Index* It is the name of the index in the Elastic search
instance.

Mask credit
card numbers

False It masks the middle section of recognised credit
card numbers in any fields of the log message.
Recognised credit cards are from one of the
following issuers: American Express, Discover Card,
Mastercard, VISA.

Port 9200 Add the port number here to connect to the remote
system.

7. Configure any more desired parameter details.

8. Click the Validate button to check if the defined parameters are suitable and adequate for configuring the
component. If the configuration of the component is erroneous or not adequate, the Web UI provides a
warning that the 'Component validation failed'. Also a warning with information on the missing details
appears at the problematic field for the user. If the configuration of the component is satisfactory, after
clicking the Validate button, the user receives the 'Component Validation successful' notification.

9. Click Save to save your configuration settings for the Insight Target.

6.4.5. TLS

Transport Layer Security (TLS) is the cryptographic protocol that secures HTTPS communications. PAS can apply
TLS encryption both when communicating with Clients and Backends. TLS encryption can also be used with
Syslog Insight Target.

When HTTPS is used the TLS settings must be configured.

!
These parameters are used by the Insight Director and the Transport Director. For options that
reference a file the path is relative to /opt/balasys/var/persistent/ inside the Transport
Director container. This directory is a docker volume and by default mounted from the
/opt/balasys/var/persistent/transport-director directory in the host system.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 56

6.4.5.1. Configuring the TLS

TLS can be configured from the BRICK main navigation item.

1. Click on the BRICK main configuration item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of BRICK.

2. Select TLS.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 15. TLS main page in the Web User Interface

3. Click on the New navigation button to configure TLS.

TLS contains the following settings:

Administration Guide 6.4. BRICK - Configuration units

4.0.1 57

Figure 16. Configuring TLS in the Web User Interface

The configuration of the first two parameters determines the TLS type and from these two steps on, it is either a
Backend TLS configuration, a Client TLS configuration or a Syslog TLS configuration.

6.4.5.1.1. Configuring the Client TLS

The following parameters need to be configured for Client TLS:

Administration Guide 6.4. BRICK - Configuration units

4.0.1 58

Figure 17. Configuring Client TLS in the Web User Interface, TLS options

Figure 18. Configuring Client TLS in the Web User Interface, Certificate options

1. Name the Client TLS configuration.

2. Select the Type of the TLS, Client TLS in this case, from the drop-down list to configure TLS.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 59

For details on these parameters, see the following table:

Table 29. TLS configuration

Key Values Default value Description

Name* It is a mandatory value.
It can be defined in free
text.

The name of the parameter can be referenced.

Type* It is a mandatory value.
Choose the required
value from the drop-
down list.

Client TLS, Backend TLS and Syslog TLS
configurations can be defined here.

3. Configure the mandatory parameters for Client TLS, based on the information provided in Table Client TLS
configuration.

Table 30. Client TLS configuration

Key Values Default value Description

Certificate Configuration for the X.509 certificate used for TLS
connections on the listener.

Certificate File* It is a mandatory value.
You can upload the
certificate file.

Provide the path and filename for the certificate
file. The certificate file must be in PEM format.

Key file* It is a mandatory value.
You can upload the key
file.

Provide the path and filename to the private key
file. The private key must be in PEM format.

Key passphraseYou can upload the file. Provide the passphrase used to access the private
key specified in the Key file.

Enable
Verification

Off (False) It is an option for verifying client side X.509
certificates. By default no client verification takes
place.

Client
verification

Client verification options

Trusted Certs You can upload trusted
certificates in a ZIP file.

This is a Certificate File element from among the
Brick components.

Required The parameter can be
switched on or off.

On (true) If it is set to True, PAS requires a certificate from
the peer.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 60

Key Values Default value Description

Trust Level The values can be
selected from the drop-
down list. The available
values are:

¥ none

¥ untrusted

¥ full

full It defines the trust level for certificate verification:

¥ none: Accept even invalid certificates, for
example self-signed certificates.

¥ untrusted: Both trusted and untrusted
certificates are accepted.

¥ full: Only valid certificates signed by a trusted
CA are accepted.

Verify Depth 4 It defines the length of the longest accepted CA
verification chain. PAS will automatically reject
longer CA chains.

Ca Dir You can upload the
trusted CAs in a ZIP file.

This is a Certificate File element from among the
Brick components.

Verify Crl The parameter can be
switched on or off.

Off (false) If it is set to True, PAS checks the CRLs (Certificate
Revocation Lists) associated with trusted CAs. CRLs
will load automatically if PAS verifies the certificate
of the peer.

Intermediate
Revocation
Check Type

The values can be
selected from the drop-
down list. The available
values are:

¥ none

¥ soft_fail

¥ hard_fail

hard_fail The revocation check type for all certificates in the
chain, except the Leaf Certificate:

¥ none: Ignore the result certificate revocation
status check

¥ soft_fail: It fails if the check is successful and
the certificate is revoked, it will pass otherwise

¥ hard_fail: It passes only if the check is
successful and the certificate is not revoked

Leaf
Revocation
Check Type

The values can be
selected from the drop-
down list. The available
values are:

¥ none

¥ soft_fail

¥ hard_fail

hard_fail The revocation check types for the Leaf certificate
are as follows:

¥ none: With this option the result of the
certificate revocation status check is ignored

¥ soft_fail: It fails if the check is successful and
the certificate is revoked, it passes otherwise

¥ hard_fail: It passes only if the check is
successful and the certificate is not revoked

Options TLS protocol options used on the listener.

Disable TLS v1 The parameter can be
switched on or off. If it is
set ON it does not allow
using TLSv1 in the
connection.

On (true) Transport Layer Security v1 (TLS) (successor of the
now obsoleted Secure Socket Layer v3 (SSL)) is a
widely used crypto protocol, guaranteeing data
integrity and confidentiality in many PKI and e-
commerce systems.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 61

Key Values Default value Description

Disable TLS
v1.1

The parameter can be
switched on or off. If it is
set ON it does not allow
using TLSv1.1 in the
connection.

On (true) It does not allow the usage of TLSv1.1 in the
connection.

Disable TLS
v1.2

The parameter can be
switched on or off. If it is
set ON it does not allow
using TLSv1.2 in the
connection.

Off (false) It does not allow the usage of TLSv1.2 in the
connection.

Disable TLS
v1.3

The parameter can be
switched on or off. If it is
set ON it does not allow
using TLSv1.3 in the
connection.

Off (false) It does not allow the usage of TLSv1.3 in the
connection.

Cipher ECDHE-ECDSA-
AES128-GCM-
SHA256:
ECDHE-RSA-
AES128-GCM-
SHA256:
ECDHE-ECDSA-
AES256-GCM-
SHA384:
ECDHE-RSA-
AES256-GCM-
SHA384:
ECDHE-ECDSA-
CHACHA20-
POLY1305:
ECDHE-RSA-
CHACHA20-
POLY1305: DHE-
RSA-AES128-
GCM-SHA256:
DHE-RSA-
AES256-GCM-
SHA384

Specifies the allowed ciphers. Can be set to all,
high, medium, low, or a string representation of
the selected ciphers.

Timeout 300 It drops idle connection if the timeout value (in
seconds) expires.

Session Cache
Size

20480 It defines the number of sessions stored in the
session cache for SSL session reuse

Disable Session
Cache

The parameter can be
switched on or off.

Off (false) Do not store session information in the session
cache. Set this option to 'on' to disable SSL session
reuse.

Disable Ticket The parameter can be
switched on or off.

Off (false) Session tickets are a method for SSL session reuse,
described in RFC 5077. Set this option to ON to
disable SSL session reuse using session tickets.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 62

Key Values Default value Description

Disable
Compression

The parameter can be
switched on or off.

Off (false) Set the parameter On to disable support for
SSL/TLS compression. Set the parameter Off to
enable support for SSL/TLA compression.

Cipher Server
Preference

The parameter can be
switched on or switched
off.

On (true) Use server and not client preference order when
determining which cipher suite, signature
algorithm or elliptic curve to use for an incoming
connection.

Disable
Renegotiation

The parameter can be
switched on or off.

On (true) Set this parameter On to disable client-initiated
renegotiation.

Dh Parameter
File

You can upload the DH parameter file. The DH
parameter file must be in PEM format.

4. Click the Validate button to check if the defined parameters are suitable and adequate for configuring the
component. If the configuration of the component is erroneous or not adequate, the Web UI provides a
warning that the 'Component validation failed'. Also a warning with information on the missing details
appears at the problematic field for the user. If the configuration of the component is satisfactory, after
clicking the Validate button, the user receives the 'Component Validation successful' notification.

5. Save the Client TLS configuration by clicking Save.

6.4.5.1.2. Configuring Backend TLS

The following parameters need to be configured for Backend TLS:

Figure 19. Configuring Backend TLS in the Web User Interface, TLS options

Administration Guide 6.4. BRICK - Configuration units

4.0.1 63

Figure 20. Configuring Backend TLS in the Web User Interface, Certificate options

1. Name the Backend TLS configuration.

2. Select Backend TLS from the drop-down list to configure Backend TLS.

For details on these parameters, see the following table:

Table 31. TLS configuration

Key Values Default value Description

Name* It is a mandatory value.
It can be defined in free
text.

The name of the parameter can be referenced.

Type* It is a mandatory value.
Choose the required
value from the drop-
down list.

Client TLS, Backend TLS and Syslog TLS
configurations can be defined here.

3. Configure the mandatory parameters for Backend TLS, based on the information provided in Table Backend
TLS configuration.

The configuration parameters are described in details in the following table:

Table 32. Backend TLS configuration

Key Values Default value Description

Certificate Configuration for the X.509 certificate used for TLS
connections on the listener.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 64

Key Values Default value Description

Enable
Certificate

Off/False It is an option for enabling backend side X.509
certificates. By default no backend verification
takes place.

Enable
Verification

Off/False It is an option for verifying Backend side X.509
certificates. By default no backend verification
takes place.

Backend
verification

Backend verification options

Trusted Certs You can upload trusted
certificates in a ZIP file.

A directory where trusted IP addresses-certificate
assignments are stored. When a peer from a
specific IP address shows the certificate stored in
this directory, it is accepted regardless of its
expiration or issuer CA. Each file in the directory
should contain a certificate in PEM format. The
filename must be the IP address.

Trust Level The values can be
selected from the drop-
down list. The available
values are:

¥ none

¥ untrusted

¥ full

full It defines the trust level for certificate verification:

¥ none: Accept even invalid certificates, for
example self-signed certificates.

¥ untrusted: Both trusted and untrusted
certificates are accepted.

¥ full: Only valid certificates signed by a trusted
CA are accepted.

Verify Depth 4 It defines the length of the longest accepted CA
verification chain. PAS will automatically reject
longer CA chains.

Ca Dir You can upload the
trusted CAs in a ZIP file.

It is a directory where the trusted CA certificates
are stored. CA certificates are loaded on-demand
from this directory when PAS verifies the certificate
of the peer.

Verify Crl The parameter can be
switched on or off.

Off (false) If it is set to True PAS checks the CRLs (Certificate
Revocation Lists) associated with trusted CAs. CRLs
will load automatically if PAS verifies the certificate
of the peer.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 65

Key Values Default value Description

Intermediate
Revocation
Check Type

The values can be
selected from the drop-
down list. The available
values are:

¥ none

¥ soft_fail

¥ hard_fail

soft_fail The revocation check types for all certificates in
the chain, except for the Leaf Certificate are as
follows:

¥ none: If this options is set, the certificate
revocation status check results are ignored

¥ soft_fail: If this option is set, the certificate
revocation check fails, if the check is successful
and the certificate is revoked. The check
passes otherwise.

¥ hard_fail: If this option is set, the check passes
only if the check is successful, and the
certificate is not revoked.

Leaf
Revocation
Check Type

The values can be
selected from the drop-
down list. The available
values are:

¥ none

¥ soft_fail

¥ hard_fail

soft_fail The revocation check type for the Leaf Certificate.

¥ none: The result of the Certificate Revocation
Status Check is ignored.

¥ soft_fail: If this option is set, the certificate
revocation check fails, if the check is successful
and the certificate is revoked. The check
passes otherwise.

¥ hard_fail: If this option is set, the check passes
only if the check is successful, and the
certificate is not revoked.

Check Subject The parameter can be
switched on or off.

Off (false) If it is set to, PAS compares the subject of the
server-side certificate with application-layer
information (for example, it checks whether the
Subject matches the hostname in the URL).

Options TLS protocol options used on the listener.

Disable TLS v1 The parameter can be
switched on or off. If it is
set ON it does not allow
using TLSv1 in the
connection.

On (true) Transport Layer Security v1 (TLS) (successor of the
now obsoleted Secure Socket Layer v3 (SSL)) is a
widely used crypto protocol, guaranteeing data
integrity and confidentiality in many PKI and e-
commerce systems.

Disable TLS
v1.1

The parameter can be
switched on or off. If it is
set ON it does not allow
using TLS v. 1.1 in the
connection.

On (true) It does not allow the usage of TLS v. 1.1 in the
connection.

Disable TLS
v1.2

The parameter can be
switched on or off. If it is
set ON it does not allow
using TLS v. 1.2 in the
connection.

false It does not allow the usage of TLS v. 1.2 in the
connection.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 66

Key Values Default value Description

Disable TLS
v1.3

The parameter can be
switched on or off. If it is
set to ON it does not
allow using TLS v. 1.3 in
the connection.

false It does not allow the usage of TLS v. 1.3 in the
connection.

Cipher ECDHE-ECDSA-
AES128-GCM-
SHA256:
ECDHE-RSA-
AES128-GCM-
SHA256:
ECDHE-ECDSA-
AES256-GCM-
SHA384:
ECDHE-RSA-
AES256-GCM-
SHA384:
ECDHE-ECDSA-
CHACHA20-
POLY1305:
ECDHE-RSA-
CHACHA20-
POLY1305: DHE-
RSA-AES128-
GCM-SHA256:
DHE-RSA-
AES256-GCM-
SHA384

Specifies the allowed ciphers. Can be set to all,
high, medium, low, or a string representation of
the selected ciphers.

Timeout The parameter can be
switched on or off. If it is
set ON it does not allow
using TLSv1 in the
connection.

300 It drops idle connection if the timeout value (in
seconds) expires.

Session cache
size

The parameter can be
switched on or off. If it is
set ON it does not allow
using TLSv1 in the
connection.

20480 It defines the number of sessions stored in the
session cache for SSL session reuse

Disable session
cache

The parameter can be
switched on or off.

Off (false) Do not store session information in the session
cache. Set this option to 'On' to disable SSL session
reuse.

Disable ticket The parameter can be
switched on or off.

Off (false) Do not store session information in the session
cache. Set this option to 'On' to disable SSL session
reuse.

Disable
compression

The parameter can be
switched on or off.

Off (false) Set the parameter On to disable support for
SSL/TLS compression. Set the parameter Off to
enable support for SSL/TLA compression.

4. Click the Validate button to check if the defined parameters are suitable and adequate for configuring the
component. If the configuration of the component is erroneous or not adequate, the Web UI provides a
warning that the 'Component validation failed'. Also a warning with information on the missing details

Administration Guide 6.4. BRICK - Configuration units

4.0.1 67

appears at the problematic field for the user. If the configuration of the component is satisfactory, after
clicking the Validate button, the user receives the 'Component Validation successful' notification.

5. Click the Save button if you have configured all the required parameters.

6.4.5.1.3. Revocation checks for certificates

PAS tries to complete both CRL and OCSP-stapling checks for certificates.

The result for a certificate, according to the revocation check types is as follows:

Table 33. Certificate revocation checks

CRL check OCSP stapling check Soft fail result Hard fail result

PASS PASS PASS PASS

PASS unsuccessful PASS PASS

unsuccessful PASS PASS PASS

unsuccessful unsuccessful PASS FAIL

PASS FAIL FAIL FAIL

FAIL PASS FAIL FAIL

unsuccessful FAIL FAIL FAIL

FAIL unsuccessful FAIL FAIL

FAIL FAIL FAIL FAIL

6.4.5.1.4. Configuring Syslog TLS

The following parameters need to be configured for Syslog TLS:

Figure 21. Configuring Syslog TLS in the Web User Interface

Administration Guide 6.4. BRICK - Configuration units

4.0.1 68

1. Name the Syslog TLS configuration.

2. Select the Type of the TLS, Syslog TLS in this case, from the drop-down list to configure TLS.

For details on these parameters, see the following table:

Table 34. TLS configuration

Key Values Default value Description

Name* It is a mandatory value.
It can be defined in free
text.

The name of the parameter can be referenced.

Type* It is a mandatory value.
Choose the required
value from the drop-
down list.

Client TLS, Backend TLS and Syslog TLS
configurations can be defined here.

3. Configure the mandatory parameters for Syslog TLS, based on the information provided in Table Syslog TLS
configuration.

Table 35. Syslog TLS configuration

Key Values Default value Description

Certificate It is the configuration for the X.509 certificate used
for TLS connections on the Insight Target.

Certificate File* It is a mandatory value.
You must select a File
brick of type generic that
represents the uploaded
certificate.

Provide the name of the selected File brick. The
certificate must be in PEM format.

Key file* It is a mandatory value.
You can select a generic
file type that represents
the uploaded private
key.

Provide the name of the selected File brick. The
private key must be in PEM format.

Enable
Verification

Off (false) It is an option for enabling the verification of server
side X.509 certificates.

Options TLS protocol options used on the Syslog Insight
target.

Disable TLS v1 The parameter can be
switched on or off. If it is
set ON it does not allow
using TLSv1 in the
connection.

On (true) Transport Layer Security v1 (TLS) (successor of the
now obsoleted Secure Socket Layer v3 (SSL)) is a
widely used crypto protocol, guaranteeing data
integrity and confidentiality in many PKI and e-
commerce systems.

Disable TLS
v1.1

The parameter can be
switched on or off. If it is
set ON it does not allow
using TLSv1.1 in the
connection.

On (true) It does not allow the usage of TLSv1.1 in the
connection.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 69

Key Values Default value Description

Disable TLS
v1.2

The parameter can be
switched on or off. If it is
set ON it does not allow
using TLSv1.2 in the
connection.

Off (false) It does not allow the usage of TLSv1.2 in the
connection.

ECDH curve list Add one or more names
of ECDH curves. The
possible values are the
ones supported by
OpenSSL 1.1.1.

empty list This is a list of curves permitted in the connection
when using Elliptic Curve Cryptography (ECC).

Peer verify Select one of the
following options in the
drop-down menu:
optional-trusted,
optional-untrusted,
required-trusted,
required-untrusted

required-
trusted

It defines the verification method of the peer. The
four possible values are a combination of two
properties of validation: whether the peer is
required to provide a certificate (required or
optional prefix), and whether the certificate
provided needs to be valid (trusted or untrusted
suffix).

Cipher It is the colon-separated
list of ciphers from the
list supported by
OpenSSL 1.1.1.

ECDH+AESGCM:
DH+AESGCM:EC
DH+AES256:
DH+AES256:ECD
H+AES128:
DH+AES:!aNULL
:!MD5:
!DSS!aNULL:
!MD5: !DSS

It specifies the allowed ciphers.

DH Parameter
File

Select a File brick of type
generic from the drop-
down menu.

It specifies the file containing the Diffie-Hellman
parameters, generated using the openssl
dhparam utility. It must be in PEM format.

Server
verification *

Server verification options are mandatory if Enable
Verification is set to True.

CA dir Select the CA File brick
representing your CA
directory.

CA directory containing the trusted CA and CRL
files.

Verify CRL Off (false) It verifies that certificates used in the connection
are not revoked by any CRLs in the CA directory.

4. Click the Validate button to check if the defined parameters are suitable and adequate for configuring the
component. If the configuration of the component is erroneous or not adequate, the Web UI provides a
warning that the 'Component validation failed'. Also a warning with information on the missing details
appears at the problematic field for the user. If the configuration of the component is satisfactory, after
clicking the Validate button, the user receives the 'Component Validation successful' notification.

5. Save the Syslog TLS configuration by clicking Save.

6.4.6. Files

The Files configuration element enables the administrator to upload any certificate files.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 70

6.4.6.1. Configuring Files

Files can be configured from the BRICK main navigation item.

1. Click on the BRICK main configuration item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of BRICK.

2. Select Files.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 22. Files main page in the Web User Interface

3. Click on the New navigation button to configure Files.

Files contains the following settings:

Figure 23. Configuring Files in the Web User Interface

Files has the following configuration parameters:

Table 36. Files configuration parameters

Key Values Default Description

Name* It is a mandatory
value. The name can
be provided in free
text.

It defines the file-related configuration.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 71

Key Values Default Description

Type* It is a mandatory
value. The available
values are:

¥ Generic

¥ Swagger

¥ XSD

¥ WSDL

¥ CA

¥ CRL

See table
Requirements for
specific file types for
specific
requirements for
each type.

The type selected here defines by which
PLUGIN it can be used. The file uploaded
here with the Type Swagger, for example,
can be used by Swagger Plugins.

File* It is a mandatory
value. The required
file can be uploaded
here.

4. Click the Validate button to check if the defined parameters are suitable and adequate for configuring the
component. If the configuration of the component is erroneous or not adequate, the Web UI provides a
warning that the 'Component validation failed'. Also a warning with information on the missing details
appears at the problematic field for the user. If the configuration of the component is satisfactory, after
clicking the Validate button, the user receives the 'Component Validation successful' notification.

5. Save the configuration by clicking the Save button.

Table 37. Requirements for specific file types

File type Requirements

CA 1. It must be a flat ZIP file with the CA certificates inside.

2. It must contain not only the certificate files but also copies of them named following the
<hash>.0 format. The value of the <hash> part can be produced with the following
command: openssl x509 -noout -hash -in /path/to/cert/file .

3. It can contain CRL files, but then it also needs to contain the copies of them following the
<hash_of_the_related_ca_file.r0 format. The hash can be produced as described
above.

6.4.7. Common configuration elements for BRICKS

6.4.7.1. Extractors

Extractors are used to extract data from the call.

Extractors are not independent configuration components, but common configuration elements that are utilized
by Matchers and Selectors. In fact, when configuring matchers and selectors, it is extractors that are listed at their
type fields. Extractors are configured and used as part of matchers and selectors. There are no named extractors.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 72

Most extractors return simple string values. However, some (might) return dictionaries. For example, you can get
all the HTTP headers, or all the URI query parameters.

See the Extractor types for more details on extractors and their configuration options.

The following table provides details on extractor types:

Table 38. Extractor types

Key Description

Method It extracts the HTTP method of the request. It does not require configuration.

Status It extracts the status code of the response. It does not require configuration.

JMESPath It extracts data from the body of a JSON call with the help of a JMESPath
expression.

JMESPath is a query language for JSON. It is a very versatile tool for extracting the
needed information from the body of the call, and organizing it according to
requirements. A complete explanation on how to write JMESPath expressions is not
in the scope of this document.

To learn more about it visit the: main website:

¥ There is a tutorial .

¥ There are examples.

¥ There is also a formal specification.

Header It extracts the value of an HTTP header. It is valid for some HTTP headers to be
present more than once in a call. In this case, all the values are extracted as a list. It
provides the name of the header in the configuration.

Header force list It works like the Header extractor but it returns a list even if there is only a single
extracted value.

Header first It works like header extractor but it only returns the first extracted value even if
there is a list of extracted values.

Headers It extracts all the headers from the call. The results are stored as a dictionary,
therefore it is recommended to omit the 'save as' key if you use this from a selector.
It is valid for some HTTP headers to be present more than once in a call. In such
cases all the values are stored under the headerÕs key as a list. It does not require
configuration.

Fraud_detector_score It extracts the score value provided by the Fraud Detector plugin.

URI It extracts the whole request URI as received from the client. It does not require
configuration.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 73

http://jmespath.org
http://jmespath.org/tutorial.html
http://jmespath.org/examples.html
http://jmespath.org/specification.html

Key Description

URI netloc It extracts the network location in the URI. It does not require configuration.

It includes:

¥ username and password if present

¥ host

¥ port if present unless scheme default

"
If the port is the default port for the scheme - that is 80 and 443
for HTTP and HTTPS, respectively - the port will not be included
even if explicitly sent by the client. Therefore if the client used
http://example.com:80/path then the netloc would be
http://example.com , not http://example.com:80 .

URI origin It extracts the origin part of the URI. It does not require configuration.

It includes:

¥ scheme

¥ host

¥ port if present, unless the default port for the scheme is used

"
If the port is the default port for the scheme - that is 80 and 443
for HTTP and HTTPS, respectively - the port will not be included,
even if explicitly sent by the client. Therefore if the client used
http://example.com:80/path , then the origin would be
http://example.com , not http://example.com:80 .

URI scheme It extracts the scheme of the request (http or https). It does not require
configuration.

URI username It extracts the username in the request if present. It does not require configuration.

URI password It extracts the password in the request if present. It does not require configuration.

URI host It extracts the host in the request. It does not require configuration.

URI port It extracts the port of the request, the default port"Ñ"that is 80 and 443 for HTTP and
HTTPS, respectively"Ñ"even if it is not not displayed explicitly in the request. It does
not require configuration.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 74

Key Description

URI path It extracts the path part of the URI. It does not require configuration.

The path is normalized to allow more robust matching and cleaner reporting. This
means that:

¥ If the path is missing / it is extracted.

¥ Repeating forward-slash (/) characters are replaced with a single one.

¥ dot (.) and double-dot (..) path segments are resolved.

Consequently, if the path present in the URI was
//some/./nothere/../resource///./somewhere the path would be
/some/resource/somewhere .

If you need to extract the path exactly as received, use URI raw path parameter.

URI raw path It extracts the path part of the URI, without the normalization of URI path carried
out.

NOTE: If the path is missing a single forward slash ("/") is extracted.

It does not require configuration.

URI raw query It extracts the query part of the URI as a string. It does not require configuration.

URI query It extracts the query part of the URI. It does not require configuration.

URI query parameter It extracts the value of a query parameter. It is also valid for URIs to include a query
parameter more than once. That is, it could be 'foo=bar&qux=quz&foo=baz'. In this
case both values are extracted as a list. Provide the name of the parameter in the
configuration.

URI query parameter force
list

It works like Uri query parameter but it returns a list even if there is only a single
extracted value.

URI query parameter first It works like Uri query parameter but it only returns the first extracted value even if
there is a list of extracted values.

Client_address It extracts the clientÕs IP address.

Client_port It extracts the clientÕs port (TCP).

Server_address It extracts the serverÕs IP address.

Server_port It extracts the serverÕs port (TCP).

Content It extracts the content. It does not require configuration.

Raw content It extracts the content as a string. It does not require configuration.

Content type It extracts the content type from the HTTP header. It does not require configuration.

Content type charset It extracts the charset from the content type HTTP header. It does not require
configuration.

Call direction It extracts the call direction (request, response). It does not require configuration.

Session ID It extracts the internal identifier of the HTTP session in keep-alive HTTP
connections. Its 'Include request counter' option enables adding a request counter
representing the number of requests in the session.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 75

Key Description

Static It extracts a string, integer, number, object, array, boolean as string from the
configuration.

Timestamp It extracts the current time. Also see the tables on Configuring timestamps and
Timestamp format options.

Xpath It extracts data from the body of an XML call with the help of a Xpath expression.

Xpath is a query language for XML. It is a very versatile tool for extracting the needed
information from the body of the call, and organizing it according to needs.

A complete explanation on how to write Xpath expressions is not in the scope of this
document. To learn more about it visit the main website.

Also see table Xpath extractor configuration options.

Provide the Xpath expression in the configuration. Depending on the expression, the
return value is a single node or a list of nodes. If you want a single value or a list
independent from the expression, use xpath first or xpath force list.

Xpath force list It works like xpath but it returns a list even if there is only a single extracted value.

Xpath first It works like xpath but it only returns the first extracted value even if there is a list of
extracted values.

Soap version This extractor extends the xpath extractor with predefined expressions.

It extracts the soap message version. It identify with the soap namespace.

Possible values:

¥ soapv1_1 - the message version is SOAP v1.1

¥ soapv1_2 - the message version is SOAP v1.2

Soap envelope This extractor extends the xpath extractor with predefined expressions.

It extracts the soap envelope.

Soap header It extracts the soap header.

This extractor extends the xpath extractor with predefined expressions.

Soap body It extracts the soap body.

This extractor extends the xpath extractor with predefined expressions.

Soap fault It extracts the soap fault.

This extractor extends the xpath extractor with predefined expressions.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 76

https://www.w3.org/TR/2017/REC-xpath-31-20170321/

Key Description

Soap fault code It extracts the soap fault 'code'.

This extractor extends the xpath extractor with predefined expressions.

This extractor expression depends on the soap version.

¥ faultcode - it is the SOAP v1.1 node tag

¥ Code - it is the SOAP v1.2 node tag

Soap fault detail This extractor extends the xpath extractor with predefined expressions.

It extracts the soap fault 'detail'. This matcher expression depends on the soap
version.

¥ Detail - it is the SOAP v1.1 node tag

¥ Detail - it is the SOAP v1.2 node tag

Soap 1.1 fault faultstring This extractor extends the xpath extractor with predefined expressions.

It extracts the soap fault 'faultstring'. This extractor only works with soap version
1.1.

Soap 1.1 fault faultactor This extractor extends the xpath extractor with predefined expressions.

It extracts the soap fault 'faultactor'. This extractor only works with soap version 1.1.

Soap 1.2 fault reason This extractor extends the xpath extractor with predefined expressions.

It extracts the soap fault 'Reason'. This extractor only works with soap version 1.2.

Soap 1.2 fault node This extractor extends the xpath extractor with predefined expressions.

It extracts the soap fault 'Node'. This extractor only works with soap version 1.2.

Soap 1.2 fault role This extractor extends the xpath extractor with predefined expressions.

It extracts the soap fault 'Role'. This extractor only works with soap version 1.2.

! You can still use Save as for extractors returning dictionaries. For example, you can save all the
headers under the headers' key and the URI query parameters under the parameters' key.

Timestamp extractors can be configured as follows:

Table 39. Configuring timestamps

Administration Guide 6.4. BRICK - Configuration units

4.0.1 77

Name Default Description

Time zone 'UTC' Set the time zone.

¥ An str describing a time zone, similar to ÔUS/PacificÕ, or
ÔEurope/BerlinÕ. See: Time zones

¥ An str in ISO 8601 style, as in Ô+07:00Õ.

¥ An str, one of the following: ÔlocalÕ, ÔutcÕ, ÔUTCÕ.

Time format 'YYYY-MM-
DDTHH:mm:ss.SSSSSSZZ'

Set the format. See: Timestamp format options

Table 40. Timestamp format options

Name Token Output

Year YYYY
YY

2000, 2001, 2002 É 2012, 2013
00, 01, 02 É 12, 13

Month MMMM
MMM
MM
M

January, February, March
Jan, Feb, Mar
01, 02, 03 É 11, 12
1, 2, 3 É 11, 12

Day of Year DDDD
DDD

001, 002, 003 É 364, 365
1, 2, 3 É 364, 365

Day of Month DD
D
Do

01, 02, 03 É 30, 31
1, 2, 3 É 30, 31
1st, 2nd, 3rd É 30th, 31st

Day of Week dddd
ddd
d

Monday, Tuesday, Wednesday
Mon, Tue, Wed
1, 2, 3 É 6, 7

Hour HH
H
hh
h

00, 01, 02 É 23, 24
0, 1, 2 É 23, 24
01, 02, 03 É 11, 12
1, 2, 3 É 11, 12

AM / PM A
a

AM, PM, am, pm
am, pm

Minute mm
m

00, 01, 02 É 58, 59
0, 1, 2 É 58, 59

Second ss
s

00, 01, 02 É 58, 59
0, 1, 2 É 58, 59

Administration Guide 6.4. BRICK - Configuration units

4.0.1 78

Name Token Output

Sub-second SÉ 0, 02, 003, 000006, 123123123123
the result is truncated to microseconds, with half-to-even
rounding

Time zone ZZZ
ZZ
Z

Asia/Baku, Europe/Warsaw, GMT
-07:00, -06:00 É +06:00, +07:00, +08, Z
-0700, -0600 É +0600, +0700, +08, Z

Seconds Timestamp X 1381685817, 1381685817.915482

ms or µs Timestamp x 1569980330813, 1569980330813221

Table 41. Xpath extractor configuration options

Key Default Description

xpath_expression It is the expression to extract the node from the call to
match against.

namespaces Defines the XML namespaces.

clear_text False It removes white spaces at the beginning and at the
end of the string.

6.4.7.2. Comparators

Comparators are used for comparing the pattern with the result of the xpath expression.

Table 42. Types of comparators

Key Description Parameters

Equals It matches if the parameter is exactly the same
as the value matched. For matchers that work
with numeric data type or with IP addresses it
validates if the input is a valid number or IP
address.

Ignorecase: Case differences (lower case, upper
case) are ignored. When the present VaLuE
would match value. For matcher types that
work with numeric data type or with IP
addresses, the 'Equals' and 'Not Equals'
comparator types do not have ignorcase field.

Not equals It matches if the parameter is not exactly the
same as the value matched. For matchers that
work with numeric data type or with IP
addresses it validates if the input is a valid
number or IP address.

Ignorecase: Case differences are ignored. When
the present VaLuE would not match vAlUe. For
matcher types that work with numeric data
type or with IP addresses, the 'Equals' and 'Not
Equals' comparator types do not have
ignorcase field.

Starts with It matches if the value starts exactly with the
pattern.

Ignore case: Case differences are ignored. When
the present VaLuE would match value_given.

Ends with It matches if the value ends exactly with the
pattern.

Ignore case: Case differences are ignored. When
the present VaLuE would match given_value.

Administration Guide 6.4. BRICK - Configuration units

4.0.1 79

Key Description Parameters

Substring It matches if the exact pattern is found
somewhere in the value.

Ignore case: Case differences are ignored. When
the present VaLuE would match some-value-
given.

Pattern The Pattern treats the input as Unix shell-style
wildcards. There are special characters used in
shell-style wildcards:

¥ '*' Matches everything.

¥ '?' Matches a single character.

¥ [seq] Matches any character in seq.

!
For a literal match, wrap the
meta-characters in
brackets. For example, [?]
matches a literal question-
mark (?).

Ignore case: Case differences are ignored. When
the present VaLuE would match some-value-
given.

Regex Regex treats input as a regular expression for
matching. Consult PythonÕs regular expression
documentation and their Regular Expression
HOWTO.

¥ Ignore case: It sets the IGNORECASE flag for
the regex.

¥ Multiline: It sets the MULTILINE flag for the
regex.

Minimum It matches if the pattern is larger or equal to the
value.

Maximum It matches if the pattern is smaller or equal to
the value.

Range It matches if the value is between the limits in
the pattern, including boundaries. The format
of the pattern must be minimum..maximum.

Status class Status class is a special matcher for
conveniently matching HTTP status code
classes. It takes the name of the class and
checks if the status code is in the given range as
stated in Checking status code range.

Subnet The subnet comparator examines if an
extracted IP address is in the specified subnet.
The format for the input of the subnet
comparator is the CIDR notation for IPv4 (for
example, 192.0.2.0/24) and canonical prefix
notation for IPv6 (for example, 2001:db8::/32).

Table 43. Checking status code range

Pattern Status code range Description

info 1xx Informational response

success 2xx Successful response

Administration Guide 6.4. BRICK - Configuration units

4.0.1 80

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/howto/regex.html#regex-howto
https://docs.python.org/3/howto/regex.html#regex-howto

Pattern Status code range Description

redirect 3xx Redirects

client_error 4xx Client Errors

server_error 5xx Server Errors

6.5. PLUGIN - Configuration units
A plugin is an element of the security flow that applies a specific security function. Plugins have different types
based on the role they do:

Figure 24. The PLUGINÕs main page in the Web User Interface

Plugins are named, so that they can be referenced in other parts of the configuration.

! This means that Plugin configurations are reusable.

Certain Plugins are so called default objects, which are in 'read-only' state and cannot be configured or modified.
Such default objects are listed in the following table:

Table 44. Default objects - PLUGIN

Default object name Key

default_json Serializer

default_xml Serializer

default_json Deserializer

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 81

Default object name Key

default_xml Deserializer

default Compressor

default Decompressor

6.5.1. Common Plugin parameters

Regardless of what plugins do, all plugins share some common parameters.

Table 45. Plugins' common parameters

Key Values Default value Description

Matcher The Matchers configured
under the BRICK main
configuration unit are
listed here and can be
selected from the drop-
down list.

Always: If the
value is not
defined, the
plugin is always
executed.

It is an optional parameter. It decides if the Plugin
should be executed based on the callÕs details. If no
matcher is configured the Plugin is always
executed. For more details, see Matcher.

Error policy The Error Policy
configured under the
BRICK navigation item
are listed here can be
selected from the drop-
down list.

It is an optional parameter. It defines a custom
error policy to be applied if the Plugin reports an
error. The settings of the Error policy here override
the Security FlowÕs default error policy. If no error
policy is configured, the plugin typeÕs default error
policy is applied. For more details, see Error Policy.

Plugins are always named so that their names refer to a Plugin that represents a certain configuration. The names
themselves are referenced from the Security Flow.

6.5.2. Enforcer

An Enforcer Plugin validates calls against externally defined schemas.

The Plugin supports validation against OpenAPI2.0 (Swagger) schemas, XSD schemas or WSDL schema.

Understanding the format of these schemas is not in the scope of this document. Further information is available
at:

¥ The OpenAPI 2.0 format

¥ The OpenAPI 2.0 Specification

¥ XSD 1.1 Specification

¥ XSD Tutorial

¥ WSDL Tutorial

¥ WSDL 1.1 Specification

¥ WSDL 1.2 Specification

The Enforcer Plugin uses its own default error policy, that is, the 'enforcer_default' error policy. The Plugin
overrides the following fields of the default error policy:

Table 46. Default Enforcer Error Policy

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 82

https://swagger.io/docs/specification/2-0/basic-structure/
https://swagger.io/specification/v2/
https://www.w3.org/TR/xmlschema11-1/
https://www.w3schools.com/xml/schema_intro.asp
https://www.w3schools.com/xml/xml_wsdl.asp
https://www.w3.org/TR/2001/NOTE-wsdl-20010315/
https://www.w3.org/TR/2003/WD-wsdl12-bindings-20030124/

Policy Setting Default

request_code 422

request_message Request Error

Problems are considered errors that lead to the termination of the call. Problems in the request are reported back
to the client, while errors in the response are suppressed to avoid information leak.

See Error Policy to understand how defaults are applied.

6.5.2.1. Configuring Enforcer Plugins

Enforcer plugins can be configured from the PLUGIN main navigation item.

1. Click on the PLUGIN main configuration item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGIN.

2. Select Enforcer plugin.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 25. Enforcer PluginÕs main page in the Web User Interface

The following values can be configured for the Filter Plugin:

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 83

Figure 26. Configuring an enforcer plugin in the Web User Interface

The Enforcer Plugin accepts the following configuration options:

Table 47. Enforcer PluginÕs configuration options

Key Values Default value Description

Name* It is a mandatory value.
It can be defined in free
text.

This name identifies the Enforcer Plugin. The name
of the plugin can be referenced from other parts of
the configuration.

Type* It is a mandatory value.
It can be selected from
the drop-down list. The
available values are:

¥ Swagger

¥ XSD

¥ WSDL

This identifies the type of the Enforcer plugin.

Error policy The error policies
configured under BRICK -
Configuration units are
listed here and can be
selected from the drop-
down list.

enforcer_defaul
t

It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security FlowÕs default
error policy. For details see Error Policy.

Matcher The matchers configured
under BRICK -
Configuration units are
listed here and can be
selected from the drop-
down list.

Always: If the
value is not
defined the
plugin is always
executed.

It decides if the Plugin should be executed based
on the callÕs details. For details see Matcher. If
omitted the Plugin is always executed.

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 84

Key Values Default value Description

Swagger*/WSD
L*/Operations*

Depending on which
type of the component
was selected above, the
following values are
available:

¥ The Swaggers
defined under Files
are listed here and
can be selected
from the drop-down
list.

¥ The WSDL files
defined under Files
are listed here and
can be selected
from the drop-down
list.

¥ XSD enforcer plugin
configuration
options for
Operations can also
be selected here. For
details on
parameters for
Operations, see XSD
enforcer plugin
configuration
options for
Operations.

The Swagger enforcer Plugin validates against
OpenApi2.0 schemas. WSDL enforcer Plugin
validates against WSDL 1.0-1.1 schemas. XSD
enforcer Plugin validates against XSD schemas.

XSD has the following configuration options for the Operations parameters:

Table 48. XSD enforcer plugin configuration options for Operations

Key Default Description

uri_path * It defines the pattern for uri_path.

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 85

Key Default Description

Choose Method It defines the method of the HTTP message. The
following values are available for Method:

¥ get

¥ head

¥ post

¥ put

¥ delete

¥ connect

¥ options

¥ trace

¥ patch

Status It defines the status of the HTTP message.

Choose Call direction It defines the direction of the message, which must be
either request or response.

Choose files It defines the XSD schema.

3. Name the Enforcer Plugin.

4. Choose the type of the Enforcer plugin.

5. Choose an Error policy from the drop-down list. The drop-down list will offer the error policy options
configured under BRICK.

6. Choose a Matcher from the drop-down list. The drop-down list will offer the matcher options configured under
BRICK.

7. Depending on the choice of the Enforcer plugin type selected earlier, different fields appear here for further
configuration:

! Swagger - Upload the Swagger file if the Enforcer type selected at Type field was Swagger.

! WSDL - Upload the WSDL file if the Enforcer type selected earlier was WSDL.

! Operations - Fill in the Operations fields according to XSD enforcer plugin configuration options for
Operations if the Enforcer type selected earlier was XSD.

8. Click the Validate button to check if the defined parameters are suitable and adequate for configuring the
component. If the configuration of the component is erroneous or not adequate, the Web UI provides a
warning that the 'Component validation failed'. Also a warning with information on the missing details
appears at the problematic field for the user. If the configuration of the component is satisfactory, after
clicking the Validate button, the user receives the 'Component Validation successful' notification.

9. Click the Save button, when all required configuration fields have been defined.

6.5.2.2. Swagger

The Swagger enforcer Plugin validates against OpenApi2.0 schemas.

The Plugin needs the schema definition file of the API Endpoint. This file must be in JSON or YML format.

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 86

6.5.2.3. XSD

XSD enforcer Plugin validates against XSD schemas. Both XSD 1.0 and 1.1 are supported.

! As XSD enforcer requires parsed XML content an xml deserializer plugin needs to be included
before XSD enforcer.

In the XSD enforcer you can define operations. Each operation contains criteria for identifying the call, and path of
an XSD schema. If the HTTP message meets all criteria, its content will be validated using the schema.

XSD enforcer schema must contain at least one operation.

6.5.2.4. WSDL

WSDL enforcer Plugin validates against WSDL 1.0-1.1 schemas.

! As WSDL enforcer requires parsed XML content, an xml deserializer plugin needs to be included
before WSDL enforcer.

The Enforcer Plugin uses its own default error policy, that is, the 'enforcer_default' error policy. The Plugin
overrides the following fields of the default error policy:

Table 49. Default Enforcer Error Policy

Policy Setting Default

request_code 422

request_message Request Error

Problems are considered errors that lead to the termination of the call. Problems in the request are reported back
to the client, while errors in the response are suppressed to avoid information leak.

See Error Policy to understand how defaults are applied.

The plugin needs the schema definition file. This file must be in XML format.

! WSDL schema validates request and response as well. Make sure that wsdl enforcer included in
request and response flow as well.

!
In simple cases"Ñ"when the listener/endpoint is serving a single version of a single API
endpoint"Ñ"a matcher is usually not needed as the schemas define all known URLs in the API. If
however multiple API endpoints are consolidated under a single endpoint definition, you can
define multiple enforcers each matching on a sub-path by using an URI path matcher and
putting them all in the Security Flow.

6.5.3. Filter

Filter Plugins are lightweight alternatives of Enforcer Plugins for filtering unwanted traffic. They only consist of a
matcher and an error policy. If the matcher matches, the error policy is applied. This way you can use matchers

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 87

inline, instead of creating a whole schema-based Enforcer Plugin for the simple use cases.

6.5.3.1. Configuring Filter Plugins

The Filter Plugin can be configured under the PLUGIN main navigation unit.

1. Click on the PLUGIN main configuration item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGIN.

2. Select Filter plugin.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 27. Filter PluginÕs main page in the Web User Interface

The following values can be configured for the Filter Plugin:

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 88

Figure 28. Configuring a filter plugin in the Web User Interface

The Filter Plugin accepts the following configuration options:

Table 50. Filter PluginÕs configuration options

Key Values Default value Description

Name* It is a mandatory value.
It can be defined in free
text.

The name identifying the Filter Plugin. This name
of the plugin can be referenced from other parts of
the configuration.

Body It can be defined in free
text.

It is the body of the message sent in case an error
policy is applied.

Content Type This field defines the content type of HTTP error
request sent, if the filter stops the call. It can be
referenced by its name.

Error policy The error policies
configured under BRICK -
Configuration units are
listed here and can be
selected from the drop-
down list.

error_policy It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security FlowÕs default
error policy. For details see Error Policy.

Matcher The matchers configured
under BRICK -
Configuration units are
listed here and can be
selected from the drop-
down list.

Always: If the
value is not
defined the
plugin is always
executed.

It decides if the Plugin should be executed based
on the callÕs details. For details see Matcher. If
omitted the Plugin is always executed.

"
Make sure that any component referenced in the configuration of this component, for example
an Error policy or a Matcher selected from the drop-down lists, must remain part of the
configuration later as well. Removing any of the referenced components might lead to invalid
configuration.

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 89

3. Add the name of the Filter Plugin.

4. Add the Body content for the error policy. (Optional)

5. Define the Content type.

6. Choose an error policy from the drop-down list. (Optional)

7. Choose a matcher from the drop-down list. (Optional)

8. Click the Validate button to check if the defined parameters are suitable and adequate for configuring the
component. If the configuration of the component is erroneous or not adequate, the Web UI provides a
warning that the 'Component validation failed'. Also a warning with information on the missing details
appears at the problematic field for the user. If the configuration of the component is satisfactory, after
clicking the Validate button, the user receives the 'Component Validation successful' notification.

9. Click the Save button, when all required configuration fields have been defined.

The Plugin does not override any of the default error policy options.

Problems are considered errors that lead to the termination of the call. Problems in the request are reported back
to the client, while errors in the response are suppressed to avoid information leak.

See Error Policy to understand how defaults are applied.

" If you omit the matcher, the Plugin will always be executed. For Filter plugins this means
aborting all calls.

6.5.4. Fraud Detector

The Fraud Detector Plugin, leveraging the data collected from the calls by the selectors, evaluates the level of risk
with regards to the call. The risk calculated by the Fraud Detector plugin is translated to a score between 0.0 and
100.0. The lower the score is, the more secure and trustworthy the actual call is. Consequently, the value 0.0
means that the call is perfectly secure, until the value 100.0 identifies a malicious act with the call.

6.5.4.1. Configuring Fraud Detector

The Fraud Detector Plugin can be configured under the PLUGIN main navigation unit.

1. Click on the PLUGIN main configuration item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGIN.

2. Select Fraud Detector plugin.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 90

Figure 29. Fraud DetectorÕs main page in the Web User Interface

The following values can be configured for the Fraud Detector Plugin:

Figure 30. Configuring the Fraud Detector plugin in the Web User Interface

The Fraud Detector Plugin accepts the following configuration options:

Table 51. Fraud Detector PluginÕs configuration options

Key Values Default value Description

Name* It is a mandatory value.
It can be defined in free
text.

It is the name identifying the Fraud Detector. This
name of the plugin can be referenced from other
parts of the configuration.

Error Policy The error policies
configured under BRICK -
Configuration units are
listed here and can be
selected from the drop-
down list.

error_policy It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security FlowÕs default
error policy. For details see Error Policy.

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 91

Key Values Default value Description

Matcher The matchers configured
under BRICK -
Configuration units are
listed here and can be
selected from the drop-
down list.

Always: If the
value is not
defined the
plugin is always
executed.

It decides if the Plugin should be executed based
on the callÕs details. For details see Matcher. If
omitted the Plugin is always executed.

Selectors* A list of Selectors that collect information from the
call. They can be referenced by their name or can
be defined inline. Fraud Detector plugin takes the
following selector types into account:

¥ IP address

¥ email address

¥ phone number

!

There is a default matcher for
the ClientÕs IP address, namely
the Client_address matcher. As
there are no defaut matchers
for the other two data type, use
'phone' name in the 'Save as'
field for the phone number data
and 'email' for the email
address.

!

It is possible to add more types
of data from the selectors to the
Fraud Detector Plugin using
custom fields, apart from the
above recommended three
data types. In such cases
contact the Balasys Support
team.

"
Make sure that any component referenced in the configuration of this component, for example
an Error policy or a Matcher selected from the drop-down lists, must remain part of the
configuration later as well. Removing any of the referenced components might lead to invalid
configuration.

3. Add the name of the Fraud Detector.

4. Choose an error policy from the drop-down list. (Optional)

5. Choose a matcher from the drop-down list. (Optional)

6. Choose a Selector from the drop-down list. When it is selected click on the plus sign to add it to the
configuration.

7. Click the Validate button to check if the defined parameters are suitable and adequate for configuring the

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 92

component. If the configuration of the component is erroneous or not adequate, the Web UI provides a
warning that the 'Component validation failed'. Also a warning with information on the missing details
appears at the problematic field for the user. If the configuration of the component is satisfactory, after
clicking the Validate button, the user receives the 'Component Validation successful' notification.

8. Click the Save button, when all required configuration fields have been defined.

See Error Policy to understand how they shall be applied here.

6.5.5. Insight

It is a Plugin that extracts various data from the call and sends it to external systems (log servers, SIEMs, and other
data analysis tools).

6.5.5.1. Configuring Insight Plugins

The Insight Plugin can be configured under the PLUGIN main navigation unit.

1. Click on the PLUGIN main configuration item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGIN.

2. Select Insight plugin.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 31. Insight PluginÕs main page in the Web User Interface

3. Click the New button to create an Insight Plugin configuration. The following values can be configured for the
Insight Plugin:

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 93

Figure 32. Configuring an insight plugin in the Web User Interface

Table 52. Insight PluginÕs configuration options

Key Values Default value Description

Name* It is a mandatory value.
It can be defined in free
text.

The name identifying the insight. This name of the
insight can be referenced from other parts of the
configuration.

Error policy The error policies
configured under BRICK -
Configuration units are
listed here and can be
selected from the drop-
down list.

insight_default It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security FlowÕs default
error policy. For details see Error Policy.

Matcher The matchers configured
under BRICK -
Configuration units are
listed here and can be
selected from the drop-
down list.

Always: If the
value is not
defined the
plugin is always
executed.

It decides if the Plugin should be executed based
on the callÕs details. For details see Matcher. If
omitted the Plugin is always executed.

Message It can be defined in free
text.

"" It is the message part of the log message.

Selectors* A list of Selectors is provided here that collect
information from the call. They can be referenced
by their name or can be defined inline.

It is possible to multiselect more than one selector
in this list by clicking on them. The multiple
selected elements can then be added to the
configuration by clicking on the plus sign.

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 94

Key Values Default value Description

Targets* A list of Insight Targets where the collected
information will be sent to.

The Plugin uses the default Error policy by default, that is, the 'insight_default'.

The Plugin overrides the following fields of the default error policy:

Table 53. Default Insight Error Policy

Policy Setting Default

request log

response log

Problems are considered errors that only need to be logged. If that is overridden then problems in the request are
reported back to the client, while errors in the response are suppressed to avoid information leak.

See Error Policy to understand how defaults are applied.

The Plugin collects the information from all the selectors and sends them to all the targets.

The collected information from all the selectors is arranged into a dictionary: a list of key"Ñ"value pairs. The key
can be configured in each selector. Certain selectors might return complex data structures, that are made up of
other dictionaries and/or lists. To ensure compatibility with a wide range of Insight Target types, such results are
flattened. The path inside the complex data structure is encoded into the key for each value. More details are
available on this in Data flattening.

4. Add the name of the Insight Plugin.

5. Choose an error policy from the drop-down list. (optional)

6. Choose a matcher from the drop-down list. (optional)

7. Add the message content for the error policy. (optional)

8. Choose a selector from the drop-down list.

9. Select the Insight Target.

10. Click the Validate button to check if the defined parameters are suitable and adequate for configuring the
component. If the configuration of the component is erroneous or not adequate, the Web UI provides a
warning that the 'Component validation failed'. Also a warning with information on the missing details
appears at the problematic field for the user. If the configuration of the component is satisfactory, after
clicking the Validate button, the user receives the 'Component Validation successful' notification.

11. Click the Save button, when all required configuration fields have been defined.

6.5.6. Serializer

The Serializer Plugin is responsible for serializing the structured data to the format of the HTTP messageÕs body.

Serialization needs to be done before compression. A typical Security Flow configuration starts with a
Decompressor followed by a Deserializer and finishes with a Serializer followed by a Compressor. This ensures that
transferred HTTP bodies are syntactically correct and that they are reconstructed to avoid transferring potentially
crafted content.

The Serializer Plugin understands the Content-Type HTTP header and can work with JSON and XML content.

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 95

6.5.6.1. Configuring Serializer Plugins

The Serializer can be configured under the PLUGIN main navigation unit.

1. Click on the PLUGIN main configuration item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGIN.

2. Select Serializer.

The configuration window that appears presents the default Serializers, as listed in Default objects - PLUGIN and
the configuration values already set by the user:

Figure 33. The serializer main page in the Web User Interface

3. Click the New button to create a serializer configuration. The following values can be configured for the
Serializer Plugin:

Figure 34. Configuring a serializer in the Web User Interface

The table describes some more details on the serializer configuration parameters.

Table 54. Serializers' configuration options

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 96

Key Values Default value Description

Name* It is a mandatory value.
It can be defined in free
text.

It is the name identifying the serializer. This name
of the serializer can be referenced from other parts
of the configuration, that is, the Plugin is reusable.

Type* It is a mandatory value.
The value can be
selected from a drop-
down list. The value can
be:

¥ JSON

¥ XML

There are two types of predefined (de)serializer
plugins.

Error policy The Error Policy
configured under the
BRICK navigation item
are listed here can be
selected from the drop-
down list.

error_policy It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security FlowÕs default
error policy. If no error policy is configured, the
plugin typeÕs default error policy is applied. For
details see Error Policy.

Matcher The Matchers configured
under the BRICK main
configuration unit are
listed here and can be
selected from the drop-
down list.

Depending on
which 'Type'
was selected for
the Serializer,
the default
value can be:
json_content or
xml_content.

It decides if the Plugin should be executed based
on the callÕs details. For details see Matcher. If no
matcher is configured the Plugin is always
executed.

The Plugin does not override any of the default error policy options.

Problems are considered errors that lead to the termination of the call. Problems in the request are reported back
to the client, while errors in the response are suppressed to avoid information leak.

See Error Policy to understand how defaults are applied.

Continue configuring the serializer with the following steps:

4. Add the name of the serializer.

5. Select the type of the Serializer.

6. Choose an Error policy from the drop-down list.

7. Choose a Matcher from the drop-down list.

8. Click the Validate button to check if the defined parameters are suitable and adequate for configuring the
component. If the configuration of the component is erroneous or not adequate, the Web UI provides a
warning that the 'Component validation failed'. Also a warning with information on the missing details
appears at the problematic field for the user. If the configuration of the component is satisfactory, after
clicking the Validate button, the user receives the 'Component Validation successful' notification.

9. Click the Save button, when all required configuration fields have been defined.

6.5.7. Deserializer

It is a Plugin responsible for parsing the HTTP messageÕs body to structured data. This ensures that a message is
well-formed. The structured data will also be consumed by other Plugins that operate on the body of the
message.

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 97

A typical Security Flow configuration starts with a Decompressor followed by a Deserializer and finishes with a
Serializer followed by a Compressor. This ensures that transferred HTTP bodies are syntactically correct and that
they are reconstructed to avoid transferring potentially crafted content.

6.5.7.1. Configuring Deserializer Plugins

The Deserializer can be configured under the PLUGIN main navigation unit.

1. Click on the PLUGIN main configuration item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGIN.

2. Select Deserializer plugin.

The configuration window that appears presents the default Deserializers, as listed in Default objects - PLUGIN
and the configuration values already set by the user:

Figure 35. The deserializerÕs main page in the Web User Interface

2. Click the New navigation button to create a deserializer configuration.

The following values can be configured for the Deserializer Plugin:

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 98

Figure 36. Configuring a deserializer in the Web User Interface

The following table describes the deserializer configuration parameters in details:

Table 55. Deserializers' configuration options

Key Values Default value Description

Name* It is a mandatory value.
It can be defined in free
text.

The name identifying the deserializer. This name of
the deserializer can be referenced from other parts
of the configuration.

Type* It is a mandatory value.
The value can be
selected from a drop-
down list. The value can
be:

¥ JSON

¥ XML

There are two types of predefined (de)serializer
plugins.

Charset
Conflict

¥ drop: If this
parameter is set to
'drop', the
configuration
instructs to drop the
call in case there is
conflict for the
character set in the
messageÕs header.

¥ log: If the value is set
to 'log', the system
will use either type
of the character set
defined and will log
the error.

drop This parameter needs to be configured in case the
'Type' of the Deserializer is set to XML. In XML
messages, there might be a conflict in the
definition of the character set. The XML and the
HTTP headers might instruct to use different
character sets. The conflicting information on the
character set can be configured to be handled in
two different ways, that is the call dropped, or the
call maintained and the error logged, depending on
the settings of this parameter.

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 99

Key Values Default value Description

Error policy The error policies
configured under BRICK -
Configuration units are
listed here can be
selected from the drop-
down list.

error_policy It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security FlowÕs default
error policy. For details see Error Policy.

Matcher The matchers configured
under BRICK -
Configuration units are
listed here can be
selected from the drop-
down list.

Depending on
which 'Type'
was selected for
the Deserializer,
the default
value can be:
json_content or
xml_content.

It decides if the Plugin should be executed based
on the callÕs details. For details see Matcher. If
omitted the Plugin is always executed.

The Plugin does not override any of the default error policy options.

Problems are considered errors that lead to the termination of the call. Problems in the request are reported back
to the client, while errors in the response are suppressed to avoid information leak.

See Error Policy to understand how defaults are applied.

3. Add the name of the deserializer.

4. Select the Type of the Deserializer.

5. Choose an Error policy from the drop-down list.

6. Choose a Matcher from the drop-down list.

7. Click the Validate button to check if the defined parameters are suitable and adequate for configuring the
component. If the configuration of the component is erroneous or not adequate, the Web UI provides a
warning that the 'Component validation failed'. Also a warning with information on the missing details
appears at the problematic field for the user. If the configuration of the component is satisfactory, after
clicking the Validate button, the user receives the 'Component Validation successful' notification.

8. Click the Save button, when all required configuration fields have been defined.

6.5.8. Compressor

The Compressor Plugin compresses the body of the HTTP message.

Compressors understand the Transfer-Encoding HTTP header and compress data by using the gzip, deflate and
brotli algorithms.

6.5.8.1. Configuring Compressors

The Compressor can be configured under the PLUGIN main navigation unit.

1. Click on the PLUGIN main configuration item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGIN.

2. Select Compressor.

The configuration window that appears presents the default Compressor, as listed in Default objects - PLUGIN and
the configuration values already set by the user:

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 100

Figure 37. The compressor main page in the Web User Interface

2. Click the New button to create a Compressor configuration. The following values can be configured for the
Compressor Plugin:

Figure 38. Configuring a compressor in the Web User Interface

The table describes some more details on the CompressorÕs configuration parameters.

Table 56. The Compressors' configuration options

Key Values Default value Description

Name* It is a mandatory value.
It can be defined in free
text.

It is the name identifying the compressor. This
name of the compressor can be referenced from
other parts of the configuration, that is, the Plugin
is reusable.

Error policy The Error Policy
configured under the
BRICK navigation item
are listed here can be
selected from the drop-
down list.

The Plugin has a
default error
policy.

It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security FlowÕs default
error policy. If no error policy is configured, the
plugin typeÕs default error policy is applied. For
details see Error Policy.

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 101

Key Values Default value Description

Matcher The Matchers configured
under the BRICK main
configuration unit are
listed here and can be
selected from the drop-
down list.

Always: If the
value is not
defined the
plugin is always
executed.

It decides if the Plugin should be executed based
on the callÕs details. For details see Matcher. If no
matcher is configured the Plugin is always
executed.

Continue configuring the compressor with the following steps:

3. Add the name of the compressor.

4. Choose an Error policy from the drop-down list.

5. Choose a Matcher from the drop-down list.

6. Click the Validate button to check if the defined parameters are suitable and adequate for configuring the
component. If the configuration of the component is erroneous or not adequate, the Web UI provides a
warning that the 'Component validation failed'. Also a warning with information on the missing details
appears at the problematic field for the user. If the configuration of the component is satisfactory, after
clicking the Validate button, the user receives the 'Component Validation successful' notification.

7. Click the Save button, when all required configuration fields have been defined.

6.5.9. Decompressor

The Decompressor Plugin decompresses the body of the HTTP message.

Decompressors understand the Transfer-Encoding HTTP header and can work with content optionally
compressed by the gzip, deflate and brotli algorithms.

6.5.9.1. Configuring Decompressors

The Decompressor can be configured under the PLUGIN main navigation unit.

1. Click on the PLUGIN main configuration item in the Left navigation area. Alternatively you can also click on the

 sign to open up the sub-navigation items of PLUGIN.

2. Select Decompressor.

The configuration window that appears presents the default Decompressor, as listed in Default objects - PLUGIN
and the configuration values already set by the user:

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 102

Figure 39. The DecompressorÕs main page in the Web User Interface

2. Click the New button to create a Decompressor configuration. The following values can be configured for the
Decompressor Plugin:

Figure 40. Configuring a decompressor in the Web User Interface

The table describes some more details on the DecompressorÕs configuration parameters.

Table 57. The Decompressors' configuration options

Key Values Default value Description

Name* It is a mandatory value.
It can be defined in free
text.

It is the name identifying the decompressor. This
name of the decompressor can be referenced from
other parts of the configuration, that is, the Plugin
is reusable.

Administration Guide 6.5. PLUGIN - Configuration units

4.0.1 103

Key Values Default value Description

Error policy The Error Policy
configured under the
BRICK main
configuration unit are
listed here can be
selected from the drop-
down list.

The Plugin has a
default error
policy.

It defines a custom error policy to be applied if the
Plugin reports an error. The settings of the Error
policy here override the Security FlowÕs default
error policy. If no error policy is configured, the
plugin typeÕs default error policy is applied. For
details see Error Policy.

Matcher The Matchers configured
under the BRICK main
configuration unit are
listed here and can be
selected from the drop-
down list.

Always: If the
value is not
defined the
plugin is always
executed.

It decides if the Plugin should be executed based
on the callÕs details. For details see Matcher. If no
matcher is configured the Plugin is always
executed.

Continue configuring the decompressor with the following steps:

3. Add the name of the decompressor.

4. Choose an Error policy from the drop-down list.

5. Choose a Matcher from the drop-down list.

6. Click the Validate button to check if the defined parameters are suitable and adequate for configuring the
component. If the configuration of the component is erroneous or not adequate, the Web UI provides a
warning that the 'Component validation failed'. Also a warning with information on the missing details
appears at the problematic field for the user. If the configuration of the component is satisfactory, after
clicking the Validate button, the user receives the 'Component Validation successful' notification.

7. Click the Save button, when all required configuration fields have been defined.

6.6. SERVICE - Configuration units
Proxedo API Security is based on a micro-services architecture.

Figure 41. The SERVICE main page in the Web User Interface

Administration Guide 6.6. SERVICE - Configuration units

4.0.1 104

6.6.1. Backend

Backends are a set of servers for a given API endpoint.

Their configuration is made up of two main parts:

¥ a list of servers: port pairs and how to route traffic to them

¥ TLS configuration for talking to the servers

6.6.1.1. Configuring the Backend

Backend can be configured under the SERVICE main navigation item.

1. Click on the SERVICE main configuration item in the Left navigation area. Alternatively you can also click on

the sign to open up the sub-navigation items of SERVICE.

2. Select Backend.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 42. The main page for Backend

3. Click the New navigation button to create a Backend configuration.

The following keys are available for Backend configuration:

Administration Guide 6.6. SERVICE - Configuration units

4.0.1 105

Figure 43. Configuring backend in the Web User Interface

Backends take the following configuration options:

Table 58. Backend configuration

Key Values Default
value

Description

Name It is a mandatory value. It can be defined
in free text.

The name identifying the backend. This
name of the backend can be referenced
from other parts of the configuration.

Backend
retry in

If the value is not configured the default
value will be added.

600000 It is the timeout in milliseconds before a
server -that was down- is restarted again.

Backend
timeout

If the value is not configured the default
value will be added.

30000 It is the connection timeout in
milliseconds of a server that is down.

Backend
TLS

The value can be selected from a drop-
down list. The drop-down list presents
the Backend TLS configurations defined
under BRICK/TLS. If the value is not set,
no TLS will be used in this backend.

none You can define the TLS configuration
towards the backend servers. See
Configuring Backend TLS for details.

LB method One of the following methods can be
used:

¥ Failover: use the first server while
available, then fail over to the next

¥ RR: use all servers in a round-robin
fashion

If the value is not configured the default
value will be added.

Failover Load balancing method to use.

Administration Guide 6.6. SERVICE - Configuration units

4.0.1 106

Key Values Default
value

Description

Servers* It is a mandatory value. There are two
values to be configured:

¥ Host: The name or IP address of the
host to connect to.

¥ Port: The port on host to connect to.
(You can add the values by clicking
the '+' sign.)

The list of servers that serve API
endpoint(s). See Backend servers'
configuration for details.

4. Name the Backend configuration.

5. Provide the values for the Servers parameter: Host and Port.

6. Click the Validate button to check if the defined parameters are suitable and adequate for configuring the
component. If the configuration of the component is erroneous or not adequate, the Web UI provides a
warning that the 'Component validation failed'. Also a warning with information on the missing details
appears at the problematic field for the user. If the configuration of the component is satisfactory, after
clicking the Validate button, the user receives the 'Component Validation successful' notification.

7. Click the Save button, when all required configuration fields have been defined.

6.6.2. Endpoint

An endpoint holds together all the policies that apply to a certain API endpoint:

¥ List of URLs

¥ The default error policy for the endpoint

¥ The backend to which requests will be forwarded

¥ The security flow that will be applied to the traffic

6.6.2.1. Security Flow

The Security Flow definition in an endpoint lists what happens to the traffic on a given endpoint.

To understand how requests flow through PAS, see Understanding processing flow. The Security Flow starts when
the Transport Director has already set up client connection and routed the request to the Flow Director. At this
point the TLS and HTTP layers are already processed, but the content in the body of the request is available only
in raw format and has not been parsed yet.

At this stage, the configuration security flow decides on what happens to the traffic by applying a list of Plugins
one by one. Plugin is a collective name for Enforcers, Insights, Filters, etc. Once, all the plugins have processed the
request, the control is handed back to the Transport Director which routes the request to a backend server, and
comes back with the response after handling TLS and HTTP. At this point, the Flow Director applies another list of
Plugins to response, and once done, it hands back the response to the Transport Director which in turn returns
that to the client.

If at any point an error occurs, the error policy is applied"Ñ"which might either mean to lead to logging the error or
to terminating processing and returning an error indication to the client.

Plugins can override the endpointÕs error policy.

Also note that different Plugins need different data. An Insight that applies a JMESPath query needs parsed JSON,
while one that extracts value from an HTTP header field does not. Other Plugins provide these required values,
like a JSON deserializer Plugin. It is important that the Plugins are configured in such an order that the required

Administration Guide 6.6. SERVICE - Configuration units

4.0.1 107

data is made available beforehand.

6.6.2.2. Configuring the Endpoint

Endpoints can be configured under the SERVICE navigation item.

1. Click on the SERVICE main configuration item in the Left navigation area. Alternatively you can also click on

the sign to open up the sub-navigation items of SERVICE.

2. Select Endpoint.

In the configuration window that appears, you can either see the empty parameter values that can be configured
for the actual component or you can see already configured component(s) and their parameters. The already
configured components with defined parameters can be default components available in the system by default,
or can be components configured by the administrator:

Figure 44. The main page for Endpoint

3. Click the New navigation button to create an Endpoint configuration.

The following keys are available for endpoint configuration on the main page of endpoint:

Administration Guide 6.6. SERVICE - Configuration units

4.0.1 108

