
How to configure virus filtering in HTTP
February 29, 2024

Abstract
This tutorial describes how to correctly configure PNS firewalls to perform virus filtering

in HTTP

Copyright © 1996-2024 BalaSys IT Ltd.

Table of Contents
1. Preface .. 3
2. Introduction ... 4

2.1. Configuring Application-level Gateway: MC versus Python ... 4
3. Configuring CF .. 4
4. Making CF available for Application-level Gateway services .. 8
5. Enabling virus filtering in HTTP ... 10
6. Enabling virus filtering for uploads ... 16
7. Disabling HTTP byteranges and download managers ... 19
8. Disabling delta encoding ... 21
9. Python code summary .. 22
10. Summary ... 25

2www.balasys.hu

1. Preface

This tutorial provides guidelines for PNS administrators on enabling virus filtering in HTTP traffic. Knowledge
in TCP/IP and PNS administration is required to fully comprehend the contents of this paper. The procedures
and concepts described here are applicable to version 2 of PNS. Detailed information is provided to configure
PNS both from Management Console and using Python scripts.

The tutorial discusses the application of the Content Filtering system and the Nod32 module, but the concept
is similarly applicable to other content or virus filtering modules of CF. Detailed information is provided to
configure PNS both from Management Console and using Python scripts.

3www.balasys.hu

Preface

2. Introduction

This tutorial helps you to configure Application-level Gateway to analyze HTTP(S) traffic in various scenarios.
For filtering viruses in HTTP traffic with PNS, you must configure an HttpProxy proxy and a CF module.
Generally, the settings of the virus filter do not affect the HTTP traffic: the Application-level Gateway HTTP
proxy checks the HTTP protocol and then passes the data part to the CF stacking provider, and has no knowledge
about what CF will do with the data.

Note that explaining the concepts of the different aspects of TLS and HTTP proxying is beyond the scope of
this tutorial. For background information, see the following documents:

■ For details on deriving and modifying proxies, see Section 6.6, Proxy classes in Proxedo Network
Security Suite 2 Administrator Guide.

■ For details on configuring CF, see Chapter 14, Virus and content filtering using CF in Proxedo
Network Security Suite 2 Administrator Guide.

■ For details on configuring PNS proxies to handle TLS connections, see How to configure TLS
proxying in PNS 2.

■ For an overview on certificates and related topics in connection with PNS, see Chapter 11, Key and
certificate management in PNS in Proxedo Network Security Suite 2 Administrator Guide.

■ For details on the available attributes of the PNS HTTP proxy that you can adjust and modify to best
suit your needs, see Section 4.6, Module Http in Proxedo Network Security Suite 2 Reference Guide

You can download the above documents at the Documentation Page.

2.1. Configuring Application-level Gateway: MC versus Python

Application-level Gateway can be fully configured using either the graphical Management Console (MC) or
manually by editing plain text Python configuration files. The suggestions and the background information
provided in this tutorial are equally applicable to both methods. Step-by-step explanation with screenshots is
given for MC-based configuration, while sample Python code lines can be found at the end of each step. After
replacing the sample parameters (for example, IP addresses) with the proper ones for your actual configuration,
add these lines to the policy file of Application-level Gateway (usually found under /etc/vela/policy.py).
Also pay attention to the proper indentation of Python code lines. For more details, see Chapter 10, Local
firewall administration in Proxedo Network Security Suite 2 Administrator Guide.

For configuring CF without using MC, sample configuration files are provided. You must copy these into the
/etc/vcf/vcf.cfg file on the CF host.

If you are using the Management Console and you want to display the Python code generated by MC, select a
host, then select Configuration > Viewfrom the main menu.

3. Procedure – Configuring CF

Purpose:

To filter HTTP traffic for viruses in PNS, first CF has to be configured. The following configuration will use
mostly default options, but it will enable the trickling option (by default, trickling is disabled). A size limit for
the files to be inspected will also be set, that is, an action will be set for files that are considered too large and
will not be inspected for viruses. Complete the following steps.

4www.balasys.hu

Introduction

../../pns-guide-admin/pdf/pns-guide-admin.pdf#pns_proxy_classes
../../pns-guide-admin/pdf/pns-guide-admin.pdf#chapter_vcf
../../pns-tutorial-tls/pdf/pns-tutorial-tls.pdf#pns-tutorial-tls
../../pns-tutorial-tls/pdf/pns-tutorial-tls.pdf#pns-tutorial-tls
../../pns-guide-admin/pdf/pns-guide-admin.pdf#chapter_pki
../../pns-guide-admin/pdf/pns-guide-admin.pdf#chapter_pki
../../pns-guide-reference/pdf/pns-guide-reference.pdf#python.Http
https://docs.balasys.hu/
../../pns-guide-admin/pdf/pns-guide-admin.pdf#chapter_localadmin
../../pns-guide-admin/pdf/pns-guide-admin.pdf#chapter_localadmin

The configurations, including the default configuration options can be set without using MC by editing the
configuration files of CF. The exact configurations are shown at the end of this tutorial.

Steps:

Step 1. If you have not already done, add the Content Vectoring component to the host that will be used for
content vectoring. For details, see Procedure 3.2.1.3.1, Adding new configuration components to host
in Proxedo Network Security Suite 2 Administrator Guide.

Step 2. Create a new module instance of a virus-filtering module.

Figure 1. Creating a new module instance

Step a. Select Content vectoring > Modules > New file module instance.
Step b. Enter a name for the instance.

Step c. Select the virus-filtering module (for example, clamav) you want to use to scan the
traffic in theModule field.

Step d. Click OK.

Step 3. Configure a new scanpath.

5www.balasys.hu

Configuring Application-level Gateway: MC versus Python

../../pns-guide-admin/pdf/pns-guide-admin.pdf#vmc_add_new_component

Figure 2. Creating a new scanpath

Step a. Select Configuration > New scanpath, and enter a name for the new scanpath (for
example, http).

Step b. Select the Bypass scanning large files option.
Step c. Set the Oversize action option to Accept.

Step d. Optional Step: Adjust the Oversize threshold option.
The size of the largest object to scan is specified in bytes in the Oversize threshold
parameter (the default value is 10485760, that is, 10MB). It might be useful to set it
to a lower value: remaining by the above bandwidth example, downloading a 10MB
file takes ~5 minutes. However, from a security point of view, there is only slight
difference between filtering files up to 10MB, 5MB or 2MB. The vast majority of
viruses spreads in files under 1MB. Naturally, if the threshold is higher, less data is
allowed to pass without scanning, but viruses and other malicious contents are typically
only 50-200KB. If the size limit is only 2 MB, large files are trickled only for ~1
minute, so the user has to wait much less. Set Oversize threshold to either 2097152
(2MB) or 5242880 (5MB).

Step 4. Select General tab > Add file module, and select the module created in Step Step 2 (p. 5) (for
example, clamav), then click Select.

6www.balasys.hu

Configuring Application-level Gateway: MC versus Python

Step 5. Select the Trickle > Percent option to enable trickling, then click OK.
Step 6. SelectConfiguration > New rulegroup, and enter a name for the new rulegroup (for example, http).

Figure 3. Creating a new rulegroup

Step 7. Select the scanpath created in Step Step 3 (p. 5) in the Target scanpath field.

Step 8. Select the Global tab, and configure how CF accepts connections from PNS.

■ If Application-level Gateway and CF are running on the same host, select the Local option.
■ Otherwise specify the IP address where CF should bind to.

7www.balasys.hu

Configuring Application-level Gateway: MC versus Python

Figure 4. Configuring Application-level Gateway-CF communication

4. Procedure – Making CF available for Application-level Gateway services

Purpose:

To use CF from Application-level Gateway services, a stacking provider policy must be created. Complete the
following steps.

Steps:

Step 1. Select the Application-level GatewayMC component, then select Policies > New.

8www.balasys.hu

Configuring Application-level Gateway: MC versus Python

Figure 5. Creating Application-level Gateway policies

Step 2. Enter a name for the policy (for example, CF) and set the Policy type option to Stacking provider.

Figure 6. Configuring a Stacking Provider

Step 3. In the Backend pane, select New, and set how Application-level Gateway can communicate with CF.

■ If Application-level Gateway and CF are running on the same host, select Family > Unix,
then click OK.

■ Otherwise specify the IP address of the CF host.

Python:

StackingProvider(name="CF",

backend=RemoteStackingBackend(addrs=(SockAddrUnix('/var/run/vcf/vcf.sock'),)))

9www.balasys.hu

Configuring Application-level Gateway: MC versus Python

5. Procedure – Enabling virus filtering in HTTP

Purpose:

To configure virus filtering in the HTTP traffic with common parameter values, create an HttpProxy class which
stacks CF to inspect the downloaded data. Complete the following steps.

These settings instruct the new HttpProxy to pass all responses (downloaded data) to the specified stacking
provider— that is, to CF to scan everything downloaded via HTTP for viruses. Application-level Gateway will
stack the stacking provider for every response (response_stack) that will scan the data part of the message for
viruses.

Steps:

Step 1. Navigate to the Application-level GatewayMC component of the firewall host.

Step 2. Select the Proxies tab, then click New.

Figure 7. Creating a new proxy

Step 3. Select theHttpProxy template from the left panel, and enter a name for the new class. Name this class
HttpVirusProxy and click OK.

10www.balasys.hu

Configuring Application-level Gateway: MC versus Python

Figure 8. Selecting a proxy template

Step 4. Add the self.response_stack attribute to the Changed config attributes panel.

11www.balasys.hu

Configuring Application-level Gateway: MC versus Python

Figure 9. Adding attributes to a proxy

Step 5. Select this new attribute, then click Edit > New.
Step 6. Enter the * (asterisk) character, then click OK.
Step 7. Click on the text in the Type field, then select type_http_stk_data.

12www.balasys.hu

Configuring Application-level Gateway: MC versus Python

Figure 10. Setting stacking type

Step 8. ClickEdit, then select the second row of the appearing panel (the one having vela_stack in its Type
field). Click Edit.

13www.balasys.hu

Configuring Application-level Gateway: MC versus Python

Figure 11. Selecting when to stack

Step 9. Configure the proxy to send the incoming data to CF.

14www.balasys.hu

Configuring Application-level Gateway: MC versus Python

Figure 12. Connecting the proxy to CF

Step a. Select Stacking type > Stacking provider.
Step b. In the Provider field, select the stacking provider policy (for example, CF) created in

Procedure 4, Making CF available for Application-level Gateway services (p. 8).

Step c. In theRulegroup field, select the rulegroup (for example, http) created in Procedure
4, Making CF available for Application-level Gateway services (p. 8).

Step d. Click OK.
Python: Create an HttpProxy class which stacks CF to inspect the downloaded data.

class HttpVirusProxy(HttpProxy):

def config(self):

HttpProxy.config(self)

self.response_stack["*"]=(HTTP_STK_DATA, (V_STACK_PROVIDER, "CF",

"http"))

Step 10. Create a service that clients can use to access the Internet.

Step a. Select Services > New, and enter a name for the service (for example,
intra_HTTP_inter).

Step b. Select Proxy class > HttpVirusProxy.
Step c. Configure the other parameters of the service as needed for your environment, then

click OK.
Step d. Select Firewall Rules > New > Service, and select the service created in the previous

step.

Step e. Configure the other parameters of the rule as needed for your environment, then click
OK.

Python: Create an HttpProxy class which stacks CF to inspect the downloaded data.

def demo_instance() :

Service(name='demo_instance/intra_http_inter', router=TransparentRouter(),

chainer=ConnectChainer(), proxy_class=HttpVirusProxy, max_instances=0,

max_sessions=0, keepalive=V_KEEPALIVE_NONE)

15www.balasys.hu

Configuring Application-level Gateway: MC versus Python

Rule(rule_id=1,

src_zone=('*',),

dst_zone=('internet',),

proto=6,

service='demo_instance/intra_http_inter'

)

Step 11. Commit and upload the changes, then restart Application-level Gateway.

6. Procedure – Enabling virus filtering for uploads

Purpose:

In case your security policies require it, you can enable virus filtering for files that your users upload to external
servers. This is also required when protecting a server to which files can be uploaded from outside. To achieve
this, you have to modify the HttpVirusProxy created in Procedure 5, Enabling virus filtering in HTTP (p. 10).
Complete the following steps.

Note
If enabled in CF, then trickling is performed in this case as well, but this time towards the server in order to avoid server-side time outs.

The HTTP proxy will pass not only the data, but the HTTP headers as well to the stacking provider, so it can use them for the MIME
decapsulation. The virus-filtering modules are is able to decode MIME encoded content.

Steps:

Step 1. Select Application-level Gateway > Proxies, then select the HttpVirusProxy proxy class.

16www.balasys.hu

Configuring Application-level Gateway: MC versus Python

Figure 13. Selecting a proxy class

Step 2. Add the self.request_stack attribute to the Changed config attributes panel.
Step 3. Select this new attribute, then click Edit > New.
Step 4. Enter the * (asterisk) character, then click OK.
Step 5. Click on the text in the Type field, then select type_http_stk_mime. (When uploading files via

HTTP, the files have to be sent MIME-encoded, while this is not required for downloading. MIME
encoding is important only when uploading multiple files. The headers are needed for the MIME
decapsulation.)

Step 6. ClickEdit, then select the second row of the appearing panel (the one having vela_stack in its Type
field). Click Edit.

17www.balasys.hu

Configuring Application-level Gateway: MC versus Python

Figure 14. Selecting when to stack

Step 7. Configure the proxy to send the incoming data to CF.

Step a. Select Stacking type > Stacking provider.
Step b. In the Provider field, select the stacking provider policy (for example, CF) created in

Procedure 4, Making CF available for Application-level Gateway services (p. 8).

Step c. In theRulegroup field, select the rulegroup (for example, http) created in Procedure
4, Making CF available for Application-level Gateway services (p. 8).

Step d. Click OK.
Python: Modify the HttpProxy class which stacks CF to inspect the uploaded data.

self.request_stack["*"]=(HTTP_STK_MIME, (V_STACK_PROVIDER, "CF", "http"))

Step 8. Optional Step: Note that with the configuration set in the previous steps, every HTTP response and
request is scanned for viruses, if it contains data. (For example, according to the RFC, HEAD responses

18www.balasys.hu

Configuring Application-level Gateway: MC versus Python

and GET requests do not have data parts.) To filter only the POST requests, complete the following
steps.

Step a. On the Proxies tab, select HttpVirusProxy, then select self.request_stack, and click
Edit.

Step b. Select the * key, then click Edit key. Type POST, then click OK.
Python:

self.request_stack["POST"]=(HTTP_STK_MIME, (V_STACK_PROVIDER,

"CF", "http"))

Step 9. Optional Step: It is even possible to specify different proxy classes for the different request/response
types. To accomplish this, you will need to add two values to the self.response_stack attribute.
The first one will specify which virus filtering proxy to use for POST responses, the second one for
GET responses. That way it is possible to use different scanpaths or different virus-filtering modules
for the different response types. For example, you can examine the downloaded data with a rulegroup
that uses the clamav and nod32 engines, but use only one module to examine the uploaded data. To
accomplish this, complete the following steps.

Step a. Navigate to the Content vectoringMCmodule, and create a new scanpath and a new
rulegroup that will be used to examine HTTP GET requests (for example, name this
rulegroup http_get).

Step b. Navigate to the Application-level Gateway MC module, select Proxies >
HttpVirusProxy > self.response_stack, then click Edit.

Step c. Select the POST key, then clickEdit. Select the row containing vela_stack, then click
Edit.

Step d. Select the rulegroup you want to use to filter POST requests (for example, http).
Python:

self.request_stack["POST"]=(HTTP_STK_MIME, (V_STACK_PROVIDER,

"CF", "http"))

Step e. Add a new key to the self.responce_stack attribute. Enter GET as the key value.

Step f. Click on the text in the Type field, then select type_http_stk_data. Select the
rulegroup you want to use to filter GET requests (for example, http_get).
Python:

self.response_stack["GET"]=(HTTP_STK_DATA, (V_STACK_PROVIDER,

"CF", "http_get"))

7. Procedure – Disabling HTTP byteranges and download managers

Purpose:

Downloading byteranges (used also by download managers) can confuse antivirus applications, or often make
it impossible to perform virus filtering on the downloaded file. Therefore, you might want to forbid the use of
byteranges. Disabling byteranges has the following effects:

19www.balasys.hu

Configuring Application-level Gateway: MC versus Python

■ Virus filtering becomes possible in the downloaded data.

■ Downloadmanagers will not work. (The security policy ofmany organizations forbids using download
managers anyway.)

■ The clients cannot resume incomplete downloads.

To disable byteranges, you have to configure your HTTP proxy (for example, HttpVirusProxy) to forbid the
use of certain HTTP headers. Complete the following steps.

Steps:

Step 1. Select Application-level Gateway > Proxies, then select the HttpVirusProxy proxy class.
Step 2. Add the self.response_header attribute to the Changed config attributes panel.
Step 3. Select this new attribute, then click Edit > New.
Step 4. Enter Accept-Ranges, then click OK.
Step 5. The server sends the Accept-Ranges: bytes HTTP header to inform the client about the type of

range requests it accepts (RFC 2616 14.5). If the server does not support range requests, it sends the
following header to explicitly deny the use of byte-ranges: Accept-Ranges: none.

■ To delete every Accept-Ranges header from the HTTP traffic, click on the text in the
Type field, then select const_http_hdr_drop.
Python:

self.response_header["Accept-Ranges"] = (HTTP_HDR_DROP)

Note
The client can send byterange requests to the server, because the absence of the header does not mean that
the server does not support downloading byteranges.

■ To explicitly state that the server does not support byteranges, click on the text in the Type
field, then select type_http_hdr_replace. ClickEdit > qstring > Edit, then enter NONE.
Python:

self.response_header["Accept-Ranges"] = (HTTP_HDR_REPLACE, "NONE")

Note
That still does not mean that the client cannot send byterange requests.

■ To ensure that the clients cannot use byteranges, you can delete the Range header from the
client requests, or even reject the entre request.

• To delete only the Range header and leave the rest of the request unchanged, add the
Range key to the self.request_header attribute, it to type const_http_hdr_drop.
Python:

self.request_header["Range"] = (HTTP_HDR_DROP)

20www.balasys.hu

Configuring Application-level Gateway: MC versus Python

• To reject the entire request, add the Range key to the self.request_header attribute, it
to type const_http_hdr_abort.
Python:

self.request_header["Range"] = (HTTP_HDR_ABORT)

8. Procedure – Disabling delta encoding

Purpose:

Delta encoding (RFC 3229) is used for updating a previously downloaded file. It enables to download only
those parts of the file that were modified. This technique is also problematic, because the complete file is not
available for the virus filter. Similarly to byteranges, this can also be disabled.

The client sends an A-IM header to the server if it can accept delta-encoded responses. To disable delta encoding,
it is sufficient to remove these headers from the client requests.Complete the following steps.

Steps:

Step 1. Select Application-level Gateway > Proxies, then select the HttpVirusProxy proxy class.
Step 2. Add the self.request_header attribute to the Changed config attributes panel.
Step 3. Select this new attribute, then click Edit > New.
Step 4. Enter A-IM, then click OK.
Step 5. Click on the text in the Type field, then select const_http_hdr_drop.

Python:

self.request_header["A-IM"] = (HTTP_HDR_DROP)

21www.balasys.hu

Configuring Application-level Gateway: MC versus Python

9. Python code summary

When configured according to this tutorial, the related configuration files of Application-level Gateway and
CF should look something like this:

vcf.cfg.

<!--

This file is generated by the Management System. Do not edit!

-->

<configuration name="VCF">

<section name="router">

<router>/etc/vcf/router.cfg</router>

</section>

<section name="misc">

<tempdir>/var/lib/vela/tmp</tempdir>

<magic_length>1500</magic_length>

</section>

<section name="bind">

<unix>/var/run/vcf/vcf.sock</unix>

<ip/>

<port>1318</port>

</section>

<section name="log">

<loglevel>3</loglevel>

<logtags>1</logtags>

</section>

<section name="blob">

<max_disk_usage>1074790400</max_disk_usage>

<max_mem_usage>268435456</max_mem_usage>

<lowat>100663296</lowat>

<hiwat>134217728</hiwat>

<noswap_max>16384</noswap_max>

</section>

</configuration>

<configuration name="scanpaths">

<section name="http">

<plugins>clamav:clamav</plugins>

<quarantine_mode>rejected</quarantine_mode>

<threshold_oversize>10485760</threshold_oversize>

<oversize_action>accept</oversize_action>

<trickle_mode>percent</trickle_mode>

<trickle_percent>10</trickle_percent>

<magic_force>0</magic_force>

<gzip_detect>1</gzip_detect>

<gzip_level>4</gzip_level>

<gzip_strip>extra</gzip_strip>

<accept_corrupted_file>0</accept_corrupted_file>

<accept_encrypted_file>0</accept_encrypted_file>

<accept_unknown_packed_file>0</accept_unknown_packed_file>

<accept_file_with_warning>0</accept_file_with_warning>

<accept_on_os_error>0</accept_on_os_error>

<accept_on_engine_error>0</accept_on_engine_error>

22www.balasys.hu

Python code summary

<accept_on_license_error>0</accept_on_license_error>

</section>

</configuration>

<configuration name="module-options">

<section name="vbuster">

<archive_max_size>10</archive_max_size>

<archive_max_ratio>100</archive_max_ratio>

<vdb_error_soft_fail>0</vdb_error_soft_fail>

</section>

<section name="nod32">

<archive_max_size>10</archive_max_size>

<daemon_timeout>60</daemon_timeout>

<daemon_socket>/var/run/nod32/nod32d.sock</daemon_socket>

<temp_directory>/tmp</temp_directory>

</section>

</configuration>

<configuration name="clamav">

<section name="clamav">

<mode>file</mode>

<scan_packed>1</scan_packed>

</section>

</configuration>

router.cfg.

#

This file is generated by the Management System. Do not edit!

#

vcf_rule_group="http" http

policy.py.

class HttpVirusProxy(HttpProxy):

def config(self):

HttpProxy.config(self)

self.response_stack["GET"]=(HTTP_STK_DATA, (V_STACK_PROVIDER, "CF",

"http_get"))

self.response_stack["POST"]=(HTTP_STK_DATA, (V_STACK_PROVIDER, "CF", "http"))

self.request_stack["POST"]=(HTTP_STK_MIME, (V_STACK_PROVIDER, "CF", "http"))

self.response_header["Accept-Ranges"]=(HTTP_HDR_REPLACE, "NONE")

self.response_header["A-IM"]=HTTP_HDR_DROP

self.request_header["Range"]=HTTP_HDR_ABORT

def demo_instance() :

Service(name='demo_instance/intra_http_inter', router=TransparentRouter(),

chainer=ConnectChainer(), proxy_class=HttpVirusProxy, max_instances=0,

max_sessions=0, keepalive=V_KEEPALIVE_NONE)

Rule(rule_id=1,

src_zone=('*',),

dst_zone=('internet',),

proto=6,

23www.balasys.hu

Python code summary

service='demo_instance/intra_http_inter'

)

24www.balasys.hu

Python code summary

10. Summary

This tutorial has shown how to configure PNS to perform virus filtering in the HTTP traffic, including simple
virus filtering with trickling, enabling filtering uploads, and disabling the use of download managers. Although
these examples are relatively simple, they provide a solid base from which more complex configurations can
be built — just as the security policy of your organization requires it.

All questions, comments or inquiries should be directed to <info@balasys.hu> or by post to the following address: BalaSys IT Ltd. 1117 Budapest, Alíz Str. 4 Phone: +36
1 646 4740 Web: https://www.balasys.hu/
Copyright © 2024 BalaSys IT Ltd. All rights reserved.

The latest version is always available at the BalaSys Documentation Page.

25www.balasys.hu

Summary

https://www.balasys.hu/
https://docs.balasys.hu/

	How to configure virus filtering in HTTP
	Table of Contents
	1. Preface
	2. Introduction
	2.1. Configuring Application-level Gateway: MC versus Python

	3. Configuring CF
	4. Making CF available for Application-level Gateway services
	5. Enabling virus filtering in HTTP
	6. Enabling virus filtering for uploads
	7. Disabling HTTP byteranges and download managers
	8. Disabling delta encoding
	9. Python code summary
	10. Summary

