
Proxedo Network Security Suite 2 Reference
Guide

Publication date February 29, 2024

Abstract
This document is a detailed reference guide for Proxedo Network Security Suite

administrators.

BalaSys

Copyright © 1996-2024 BalaSys IT Ltd.

Copyright © 2024 BalaSys IT Ltd.. All rights reserved. This document is protected by copyright and is distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this document may be reproduced in any form by any means without prior written authorization of
BalaSys.

This documentation and the product it describes are considered protected by copyright according to the applicable laws.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/). This product includes
cryptographic software written by Eric Young (eay@cryptsoft.com)

Linux™ is a registered trademark of Linus Torvalds.

Windows™ 10 is registered trademarks of Microsoft Corporation.

The BalaSys™ name and the BalaSys™ logo are registered trademarks of BalaSys IT Ltd.

The PNS™ name and the PNS™ logo are registered trademarks of BalaSys IT Ltd.

AMD Ryzen™ and AMD EPYC™ are registered trademarks of Advanced Micro Devices, Inc.

Intel® Core™ and Intel® Xeon™ are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

All other product names mentioned herein are the trademarks of their respective owners.

DISCLAIMER

BalaSys is not responsible for any third-party websites mentioned in this document. BalaSys does not endorse and is not responsible or liable for any
content, advertising, products, or other material on or available from such sites or resources. BalaSys will not be responsible or liable for any damage
or loss caused or alleged to be caused by or in connection with use of or reliance on any such content, goods, or services that are available on or through
any such sites or resources.

iiwww.balasys.hu

http://www.openssl.org

Table of Contents
Preface .. xvi

1. Summary of contents ... xvi
2. Terminology ... xvi
3. Target audience and prerequisites .. xvii
4. Products covered in this guide .. xviii
5. Contact and support information .. xviii

5.1. Sales contact .. xviii
5.2. Support contact .. xix
5.3. Training ... xix

6. About this document ... xix
6.1. Feedback ... xix

1. How PNS works ... 1
1.1. PNS startup and initialization ... 1
1.2. Handling incoming connections ... 1

1.2.1. Handling packet filtering services .. 2
1.2.2. Handling application-level services .. 2

1.3. Proxy startup and the server-side connection ... 3
2. Configuring PNS proxies .. 4

2.1. Policies for requests and responses ... 4
2.1.1. Default actions ... 5
2.1.2. Response codes .. 6

2.2. Secondary sessions .. 7
2.3. Embedded protocol analysis ... 7

2.3.1. Proxy stacking .. 7
2.3.2. Program stacking .. 8

3. The PNS SSL framework ... 9
3.1. The SSL and TLS protocols ... 9

3.1.1. The SSL handshake .. 9
3.2. Handling TLS and SSL connections in Application-level Gateway ... 10

3.2.1. Behavior of the SSL framework ... 10
3.2.2. Session reuse in SSL and TLS connections ... 11
3.2.3. Understanding Encryption policies ... 11
3.2.4. Configuring Encryption policies .. 12
3.2.5. Certificate verification options ... 23
3.2.6. Protocol-level TLS settings ... 24
3.2.7. Enabling STARTTLS .. 25
3.2.8. Configuring keybridging ... 26

3.3. Related standards .. 31
3.4. Encryption options reference .. 31
3.5. X.509 Certificates .. 31

3.5.1. X.509 Certificate Names ... 32
3.5.2. X.509 Certificate Revocation List .. 32
3.5.3. X.509 Online Certificate Status Protocol (OCSP) stapling ... 32
3.5.4. X.509 Certificate hash ... 32
3.5.5. X.509 CRL hash ... 33

iiiwww.balasys.hu

4. Proxies .. 34
4.1. General information on the proxy modules .. 34
4.2. Attribute values ... 34
4.3. Examples .. 35
4.4. Module AnyPy .. 35

4.4.1. Related standards .. 35
4.4.2. Classes in the AnyPy module .. 35
4.4.3. Class AbstractAnyPyProxy ... 35
4.4.4. Class AnyPyProxy .. 36

4.5. Module Ftp ... 36
4.5.1. The FTP protocol .. 37
4.5.2. Proxy behavior ... 38
4.5.3. Related standards .. 41
4.5.4. Classes in the Ftp module .. 41
4.5.5. Class AbstractFtpProxy ... 42
4.5.6. Class FtpProxy ... 47
4.5.7. Class FtpProxyAnonRO .. 47
4.5.8. Class FtpProxyAnonRW ... 47
4.5.9. Class FtpProxyRO .. 47
4.5.10. Class FtpProxyRW .. 48

4.6. Module Http .. 48
4.6.1. The HTTP protocol ... 48
4.6.2. Proxy behavior ... 49
4.6.3. Related standards .. 67
4.6.4. Classes in the Http module .. 67
4.6.5. Class AbstractHttpProxy ... 68
4.6.6. Class HttpProxy .. 79
4.6.7. Class HttpProxyNonTransparent .. 79
4.6.8. Class HttpProxyURIFilter ... 80
4.6.9. Class HttpProxyURIFilterNonTransparent .. 80
4.6.10. Class HttpProxyURLCategoryFilter ... 80
4.6.11. Class HttpWebdavProxy .. 81
4.6.12. Class NontransHttpWebdavProxy .. 81

4.7. Module Plug ... 81
4.7.1. Proxy behavior ... 81
4.7.2. Related standards .. 81
4.7.3. Classes in the Plug module .. 82
4.7.4. Class AbstractPlugProxy ... 82
4.7.5. Class PlugProxy ... 84

4.8. Module Pop3 ... 84
4.8.1. The POP3 protocol ... 85
4.8.2. Proxy behavior ... 86
4.8.3. Related standards .. 89
4.8.4. Classes in the Pop3 module ... 89
4.8.5. Class AbstractPop3Proxy .. 89
4.8.6. Class Pop3Proxy .. 92
4.8.7. Class Pop3STLSProxy .. 92

4.9. Module Smtp .. 92

ivwww.balasys.hu

4.9.1. The SMTP protocol .. 92
4.9.2. Proxy behavior ... 93
4.9.3. Related standards .. 94
4.9.4. Classes in the Smtp module ... 95
4.9.5. Class AbstractSmtpProxy .. 95
4.9.6. Class SmtpProxy .. 98

4.10. Module Telnet ... 99
4.10.1. The Telnet protocol ... 100
4.10.2. Proxy behavior ... 101
4.10.3. Related standards .. 103
4.10.4. Classes in the Telnet module .. 103
4.10.5. Class AbstractTelnetProxy ... 103
4.10.6. Class TelnetProxy ... 104
4.10.7. Class TelnetProxyStrict ... 104

4.11. Module Imap ... 104
4.11.1. The IMAP protocol ... 105
4.11.2. Proxy behavior .. 106
4.11.3. Related standards .. 111
4.11.4. Classes in the Imap module .. 112
4.11.5. Class AbstractImapProxy ... 112
4.11.6. Class ImapProxy ... 114
4.11.7. Class ImapProxyStrict ... 114

4.12. Module Ldap ... 115
4.12.1. The LDAP protocol ... 115
4.12.2. Proxy behavior ... 116
4.12.3. Configuring policies for LDAP requests ... 117
4.12.4. Simple Authentication and Security Layer (SASL) on LDAP messages 118
4.12.5. Related standards .. 118
4.12.6. Classes in the Ldap module ... 118
4.12.7. Class AbstractLdapProxy .. 118
4.12.8. Class LdapProxy ... 119
4.12.9. Class LdapProxyRO .. 119

4.13. Module Mime .. 119
4.13.1. The MIME protocol .. 119
4.13.2. Proxy behavior ... 121
4.13.3. Related standards .. 123
4.13.4. Classes in the Mime module .. 123
4.13.5. Class AbstractMimeProxy ... 123
4.13.6. Class MimeProxy .. 126

4.14. Module Modbus .. 126
4.14.1. Classes in the Modbus module ... 126
4.14.2. Class AbstractModbusProxy .. 126
4.14.3. Class ModbusProxy .. 127

4.15. Module MSRpc ... 127
4.15.1. The RPC protocol ... 127
4.15.2. Proxy behavior ... 128
4.15.3. Classes in the MSRpc module .. 128
4.15.4. Class AbstractMSRpcProxy ... 129

vwww.balasys.hu

4.15.5. Class MSRpcProxy ... 130
4.16. Module Radius .. 130

4.16.1. The RADIUS protocol ... 130
4.16.2. Proxy behavior ... 131
4.16.3. Related standards .. 133
4.16.4. Classes in the Radius module ... 133
4.16.5. Class AbstractRadiusProxy .. 134
4.16.6. Class RadiusProxy .. 135
4.16.7. Class RadiusProxyStrict .. 136

4.17. Module Sip .. 136
4.17.1. The SIP protocol ... 136
4.17.2. Related standards .. 138
4.17.3. Classes in the Sip module .. 139
4.17.4. Class AbstractSipProxy ... 139
4.17.5. Class SipProxy ... 140

4.18. Module Socks .. 140
4.18.1. The SOCKS protocol .. 141
4.18.2. Proxy behaviour .. 141
4.18.3. Related standards .. 141
4.18.4. Classes in the Socks module .. 141
4.18.5. Class AbstractSocksProxy ... 142
4.18.6. Class SocksProxy .. 144

4.19. Module SQLNet .. 144
4.19.1. The SQL*Net protocol .. 144
4.19.2. Proxy behavior ... 144
4.19.3. Related standards .. 144
4.19.4. Classes in the SQLNet module ... 144
4.19.5. Class AbstractSQLNetProxy .. 145
4.19.6. Class SQLNetProxy .. 146

4.20. Module Ssh ... 146
4.20.1. The Secure Shell protocol .. 146
4.20.2. Proxy behavior ... 147
4.20.3. Related standards .. 157
4.20.4. Classes in the Ssh module .. 157
4.20.5. Class AbstractSshProxy ... 157
4.20.6. Class SshProxy ... 162
4.20.7. Class SshProxySftpOnly .. 164
4.20.8. Class SshSFtpProxy .. 164
4.20.9. Class SshScpProxy .. 164

4.21. Module TFtp ... 164
4.21.1. The TFtp protocol ... 164
4.21.2. Proxy behavior ... 165
4.21.3. Related standards .. 166
4.21.4. Classes in the TFtp module .. 167
4.21.5. Class AbstractTFtpProxy ... 167
4.21.6. Class TFtpProxy ... 167

4.22. Module Vnc .. 167
4.22.1. Classes in the Vnc module ... 168

viwww.balasys.hu

4.22.2. Class AbstractVncProxy .. 168
4.22.3. Class VncProxy .. 168

5. Core .. 169
5.1. Module Auth ... 169

5.1.1. Authentication and authorization basics .. 169
5.1.2. Authentication and authorization in PNS .. 169
5.1.3. Classes in the Auth module .. 170
5.1.4. Class AbstractAuthentication ... 171
5.1.5. Class AbstractAuthorization .. 172
5.1.6. Class AuthCache .. 172
5.1.7. Class AuthenticationPolicy .. 173
5.1.8. Class AuthorizationPolicy ... 174
5.1.9. Class BasicAccessList ... 175
5.1.10. Class InbandAuthentication ... 176
5.1.11. Class NEyesAuthorization ... 176
5.1.12. Class PairAuthorization ... 178
5.1.13. Class PermitGroup .. 178
5.1.14. Class PermitTime .. 179
5.1.15. Class PermitUser .. 180
5.1.16. Class ServerAuthentication .. 180
5.1.17. Class VAAuthentication ... 181

5.2. Module AuthDB .. 182
5.2.1. Classes in the AuthDB module .. 182
5.2.2. Class AbstractAuthenticationBackend .. 182
5.2.3. Class AuthenticationProvider ... 183
5.2.4. Class VAS2AuthenticationBackend .. 183

5.3. Module Chainer ... 184
5.3.1. Selecting the network protocol ... 185
5.3.2. Classes in the Chainer module ... 185
5.3.3. Class AbstractChainer ... 185
5.3.4. Class ConnectChainer ... 186
5.3.5. Class FailoverChainer ... 187
5.3.6. Class MultiTargetChainer .. 188
5.3.7. Class RoundRobinChainer ... 189
5.3.8. Class SideStackChainer ... 189
5.3.9. Class StateBasedChainer ... 190

5.4. Module Detector .. 191
5.4.1. Classes in the Detector module .. 191
5.4.2. Class AbstractDetector .. 192
5.4.3. Class CertDetector .. 192
5.4.4. Class DetectorPolicy ... 193
5.4.5. Class HttpDetector .. 193
5.4.6. Class SniDetector ... 194
5.4.7. Class SshDetector ... 195

5.5. Module Encryption .. 195
5.5.1. TLS parameter constants ... 195
5.5.2. Classes in the Encryption module ... 197
5.5.3. Class AbstractVerifier ... 199

viiwww.balasys.hu

5.5.4. Class Certificate .. 201
5.5.5. Class CertificateCA .. 203
5.5.6. Class ClientCertificateVerifier ... 204
5.5.7. Class ClientNoneVerifier ... 207
5.5.8. Class ClientOnlyEncryption .. 207
5.5.9. Class ClientOnlyStartTLSEncryption ... 208
5.5.10. Class ClientTLSOptions .. 210
5.5.11. Class DHParam ... 214
5.5.12. Class DynamicCertificate .. 215
5.5.13. Class DynamicServerEncryption .. 216
5.5.14. Class EncryptionPolicy ... 218
5.5.15. Class FakeStartTLSEncryption .. 219
5.5.16. Class ForwardStartTLSEncryption ... 221
5.5.17. Class PrivateKey ... 223
5.5.18. Class SNIBasedCertificate ... 225
5.5.19. Class ServerCertificateVerifier ... 226
5.5.20. Class ServerNoneVerifier .. 229
5.5.21. Class ServerOnlyEncryption .. 229
5.5.22. Class ServerTLSOptions ... 230
5.5.23. Class StaticCertificate ... 233
5.5.24. Class TLSOptions ... 234
5.5.25. Class TwoSidedEncryption .. 237

5.6. Module Ids .. 239
5.6.1. Classes in the Ids module .. 239
5.6.2. Class Ids .. 239
5.6.3. Class IdsPolicy ... 240

5.7. Module Keybridge ... 241
5.7.1. Classes in the Keybridge module ... 241
5.7.2. Class X509KeyBridge ... 241

5.8. Module Matcher .. 243
5.8.1. Classes in the Matcher module ... 244
5.8.2. Class AbstractMatcher .. 244
5.8.3. Class CombineMatcher ... 244
5.8.4. Class DNSMatcher ... 245
5.8.5. Class MatcherPolicy ... 246
5.8.6. Class RegexpFileMatcher .. 246
5.8.7. Class RegexpMatcher .. 247
5.8.8. Class SmtpInvalidRecipientMatcher ... 248
5.8.9. Class WindowsUpdateMatcher .. 250

5.9. Module NAT ... 250
5.9.1. Classes in the NAT module .. 251
5.9.2. Class AbstractNAT ... 251
5.9.3. Class FWMark .. 253
5.9.4. Class GeneralNAT .. 253
5.9.5. Class HashNAT .. 254
5.9.6. Class LinkAvailabilityPFNat ... 255
5.9.7. Class NAT46 .. 255
5.9.8. Class NAT64 .. 256

viiiwww.balasys.hu

5.9.9. Class NATPolicy .. 257
5.9.10. Class RandomNAT .. 258
5.9.11. Class StaticNAT .. 258

5.10. Module Notification ... 259
5.10.1. Classes in the Notification module ... 259
5.10.2. Class AbstractNotificationMethod .. 259
5.10.3. Class EmailNotificationMethod ... 259
5.10.4. Class NotificationPolicy .. 260

5.11. Module Proxy .. 260
5.11.1. Functions in module Proxy .. 260
5.11.2. Classes in the Proxy module .. 260
5.11.3. Functions .. 260
5.11.4. Class Proxy .. 261

5.12. Module Resolver ... 264
5.12.1. Classes in the Resolver module .. 264
5.12.2. Class AbstractResolver .. 264
5.12.3. Class DNSResolver ... 264
5.12.4. Class HashResolver ... 265

5.13. Module Router .. 266
5.13.1. The source address used in the server-side connection ... 266
5.13.2. Classes in the Router module ... 267
5.13.3. Class AbstractRouter ... 267
5.13.4. Class DirectedRouter ... 268
5.13.5. Class InbandRouter ... 269
5.13.6. Class TransparentRouter .. 270

5.14. Module Rule ... 271
5.14.1. Evaluating firewall rules .. 271
5.14.2. Sample rules ... 273
5.14.3. Adding metadata to rules: tags and description .. 273
5.14.4. Classes in the Rule module .. 274
5.14.5. Class PortRange .. 274
5.14.6. Class Rule .. 275

5.15. Module Service ... 277
5.15.1. Naming services ... 277
5.15.2. Classes in the Service module .. 277
5.15.3. Class AbstractService .. 278
5.15.4. Class DenyService .. 278
5.15.5. Class PFService .. 280
5.15.6. Class Service .. 282

5.16. Module Session ... 288
5.16.1. Classes in the Session module .. 288
5.16.2. Class StackedSession .. 288

5.17. Module SockAddr .. 290
5.17.1. Classes in the SockAddr module .. 290
5.17.2. Class SockAddrInet ... 290
5.17.3. Class SockAddrInet6 ... 291
5.17.4. Class SockAddrInetHostname .. 292
5.17.5. Class SockAddrInetRange ... 293

ixwww.balasys.hu

5.17.6. Class SockAddrUnix ... 293
5.18. Module Stack .. 294

5.18.1. Classes in the Stack module ... 294
5.18.2. Class AbstractStackingBackend ... 294
5.18.3. Class RemoteStackingBackend .. 294
5.18.4. Class StackingProvider .. 295

5.19. Module Zone ... 296
5.19.1. Classes in the Zone module ... 297
5.19.2. Class Zone .. 297

5.20. Module Vela .. 298
6. Core-internal .. 299

6.1. Module Cache ... 299
6.2. Module Core ... 299
6.3. Module Dispatch ... 299

6.3.1. Zone-based service selection ... 299
6.3.2. Classes in the Dispatch module .. 300
6.3.3. Class CSZoneDispatcher ... 300
6.3.4. Class Dispatcher ... 301

6.4. Module Globals ... 303
6.5. Module Stream .. 303

6.5.1. Classes in the Stream module .. 303
6.5.2. Class Stream ... 303

Appendix A. Additional proxy information .. 305
A.1. TELNET appendix .. 305
A.2. RADIUS appendix .. 311
A.3. SQL*Net appendix .. 327

Appendix B. Global options of PNS .. 330
B.1. Setting global options of PNS .. 330
blob .. 331
audit .. 332
options .. 334

Appendix C. PNS manual pages ... 335
vas .. 336
vas.cfg .. 337
vcf .. 346
vcf.cfg ... 348
vms ... 358
vms.conf ... 359
vms-integrity ... 360
instances.conf .. 361
policy.py ... 363
vela ... 364
velactl ... 366
velactl.conf .. 368
vela-zone-helper .. 370
vela-zone-helper.conf ... 371
vavupdate .. 373
vavupdate.options .. 374

xwww.balasys.hu

vqc .. 376
Appendix D. Proxedo Network Security Suite End-User License Agreement 378

D.1. 1. SUBJECT OF THE LICENSE CONTRACT .. 378
D.2. 2. DEFINITIONS ... 378
D.3. 3. LICENSE GRANTS AND RESTRICTIONS .. 379
D.4. 4. SUBSIDIARIES ... 381
D.5. 5. INTELLECTUAL PROPERTY RIGHTS .. 381
D.6. 6. TRADE MARKS .. 381
D.7. 7. NEGLIGENT INFRINGEMENT ... 381
D.8. 8. INTELLECTUAL PROPERTY INDEMNIFICATION .. 381
D.9. 9. LICENSE FEE .. 382
D.10. 10. WARRANTIES ... 382
D.11. 11. DISCLAIMER OF WARRANTIES .. 383
D.12. 12. LIMITATION OF LIABILITY ... 383
D.13. 13.DURATION AND TERMINATION .. 383
D.14. 14. AMENDMENTS ... 384
D.15. 15. WAIVER .. 384
D.16. 16. SEVERABILITY .. 384
D.17. 17. NOTICES ... 384
D.18. 18. MISCELLANEOUS .. 384

Appendix E. Creative Commons Attribution Non-commercial No Derivatives (by-nc-nd) License
.. 385
Index of Proxy attributes .. 390
Index of Core attributes .. 395
Index of all attributes .. 398

xiwww.balasys.hu

List of Examples
2.1. Customizing FTP commands ... 5
2.2. Using the POLICY action .. 5
2.3. Default and explicit actions .. 5
2.4. Customizing response codes .. 6
2.5. Example PlugProxy allowing secondary sessions .. 7
2.6. Program stacking in HTTP ... 8
3.1. Accepting invalid certificates ... 24
3.2. Configuring FTPS support ... 25
4.1. FTP protocol sample .. 37
4.2. Customizing FTP to allow only anonymous sessions ... 38
4.3. Configuring FTPS support ... 40
4.4. Example HTTP transaction .. 49
4.5. Proxy style HTTP query .. 50
4.6. Data tunneling with connect method ... 50
4.7. Implementing URL filtering in the HTTP proxy .. 51
4.8. 404 response filtering in HTTP ... 51
4.9. Header filtering in HTTP ... 52
4.10. URL redirection in HTTP proxy ... 53
4.11. Redirecting HTTP to HTTPS .. 53
4.12. Using parent proxies in HTTP .. 54
4.13. URL filtering HTTP proxy ... 80
4.14. POP3 protocol sample .. 85
4.15. Example for allowing only APOP authentication in POP3 .. 87
4.16. Example for converting simple USER/PASS authentication to APOP in POP3 87
4.17. Rewriting the banner in POP3 .. 88
4.18. SMTP protocol sample ... 92
4.19. Example for disabling the Telnet X Display Location option ... 102
4.20. Rewriting the DISPLAY environment variable .. 102
4.21. IMAP protocol sample ... 106
4.22. Rewriting IMAP capability response ... 108
4.23. Changing the greeting string in IMAP ... 109
4.24. IMAP arguments in use ... 110
4.25. Example Ldap entry ... 115
4.26. Example of the commands usage .. 117
4.27. Example mail header containing MIME message ... 121
4.28. Example PNG format picture attachment ... 121
4.29. Example multipart message .. 121
4.30. Example usage of MimeProxy module, denying applications .. 123
4.31. Customising RPC to allow connection to service "11223344-5566-7788-99aa-bbccddeeff00" 128
4.32. Example RadiusProxy config .. 133
4.33. Disabling video traffic in SIP .. 138
4.34. SOCKS and HTTP traffic ... 141
4.35. Enabling and disabling SSH channels .. 149
4.36. Enabling only SFTP connections .. 150
4.37. Restricting local forwarding ... 154

xiiwww.balasys.hu

4.38. Modifying the keypair used in public-key authentication .. 156
5.1. A simple authentication policy ... 173
5.2. Caching authentication decisions .. 173
5.3. A simple authorization policy ... 174
5.4. BasicAccessList example ... 175
5.5. A simple PairAuthorization policy .. 178
5.6. A simple PermitGroup policy ... 178
5.7. PermitTime example .. 179
5.8. A simple PermitUser policy .. 180
5.9. Outband authentication example ... 181
5.10. A sample authentication provider .. 183
5.11. A sample ConnectChainer .. 186
5.12. A DirectedRouter using FailoverChainer ... 187
5.13. A DirectedRouter using RoundRobinChainer .. 189
5.14. CertDetector example .. 192
5.15. HttpDetector example .. 193
5.16. SNIDetector example ... 194
5.17. SshDetector example ... 195
5.18. Loading a certificate .. 202
5.19. Loading DH parameters ... 214
5.20. Loading a private key ... 223
5.21. Whitelisting e-mail recipients ... 245
5.22. DNSMatcher example .. 245
5.23. RegexpFileMatcher example .. 246
5.24. RegexpMatcher example .. 247
5.25. SmtpInvalidMatcher example ... 249
5.26. WindowsUpdateMatcher example ... 250
5.27. GeneralNat example ... 253
5.28. Using Natpolicies .. 257
5.29. A simple DNSResolver policy .. 265
5.30. A simple HashResolver policy .. 265
5.31. DirectedRouter example .. 268
5.32. InbandRouter example .. 269
5.33. TransparentRouter example ... 270
5.34. Sample rule definitions ... 273
5.35. Tagging rules ... 274
5.36. A simple DenyService .. 279
5.37. PFService example .. 281
5.38. Service example .. 282
5.39. SockAddrInet example ... 290
5.40. SockAddrInet example ... 291
5.41. SockAddrInetHostname example .. 292
5.42. SockAddrUnix example ... 294
5.43. A simple StackingProvider class ... 295
5.44. Using a StackingProvider in an FTP proxy .. 295
5.45. Finding IP networks ... 296
5.46. Zone examples .. 297
5.47. Determining the zone of an IP address ... 297

xiiiwww.balasys.hu

6.1. CSZoneDispatcher example ... 300
6.2. Dispatcher example ... 301
A.1. An example for the SQL*Net connection string ... 327

xivwww.balasys.hu

List of Procedures
1.1. PNS startup and initialization ... 1
1.2.1. Handling packet filtering services .. 2
1.2.2. Handling application-level services .. 2
1.3. Proxy startup and the server-side connection ... 3
3.1.1. The SSL handshake .. 9
3.2.4.1. Enabling TLS-encryption in the connection ... 13
3.2.8. Configuring keybridging ... 26
B.1. Setting global options of PNS .. 330

xvwww.balasys.hu

Preface

Welcome to the Application-level Gateway Reference Guide. This book contains reference documentation on
the available PNS proxies and their working environment, the Python framework.

This book contains information about the low-level proxy attributes available to customize proxy behavior and
the low-level classes comprising ALG's access control and service framework. Basic introduction to the various
protocols is also provided for reference, but the detailed discussion of the protocols is beyond the scope of this
book.

Note
The name of the application effectively serving as the Application-level Gateway component of Proxedo Network Security Suite is PNS,
commands, paths and internal references will relate to that naming.

1. Summary of contents

Chapter 1, How PNS works (p. 1) provides an overview of the internal working of ALG, for example, how
a connection is received.

Chapter 2, Configuring PNS proxies (p. 4) describes the general concepts of configuring ALG proxies.

Chapter 3, The PNS SSL framework (p. 9) explains how to handle SSL-encrypted connections with ALG.

Chapter 4, Proxies (p. 34) is a complete reference of the ALG proxies, including their special features and
options.

Chapter 5, Core (p. 169) is the reference of ALG core modules which are directly used by gateway administrators,
forming the access control and authentication framework.

Appendix C, PNS manual pages (p. 335) is a collection of the command-line PNS utilities.

Appendix B, Global options of PNS (p. 330) is a reference the global options of PNS.

2. Terminology

The following terms used throughout this documentation might require a brief explanation:

■ class: A class is a set of attribute and method definitions performing certain specific functionality.
Classes can inherit methods and attributes from one or more parent classes. Classes do not contain
actual values for attributes; they only describe them.

■ instance: An instance is a set of attribute values (as described by the class) and associated methods.
Instances are also called objects. Instances are created from classes by "calling" the class, with
arguments required by the constructor. For example, to create an instance of a class named "class"
one would write class(arg1, arg2 [,.. argN]) where arg1 and arg2 are arguments of the
constructor.

xviwww.balasys.hu

Summary of contents

■ method: A function working in the context of an instance. It automatically receives a "self" argument
which can be used to fetch or set attributes stored in the associated instance.

■ type: Variables in Python are not strongly typed, meaning that it is possible to assign any kind of
values to a variable; typing is assigned to the value.

■ attribute: An attribute of an object is a variable holding some value, interpreted and manipulated by
object methods. Although Python is not strongly typed, types were assigned to the variables in PNS
to indicate what kind of values they are supposed to hold.

■ actiontuple: A tuple is a simple Python type defined as a list of values. An actiontuple is a special
tuple defined by PNS where the first value must be a value specifying what action to take, and trailing
items specify arguments to the action. For example (HTTP_REQ_REJECT, "We don't like this
request") is a tuple for rejecting HTTP requests and returning the message specified in the second
value.

3. Target audience and prerequisites

This guide is intended for use by system administrators and consultants responsible for network security and
whose task is the configuration and maintenance of PNS firewalls. PNS gives them a powerful and versatile
tool to create full control over their network traffic and enables them to protect their clients against
Internet-delinquency.

This guide is also useful for IT decision makers evaluating different firewall products because apart from the
practical side of everyday PNS administration, it introduces the philosophy behind PNS without the marketing
side of the issue.

The following skills and knowledge are necessary for a successful PNS administrator.

Level/DescriptionSkill

At least a power user's knowledge is required.Linux

Experience in system administration is certainly an
advantage, but not absolutely necessary.

Experience in system administration

It is not an explicit requirement to know any
programming languages though being familiar with

Programming language knowledge

the basics of Python may be an advantage, especially
in evaluating advanced firewall configurations or in
troubleshooting misconfigured firewalls.

A general understanding of firewalls, their roles in the
enterprise IT infrastructure and the main concepts and

General knowledge on firewalls

tasks associated with firewall administration is
essential. To fulfill this requirement a significant part
of Chapter 3, Architectural overview in the PNS
Administrator's Guide is devoted to the introduction
to general firewall concepts.

In-depth knowledge is strongly recommended; while
it is not strictly required definitely helps understanding

Knowledge on Netfilter concepts and IPTables

xviiwww.balasys.hu

Target audience and prerequisites

Level/DescriptionSkill

the underlying operations and also helps in shortening
the learning curve.

High level knowledge of the TCP/IP protocol suite is
a must, no successful firewall administration is
possible without this knowledge.

Knowledge on TCP/IP protocol

Table 1. Prerequisites

4. Products covered in this guide

The PNS Distribution DVD-ROM contains the following software packages:

■ Current version of PNS 2 packages.

■ Current version of Management Server (MS) 2.

■ Current version of Management Console (MC) 2 (GUI) for both Linux and Windows operating
systems, and all the necessary software packages.

■ Current version of Authentication Server (AS) 2.

■ Current version of the Authentication Agent (AA) 2, the AS client for both Linux and Windows
operating systems.

For a detailed description of hardware requirements of PNS, see Chapter 1, System requirements in Proxedo
Network Security Suite 2 Installation Guide.

For additional information on PNS and its components visit the PNS website containing white papers, tutorials,
and online documentations on the above products.

5. Contact and support information

This product is developed and maintained by BalaSys IT Ltd..

Contact:

BalaSys IT Ltd.
4 Alíz Street
H-1117 Budapest, Hungary
Tel: +36 1 646 4740
E-mail: <info@balasys.hu>
Web: http://balasys.hu/

5.1. Sales contact

You can directly contact us with sales related topics at the e-mail address <sales@balasys.hu>, or leave us
your contact information and we call you back.

xviiiwww.balasys.hu

Products covered in this guide

../../pns-guide-install/pdf/pns-guide-install.pdf#system-requirements
https://balasys.eu/en/proxedo-network-security
http://balasys.hu/
https://www.balasys.hu/en/contact
https://www.balasys.hu/en/contact

5.2. Support contact

To access the BalaSys Support System, sign up for an account at the BalaSys Support System page. Online
support is available 24 hours a day.

BalaSys Support System is available only for registered users with a valid support package.

Support e-mail address: <support@balasys.hu>.

5.3. Training

BalaSys IT Ltd. holds courses on using its products for new and experienced users. For dates, details, and
application forms, visit the https://www.balasys.hu/en/services#training webpage.

6. About this document

This guide is a work-in-progress document with new versions appearing periodically.

The latest version of this document can be downloaded from the Documentation Page.

6.1. Feedback

Any feedback is greatly appreciated, especially on what else this document should cover, including protocols
and network setups. General comments, errors found in the text, and any suggestions about how to improve
the documentation is welcome at <support@balasys.hu>.

xixwww.balasys.hu

Support contact

https://support.balasys.hu/
https://www.balasys.hu/en/services#training
https://docs.balasys.hu/

Chapter 1. How PNS works

This chapter describes how PNS works, and provides information about the core PNS modules, explaining how
they interoperate. For a detailed reference of the core modules, see the description of the particular in Chapter
5, Core (p. 169).

■ PNS startup and initialization: The main PNS thread is started, and the rules listening for incoming
connections are initialized.

■ Handling incoming connections: The client-side connection is established and the service to proxy
the connection is selected.

■ Proxy startup and server-side connections: The proxy instance inspecting the traffic is created and
connection to the server is established.

1.1. Procedure – PNS startup and initialization

Step 1. The velactl utility loads the instances.conf file and starts the main PNS program. The
instances.conf file stores the parameters of the configured PNS instances.

Step 2. PNS performs the following initialization steps:

■ Sets the stack limit.

■ Creates its PID file.

■ Changes the running user to the user and group specified for the instance.

■ Initializes the handling of dynamic capabilities and sets the chroot directory.

■ Loads the firewall policy from the policy.py file.

Step 3. The init() of PNS initializes the ruleset defined for the PNS instance.

Step 4. The kvela kernel module uploads packet filtering services, rules, and zones into the kernel.

Note
PNS creates four sockets (one for each type of traffic: TCP IPv6, TCP IPv4, UDP IPv6, UDP IPv4); the kvela module directs
the incoming connections to the appropriate socket.

1.2. Handling incoming connections

Incoming connections are first received by the kvela kernel module, which is actually a netfilter table. The
kvela module determines the source and destination zones of the connection, and then tries to find a suitable
firewall rule. If the rule points to a packet filtering service, the connection is processed according to Procedure
1.2.1, Handling packet filtering services (p. 2); if it points to an application-level service, the connection is
processed according to Procedure 1.2.2, Handling application-level services (p. 2). If no suitable rule is found,
the connection is rejected.

1www.balasys.hu

Handling incoming connections

1.2.1. Procedure – Handling packet filtering services

Step 1. PNS generates a session ID and creates a CONNTRACK entry for the connection. This ID is based
on all relevant information about the connection, including the protocol (TCP/UDP) and the client's
address.
The session ID uniquely identifies the connection and is included in every log message related to this
particular connection.

Step 2. Based on the parameters of the connection, the Rule selects the service that will inspect the connection.

Step 3. The Router defined in the service determines the destination address of the server.
The Router performs the following actions:

■ Determines the destination address of the server.

■ Sets the source address of the server-side connection, according to the forge_address

settings of the router.

Step 4. If the client is permitted to access the selected service, the packet filter is instructed to let the connection
pass PNS.

Step 5. The kvela module performs network address translation (NAT) on the connection, if needed.

1.2.2. Procedure – Handling application-level services

Step 1. For incoming connection requests that are processed on the application level, the main PNS thread
establishes the connection with the client. The connection is further processed in a separate thread; the
main thread is listening for new connections.

Step 2. The Dispatcher creates theMasterSession object of the connection and generates the base session ID.
This object stores all relevant information of the connection, including the protocol (TCP/UDP) and
the client's address.
The session ID uniquely identifies the connection and is included in every log message related to this
particular connection. Other components of PNS add further digits to the session ID.

Step 3. For TCP-based connections, PNS copies the Type of Service (ToS) value of the client-PNS connection
in the PNS-client connection.

Step 4. The Rule selects the service that will inspect the connection.

Step 5. The Router defined in the service determines the destination address of the server. The result is stored
in the Session object, where the Chainer can access it later.
The Router performs the following actions:

■ Determines the destination address of the server.

■ Sets the source address of the server-side connection (according to the forge_port,
forge_address settings of the router).

■ Sets the ToS value of the server-side connection.

Step 6. If the client is permitted to access the selected service, the startInstance() method of the service
is started. The startInstance() method performs the following actions:

2www.balasys.hu

Handling incoming connections

■ Verifies that the new instance does not exceed the number of instances permitted for the
service (max_instances parameter).

■ Creates the final session ID.

■ Creates an instance of the proxy class associated with the service. This proxy instance is
associated with a StackedSession object. The startup of the proxy is detailed in Procedure
1.3, Proxy startup and the server-side connection (p. 3).

1.3. Procedure – Proxy startup and the server-side connection

Step 1. To create an instance of the application-level proxy, the __init__ constructor of the proxy class calls
the Proxy.__init__ function of the Proxy module. The proxy instance is created into a new thread
from the PNSProxy ancestor class.

Step 2. From the new thread, the proxy loads its configuration.

Step 3. The proxy initiates connection to the server.

Note
Some proxies connect the server only after receiving the first client request.

Step 4. The Proxy.connectServer() method creates the server-side connection using the Chainer assigned to
the service. The Chainer performs the following actions:

■ Reads the parameters related to the server-side connection from the Session object. These
parameters were set by the Router and the Proxy.

■ Performs source and destination network address translation. This may modify the addresses
set by the Router and the Proxy.

■ Verifies that access to the server is permitted.

■ Establishes the connection using the Attach subsystem, and passes to the proxy the stream
that represents the connection.

Note
The Proxy.connectServer() method connects stacked proxies with their parent proxies.

3www.balasys.hu

Handling incoming connections

Chapter 2. Configuring PNS proxies

This chapter describes how PNS proxies work in general, and how to configure them.

■ For the details on configuring TLS/SSL connections, see Chapter 2, Configuring PNS proxies (p. 4).

■ For a complete reference of the available PNS proxies, see Chapter 4, Proxies (p. 34).

2.1. Policies for requests and responses

PNS offers great flexibility in proxy customization. Requests and commands, responses, headers, etc. can be
managed individually in PNS. This means that it is not only possible to enable/disable them one-by-one, but
custom actions can be assigned to them as well. The available options are listed in the description of each proxy,
but the general guidelines are discussed here.

All important events of a protocol have an associated policy hash: usually there is one for the requests or
commands and one for the responses. Where applicable for a protocol, there are other policy hashes defined as
well (e.g., for controlling the capabilities available in the IMAP protocol, etc.). The entries of the hash are the
possible events of the protocol (e.g., the request hash of the FTP protocol contains the possible commands -
RMD, DELE, etc.) and an action associated with the event - what PNS should do when this event occurs. The
available actions may slightly vary depending on the exact protocol and the hash, but usually they are the
following:

DescriptionAction

Enable the event; the command/response/etc. can be
used and is allowed through the firewall.

ACCEPT

Reject the event and send an error message. The event
is blocked and the client notified. The communication
can continue, the connection is not closed.

REJECT

Reject the event without sending an error message.
The event is blocked but the client is not notified. The

DROP

communication can continue, the connection is not
closed. In some cases (depending on the protocol) this
action is able to remove only a part of the message
(e.g., a particular header in HTTP traffic) without
rejecting the entire message.

Reject the event and terminate the connection.ABORT

Call a Python function to make a decision about the
event. The final decision must be one of the above

POLICY

actions (i.e. POLICY is not allowed). The parameters
received by the function are listed in the module

4www.balasys.hu

Policies for requests and responses

DescriptionAction

descriptions. See the examples below and in the
module descriptions for details.

Table 2.1. Action codes for protocol events

The use of the policy hashes and the action codes is illustrated in the following examples.

Example 2.1. Customizing FTP commands
In this example the 'RMD' command is rejected, and the connection is terminated if the user attempts to delete a file.

class MyFtp(FtpProxy):

def config(self):

self.request["RMD"] = (FTP_REQ_REJECT)

self.request["DELE"] = (FTP_REQ_ABORT)

Example 2.2. Using the POLICY action
This example calls a function called pUser (defined in the example) whenever a USER command is received within an FTP session. All
other commands are accepted. The parameter of the USER command (i.e. the username) is examined: if it is 'user1' or 'user2', the
connection is accepted, otherwise it is rejected.

class MyFtp(FtpProxy):

def config(self):

self.request["USER"] = (FTP_REQ_POLICY, self.pUser)

self.request["*"] = (FTP_REQ_ACCEPT)

def pUser(self,command):

if self.request_parameter == "user1" or self.request_parameter == "user2":

return FTP_REQ_ACCEPT

return FTP_REQ_REJECT

It must be noted that there is a difference between how PNS processes the POLICY actions and all the other
ones (e.g., ACCEPT, DROP, etc.). POLICY actions are evaluated on the policy (or Python) level of PNS, while
the other ones on the proxy (or C) level. Since the proxies of PNS are written in C, and operate on the proxy
level, the evaluation of POLICY actions is slightly slower, but this can be an issue only in very high-throughput
environments with complex policy settings.

2.1.1. Default actions

Default actions for all events of a hash (e.g., all requests) can be set using the '*' wildcard as the event. (Most
hashes have default actions configured by default, these can be found in the description of the proxy classes.)
It is important to note that setting the action using the '*' wildcard does NOT override an action explicitly
defined for an event, even if the explicit setting precedes the general one in the Python code. This feature is
illustrated in the example below.

Example 2.3. Default and explicit actions
The following two proxy classes have the same effect, even though the order of the code lines is switched. The 'APPE' command is
rejected, while all other commands are accepted.

class MyFtp1(FtpProxy):

def config(self):

self.request["APPE"] = (FTP_REQ_REJECT)

self.request["*"] = (FTP_REQ_ACCEPT)

5www.balasys.hu

Default actions

class MyFtp2(FtpProxy):

def config(self):

self.request["*"] = (FTP_REQ_ACCEPT)

self.request["APPE"] = (FTP_REQ_REJECT)

Warning
If the relevant hash does not contain a received request or response, the '*' entry is used which matches to every request/response. If
there is no '*' entry in the given hash, the request/response is denied.

2.1.2. Response codes

Responses in certain protocols include numeric response codes, e.g., in the FTP protocol responses start with
a three-digit code. In PNS it is possible to filter these codes as well, furthermore, to filter them based on the
command to which the response arrives to. In these cases the hash contains both the command and the answer,
and an action as well. The '*' wildcard character can be used to match for every command or response code.

Example 2.4. Customizing response codes
The following example accepts the response '250' only to the 'DELE' command, but allows any response code to the 'LIST' command.

class MyFtp1(FtpProxy):

def config(self):

self.response["DELE", "250"] = (FTP_RSP_ACCEPT)

self.response["*", "250"] = (FTP_RSP_REJECT)

self.response["LIST", "*"] = (FTP_RSP_ACCEPT)

It is not necessary to specify the full response code, it is also possible to specify only the first, or the first two
digits.

For example, all three response codes presented below are valid, but have different effects:

■ "PWD","200"
Match exactly the answer 200 coming in a reply to a PWD command.

■ "PWD","2"
Match every answer starting with '2' in a reply to a PWD command.

■ "*","20"
Match every answer between 200 and 209 in a reply to any command.

This kind of response code lookup is available in the following proxies: FTP, HTTP, and SMTP. The precedence
how the hash table entries are processed is the following:

1. Exact match. ("PWD","200")

2. Exact command match, partial response matches ("PWD","20"; "PWD","2"; "PWD","*")

3. Wildcard command, with answer codes repeated as above. ("*","200"; "*","20"; "*","2")

4. Wildcard for both indexes. ("*","*")

6www.balasys.hu

Response codes

2.2. Secondary sessions

Certain proxies support the use of secondary sessions, i.e. several sessions using the same proxy instance (the
same thread), effectively reusing proxy instances. As new sessions enter the proxy via a fastpath, using secondary
sessions can significantly decrease the load on the firewall.

When a new connection is accepted, PNS looks for the appropriate proxy instance which is willing to accept
secondary sessions. If there is none, a new proxy instance is started. An already running proxy instance is
appropriate if it is willing to accept secondary channels and the criteria about secondary sessions are met. (The
criteria can be specified in the configuration of the proxy class.)

The criteria are set via the secondary_mask attribute, while the number of secondary sessions allowed within
the same instance is controlled by the secondary_sessions attribute. The secondary_mask attribute is an
integer specifying which properties of an established session are considered to be important. If all important
properties match, the connection can be handled as a secondary session by a proxy instance accepting secondary
sessions, provided the new session does not exceed the limit set in secondary_sessions. The
secondary_mask attribute is actually a bitfield interpreted as follows: bit 0 means source address; bit 1 means
source port; bit 2 means destination address; bit 3 means destination port.

Currently the Plug, RADIUS, and Sip proxies support the use of secondary sessions.

Example 2.5. Example PlugProxy allowing secondary sessions
This example allows 100 parallel sessions in one proxy thread if the IP address and Port of the targets are the same.

class MyPlugProxy(PlugProxy):

def config(self):

PlugProxy.config(self)

self.secondary_mask = 0xC

self.secondary_sessions = 100

2.3. Embedded protocol analysis

Each protocol proxy available in PNS inspects the traffic for conformance to the given protocol. Often further
analysis of the data transferred via the protocol is required, this can be accomplished via stacking. Stacking is
a method when the data transferred in the protocol is passed to another proxy or program. After performing the
inspection, the stacked proxy or program returns the data to the original proxy, which resumes its transmission.

2.3.1. Proxy stacking

Proxy stacking is mainly used to inspect embedded protocols, or perform virus filtering: e.g., to inspect the
parts of e-mail messages, the mail transport protocol is examined with an Smtp proxy, and then a MIME proxy
is stacked to inspect MIME-formatted mail messages. It is possible to stack several layers of proxies into each
other if needed, e.g., in the above example, a further virus filtering solution (like a CF module) could be stacked
into the MIME proxy.

Note
Every proxy is able to handle SSL/TLS-encypted connection on its own. This feature greatly decreases the need of proxy stacking,
making it needed only in special cases, for example, to inspect HTTP traffic tunneled in SSH.

7www.balasys.hu

Secondary sessions

Stacking a proxy to inspect the embedded protocol is possible via the self.request_stack attribute; if
another attribute has to be used, it is noted in the description of the given proxy. The HTTP proxy is special in
the sense that it is possible to stack different proxies into the requests and the responses.

The parameters of the stack attribute has to specify the following:

■ The protocol elements for which embedded inspection is required. This parameter can be used to
specify if all received data should be passed to the stacked proxy ("*"), or only the data related (sent
or received) to specific protocol elements (e.g., only the data received with a GET request in HTTP).

■ The mode how the data is passed to the stacked proxy. This parameter governs if only the data part
should be passed to the stacked proxy (XXXX_STK_DATA, where XXXX depends on the protocol),
or (if applicable) MIME header information should be included as well (XXXX_STK_MIME) to
make it possible to process the data body as a MIME envelope. Please note that while it is possible
to change the data part in the stacked proxy, it is not possible to change the MIME headers - they
can be modified only by the upper level proxy. The available constants are listed in the respective
protocol descriptions. The default value for this argument is XXXX_STK_NONE, meaning that no
data is transferred to the stacked proxy. In some proxies it is also possible to call a function (using
the XXXX_STK_POLICY action) to decide which part (if any) of the traffic should be passed to
the stacked proxy.

■ The proxy class that will perform inspection of the embedded protocol.

For additional information on proxy stacking, see Section 6.6.3, Analyzing embedded traffic in Proxedo Network
Security Suite 2 Administrator Guide, and the various tutorials available at the BalaSys Documentation Page.

2.3.2. Program stacking

When stacking a program, the data received by a proxy within a protocol is directed to the standard input.
Arbitrary commands (including command line scripts, or applications) working from the standard input can be
run on this data stream. The original proxy obtains the processed data back from the standard output. When
stacking a command, the command to be called has to be included in the proper stack attribute of the proxy
between double-quotes. This is illustrated in the following example.

Example 2.6. Program stacking in HTTP
In this example a simple 'sed' (stream editor) command is stacked into the HTTP proxy to replace all occurrences of 'http' to 'https', thus
securing the HTTP connections on one side of the firewall.

class MyHttp(HttpProxy):

def config(self):

HttpProxy.config(self)

self.response_stack["GET"] = /

(HTTP_STK_DATA, (V_STACK_PROGRAM, "/bin/sed '/http:/s//https:/g'"))

8www.balasys.hu

Program stacking

../../pns-guide-admin/pdf/pns-guide-admin.pdf#pns_proxies_stacking
https://docs.balasys.hu/

Chapter 3. The PNS SSL framework

This chapter describes the SSL protocol and the SSL framework available for every Application-level Gateway
proxy.

3.1. The SSL and TLS protocols

Secure Socket Layer v3 (SSL) and Transport Layer Security v1 (TLS) are widely used crypto protocols
guaranteeing data integrity and confidentiality in many PKI and e-commerce systems. They allow both the
client and the server to authenticate each other. SSL/TLS use a reliable TCP connection for data transmission
and cooperate with any application-level protocol. SSL/TLS guarantee that:

■ Communication in the channel is private, only the other communicating party can decrypt the
messages.

■ The channel is authenticated, so the client can make sure that it communicates with the right server.
Optionally, the server can also authenticate the client. Authentication is performed via certificates
issued by a Certificate Authority (CA). Certificates identify the owner of an encryption keypair used
in encrypted communication.

■ The channel is reliable, which is ensured by message integrity verification using MAC.

SSL/TLS is almost never used in itself: it is used as a secure channel to transfer other, less secure protocols.
The protocols most commonly embedded into SSL/TLS are HTTP and POP3 (i.e. these are the HTTPS and
POP3S protocols).

3.1.1. Procedure – The SSL handshake

As an initial step, both the client and the server collect information to start the encrypted communication.

Step 1. The client sends a CLIENT-HELLO message.

Step 2. The server answers with a SERVER-HELLO message containing the certificate of the server. At this
point the parties determine if a new master key is needed.

Note
The server stores information (including the session ID and other parameters) about past SSL/TLS sessions in its session
cache. Clients that have contacted a particular server previously can request to continue a session (by identifying its session
ID); this can be used to accelerate the initialization of the connection. Application-level Gateway currently does not support
this feature, but this does not cause any noticeable difference to the clients.

Step 3. The client verifies the server's certificate. If the certificate is invalid the client sends an ERROR message
to the server.

Note
If a new master key is needed the client gets the server certificate from the SERVER-HELLO message and generates a master
key, sending it to the server in a CLIENT-MASTER-KEY message.

9www.balasys.hu

The SSL and TLS protocols

Step 4. The server sends a SERVER-VERIFY message, which authenticates the server itself.

Step 5. Optionally, the server can also authenticate the client by requesting the client's certificate with a
REQUEST-CERTIFICATE message.

Step 6. The server verifies the certificate received from the client and finishes the handshake with a
SERVER-FINISH message.

Note
In SSL two separate session keys are used, one for outgoing communication (which is of course incoming at the other end),
and another key for incoming communication. These are known as SERVER/CLIENT-READ-KEY and
SERVER/CLIENT-WRITE-KEY.

3.2. Handling TLS and SSL connections in Application-level Gateway

PNS has a common framework that allows every Application-level Gateway proxy to use SSL/TLS encryption,
and - in some cases - also supports STARTTLS.

Note
Currently, the following proxies support STARTTLS: Ftp proxy (to start FTPS sessions), Smtp proxy.

3.2.1. Behavior of the SSL framework

The SSL framework inspects SSL/TLS connections, and also any other connections embedded into the encrypted
SSL/TLS channel. SSL/TLS connections initiated from the client are terminated on the firewall, and two separate
SSL/TLS connections are built: one between the client and the firewall, and one between the firewall and the
server. If both connections match the configuration settings of Application-level Gateway (for example, the
certificates are valid, and only the allowed encryption algorithms are used), Application-level Gateway inspects
the protocol embedded into the secure channel as well. Note that the configuration settings can be different for
the two connections, for example, it is possible to permit different protocol versions and encryption settings.

When a firewall rule matches an incoming connection, Application-level Gateway starts the Service specified
in the firewall rule to inspect the connection. The Encryption policy set in the Service determines the encryption
settings used in the connection.

■ For the details of the attributes related to the SSL framework, see Section 5.5, Module
Encryption (p. 195).

■ Several configuration examples and considerations are discussed in the Technical White Paper and
Tutorial Proxying secure channels - the Secure Socket Layer, available at the BalaSysDocumentation
Page.

Depending on the scenario (TwoSidedEncryption, ClientOnlyEncryption, and so on) set in the Encryption
policy, the SSL framework selects the first peer to perform the SSL handshake with.

As part of the handshake process, Application-level Gateway checks if encryption is required on the given side.
It is not necessary for SSL to be enabled on both sides - Application-level Gateway can handle one-sided SSL

10www.balasys.hu

Handling TLS and SSL connections in Application-level Gateway

https://docs.balasys.hu/
https://docs.balasys.hu/

connections as well (for example, the firewall communicates in an unencrypted channel with the client, but in
a secure channel with the server). If SSL is not enabled, the handshake is skipped for that side.

When SSL is needed, the Service collects the required parameters (keys, certificates, and so on) from the
Encryption policy.

The SSL handshake is slightly different for the client (in this case Application-level Gateway behaves as an
SSL server) and the server (when Application-level Gateway behaves as an SSL client):

■ Client-side (SSL server) behavior. In the client-side connection Application-level Gateway acts
as an SSL server, and shows the client a certificate.
If peer authentication is enabled (that is, the required and trust_level attributes of the verifier
used in the Encryption policy is properly set), Application-level Gateway sends a list of trusted CAs
to the client. If the client returns a certificate, Application-level Gateway verifies it against the trusted
CA list and their associated revocation lists, and also checks the validity of the certificate.

■ Server-side (SSL client) behavior. The server-side handshake is similar to the client-side
handshake only the order of certificate verification is different. On the server side, Application-level
Gateway verifies the server's certificate first, and then sends its own certificate for verification.

3.2.2. Session reuse in SSL and TLS connections

Starting with version 6.0, PNS supports session reuse in SSL and TLS connections. PNS supports both session
identifiers (RFC 8446) and session tickets (RFC 8446). Note that session tickets can be used only in TLS
connections. Unless explicitly disabled in the configuration of the Encryption policy (for details, see Section
5.5, Module Encryption (p. 195)), PNS attempts to use session tickets, and automatically falls back to using
session identifiers if needed.

3.2.3. Understanding Encryption policies

This section describes the configuration blocks of Encryption policies and objects used in Encryption policies.
Encryption policies were designed to be flexible, and make encryption settings easy to reuse in different services.

An Encryption policy is an object that has a unique name, and references a fully-configured encryption
scenario.

Encryption scenarios are actually Python classes that describe how encryption is used in a particular connection,
for example, both the server-side and the client-side connection is encrypted, or the connection uses a one-sided
SSL connection, and so on. Encryption scenarios also reference other classes that contain the actual settings
for the scenario. Depending on the scenario, the following classes can be set for the client-side, the server-side,
or both.

■ Certificate generator: It creates or loads an X.509 certificate that Application-level Gateway shows
to the peer. The certificate can be a simple certificate (Section 5.5.23, Class StaticCertificate (p. 233)),
a dynamically generated certificate (for example, used in a keybridging scenario, Section 5.5.12,
Class DynamicCertificate (p. 215)), or a list of certificates to support Server Name Indication (SNI,
Section 5.5.18, Class SNIBasedCertificate (p. 225)).
The related parameters are: client_certificate_generator,
server_certificate_generator

11www.balasys.hu

Session reuse in SSL and TLS connections

http://tools.ietf.org/html/rfc8446
http://tools.ietf.org/html/rfc8446

■ Certificate verifier: The settings in this class determine if Application-level Gateway requests a
certificate of the peer and the way to verify it. Application-level Gateway has separate built-in classes
for the client-side and the server-side verification settings: Section 5.5.6, Class
ClientCertificateVerifier (p. 204) and Section 5.5.19, Class ServerCertificateVerifier (p. 226). For
details and examples, see Section 3.2.5, Certificate verification options (p. 23).
The related parameters are: client_verify, server_verify

■ Protocol settings: The settings in this class determine the protocol-level settings of the SSL/TLS
connection, for example, the permitted ciphers and protocol versions, session-reuse settings, and so
on. Application-level Gateway has separate built-in classes for the client-side and the server-side
SSL/TLS settings: Section 5.5.10, Class ClientTLSOptions (p. 210) and Section 5.5.22, Class
ServerTLSOptions (p. 230). For details and examples, see Section 3.2.6, Protocol-level TLS
settings (p. 24).
The related parameters are: client_tls_options, server_tls_options

Application-level Gateway provides the following built-in encryption scenarios:

■ TwoSidedEncryption: Both the client-Application-level Gateway and the Application-level
Gateway-server connections are encrypted. For details, see Section 5.5.25, Class
TwoSidedEncryption (p. 237).

■ ClientOnlyEncryption: Only the client-Application-level Gateway connection is encrypted, the
Application-level Gateway-server connection is not. For details, see Section 5.5.8, Class
ClientOnlyEncryption (p. 207).

■ ServerOnlyEncryption: Only the Application-level Gateway-server connection is encrypted, the
client-Application-level Gateway connection is not. For details, see Section 5.5.21, Class
ServerOnlyEncryption (p. 229).

■ ForwardStartTLSEncryption: The client can optionally request STARTTLS encryption. For
details, see Section 5.5.16, Class ForwardStartTLSEncryption (p. 221).

■ ClientOnlyStartTLSEncryption: The client can optionally request STARTTLS encryption, but
the server-side connection is always unencrypted. For details, see Section 5.5.9, Class
ClientOnlyStartTLSEncryption (p. 208).

■ FakeStartTLSEncryption: The client can optionally request STARTTLS encryption, but the
server-side connection is always encrypted. For details, see Section 5.5.15, Class
FakeStartTLSEncryption (p. 219).

For example, on configuring Encryption policies, see How to configure TLS proxying in PNS 2. For details on
HTTPS-specific problems and the related solutions, see How to configure HTTPS proxying in PNS 2.

3.2.4. Configuring Encryption policies

To configure Encryption policies, you have to create an Encryption policy, and derive and configure your own
scenario from the available built-in scenarios. To configure a scenario, you have to derive and configure your
own certificate generator, certificate verifier, and protocol settings classes. (Do not change the built-in classes
directly, because that changes the default behavior of Application-level Gateway, and can have unexpected and
unwanted effects on the configuration of Application-level Gateway.)

12www.balasys.hu

Configuring Encryption policies

../../pns-tutorial-tls/pdf/pns-tutorial-tls.pdf#pns-tutorial-tls
../../pns-tutorial-https/pdf/pns-tutorial-https.pdf#pns-tutorial-https

Note
If the built-in scenarios do not cover your particular use-case, derive an own class from TwoSidedEncryption, and configure it to suit
your needs.

For a details on configuring Encryption Policies, see the following procedure, or the How to configure TLS
proxying in PNS 2 tutorial.

3.2.4.1. Procedure – Enabling TLS-encryption in the connection

Purpose:

To proxy HTTPS connections, configure an Encryption Policy to handle TLS connections, and use this Encryption
Policy in your Service. The policy will be configured to:

■ Require the client and the server to use strong encryption algorithms, the use of weak algorithms
will not be permitted.

■ Enable connections only to servers with certificates signed by CAs that are in the trusted CAs list
of the PNS firewall node. (For details on managing trusted CA groups, see Section 11.3.7.3, Managing
trusted groups in Proxedo Network Security Suite 2 Administrator Guide.)

■ The clients will only see the certificate of PNS. To allow the clients to access the certificate
information of the server, see Procedure 2.2, Configuring keybridging in How to configure TLS
proxying in PNS 2.

Steps:

Step 1. Generate a certificate for your firewall. The Application-level Gateway component requires its own
certificate and keypair to perform TLS proxying.
MC: Create a certificate, set the firewall as the owner host of the certificate, then distribute it to the
firewall host. For details, see Chapter 11, Key and certificate management in PNS in Proxedo Network
Security Suite 2 Administrator Guide.

Python: In configurations managed manually from python, create an X.509 certificate (with its
related keypair) using a suitable software and deploy it to the PNS firewall host (for example, copy it
to the /etc/key.d/mycert folder).

Step 2. Create and configure an Encryption Policy. Complete the following steps.

Step a. Navigate to the Application-level Gateway MC component of the firewall host.

Step b. Select Policies > New.

Step c. Enter a name into the Policy name field, for example, MyTLSEncryption.

13www.balasys.hu

Configuring Encryption policies

../../pns-tutorial-tls/pdf/pns-tutorial-tls.pdf#pns-tutorial-tls
../../pns-tutorial-tls/pdf/pns-tutorial-tls.pdf#pns-tutorial-tls
../../pns-guide-admin/pdf/pns-guide-admin.pdf#pki-trusted-groups
../../pns-guide-admin/pdf/pns-guide-admin.pdf#pki-trusted-groups
../../pns-tutorial-tls/pdf/pns-tutorial-tls.pdf#keybridging
../../pns-guide-admin/pdf/pns-guide-admin.pdf#chapter_pki

Figure 3.1. Creating a new Encryption policy

Step d. Select Policy type > Encryption Policy, then click OK.

Step e. Select Class > TwoSidedEncryption.
Python:

EncryptionPolicy(

name="MyTLSEncryption",

encryption=TwoSidedEncryption()

)

Step f. Double-click client_certificate_generator, then select Class > StaticCertificate.

Figure 3.2. Selecting Encryption policy class

Step g. Double-click the certificates and click New to add a certificate entry to a list of
certificates.

14www.balasys.hu

Configuring Encryption policies

Figure 3.3. Creating a new certificate entry

Step h. Double-click the certificate_file_path. A window displaying the certificates owned
by the host will open up. The lower section of the window shows the information
contained in the certificate. Select the list of certificates Application-level Gateway is
required to show to the clients (for example, the certificate created in Step 1), then
click Select.

15www.balasys.hu

Configuring Encryption policies

Figure 3.4. Creating a new Encryption policy

Python:

encryption=TwoSidedEncryption(

client_certificate_generator=StaticCertificate(

certificates=(

Certificate.fromFile(

certificate_file_path="/etc/key.d/VMS_Engine/cert.pem",

private_key=PrivateKey.fromFile(

"/etc/key.d/VMS_Engine/key.pem")

),

)

)

)

Step i. If the private key of the certificate is password-protected, double-click
private_key_password, type the password, then click OK. Otherwise, click OK.

Step j. Disable mutual authentication. That way, Application-level Gateway will not request
a certificate from the clients.
Double-click client_verify, select Class > ClientNoneVerifier, then click OK.

16www.balasys.hu

Configuring Encryption policies

Figure 3.5. Disabling mutual authentication

Python:

encryption=TwoSidedEncryption(

client_verify=None

)

Step k. Specify the directory containing the certificates of the trusted CAs. These settings
determine which servers can the clients access: the clients will be able to connect only
those servers via TLS which have certificate signed by one of these CAs (or a lower
level CA in the CA chain).
Double-click server_verify, double-click verify_ca_directory, then type the path and
name to the directory that stores the trusted CA certificates, for example,
/etc/ca.d/certs/. Click OK.

17www.balasys.hu

Configuring Encryption policies

Figure 3.6. Specifying trusted CAs

Python:

encryption=TwoSidedEncryption(

server_verify=ServerCertificateVerifier(

verify_ca_directory="/etc/ca.d/certs/"

)

)

Note
CAs cannot be referenced directly, only the trusted group containing them. For details on managing
trusted groups, see Section 11.3.7.3, Managing trusted groups in Proxedo Network Security Suite 2
Administrator Guide.

Step l. Specify the directory containing the CRLs of the trusted CAs.
Double-click verify_crl_directory, then type the path and name to the directory that
stores the CRLs of the trusted CA certificates, for example, /etc/ca.d/crls/. Click
OK.

18www.balasys.hu

Configuring Encryption policies

../../pns-guide-admin/pdf/pns-guide-admin.pdf#pki-trusted-groups

Figure 3.7. Specifying CRLs

Python:

encryption=TwoSidedEncryption(

server_verify=ServerCertificateVerifier(

verify_ca_directory="/etc/ca.d/certs/",

verify_crl_directory="/etc/ca.d/crls/"

)verify_

)

S t e p
m.

Optional Step: The Common Name in the certificate of a server or webpage is usually
its domain name or URL. By default, Application-level Gateway compares this Common
Name to the actual domain name it receives from the server, and rejects the connection
if they do not match. That way it is possible to detect several types of false certificates
and prevent a number of phishing attacks. If this mode of operation interferes with
your environment, and you cannot use certificates that have proper Common Names,
disable this option.
Double-click server_verify > check_subject, select FALSE, then click OK.

Python:

encryption=TwoSidedEncryption(

server_verify=ServerCertificateVerifier(

verify_ca_directory="/etc/ca.d/certs/",

verify_crl_directory="/etc/ca.d/crls/",

check_subject=FALSE

)

)

19www.balasys.hu

Configuring Encryption policies

Step n. Optional Step: Forbid the use of weak encryption algorithms to increase security. The
related parameters can be set separately for the client and the server-side of
Application-level Gateway, using the client_tls_options and server_tls_options
parameters of the Encryption Policy. Disabling weak algorithms also eliminates the
risk of downgrade attacks, where the attacker modifies the TLS session-initiation
messages to force using weak encryption that can be easily decrypted by a third party.

Note
Certain outdated operating systems, or old browser applications do not properly support strong encryption
algorithms. If your clients use such systems or applications, it might be required to permit weak
encryption algorithms.

Step o. Optional Step: Enable untrusted certificates. Since a significant number of servers use
self-signed certificates (with unverifiable trustworthiness), in certain situations it might
be needed to permit access to servers that have untrusted certificates.

Note
When an untrusted certificate is accepted, the generated certificates will be signed with the untrusted
CA during keybridge scenarios. For details on configuring keybridging, see Procedure 2.2, Configuring
keybridging in How to configure TLS proxying in PNS 2

Double-click server_verifier > trust_level, click the drop-down menu and select
UNTRUSTED, then click OK.

Note
When the trust_level value is NONE, even the invalid certificates are accepted and at the client side
there is no client certificate request sent to the client.

Python:

encryption=TwoSidedEncryption(

server_verify=ServerCertificateVerifier(

trust_level=TLS_TRUST_LEVEL_UNTRUSTED

)

)

Python:

The Encryption Policy configured in the previous steps is summarized in the following code snippet.

EncryptionPolicy(

name="MyTLSEncryption",

encryption=TwoSidedEncryption(

client_verify=ClientNoneVerifier(),

client_tls_options=ClientTLSOptions(),

server_verify=ServerCertificateVerifier(

20www.balasys.hu

Configuring Encryption policies

../../pns-tutorial-tls/pdf/pns-tutorial-tls.pdf#keybridging
../../pns-tutorial-tls/pdf/pns-tutorial-tls.pdf#keybridging

trust_level=TLS_TRUST_LEVEL_FULL,

intermediate_revocation_check_type =

TLS_INTERMEDIATE_REVOCATION_SOFT_FAIL,

leaf_revocation_check_type =

TLS_LEAF_REVOCATION_SOFT_FAIL,

trusted_certs_directory="",

verify_depth=4,

verify_ca_directory="/etc/ca.d/certs/",

verify_crl_directory="/etc/ca.d/crls/",

check_subject=TRUE

),

server_tls_options=ServerTLSOptions(),

client_certificate_generator=StaticCertificate(

certificates=(

Certificate.fromFile(

certificate_file_path=

"/etc/key.d/VMS_Engine/cert.chain.pem",

private_key=PrivateKey.fromFile(

"/etc/key.d/VMS_Engine/key.pem")),

))

))

Step 3. Select PKI > Distribute Certificates.
Note when managing PNS without MC, copy the certificates and CRLs to their respective directories.
They are not updated automatically as in configurations managed by MC.

By performing the above steps, the proxy has been configured to use the specified certificate and its
private key, and also the directory has been set that will store the certificates of the trusted CAs and
their CRLs. Client authentication has also been disabled.

Step 4. Create a service that clients can use to access the Internet in a secure channel. This service will use
the MyTLSEncryption Encryption Policy.

Step a. Select Services > New, enter a name for the service (for example,
intra_HTTPS_inter), then click OK.

Step b. Select Proxy class > Http > HttpProxy.

Step c. Select Encryption > MyTLSEncryption.

Step d. Configure the other parameters of the service as neecessary for the environment, then
click OK.

Step e. Select Firewall Rules > New > Service, and select the service created in the previous
step. For more details on creating firewall rules, see Section 6.5, Configuring firewall
rules in Proxedo Network Security Suite 2 Administrator Guide.

Step f. Configure the other parameters of the rule as necessary for the environment, then click
OK.

21www.balasys.hu

Configuring Encryption policies

../../pns-guide-admin/pdf/pns-guide-admin.pdf#pns-firewall-rules
../../pns-guide-admin/pdf/pns-guide-admin.pdf#pns-firewall-rules

Figure 3.8. Creating a Service

Python:

def demo() :

Service(

name='demo/intra_HTTPS_inter',

router=TransparentRouter(),

chainer=ConnectChainer(),

proxy_class=HttpProxy,

max_instances=0,

max_sessions=0,

keepalive=V_KEEPALIVE_NONE,

encryption_policy="MyTLSEncryption"

)

Rule(

rule_id=300,

src_subnet=('192.168.1.1/32',),

dst_zone=('internet',),

proto=6,

service='demo/intra_HTTPS_inter'

)

Step 5. Commit and upload the changes, then restart Application-level Gateway.
Expected result:

Every time a client connects to a server, Application-level Gateway checks the certificate of the server.
If the signer CA is trusted, Application-level Gateway shows a trusted certificate to the client (browser
or other application). If the certificate of the server is untrusted, Application-level Gateway shows an
untrusted certificate to the client, giving a warning to the user. The user can then decide whether the
certificate can be accepted or not.

22www.balasys.hu

Configuring Encryption policies

3.2.5. Certificate verification options

Application-level Gateway is able to automatically verify the certificates received.

When checking revocation state for certificate chains Application-level Gateway offers two options:

■ leaf verification: When enabled, leaf revocation check performs both CRL and OCSP staple checking.

■ non-leaf verification: Non-leaf revocation check performs CRL checking.

To support both maximum security verification and the more common use-cases with less strict scenarios, the
level of strictness for the verification can be configured separately for leaf and for non-leaf certificates. The
configuration is done in encryption policies using options intermediate_revocation_check_type and
leaf_revocation_check_type.

For both intermediate_revocation_check_type and leaf_revocation_check_type options 3 values
are available:

■ NONE: no revocation check is done

■ HARD_FAIL: revocation check is performed with strict rules. No uncertainty is tolerated, the
certificate must have up-to-date and authentic information about a status not being revoked. Otherwise
the certificate is rejected by the policy.

■ SOFT_FAIL: revocation check is performed, however, the information is not verified, and the failure
to get revocation information is tolerated. If any available information states that the certificate is
revoked, the certificate is rejected, otherwise the connection can be established.

intermediate_revocation_check_type also controls the chain verifier behavior of OCSP stapling. If no
CRL list from the intermediate CA is available, the OCSP stapling signer's 'certification revoked' state cannot
be determined. If intermediate_revocation_check_type has the HARD_FAIL value, the OCSP stapling
message is not accepted as a valid revocation information. However, if the OCSP stapling message shows
'revoked state' the message is considered regardless of its chain verification.

The following tables describe how the values, that is NONE, HARD_FAIL or SOFT_FAIL influence the result
of the revocation check type:

HARD_FAIL evaluates
the results as:

SOFT_FAIL evaluates
the results as:

OCSP stapling resultCRL result

ACCEPTACCEPTGOODGOOD

ACCEPTACCEPTUNKNOWNGOOD

ACCEPTACCEPTGOODUNKNOWN

DENYACCEPTUNKNOWNUNKNOWN

DENYDENYREVOKEDGOOD

DENYDENYGOODREVOKED

DENYDENYREVOKEDUNKNOWN

DENYDENYUNKNOWNREVOKED

23www.balasys.hu

Certificate verification options

HARD_FAIL evaluates
the results as:

SOFT_FAIL evaluates
the results as:

OCSP stapling resultCRL result

DENYDENYREVOKEDREVOKED
Table 3.1. Evaluation logic for leaf revocation check type

HARD_FAIL evaluates the
results as:

SOFT_FAIL evaluates the results
as:

CRL result

ACCEPTACCEPTGOOD

DENYACCEPTUNKNOWN

DENYDENYREVOKED
Table 3.2. Evaluation logic for non-leaf revocation check type

The types of accepted certificates can be controlled separately on the client and the server side using the attributes
of the ClientCertificateVerifier and ServerCertificateVerifier classes (or your own classes derived from these),
respectively.

By default (if the check_subject parameter is set to TRUE in the verifier), Application-level Gateway compares
the domain name provided in the Subject field of the server certificate to application-level information about
the server (that is, the domain name of the URL in HTTP and HTTPS connections).

Example 3.1. Accepting invalid certificates
The following example configures a simple Encryption Policy that permits invalid certificated, and does not check the subject of the
server's certificate.

EncryptionPolicy(

name="MyTLSEncryption",

encryption=TwoSidedEncryption(

client_verify=ClientNoneVerifier(),

server_verify=ServerCertificateVerifier(

trust_level=TLS_TRUST_LEVEL_NONE, intermediate_revocation_check_type =

TLS_INTERMEDIATE_REVOCATION_NONE, leaf_revocation_check_type =

TLS_LEAF_REVOCATION_NONE,

trusted_certs_directory="",

verify_depth=4,

verify_ca_directory="/etc/ca.d/certs/",

verify_crl_directory="/etc/ca.d/crls/",

check_subject=FALSE

)

3.2.6. Protocol-level TLS settings

The following sections describe and show examples to common protocol-level TLS settings.

Cipher selection
The cipher algorithms used for key exchange and mass symmetric encryption are specified by the cipher

attribute of the class referred in the client_tls_options or server_tls_options of the Encryption
policy. These attributes contain a cipher specification as specified by the OpenSSL manuals, see the manual
page ciphers(ssl) for further details.

The default set of ciphers can be set by using the following predefined variables.

24www.balasys.hu

Protocol-level TLS settings

ValueName

n/aTLS_CIPHERS_DEFAULT

n/aTLS_CIPHERS_OLD

n/aTLS_CIPHERS_CUSTOM
Table 3.3. Constants for cipher selection

Cipher specifications as defined above are sorted by key length. The cipher providing the best key length will
be the most preferred.

3.2.7. Enabling STARTTLS

Application-level Gateway supports the STARTTLS method for encrypting connections. STARTTLS support
can be configured separately for the client- and server side. Currently, the following proxies support STARTTLS:
Ftp proxy (to start FTPS sessions), Smtp proxy.

STARTTLS is enabled by default in the following encryption scenarios:

■ ClientOnlyStartTLSEncryption: STARTTLS is enabled on the client-side, but the server-side
connection will not be encrypted.

■ FakeStartTLSEncryption: STARTTLS is enabled on the client-side, the server-side connection is
always encrypted.

■ ForwardStartTLSEncryption: STARTTLS is enabled on the client-side, and Application-level
Gateway forwards the request to the server.

Example 3.2. Configuring FTPS support
This example is a standard FtpProxy with FTPS support enabled.

class FtpsProxy(FtpProxy):

def config(self):

FtpProxy.config(self)

self.max_password_length=64

EncryptionPolicy(

name="ForwardSTARTTLS",

encryption=ForwardStartTLSEncryption(

client_verify=ClientCertificateVerifier(),

client_tls_options=ClientTLSOptions(),

server_verify=ServerCertificateVerifier(),

server_tls _options=ServerTLSOptions(),

client_certificate_generator=DynamicCertificate(

private_key=PrivateKey.fromFile(key_file_path="/etc/key.d/VMS_Engine/key.pem"),

trusted_ca=Certificate.fromFile(certificate_file_path="/etc/ca.d/certs/my-trusted-ca-cert.pem",

private_key=PrivateKey.fromFile("/etc/ca.d/keys/my-trusted-ca-cert.pem")),

untrusted_ca=Certificate.fromFile(certificate_file_path="/etc/ca.d/certs/my-untrusted-ca-cert.pem",

private_key=PrivateKey.fromFile("/etc/ca.d/keys/my-untrusted-ca-cert.pem")))))

def demo() :

Service(name='demo/MyFTPSService', router=TransparentRouter(), chainer=ConnectChainer(),

proxy_class=FtpsProxy, max_instances=0, max_sessions=0, keepalive=V_KEEPALIVE_NONE,

encryption_policy="ForwardSTARTTLS")

Rule(rule_id=2,

proto=6,

25www.balasys.hu

Enabling STARTTLS

service='demo/MyFTPSService'

)

3.2.8. Procedure – Configuring keybridging

Purpose:

Keybridging is a method to let the client see a copy of the server's certificate (or vice versa). That way the client
can inspect the certificate of the server, and decide about its trustworthiness. If the PNS firewall is proxying
the TLS connection, the client cannot inspect the certificate of the server directly, but you can configure
Application-level Gateway to generate a new certificate on-the-fly, using the data in the server's certificate.
Application-level Gateway sends this generated certificate to the client. To configure to perform keybridging,
complete the following steps.

Steps:

Step 1. Create the required keys and CA certificates.

Step a. Generate two local CA certificates. Application-level Gateway will use one of them
to sign the generated certificate for servers having trusted certificates, the other one
for servers with untrusted or self-signed certificates. Make this difference visible
somewhere in the CA's certificates, for example, in their common name
(CA_for_Untrusted_certs; CA_for_Trusted_certs). These CA certificates can
be self-signed, or signed by your local root CA.
IMPORTANT: Do NOT set a password for these CAs, as Application-level Gateway
must be able to access them automatically.

Step b. Import the certificate of the CA signing the trusted certificates to your clients to make
the generated certificates 'trusted'.
IMPORTANT: Do NOT import the other CA certificate.

Step c. Generate a new certificate. The private key of this keypair will be used in the on-the-fly
generated certificates, the public part (DN and similar information) will not be used.

Step d. In MC, set the PNS firewall host to be the owner of this certificate, then select PKI >
Distribute Certificates.
Python:

Copy the certificates and CRLs to their respective directories (for example, into
/etc/vela/tls-bridge/). Note that they are not updated automatically as in
configurations managed by MC.

Step 2. Create and configure an Encryption Policy. Complete the following steps.

Step a. Navigate to the Application-level Gateway MC component of the firewall host.

Step b. Select Policies > New.

Step c. Enter a name into the Policy name field, for example, KeybridgingEncryption.

26www.balasys.hu

Enabling STARTTLS

Figure 3.9. Creating an Encryption policy

Step d. Select Policy type > Encryption Policy, then click OK.

Step e. Select Class > TwoSidedEncryption.

Figure 3.10. Selecting the encryption class

Python:

EncryptionPolicy(

name="KeybridgingEncryption",

encryption=TwoSidedEncryption()

)

Step f. Double-click client_certificate_generator, then select Class > DynamicCertificate.

27www.balasys.hu

Enabling STARTTLS

Figure 3.11. Selecting the certificate

Python:

encryption=TwoSidedEncryption(

client_certificate_generator=DynamicCertificate()

)

Step g. Double-click private_key > key_file_path. The certificates owned by the host will
be displayed. Select the one you created in Step 1c, then click OK. MC will
automatically fill the value of the parameter to point to the location of the private key
file of the certificate.
If the private key of the certificate is password-protected, double-click passphrase,
then enter the passphrase for the private key.

Python:

encryption=TwoSidedEncryption(

client_certificate_generator=DynamicCertificate(

private_key=PrivateKey.fromFile(key_file_path="/etc/key.d/TLS-bridge/key.pem")

)

)

Step h. Double-click trusted_ca_files > certificate_file_path, select CA that
will be used to sign the generated certificates for trusted peers (for example,
CA_for_Trusted_certs), then click OK.

28www.balasys.hu

Enabling STARTTLS

If the private key of the certificate is password-protected, double-click
private_key_password, then enter the passphrase for the private key.

Python:

client_certificate_generator=DynamicCertificate(

private_key=PrivateKey.fromFile(key_file_path="/etc/key.d/TLS-bridge/key.pem"),

trusted_ca=Certificate.fromFile(

certificate_file_path="/etc/ca.d/certs/CA_for_Trusted_certs.pem",

private_key=PrivateKey.fromFile("/etc/ca.d/keys/CA_for_Trusted_certs.pem"))

)

Step i. Double-click untrusted_ca_files, then select CA that will be used to sign the
generated certificates for untrusted peers (for example, CA_for_Untrusted_certs).
If the private key of the certificate is password-protected, double-click
private_key_password, then enter the passphrase for the private key.

Python:

client_certificate_generator=DynamicCertificate(

private_key=PrivateKey.fromFile(key_file_path="/etc/key.d/TLS-bridge/key.pem"),

trusted_ca=Certificate.fromFile(

certificate_file_path="/etc/ca.d/certs/CA_for_Trusted_certs.pem",

private_key=PrivateKey.fromFile("/etc/ca.d/keys/CA_for_Trusted_certs.pem")),

untrusted_ca=Certificate.fromFile(

certificate_file_path="/etc/ca.d/certs/CA_for_Untrusted_certs.pem",

private_key=PrivateKey.fromFile("/etc/ca.d/keys/CA_for_Untrusted_certs.pem"))

)

Python:

The Encryption Policy configured in the previous steps is summarized in the following
code snippet.

EncryptionPolicy(

name="KeybridgingEncryption",

encryption=TwoSidedEncryption(

29www.balasys.hu

Enabling STARTTLS

client_verify=ClientNoneVerifier(),

client_tls_options=ClientTLSOptions(),

server_verify=ServerCertificateVerifier(),

server_tls_options=ServerTLSOptions(),

client_certificate_generator=DynamicCertificate(

private_key=PrivateKey.fromFile(key_file_path="/etc/key.d/TLS-bridge/key.pem"),

trusted_ca=Certificate.fromFile(

certificate_file_path="/etc/ca.d/certs/CA_for_Trusted_certs.pem",

private_key=PrivateKey.fromFile("/etc/ca.d/keys/CA_for_Trusted_certs.pem")),

untrusted_ca=Certificate.fromFile(

certificate_file_path="/etc/ca.d/certs/CA_for_Untrusted_certs.pem",

private_key=PrivateKey.fromFile("/etc/ca.d/keys/CA_for_Untrusted_certs.pem")

)

)

))

Step 3. Create a service that uses the Encryption Policy created in the previous step.

Figure 3.12. Creating a service

Python:

30www.balasys.hu

Enabling STARTTLS

def demo_instance() :

Service(name='demo/intra_HTTPS_Keybridge_inter',

router=TransparentRouter(), chainer=ConnectChainer(), proxy_class=HttpProxy,

max_instances=0, max_sessions=0, keepalive=V_KEEPALIVE_NONE,

encryption_policy="KeybridgingEncryption")

Rule(rule_id=20,

src_zone=('intra',),

dst_zone=('internet',),

proto=6,

service='demo_instance/intra_HTTPS_Keybridge_inter'

)

Step 4. Configure other parameters of the Encryption Policy, service, and firewall rule as needed by your
environment.

Step 5. Commit and upload the changes, then restart Application-level Gateway.
Expected result:

Every time a client connects to a previously unknown server, Application-level Gateway will generate
a new certificate, sign it with one of the specified CAs, and send it to the client. This new certificate
will be stored under /var/lib/vela/tls-bridge under a filename based on the original server
certificate. If the signer CA is trusted, the client (browser or other application) will accept the connection.
If the certificate is signed by the CA for untrusted certificates, the application will not recognize the
issuer CA (since its certificate has not been imported to the client) and give a warning to the user. The
user can then decide whether the certificate can be accepted or not.

(Actually, two files are stored on the firewall for each certificate: the original certificate received from
the server, and the generated certificate. When a client connects to the server, the certificate provided
by the server is compared to the stored one: if they do not match, a new certificate is generated. For
example, this happens when the server certificate has been expired and refreshed.)

3.3. Related standards

■ The SSL protocol, the TLS protocol, as well as the session tickets and session identifiers as methods
for SSL session reuse are described in RFC 8446 in details.

■ The SSL protocol is described in RFC 6101 in details.

3.4. Encryption options reference

The available encryption-related classes and options are described in Section 5.5, Module Encryption (p. 195).

3.5. X.509 Certificates

An X.509 certificate is a public key with a subject name specified as an X.500 DN (distinguished name) signed
by a certificate issuing authority (CA). X.509 certificates are represented as Python policy objects having the
following attributes:

subject Subject of the certificate.

31www.balasys.hu

Related standards

issuer Issuer of the certificate (i.e. the CA that signed it).

serial Serial number of the certificate.

blob The certificate itself as a string in PEM format.

PNS uses X.509 certificates to provide a convenient and efficient way to manage and distribute certificates and
keys used by the various components and proxies of the managed firewall hosts. It is mainly aimed at providing
certificates required for the secure communication between the different parts of the firewall system, e.g. firewall
hosts and MS engine (the actual communication is realized by agents).

Certificates of trusted CAs (and their accompanying CRLs) are used in Application-level Gateway to validate
the certificates of servers accessed by the clients. The hashes and structures below are used by the various
certificate-related attributes of the Application-level Gateway Encryption Policies, particularly the ones of
certificate type.

3.5.1. X.509 Certificate Names

A certificate name behaves as a string, and contains a DN in the following format (also known as one-line
format):

/RDN=value/RDN=value/.../RDN=value/

The word RDN stands for relative distinguished name. For example, the DN cn=Root CA, ou=CA Group,

o=Foo Ltd, l=Bar, st=Foobar State, c=US becomes /C=US/ST=Foobar State/L=Bar/O=Foo

Ltd/OU=CA Group/CN=Root CA/

3.5.2. X.509 Certificate Revocation List

A certifying authority may revoke the issued certificates. A revocation means that the serial number and the
revocation date is added to the list of revoked certificates. Revocations are published on a regular basis. This
list is called the Certificate Revocation List, also known as CRL. A CRL always has an issuer, a date when the
list was published, and the expected date of its next update.

3.5.3. X.509 Online Certificate Status Protocol (OCSP) stapling

Online Certificate Status Protocol (OCSP) stapling is an alternative to Certificate Revocation Lists (CRL) in
verifying the validity of certificates. The protocol is described in details in IETF RFC 6960. It is now also
possible to define to what level of strictness the encryption policies shall check the revocation status of the
certificates. OCSP stapling provides a potentially faster revocation state with less traffic.

3.5.4. X.509 Certificate hash

The proxy stores trusted CA certificates in a Certificate hash. This hash can be indexed by two different types.
If an integer index is used, the slot specified by this value is looked up; if a string index is used, it is interpreted
as a one-line DN value, and the appropriate certificate is looked up. Each slot in this hash contains an X.509
certificate.

32www.balasys.hu

X.509 Certificate Names

3.5.5. X.509 CRL hash

Similarly to the certificate hash, a separate hash for storing Certificate Revocation Lists was defined. A CRL
contains revocation lists associated to CAs.

33www.balasys.hu

X.509 CRL hash

Chapter 4. Proxies

This chapter contains reference information on all the available PNS proxies.

4.1. General information on the proxy modules

The sections discussing the available proxies are organized as follows. Overall introduction is followed by
proxy class descriptions. Each module has an abstract class which is an interface between the policy and the
proxy itself. Abstract classes are the point where the low-level attributes implemented by the proxy appear.

Each Python module contains an abstract proxy class (e.g., AbstractFtpProxy) and one or more preconfigured
proxy classes derived from the abstract class (e.g., FtpProxy, FtpProxyRO, etc.). These abstract proxies are
very low level classes which always require customization to operate at all, thus they are not directly usable.
The preconfigured classes customize the base abstract proxy to perform actually useful functionality. These
derived classes inherit all their attributes from the class they were derived from, but have some of their parameters
set to default values. Consequently, they can be used for certain tasks without any (or only minimal) modification.
Most default classes were derived directly from the abstract classes, but it is possible to derive a class from
another derived class. In this case this new class inherits the attributes from its parent class and the abstract
class as well. Abstract classes should not be used directly for configuring services in PNS, always derive an
own class and modify its attributes to suit the requirements.

4.2. Attribute values

The description of each abstract class includes a detailed list and definition of the attributes of the proxy class.
The type and default value of the attribute is also provided. Most types of the attributes (e.g., integer, string,
boolean, etc.) are self-explanatory; more complicated attributes (listed as complex type) are explained in their
respective description or in the general proxy behavior section of the module.

Proxy attributes can be available and modified during configuration time, run time, or both. Configuration time
attributes are set and modified when the proxy is configured, that is, when the session starts. Run time attributes
are available when the connection is active, for example, information about the HTTP header being processed
is available only when the header is processed. Access to the attributes is indicated in the header of the description
of the attribute in the following format: availability during configuration time : availability

during run time. The type of availability can be read (r) access, write (w) access, both, or not available
(n/a). An attribute that is available for reading and writing during both configuration and run time is indicated
as rw:rw, an attribute that is available only for reading during run time is indicated as n/a:r.

Note
Unless noted otherwise, default values related to lengths (e.g., line length, etc.) are in bytes.

Timeout values are always given in milliseconds. Setting a timeout to -1 disables the timeout (i.e. it becomes unlimited).

The description of every proxy class includes a list or textual description of the attributes modified relative to
their parent class. The values of the other attributes are inherited from the parent class.

34www.balasys.hu

General information on the proxy modules

4.3. Examples

A number of Python code samples is provided for the proxies to illustrate both their general operation and their
capabilities. Most of the proxy configurations shown in the examples can be easily reproduced using the MC
graphical interface. However, some of them utilize the advanced flexibility of PNS and therefore require the
use of configuration scripts written in Python. From MC these can be implemented, maintained and edited
using the Class editor. (The Class editor is available under the Proxies tab of the PNS MC component. When
creating a new class, click on the Class editor button under the list of available classes.)

4.4. Module AnyPy

This module defines an interface to the AnyPy proxy implementation. AnyPy is basically a Python proxy which
means that the proxy behaviour is defined in Python by the administrator.

4.4.1. Related standards

4.4.2. Classes in the AnyPy module

DescriptionClass

Class encapsulating an AnyPy proxy.AbstractAnyPyProxy

Class encapsulating the default AnyPy proxy.AnyPyProxy
Table 4.1. Classes of the AnyPy module

4.4.3. Class AbstractAnyPyProxy

This class encapsulates AnyPy, a proxy module calling a Python function to do all of its work. It can be used
for defining proxies for protocols not directly supported.

Warning
This proxy class is a basis for creating a custom proxy, and cannot be used on its own. Create a new proxy class using the AnyPyProxy
as its parent, and implement the proxyThread method to handle the traffic.

Your code will be running as the proxy to transmit protocol elements. When writing your code, take care and be security conscious: do
not make security vulnerabilities.

4.4.3.1. Attributes of AbstractAnyPyProxy

client_max_line_length (integer)

Default: 4096

Size of the line buffer in the client stream in bytes. Default value: 4096

server_max_line_length (integer)

Default: 4096

35www.balasys.hu

Examples

server_max_line_length (integer)

Size of the line buffer in the server stream in bytes. Default value: 4096

4.4.3.2. AbstractAnyPyProxy methods

DescriptionMethod

Constructor to initialize an AnyPy instance.__init__(self, session)

Function called by the low-level proxy core to transfer
requests.

proxyThread(self)

Table 4.2. Method summary

Method __init__(self, session)

This constructor initializes a new AnyPy instance based on its arguments, and calls the inherited constructor.

Arguments of __init__

session (unknown)

Default: n/a

The session to be inspected with the proxy instance.

Method proxyThread(self)

This function is called by the proxy module to transfer requests. It can use the 'self.session.client_stream' and
'self.session.server_stream' streams to read data from and write data to.

4.4.4. Class AnyPyProxy

This class encapsulates AnyPy, a proxy module calling a Python function to do all of its work. It can be used
for defining proxies for protocols not directly supported.

4.4.4.1. Note

This proxy class can only be used as a basis for creating a custom proxy and cannot be used on its own. Please
create a new proxy class with the AnyPyProxy as its parent and implement the proxyThread method for handling
traffic.

Your code will be running as the proxy to transmit protocol elements, you'll have to take care and be security
conscious not to make security vulnerabilities.

4.5. Module Ftp

The Ftp module defines the classes constituting the proxy for the File Transfer Protocol (FTP).

36www.balasys.hu

Class AnyPyProxy

4.5.1. The FTP protocol

File Transfer Protocol (FTP) is a protocol to transport files via a reliable TCP connection between a client and
a server. FTP uses two reliable TCP connections to transfer files: a simple TCP connection (usually referred
to as the Control Channel) to transfer control information and a secondary TCP connection (usually referred
to as the Data Channel) to perform the data transfer. It uses a command/response based approach, i.e. the client
issues a command and the server responds with a 3-digit status code and associated status information in text
format. The Data Channel can be initiated either from the client or the server; the Control Channel is always
started from the client.

The client is required to authenticate itself before other commands can be issued. This is performed using the
USER and PASS commands specifying username and password, respectively.

4.5.1.1. Protocol elements

The basic protocol is as follows: the client issues a request (also called command in FTP terminology) and the
server responds with the result. Both commands and responses are line based: commands are sent as complete
lines starting with a keyword identifying the operation to be performed. A response spans one or more lines,
each specifying the same 3-digit status code and possible explanation.

4.5.1.2. Data transfer

Certain commands (for example RETR, STOR or LIST) also have a data attachment which is transferred to
the peer. Data attachments are transferred in a separate TCP connection. This connection is established on-demand
on a random, unprivileged port when a data transfer command is issued.

Endpoint information of this data channel is exchanged via the PASV and PORT commands, or their newer
equivalents (EPSV and EPRT).

The data connection can either be initiated by the client (passive mode) or the server (active mode). In passive
mode (PASV or EPSV command) the server opens a listening socket and sends back the endpoint information
in the PASV response. In active mode (PORT or EPRT command) the client opens a listening socket and sends
its endpoint information as the argument of the PORT command. The source port of the server is usually either
20, or the port number of the Command Channel minus one.

Example 4.1. FTP protocol sample

220 FTP server ready

USER account

331 Password required.

PASS password

230 User logged in.

SYST

215 UNIX Type: L8

PASV

227 Entering passive mode (192,168,1,1,4,0)

LIST

150 Opening ASCII mode data connection for file list

226-Transferring data in separate connection complete.

226 Quotas off

QUIT

221 Goodbye

37www.balasys.hu

The FTP protocol

4.5.2. Proxy behavior

FtpProxy is a module built for parsing commands of the Control Channel in the FTP protocol. It reads the
REQUEST at the client side, parses it and - if the local security policy permits - sends it to the server. The proxy
parses the arriving RESPONSES and sends them to the client if the policy permits that. FtpProxy uses a
PlugProxy to transfer the data arriving in the Data Channel. The proxy is capable of manipulating commands
and stacking further proxies (for example, MimeProxy) into the Data Channel. Both transparent and
non-transparent modes are supported.

The default low-level proxy implementation (AbstractFtpProxy) denies all requests by default. Different
commands and/or responses can be enabled by using one of the several predefined proxy classes which are
suitable for most tasks. Alternatively, use of the commands can be permitted individually using different
attributes. This is detailed in the following two sections.

4.5.2.1. Configuring policies for FTP commands and responses

Changing the default behavior of commands can be done by using the hash attribute request, indexed by the
command name (e.g.: USER or PWD). There is a similar attribute for responses called response, indexed by
the command name and the response code. The possible values of these hashes are shown in the tables below.
See Section 2.1, Policies for requests and responses (p. 4) for details. When looking up entries of the response
attribute hash, the lookup precedence described in Section 2.1.2, Response codes (p. 6) is used.

DescriptionAction

Allow the request to pass.FTP_REQ_ACCEPT

Reject the request with the error message specified in
the second optional parameter.

FTP_REQ_REJECT

Terminate the connection.FTP_REQ_ABORT
Table 4.3. Action codes for commands in FTP

DescriptionAction

Allow the response to pass.FTP_RSP_ACCEPT

Modify the response to a general failure with error
message specified in the optional second parameter.

FTP_RSP_REJECT

Terminate the connection.FTP_RSP_ABORT
Table 4.4. Action codes for responses in FTP

Example 4.2. Customizing FTP to allow only anonymous sessions
This example calls a function called pUser (defined in the example) whenever a USER command is received. All other commands are
accepted. The parameter of the USER command (i.e. the username) is examined: if it is 'anonymous' or 'Anonymous', the connection is
accepted, otherwise it is rejected.

class AnonFtp(FtpProxy):

def config(self):

self.request["USER"] = (FTP_REQ_POLICY, self.pUser)

self.request["*"] = (FTP_REQ_ACCEPT)

def pUser(self,command):

if self.request_parameter == "anonymous" or self.request_parameter == "Anonymous":

38www.balasys.hu

Proxy behavior

return FTP_REQ_ACCEPT

return FTP_REQ_REJECT

4.5.2.2. Configuring policies for FTP features and FTPS support

FTP servers send the list of supported features to the clients. For example, ProFTPD supports the following
features: LANG en, MDTM, UTF8, AUTH TLS, PBSZ, PROT, REST STREAM, SIZE. The default behavior
of FTP features can be changed using the hash attribute features, indexed by the name of the feature (e.g.:
UTF8 or AUTH TLS). The possible actions are shown in the table below. See Section 2.1, Policies for requests
and responses (p. 4) for details.

The built-in FTP proxies permit the use of every feature by default.

DescriptionAction

Forward the availability of the feature from the server
to the client.

FTP_FEATURE_ACCEPT

Remove the feature from the feature list sent by the
server.

FTP_FEATURE_DROP

Add the feature into the list of available features.FTP_FEATURE_INSERT
Table 4.5. Policy about enabling FTP features.

Enabling FTPS connections

For FTPS connections to operate correctly, the FTP server and client applications must comply to the FTP
Security Extensions (RFC 2228) and Securing FTP with TLS (RFC 4217) RFCs.

For FTPS connections, the AUTH TLS, PBSZ, PROT features must be accepted. Also, STARTTLS support
must be properly configured. See Section 3.2, Handling TLS and SSL connections in Application-level
Gateway (p. 10) for details.

If the proxy is configured to disable encryption between PNS and the client, the proxy automatically removes
the AUTH TLS, PBSZ, PROT features from the list sent by the server.

I f S TA RT T L S c o n n e c t i o n s a r e a c c e p t e d o n t h e c l i e n t s i d e
(self.tls.client_security=TLS_ACCEPT_STARTTLS), but TLS-forwarding is disabled on the server
side, the proxy automatically inserts the AUTH TLS, PBSZ, PROT features into the list sent by the server.
These features are inserted even if encryption is explicitly disabled on the server side or the server does not
support the FEAT command, making one-sided STARTTLS support feasible.

Warning
When using inband routingwith the FTPS protocol, the server's certificate is compared to its hostname. The subject_alt_name parameter
(or the Common Name parameter if the subject_alt_name parameter is empty) of the server's certificate must contain the hostname or
the IP address (as resolved from the PNS host) of the server (e.g., ftp.example.com).

Alternatively, the Common Name or the subject_alt_name parameter can contain a generic hostname, e.g., *.example.com.

Note that if the Common Name of the certificate contains a generic hostname, do not specify a specific hostname or an IP address in the
subject_alt_name parameter.

39www.balasys.hu

Proxy behavior

Note
The FTP proxy does not support the following FTPS-related commands: REIN, CCC, CDC.■

■ STARTTLS is supported in nontransparent scenarios as well.

Example 4.3. Configuring FTPS support
This example is a standard FtpProxy with FTPS support enabled.

class FtpsProxy(FtpProxy):

def config(self):

FtpProxy.config(self)

self.max_password_length=64

EncryptionPolicy(

name="ForwardSTARTTLS",

encryption=ForwardStartTLSEncryption(

client_verify=ClientCertificateVerifier(),

client_tls_options=ClientTLSOptions(),

server_verify=ServerCertificateVerifier(),

server_tls _options=ServerTLSOptions(),

client_certificate_generator=DynamicCertificate(

private_key=PrivateKey.fromFile(key_file_path="/etc/key.d/VMS_Engine/key.pem"),

trusted_ca=Certificate.fromFile(certificate_file_path="/etc/ca.d/certs/my-trusted-ca-cert.pem",

private_key=PrivateKey.fromFile("/etc/ca.d/keys/my-trusted-ca-cert.pem")),

untrusted_ca=Certificate.fromFile(certificate_file_path="/etc/ca.d/certs/my-untrusted-ca-cert.pem",

private_key=PrivateKey.fromFile("/etc/ca.d/keys/my-untrusted-ca-cert.pem")))))

def demo() :

Service(name='demo/MyFTPSService', router=TransparentRouter(), chainer=ConnectChainer(),

proxy_class=FtpsProxy, max_instances=0, max_sessions=0, keepalive=V_KEEPALIVE_NONE,

encryption_policy="ForwardSTARTTLS")

Rule(rule_id=2,

proto=6,

service='demo/MyFTPSService'

)

4.5.2.3. Stacking

The available stacking modes for this proxy module are listed in the following table. For additional information
on stacking, see Section 2.3.1, Proxy stacking (p. 7).

DescriptionAction

Pass the data to the stacked proxy or program.FTP_STK_DATA

No proxy stacked.FTP_STK_NONE
Table 4.6. Stacking policy.

4.5.2.4. Configuring inband authentication

The Ftp proxy supports inband authentication as well to use the built-in authentication method of the FTP and
FTPS protocols to authenticate the client. The authentication itself is performed by the ASbackend configured
for the service.

40www.balasys.hu

Proxy behavior

If the client uses different usernames on AS and the remote server (e.g., he uses his own username to authenticate
to AS, but anonymous on the target FTP server), the client must specify the usernames and passwords in the
following format:

Username:

<ftp user>@<proxy user>@<remote site>[:<port>]

Password:

<ftp password>@<proxy password>

Alternatively, all the above information can be specified as the username:

<ftp user>@<proxy user>@<remote site>[:<port>]:<ftp password>@<proxy password>

Warning
When using inband routingwith the FTPS protocol, the server's certificate is compared to its hostname. The subject_alt_name parameter
(or the Common Name parameter if the subject_alt_name parameter is empty) of the server's certificate must contain the hostname or
the IP address (as resolved from the PNS host) of the server (e.g., ftp.example.com).

Alternatively, the Common Name or the subject_alt_name parameter can contain a generic hostname, e.g., *.example.com.

Note that if the Common Name of the certificate contains a generic hostname, do not specify a specific hostname or an IP address in the
subject_alt_name parameter.

4.5.3. Related standards

■ The File Transfer Protocol is described in RFC 959.

■ FTP Security Extensions including the FTPS protocol and securing FTP with TLS are described in
RFC 2228 and RFC 4217.

4.5.4. Classes in the Ftp module

DescriptionClass

Class encapsulating the abstract FTP proxy.AbstractFtpProxy

Default Ftp proxy based on AbstractFtpProxy.FtpProxy

FTP proxy based on AbstractFtpProxy, only allowing
read-only access to anonymous users.

FtpProxyAnonRO

FTP proxy based on AbstractFtpProxy, allowing full
read-write access, but only to anonymous users.

FtpProxyAnonRW

FTP proxy based on AbstractFtpProxy, allowing
read-only access to any user.

FtpProxyRO

41www.balasys.hu

Related standards

DescriptionClass

FTP proxy based on AbstractFtpProxy, allowing full
read-write access to any user.

FtpProxyRW

Table 4.7. Classes of the Ftp module

4.5.5. Class AbstractFtpProxy

This proxy implements the FTP protocol as specified in RFC 959. All traffic and commands are denied by
default. Consequently, either customized Ftp proxy classes derived from the abstract class should be used, or
one of the predefined classes (e.g.: FtpProxy, FtpProxyRO, etc.).

4.5.5.1. Attributes of AbstractFtpProxy

active_connection_mode (enum, rw:r)

Default: FTP_ACTIVE_MINUSONE

In active mode the server connects the client. By default this must be from Command Channel port minus
one (FTP_ACTIVE_MINUSONE). Alternatively, connection can also be performed either from port number
20 (FTP_ACTIVE_TWENTY) or from a random port (FTP_ACTIVE_RANDOM).

auth_tls_ok_client (boolean, n/a:r)

Default: ""

Shows whether the client-side authentication was performed over a secure channel.

auth_tls_ok_server (boolean, n/a:r)

Default: ""

Shows whether the server-side authentication was performed over a secure channel.

buffer_size (integer, rw:r)

Default: 4096

Buffer size for data transfer in bytes.

data_mode (enum, rw:r)

Default: FTP_DATA_KEEP

The type of the FTP connection on the server side can be manipulated: leave it as the client requested
(FTP_DATA_KEEP), or force passive (FTP_DATA_PASSIVE) or active (FTP_DATA_ACTIVE) connection.

data_port_max (integer, rw:r)

Default: 41000

42www.balasys.hu

Class AbstractFtpProxy

data_port_max (integer, rw:r)

On the proxy side, ports equal to or below the value of data_port_max can be allocated as the data channel.

data_port_min (integer, rw:r)

Default: 40000

On the proxy side, ports equal to or above the value of data_port_min can be allocated as the data channel.

data_protection_enabled_client (boolean, n/a:r)

Default: ""

Shows whether the data channel is encrypted or not on the client-side.

data_protection_enabled_server (boolean, n/a:r)

Default: ""

Shows whether the data channel is encrypted or not on the server-side.

features (complex, rw:rw)

Default:

Hash containing the filtering policy for FTP features.

hostname (string, n/a:rw)

Default:

The hostname of the FTP server to connect to, when inband routing is used.

hostport (integer, n/a:rw)

Default:

The port of the FTP server to connect to, when inband routing is used.

masq_address_client (string, rw:r)

Default: ""

IP address of the firewall appearing on the client side. If its value is set, this IP is sent regardless of its true
IP (where it is binded). This attribute may be used when network address translation is performed before
Vela.

masq_address_server (string, rw:r)

Default: ""

43www.balasys.hu

Class AbstractFtpProxy

masq_address_server (string, rw:r)

IP address of the firewall appearing on the server side. If its value is set, this IP is sent regardless of its true
IP (where it is binded). This attribute may be used when network address translation is performed before
Vela.

max_continuous_line (integer, rw:r)

Default: 100

Maximum number of answer lines for a command.

max_hostname_length (integer, rw:r)

Default: 128

Maximum length of hostname. Used only in non-transparent mode.

max_line_length (integer, rw:r)

Default: 255

Maximum length of a line that the proxy is allowed to transfer. Requests/responses exceeding this limit are
dropped.

max_password_length (integer, rw:r)

Default: 64

Maximum length of the password.

max_username_length (integer, rw:r)

Default: 32

Maximum length of the username.

password (string, n/a:rw)

Default:

The password to be sent to the server.

permit_client_bounce_attack (boolean, rw:rw)

Default: FALSE

If enabled the IP addresses of data channels will not need to match with the IP address of the control channel,
permitting the use of FXP while increasing the security risks.

44www.balasys.hu

Class AbstractFtpProxy

permit_empty_command (boolean, rw:r)

Default: TRUE

Enable transmission of lines without commands.

permit_server_bounce_attack (boolean, rw:rw)

Default: FALSE

If enabled the IP addresses of data channels will not need to match with the IP address of the control channel,
permitting the use of FXP while increasing the security risks.

permit_unknown_command (boolean, rw:r)

Default: FALSE

Enable the transmission of unknown commands.

proxy_password (string, n/a:rw)

Default:

The password to be used for proxy authentication given by the user, when inband authentication is used.

proxy_username (string, n/a:rw)

Default:

The username to be used for proxy authentication given by the user, when inband authentication is used.

request (complex, rw:rw)

Default:

Normative policy hash for FTP requests indexed by command name (e.g.: "USER", "PWD" etc.). See also
Section 2.1, Policies for requests and responses (p. 4).

request_command (string, n/a:rw)

Default: n/a

When a request is evaluated on the policy level, this variable contains the requested command.

request_parameter (string, n/a:rw)

Default: n/a

When a request is evaluated on the policy level, this variable contains the parameters of the requested command.

request_stack (complex, rw:rw)

Default:

45www.balasys.hu

Class AbstractFtpProxy

request_stack (complex, rw:rw)

Hash containing the stacking policy for the FTP commands. The hash is indexed by the FTP command (e.g.
RETR, STOR). See also Section 2.3.1, Proxy stacking (p. 7).

response (complex, rw:rw)

Default:

Normative policy hash for FTP responses indexed by command name and answer code (e.g.: "USER","331";
"PWD","200" etc.). See also Section 2.1, Policies for requests and responses (p. 4).

response_parameter (string, n/a:rw)

Default:

When a response is evaluated on the policy level, this variable contains answer parameters.

response_status (string, n/a:rw)

Default:

When a response is evaluated on the policy level, this variable contains the answer code.

response_strip_msg (boolean, rw:r)

Default: FALSE

Strip the response message and only send the response code.

strict_port_checking (boolean, rw:rw)

Default: TRUE

If enabled the foreign port is strictly checked: in active mode the server must be connected on port 20, while
in any other situation the foreign port must be above 1023.

target_port_range (string, rw:r)

Default: "21"

The port where the client can connect through a non-transparent FtpProxy.

timeout (integer, rw:r)

Default: 300000

General I/O timeout in milliseconds. When there is no specific timeout for a given operation, this value is
used.

46www.balasys.hu

Class AbstractFtpProxy

transparent_mode (boolean, rw:r)

Default: TRUE

Specifies if the proxy works in transparent (TRUE) or non-transparent (FALSE) mode.

username (string, n/a:rw)

Default:

The username authenticated to the server.

valid_chars_username (string, rw:r)

Default: "a-zA-Z0-9._@"

List of the characters accepted in usernames.

4.5.6. Class FtpProxy

A permitting Ftp proxy based on the AbstractFtpProxy, allowing all commands, responses, and features,
including unknown ones. The connection is terminated if a response with the answer code 421 is received.

4.5.7. Class FtpProxyAnonRO

FTP proxy based on AbstractFtpProxy, enabling read-only access (i.e. only downloading) to anonymous users
(uploads and usernames other than 'anonymous' or 'ftp' are disabled). Commands and return codes are strictly
checked, unknown commands and responses are rejected. Every feature is accepted.

The ABOR; ACCT; AUTH; CDUP; CWD; EPRT; EPSV; FEAT; LIST; MODE; MDTM; NLST; NOOP;
OPTS; PASV; PASS; PORT; PWD; QUIT; REST; RETR; SIZE; STAT; STRU; SYST; TYPE; and USER
commands are permitted, the CLNT; XPWD; MACB commands are rejected.

4.5.8. Class FtpProxyAnonRW

FTP proxy based on AbstractFtpProxy, enabling full read-write access to anonymous users (the 'anonymous'
and 'ftp' usernames are permitted). Commands and return codes are strictly checked, unknown commands and
responses are rejected. Every feature is accepted.

The ABOR; ACCT; APPE; CDUP; CWD; DELE; EPRT; EPSV; LIST; MKD; MODE; MDTM; NLST; NOOP;
OPTS; PASV; PASS; PORT; PWD; QUIT; RMD; RNFR; RNTO; REST; RETR; SIZE; STAT; STOR; STOU;
STRU; SYST; TYPE; USER and FEAT commands are permitted, the AUTH; CLNT; XPWD; MACB commands
are rejected.

4.5.9. Class FtpProxyRO

FTP proxy based on AbstractFtpProxy, enabling read-only access to any user. Commands and return codes are
strictly checked, unknown commands and responses are rejected. Every feature is accepted.

47www.balasys.hu

Class FtpProxy

The ABOR; ACCT; AUTH; CDUP; CWD; EPRT; EPSV; FEAT; LIST; MODE; MDTM; NLST; NOOP;
OPTS; PASV; PASS; PORT; PWD; QUIT; REST; RETR; SIZE; STAT; STRU; SYST; TYPE; and USER
commands are permitted, the CLNT; XPWD; MACB commands are rejected.

4.5.10. Class FtpProxyRW

FTP proxy based on AbstractFtpProxy, enabling full read-write access to any user. Commands and return codes
are strictly checked, unknown commands and responses are rejected. Every feature is accepted.

The ABOR; ACCT; AUTH; CDUP; CWD; EPRT; EPSV; FEAT; LIST; MODE; MDTM; NLST; NOOP;
OPTS; PASV; PASS; PORT; PWD; QUIT; REST; RETR; SIZE; STAT; STRU; SYST; TYPE; and USER
commands are permitted, the CLNT; XPWD; MACB commands are rejected.

4.6. Module Http

The Http module defines the classes constituting the proxy for the HyperText Transfer Protocol (HTTP). HTTP
is the protocol the Web is based on, therefore it is the most frequently used protocol on the Internet. It is used
to access different kinds of content from the Web. The type of content retrieved via HTTP is not restricted, it
can range from simple text files to hypertext files and multimedia formats like pictures, videos or audio files.

4.6.1. The HTTP protocol

HTTP is an open application layer protocol for hypermedia information systems. It basically allows an open-ended
set of methods to be applied to resources identified by Uniform Resource Identifiers (URIs).

4.6.1.1. Protocol elements

HTTP is a text based protocol where a client sends a request comprising of a METHOD, an URI and associated
meta information represented as MIME-like headers, and possibly a data attachment. The server responds with
a status code, a set of headers, and possibly a data attachment. Earlier protocol versions perform a single
transaction in a single TCP connection, HTTP/1.1 introduces persistency where a single TCP connection can
be reused to perform multiple transactions.

An HTTP method is a single word - usually spelled in capitals - instructing the server to apply a function to
the resource specified by the URI. Commonly used HTTP methods are "GET", "POST" and "HEAD". HTTP
method names are not restricted in any way, other HTTP based protocols (such as WebDAV) add new methods
to the protocol while keeping the general syntax intact.

Headers are part of both the requests and the responses. Each header consists of a name followed by a colon
(':') and a field value. These headers are used to specify content-specific and protocol control information.

The response to an HTTP request starts with an HTTP status line informing the client about the result of the
operation and an associated message. The result is represented by three decimal digits, the possible values are
defined in the HTTP RFCs.

48www.balasys.hu

Class FtpProxyRW

4.6.1.2. Protocol versions

The protocol has three variants, differentiated by their version number. Version 0.9 is a very simple protocol
which allows a simple octet-stream to be transferred without any meta information (e.g.: no headers are associated
with requests or responses).

Version 1.0 introduces MIME-like headers in both requests and responses; headers are used to control both the
protocol (e.g.: the "Connection" header) and to give information about the content being transferred (e.g.: the
"Content-Type" header). This version has also introduced the concept of name-based virtual hosts.

Building on the success of HTTP/1.0, version 1.1 of the protocol adds persistent connections (also referred to
as "connection keep-alive") and improved proxy control.

4.6.1.3. Bulk transfer

Both requests and responses might have an associated data blob, also called an entity in HTTP terminology.
The size of the entity is determined using one of three different methods:

1. The complete size of the entity is sent as a header (the Content-Length header).

2. The transport layer connection is terminated when transfer of the blob is completed (used by HTTP/0.9
and might be used in HTTP/1.1 in non-persistent mode).

3. Instead of specifying the complete length, smaller chunks of the complete blob are transferred, and
each chunk is prefixed with the size of that specific chunk. The end of the stream is denoted by a
zero-length chunk. This mode is also called chunked encoding and is specified by the
Transfer-Encoding header.

Example 4.4. Example HTTP transaction

GET /index.html HTTP/1.1

Host: www.example.com

Connection: keep-alive

User-Agent: My-Browser-Type 6.0

HTTP/1.1 200 OK

Connection: close

Content-Length: 14

<html>

</html>

4.6.2. Proxy behavior

The default low-level proxy implementation (AbstractHttpProxy) denies all requests by default. Different
requests and/or responses can be enabled by using one of the several predefined proxy classes which are suitable
for most tasks. Alternatively, a custom proxy class can be derived from AbstractHttpProxy and the requests
and responses enabled individually using different attributes.

Several examples and considerations on how to enable virus filtering in the HTTP traffic are discussed in the
Technical White Paper and Tutorial Virus filtering in HTTP, available at the BalaSys Documentation Page.

49www.balasys.hu

Proxy behavior

https://docs.balasys.hu/

4.6.2.1. Transparent and non-transparent modes

HttpProxy is able to operate both in transparent and non-transparent mode. In transparent mode, the client does
not notice (or even know) that it is communicating through a proxy. The client communicates using normal
server-style requests.

In non-transparent mode, the address and the port of the proxy server must be set on the client. In this case the
client sends proxy-style requests to the proxy.

Example 4.5. Proxy style HTTP query

GET http://www.example.com/index.html HTTP/1.1

Host: www.example.com

Connection: keep-alive

User-Agent: My-Browser-Type 6.0

HTTP/1.1 200 OK

Connection: close

Content-Length: 14

<html>

</html>

In non-transparent mode it is possible to request the use of the SSL protocol through the proxy, which means
the client communicates with the proxy using the HTTP protocol, but the proxy uses HTTPS to communicate
with the server. This technique is called data tunneling.

Example 4.6. Data tunneling with connect method

CONNECT www.example.com:443 HTTP/1.1

Host: www.example.com

User-agent: My-Browser-Type 6.0

HTTP/1.0 200 Connection established

Proxy-agent: My-Proxy/1.1

4.6.2.2. Configuring policies for HTTP requests and responses

Changing the default behavior of requests is possible using the request attribute. This hash is indexed by the
HTTP method names (e.g.: GET or POST). The response attribute (indexed by the request method and the
response code) enables the control of HTTP responses. The possible actions are described in the following
tables. See also Section 2.1, Policies for requests and responses (p. 4). When looking up entries of the
response attribute hash, the lookup precedence described in Section 2.1.2, Response codes (p. 6) is used.

DescriptionAction

Allow the request to pass.HTTP_REQ_ACCEPT

Reject the request. The reason for the rejection can be
specified in the optional second argument.

HTTP_REQ_REJECT

Terminate the connection.HTTP_REQ_ABORT

50www.balasys.hu

Proxy behavior

DescriptionAction

Call the function specified to make a decision about
the event. The function receives four arguments: self,

HTTP_REQ_POLICY

method, url, version. See Section 2.1, Policies for
requests and responses (p. 4) for details.

Table 4.8. Action codes for HTTP requests

DescriptionAction

Allow the response to pass.HTTP_RSP_ACCEPT

Reject the response and return a policy violation page
to the client.

HTTP_RSP_DENY

Reject the response and return a policy violation page
to the client, with error information optionally
specified as the second argument.

HTTP_RSP_REJECT

Call the function specified to make a decision about
the event. The function receives five parameters: self,

HTTP_RSP_POLICY

method, url, version, response. See Section 2.1,
Policies for requests and responses (p. 4) for details.

Table 4.9. Action codes for HTTP responses

Example 4.7. Implementing URL filtering in the HTTP proxy
This example calls the filterURL function (defined in the example) whenever a HTTP GET request is received. If the requested URL is
'http://www.disallowedsite.com', the request is rejected and an error message is sent to the client.

class DmzHTTP(HttpProxy):

def config(self):

HttpProxy.config(self)

self.request["GET"] = (HTTP_REQ_POLICY, self.filterURL)

def filterURL(self, method, url, version):

if (url == "http://www.disallowedsite.com"):

self.error_info = 'Access of this content is denied by the local policy.'

return HTTP_REQ_REJECT

return HTTP_REQ_ACCECT

Example 4.8. 404 response filtering in HTTP
In this example the 404 response code to GET requests is rejected, and a custom error message is returned to the clients instead.

class DmzHTTP(HttpProxy):

def config(self):

HttpProxy.config(self)

self.response["GET", "404"] = (HTTP_RSP_POLICY, self.filter404)

def filter404(self, method, url, version, response):

self.error_status = 404

self.error_info = "Requested page was not accessible."

return HTTP_RSP_REJECT

51www.balasys.hu

Proxy behavior

4.6.2.3. Configuring policies for HTTP headers

Both request and response headers can be modified by the proxy during the transfer. New header lines can be
inserted, entries can be modified or deleted. To change headers in the requests and responses use the
request_header hash or the response_header hash, respectively.

Similarly to the request hash, these hashes are indexed by the header name (like "User-Agent") and contain an
actiontuple describing the action to take.

By default, the proxy modifies only the "Host", "Connection", "Proxy-Connection" and "Transfer-Encoding"
headers. "Host" headers need to be changed when the proxy modifies the URL; "(Proxy-)Connection" is changed
when the proxy turns connection keep-alive on/off; "Transfer-Enconding" is changed to enable chunked
encoding.

DescriptionAction

Terminate the connection.HTTP_HDR_ABORT

Accept the header.HTTP_HDR_ACCEPT

Remove the header.HTTP_HDR_DROP

Call the function specified to make a decision about
the event. The function receives three parameters: self,
hdr_name, and hdr_value.

HTTP_HDR_POLICY

Rename the header to the name specified in the second
argument.

HTTP_HDR_CHANGE_NAME

Change the value of the header to the value specified
in the second argument.

HTTP_HDR_CHANGE_VALUE

Change both the name and value of the header to the
values specified in the second and third arguments,
respectively.

HTTP_HDR_CHANGE_BOTH

Insert a new header defined in the second argument.HTTP_HDR_INSERT

Remove all existing occurrences of a header and
replace them with the one specified in the second
argument.

HTTP_HDR_REPLACE

Table 4.10. Action codes for HTTP headers

Example 4.9. Header filtering in HTTP
The following example hides the browser used by the client by replacing the value of the User-Agent header to Lynx in all requests. The
use of cookies is disabled as well.

class MyHttp(HttpProxy):

def config(self):

HttpProxy.config(self)

self.request_header["User-Agent"] = (HTTP_HDR_CHANGE_VALUE, "Lynx 2.4.1")

self.request_header["Cookie"] = (HTTP_HDR_POLICY, self.processCookies)

self.response_header["Set-Cookie"] = (HTTP_HDR_DROP,)

def processCookies(self, name, value):

You could change the current header in self.current_header_name

or self.current_header_value, the current request url is

52www.balasys.hu

Proxy behavior

in self.request_url

return HTTP_HDR_DROP

4.6.2.4. Redirecting URLs

URLs or sets of URLs can be easily rejected or redirected to a local mirror by modifying some attributes during
request processing.

When an HTTP request is received, normative policy chains are processed (self.request,
self.request_header). Policy callbacks for certain events can be configured with the HTTP_REQ_POLICY
or HTTP_HDR_POLICY directives. Any of these callbacks may change the request_url attribute, instructing
the proxy to fetch a page different from the one specified by the browser. Please note that this is transparent to
the user and does not change the URL in the browser.

Example 4.10. URL redirection in HTTP proxy
This example redirects all HTTP GET requests to the 'http://www.example.com/' URL by modifying the value of the requested URL.

class MyHttp(HttpProxy):

def config(self):

HttpProxy.config(self)

self.request["GET"] = (HTTP_REQ_POLICY, self.filterURL)

def filterURL(self, method, url, version):

self.request_url = "http://www.example.com/"

return HTTP_REQ_ACCEPT

Example 4.11. Redirecting HTTP to HTTPS
This example redirects all incoming HTTP connections to an HTTPS URL.

class HttpProxyHttpsredirect(HttpProxy):

def config(self):

HttpProxy.config(self)

self.error_silent = TRUE

self.request["GET"] = (HTTP_REQ_POLICY, self.reqRedirect)

def reqRedirect(self, method, url, version):

self.error_status = 301

#self.error_info = 'HTTP/1.0 301 Moved Permanently'

self.error_headers="Location: https://%s/" % self.request_url_host

return HTTP_REQ_REJECT

4.6.2.5. Request types

PNS differentiates between two request types: server requests and proxy request.

■ Server requests are sent by browsers directly communicating with HTTP servers. These requests
include an URL relative to the server root (e.g.: /index.html), and a 'Host' header indicating which
virtual server to use.

■ Proxy requests are used when the browser communicates with an HTTP proxy. These requests include
a fully specified URL (e.g.: http://www.example.com/index.html).

The type of the incoming request is determined from the request URL, even if the Proxy-connection header
exists. As there is no clear distinction between the two request types, the type of the request cannot always be
accurately detected automatically, though all common cases are covered.

53www.balasys.hu

Proxy behavior

Requests are handled differently in transparent and non-transparent modes.

■ A transparent HTTP proxy (transparent_mode attribute is TRUE) is meant to be installed in front
of a network where clients do not know about the presence of the firewall. In this case the proxy
expects to see server type requests only. If clients communicate with a real HTTP proxy through the
firewall, proxy type requests must be explicitly enabled using the permit_proxy_requests

attribute, or transparent mode has to be used.

■ The use of non-transparent HTTP proxies (transparent_mode attribute is FALSE) must be
configured in web browsers behind the firewall. In this case only proxy requests are expected, and
server requests are emitted (assuming parent_proxy is not set).

4.6.2.6. Using parent proxies

Parent proxies are non-transparent HTTP proxies used behind PNS. Two things have to be set in order to use
parent proxies. First, select a router which makes the proxy connect to the parent proxy, this can be either
InbandRouter() or DirectedRouter(). Second, set the parent_proxy and parent_proxy_port attributes in
the HttpProxy class. Setting these attributes results in proxy requests to be emitted to the target server both in
transparent and non-transparent mode.

The parent proxy attributes can be set both in the configuration phase (e.g.: config() event), or later on a
per-request basis. This is possible because the proxy re-connects.

Example 4.12. Using parent proxies in HTTP
In this example the MyHttp proxy class uses a parent proxy. For this the domain name and address of the parent proxy is specified, and
a service using an InbandRouter is created.

class MyHttp(HttpProxy):

def config(self):

HttpProxy.config(self)

self.parent_proxy = "proxy.example.com"

self.parent_proxy_port = 3128

def instance():

Service("http", MyHttp, router=InbandRouter())

Listener(SockAddrInet('10.0.0.1', 80), "http")

4.6.2.7. FTP over HTTP

In non-transparent mode it is possible to let PNS process ftp:// URLs, effectively translating HTTP requests to
FTP requests on the fly. This behaviour can be enabled by setting permit_ftp_over_http parameter to
TRUE and adding port 21 to target_port_range. Currently only passive mode transfers are supported.

4.6.2.8. Error messages

There are cases when the HTTP proxy must return an error page to the client to indicate certain error conditions.
These error messages are stored as files in the directory specified by the error_files_directory attribute,
and can be customized by changing the contents of the files in this directory.

Each file contains plain HTML text, but some special macros are provided to dynamically add information to
the error page. The following macros can be used:

■ @INFO@ -- further error information as provided by the proxy

54www.balasys.hu

Proxy behavior

■ @VERSION@ -- PNS version number

■ @DATE@ -- current date

■ @HOST@ -- hostname of PNS

It is generally recommended not to display error messages to untrusted clients, as they may leak confidential
information. To turn error messages off, set the error_silent attribute to TRUE, or strip error files down to
a minimum.

Note
The language of the messages can be set using the config.options.language global option, or individually for every Http proxy
using the language parameter. See Appendix B, Global options of PNS (p. 330) for details.

4.6.2.9. Stacking

HTTP supports stacking proxies for both request and response entities (e.g.: data bodies). This is controlled by
the request_stack and response_stack attribute hashes. See also Section 2.3.1, Proxy stacking (p. 7).

There are two stacking modes available: HTTP_STK_DATA sends only the data portion to the downstream
proxy, while HTTP_STK_MIME also sends all header information to make it possible to process the data body
as a MIME envelope. Please note that while it is possible to change the data part in the stacked proxy, it is not
possible to change the MIME headers - they can be modified only by the HTTP proxy. The possible parameters
are listed in the following tables.

DescriptionAction

No additional proxy is stacked into the HTTP proxy.HTTP_STK_NONE

The data part of the HTTP traffic is passed to the
specified stacked proxy.

HTTP_STK_DATA

The data part including header information of the
HTTP traffic is passed to the specified stacked proxy.

HTTP_STK_MIME

Table 4.11. Constants for proxy stacking

Please note that stacking is skipped altogether if there is no body in the message.

4.6.2.10. Webservers returning data in 205 responses

Certain webserver applications may return data entities in 205 responses. This is explicitly prohibited by the
RFCs, but such responses are permitted for interoperability reasons.

4.6.2.11. Session persistence in load balancing

HTTP proxy offers the ‘session persistence in load balancing’ feature, further enhancing load balancing
capabilities by that.

55www.balasys.hu

Proxy behavior

With the help of this feature, the Round Robin chainer can identify connections by their session IDs and make
sure that every connection with the same session ID is always addressed to the same server, so that the session
persists.

For using the ‘session persistence in load balancing’ feature, the administrator has to configure the following
three attributes for the HTTP proxy:

■ Enable_session_persistence
You can switch on or off the ‘Session persistence in load balancing’ feature with that parameter.

■ Session_persistence_cookie_name
This parameter can only be configured if enable_session_persistence is set to TRUE. The administrator
can provide the name of the cookie here: All incoming requests are directed to a web server and each
web server sends a session ID back. The name of this session ID, that is, the cookie name, can be
provided here to ensure that requests with the same session ID are directed to the same web server.

■ Session_persistence_cookie_salt
This parameter can only be configured if enable_session_persistence is set to TRUE. The administrator
can provide the salt here, with which the IP address of the web server can be hashed before the
session ID. With the help of this hashed information PNS can next time identify to which server the
next connection attempt of this session has to be directed.

4.6.2.12. URL filtering in HTTP

The integrated category-based URL filtering solution maintains a permanently updated database. During the
installation of the URL filtering database the administrator can choose the size of the URL filtering database.
The database can be a smaller-sized, optimized database (the recommended version) for usual scenarios, which
requires 1 GB storage space and 300 MB daily update traffic, or a normal database for more extensive scenarios,
which requires 6 GB storage space and 2 GB daily update traffic. Note, that during the upgrade, the 6 GB
storage space usage will temporarily increase to 18-20 GB.

■ For an overview on how URL-filtering works, see Section How URL filtering works (p. 56).

■ For information on installing and selecting the size of the URL filter database, see Procedure 4.1.2,
Configuring the pns-common package in Proxedo Network Security Suite 2 Installation Guide.

■ To configure URL filtering, see Section Configuring URL filtering in HTTP (p. 57).

■ To customize or expand the URL-database, see Section Customizing the URL database (p. 66).

■ For the list of categories available by default, see Section List of URL-filtering categories (p. 61).

How URL filtering works

The PNS URL filter checks the URL of the HTTP requests and compares them to a categorized database. The
URLs and the domains in the database are organized into thematic categories like adult, health, business,
and so on. If the requested URL is listed in the database, the categories matching the URL are assigned to the
request. PNS can accept, redirect, or reject the HTTP request based on the category it belongs to.

Typically, accessing a webpage involves several HTTP requests. URL filtering is applied to every single HTTP
request, meaning that different parts of the webpage can belong to different categories. PNS can remove the

56www.balasys.hu

Proxy behavior

../../pns-guide-install/pdf/pns-guide-install.pdf#configure-pns-common
../../pns-guide-install/pdf/pns-guide-install.pdf#configure-pns-common

parts belonging to unwanted categories, and permit access only to the remaining part. For example, this can be
used to prohibit access to advertisements or videos, but to permit access to other parts of the website.

Note
URL filtering is handled by the PNS Http proxy, without the need of using CF. The URL filtering capability of PNS is available only
after purchasing the url-filter license option.

Updates to the URL database are automatically downloaded daily from the BalaSys website using the vavupdate utility.

Configuring URL filtering in HTTP

Prior to the update to the new URL filter, it is necessary to check whether at least 1.7 GB free space is avaialble
on the partition including the /var/lib/vela/urlfilter/ folder. Following the update, the partition will
utilize close to 850 MB space.

To enable url-filtering, follow the forthcoming steps:

Step 1. Choose the proper URL filter proxy under PNS component → Proxies menu item.

Step 2. Edit the self.url_category under the Attribute menu item.
You can find the categories from the previous version of the URL filter under the Key menu item.
These items now belong to the 'uncategorized' group category.

57www.balasys.hu

Proxy behavior

Figure 4.1. self.url_category attribute with the old categories yet

Step 3. Click the Edit key button and the selection of the new categories will be displayed:

58www.balasys.hu

Proxy behavior

Figure 4.2. The menu of the new category selection

Step 4. Choose the new category corresponding to the old one, from the list.
For the list of categories available by default, see Section List of URL-filtering categories (p. 61). It
is not necessary to change all the categories at once. The remaining elements will still remain as
'uncategorized' in the background.

While searching for the categories, it might be helpful to use theCtrl + F key combination. Alternatively,
when starting typing, the findings matching the first keystrokes will pop up in a list of highlights.
Among these highlighted matches we can choose with the 'up' and 'down' arrows.

59www.balasys.hu

Proxy behavior

Figure 4.3. self.url_category attribute with partly new categories

Step 5. After pressing the commit button, validate the changes with the check configuration option.

60www.balasys.hu

Proxy behavior

Figure 4.4. Validating configuration

The update of the URL filter database is performed by the vavupdate command, run by the cron job,
every day at 11 pm by default. Use the login name and password necessary for accessing the apt repo
as well. All these ensure a solution that can be updated more easily.

List of URL-filtering categories

The PNS URL database contains the following thematic categories by default.

SubcategoryMain category

Abortion, Abortion Pro Choice, Abortion Pro Life,
Child Inappropriate, Gambling, Gay, Lesbian,

Adult

Bisexual, Lingerie, Suggestive and Pinap, Nudity,
Pornography, R-Rated, Sex and Erotic, Sex Education
and Pregnancy, Tobacco

Military, Violence, Weapons, Aggressive - OtherAggressive

Fine Art, Arts - OtherArts

61www.balasys.hu

Proxy behavior

SubcategoryMain category

Auto Parts, Auto Repair, Buying/Selling Cars, Car
Culture, Certified Pre-Owned, Convertible, Coupe,

Automotive

Crossover, Diesel, Electric Vehicle, Hatchback,
Hybrid, Luxury, MiniVan, Motorcycles, Off-Road
Vehicles, Performance Vehicles, Pickup, Road-Side
Assistance, Sedan, Trucks & Accessories, Vintage
Cars, Wagon, Automotive - Other

Agriculture, Biotechnology, Business Software,
Construction, Forestry, Government, Green Solutions

Business

& Conservation, Home & Office Furnishings, Human
Resources, Manufacturing, Marketing Services,
Metals, Physical Security, Productivity, Retirement
Homes & Assisted Living, Shipping &
Logistics,Business - Other

Career Advice, Career Planning, College, Financial
Aid, Job Fairs, Job Search, Nursing, Resume

Careers

Writing/Advice, Scholarships, Telecommuting, U.S.
Military, Careers - Other

Child Abuse Images, Criminal Skills, Hacking, Hate
Speech, Illegal Drugs, Marijuana, Piracy & Copyright

Criminal Activities

Theft, School Cheating, Self Harm, Torrent
Repository, Criminal Activities - Other

Anonymizer, Chat, Community Forums, Instant
Messenger, Login Screens, Personal Pages & Blogs,

Dynamic

Photo Sharing, Professional Networking, Redirect,
Social Networking, Text Messaging & SMS,
Translator, Web-based Email, Web-based Greeting
Card

7-12 Education, Adult Education, Art History, College
Administration, College Life, Distance Learning,

Education

Educational Institutions, Educational Materials &
Studies, English as a 2nd Language, Graduate School,
Homeschooling, Homework/Study Tips, K-6
Educators, Language Learning, Literature & Books,
Private School, Reference Materials & Maps, Special
Education, Studying Business, Tutoring, Wikis,
Education - Other

62www.balasys.hu

Proxy behavior

SubcategoryMain category

Entertainment News & Celebrity Sites, Entertainment
Venues & Events, Humor, Movies, Music, Streaming

Entertainment

& Downloadable Audio, Streaming & Downloadable
Video, Television, Entertainment - Other

Adoption, Babies and Toddlers, Daycare/Pre School,
Eldercare, Family Internet, Parenting - K-6 Kids,

Family and Parenting

Parenting Teens, Pregnancy, Special Needs Kids,
Family & Parenting - Other

Accessories, Beauty, Body Art, Clothing, Fashion,
Jewelry, Swimsuits, Fashion - Other

Fashion

Accounting, Banking, Beginning Investing,
Credit/Debt & Loans, Financial News, Financial

Finance

Planning, Hedge Fund, Insurance, Investing, Mutual
Funds, Online Financial Tools & Quotes, Options,
Retirement Planning, Stocks, Tax Planning, Finance
- Other

American Cuisine, Barbecues & Grilling,
Cajun/Creole, Chinese Cuisine, Cocktails/Beer,

Food and Drink

Coffee/Tea, Cuisine-Specific, Desserts & Baking,
Dining Out, Food Allergies, French Cuisine,
Health/Low fat Cooking, Italian Cuisine, Japanese
Cuisine, Mexican Cuisine, Vegan, Vegetarian, Winer,
Food & Drink - Other

A.D.D., AIDS/HIV, Allergies, Alternative Medicine,
Arthritis, Asthma, Autism/PDD, Bipolar Disorder,

Health

Brain Tumor, Cancer, Children's Health, Cholesterol,
Chronic Fatigue, Chronic Pain, Cold & Flu, Cosmetic
Surgery, Deafness, Dental Care, Depression,
Dermatology, Diabetes, Disorders, Epilepsy, Exercise,
GERD/Acid Reflux, Headaches/Migraines, Heart
Disease, Herbs for Health, Holistic Healing,
IBS/Crohn’s Disease, Incest/Abuse Support,
Incontinence, Infertility, Men’s Health, Nutrition &
Diet, Orthopedics, Panic/Anxiety, Pediatrics,
Pharmaceuticals, Physical Therapy,
Psychology/PsychiatrySelf-help & Addiction, Senior
Health, Sexuality, Sleep Disorders, Smoking
Cessation, Supplements & Compounds, Syndrome,
Thyroid Disease, Weight Loss, Women’s Health,
Health - Other

63www.balasys.hu

Proxy behavior

SubcategoryMain category

Art/Technology, Arts & Crafts, Beadwork,
Birdwatching, Board Games/Puzzles, Candle & Soap

Hobbies and Interests

Making, Card Games, Cartoons, Anime & Comic
Books, Chess, Cigars, Collecting, Comic Books,
Drawing/Sketching, Freelance Writing, Genealogy,
Getting Published, Guitar, Home Recording,Investors
& Patents, Jewelry Making, Magic & Illusion,
Needlework, Painting, Photography, Radio,
Roleplaying Games, Sci-Fi & Fantasy, Scrapbooking,
Screenwriting, Stamps & Coins, Themes, Video &
Computer Games, Woodworking, Hobbies & Interests
- Other

Appliances, Entertaining, Environmental Safety,
Gardening, Home Repair., Home Theater, Interior

House and Garden

Decorating, Landscaping, Remodeling & Construction,
Home & Garden - Other

Games, Kid's Pag, Toys, Kids - OtherKids

Dating & Relationships, Divorce Support, Ethnic
Specific, Marriage, Parks, Rec Facilities & Gyms,
Senior Living, Teens, Weddings, Lifestyle - Other

Lifestyle

Ad Fraud, Botnet, Command and Control Centers,
Compromised & Links To Malware, Malware

Malicious

Call-Home, Malware Distribution Point,
Phishing/Fraud, Spam URLs, Spyware & Questionable
Software

Content Server, No Content Found, Parked & For Sale
Domains, Private IP Address, Unreachable,
Miscellaneous - Other

Miscellaneous

Image Search, International News, Local News,
Magazines, National News, Portal Sites, Search
Engines, News, Portal & Search - Other

News, Portal and Search

Pay-to-Surf, Online Ads - OtherOnline Ads

Aquariums, Birds, Cats, Dogs, Large Animals,
Reptiles, Veterinary Medicine, Pets - Other

Pets

64www.balasys.hu

Proxy behavior

SubcategoryMain category

Advocacy Groups & Trade Associations, Commentary,
Government Sponsored, Immigration, Legal Issues,

Public, Government and Law

Philanthropic Organizations, Politics, Social &
Affiliation Organizations, U.S. Government Resources,
Public, Government & Law - Other

Apartments, Architects, Buying/Selling Homes, Real
Estate - Other

Real Estate

Alternative Religions, Atheism & Agnosticism,
Buddhism, Catholicism, Christianity, Hinduism, Islam,

Religion

Judaism, Latter-Day Saints, Non-traditional Religion
and Occult, Pagan/Wiccan, Religion - Other

Anatomy, Astrology and Horoscopes, Biology, Botany,
Chemistry, Weather, Geography, Geology, Paranormal

Science

Phenomena, Physics, Space/Astronomy, Science -
Other

Auctions & Marketplaces, Catalogs, Contests &
Surveys, Shopping - Online, Engines, Product Reviews
& Price Comparisons, Coupons, Shopping - Other

Shopping

Auto Racing, Baseball, Bicycling, Bodybuilding,
Boxing, Canoeing/Kayaking, Cheerleading, Climbing,

Sports

Cricket, Figure Skating, Fly Fishing, Football,
Freshwater Fishing, Game & Fish, Golf, Horse Racing,
Horses, Inline Skating, Martial Arts, Mountain Biking,
NASCAR Racing, Olympics, Sports - Other, Paintball,
Power & Motorcycles, Pro Basketball, Pro Ice Hockey,
Rodeo, Rugby, Running/Jogging, Sailing, Saltwater
Fishing, Scuba Diving, Skateboarding, Skiing,
Snowboarding, Sport Hunting, Surfing/Bodyboarding,
Swimming, Table Tennis/Ping-Pong, Tennis,
Volleyball, Walking, Waterski/Wakeboard, World
Soccer

3-D Graphics, Animation, Antivirus Software, C/C++,
Cameras & Camcorders, Computer Certification,

Technology

Computer Networking, Computer Peripherals,
Computer Reviews, Databases, Desktop Publishing,
Desktop Video, File Repositories, Graphics Software,
Home Video/DVD, Information Security, Internet
Phone & VOIP, Internet Technology, Java, Javascript,

65www.balasys.hu

Proxy behavior

SubcategoryMain category

Linux, Mac OS, Technology - Other, Mac Support,
Mobile Phones, MP3/MIDI, Net Conferencing, Net
for Beginners, Network Security, Palmtops/PDAs, PC
Support, Peer-to-Peer, Personal Storage, Portable,
Entertainment, Remote Access, Shareware/Freeware,
Unix, Utilities, Visual Basic, Web Clip Art, Web
Design/HTML, Web Hosting, ISP & Telco, Windows,
Online Information Management

Adventure Travel, Africa, Air Travel, Australia &
New Zealand, Bed & Breakfast, Budget Travel,

Travel

Business Travel, By US Locale, Camping, Canada,
Caribbean, Cruises, Eastern Europe, Europe, Travel -
Other, France, Greece, Honeymoons/Getaways, Hotels,
Italy, Japan, Mexico & Central America, National
Parks, Navigation, South America, Spas, Theme Parks,
Traveling with Kids, United Kingdom

Table 4.12. URL filter categories

Customizing the URL database

Create blacklist and whitelist if necessary. This can be achieved with the help of free text editor, on the PNS

Node → New → Text editor → URL filter black and whitelists path.

Figure 4.5. Editor for URL filter blacklist and whitelist

The choices for blacklist, whitelist or * options are also put into the category list:

66www.balasys.hu

Proxy behavior

Figure 4.6. The 'whitelist' and 'blacklist' options are at the end of the category list

4.6.3. Related standards

■ The Hypertext Transfer Protocol -- HTTP/1.1 protocol is described in RFC 2616.

■ The Hypertext Transfer Protocol -- HTTP/1.0 protocol is described in RFC 1945.

4.6.4. Classes in the Http module

DescriptionClass

Class encapsulating the abstract HTTP proxy.AbstractHttpProxy

Default HTTP proxy based on AbstractHttpProxy.HttpProxy

HTTP proxy based on HttpProxy, operating in
non-transparent mode.

HttpProxyNonTransparent

HTTP proxy based on HttpProxy, with URI filtering
capability.

HttpProxyURIFilter

67www.balasys.hu

Related standards

DescriptionClass

HTTP proxy based on HttpProxyURIFilter, with URI
filtering capability and permitting non-transparent
requests.

HttpProxyURIFilterNonTransparent

HTTP proxy based on HttpProxy, with URL filtering
capability based on categories.

HttpProxyURLCategoryFilter

HTTP proxy based on HttpProxy, allowing WebDAV
extensions.

HttpWebdavProxy

HTTP proxy based on HttpProxyNonTransparent,
allowing WebDAV extension in non-transparent
requests.

NontransHttpWebdavProxy

Table 4.13. Classes of the Http module

4.6.5. Class AbstractHttpProxy

This class implements an abstract HTTP proxy - it serves as a starting point for customized proxy classes, but
is itself not directly usable. Service definitions should refer to a customized class derived from AbstractHttpProxy,
or one of the predefined proxy classes, such as HttpProxy or HttpProxyNonTransparent. AbstractHttpProxy
denies all requests by default.

4.6.5.1. Attributes of AbstractHttpProxy

auth_by_cookie (boolean, rw:r)

Default: FALSE

Authentication informations for one-time-password mode is organized by a cookie not the address of the
client.

auth_by_form (boolean, rw:r)

Default: FALSE

When enabled, and the client tries to access an URL that requires authentication, a webpage where users can
enter their authentication information is displayed. If the authentication is successful, the result is cached in
a cookie.

auth_cache_time (integer, rw:r)

Default: 0

Caching authentication information this amount of seconds.

auth_cache_update (boolean, rw:r)

Default: FALSE

Update authentication cache by every connection.

68www.balasys.hu

Class AbstractHttpProxy

auth_forward (boolean, rw:rw)

Default: FALSE

Controls whether inband authentication information (username and password) should be forwarded to the
upstream server. When a parent proxy is present, the incoming authentication request is put into a
'Proxy-Authorization' header. In other cases the 'WWW-Authorization' header is used.

auth_realm (string, w:r)

Default: "Vela HTTP auth"

The name of the authentication realm to be presented to the user in the dialog window during inband
authentication.

buffer_size (integer, rw:r)

Default: 1500

Size of the I/O buffer used to transfer entity bodies.

connect_proxy (class, rw:rw)

Default: PlugProxy

For CONNECT requests the HTTP proxy starts an independent proxy to control the internal protocol. The
connect_proxy attribute specifies which proxy class is used for this purpose.

connection_mode (enum, n/a:rw)

Default: n/a

This value reflects the state of the session. If the value equals to 'HTTP_CONNECTION_CLOSE', the session
will be closed after serving the current request. Otherwise, if the value is 'HTTP_CONNECTION_KEEPALIVE'
another request will be fetched from the client. This attribute can be used to forcibly close a keep-alive
connection.

current_header_name (string, n/a:rw)

Default: n/a

Name of the header. It is defined when the header is processed, and can be modified by the proxy to actually
change a header in the request or response.

current_header_value (string, n/a:rw)

Default: n/a

Value of the header. It is defined when the header is processed, and can be modified by the proxy to actually
change the value of the header in the request or response.

69www.balasys.hu

Class AbstractHttpProxy

default_port (integer, rw:rw)

Default: 80

This value is used in non-transparent mode when the requested URL does not contain a port number. The
default should be 80, otherwise the proxy may not function properly.

enable_session_persistence (boolean, rw:rw)

Default: FALSE

Allow persistent load balanced connections when accessing session-aware application servers.

enable_url_filter (boolean, rw:r)

Default: FALSE

Enables URL filtering in HTTP requests. See Section 4.6.2.12, URL filtering in HTTP (p. 56) for details.

enable_url_filter_dns (boolean, rw:r)

Default: FALSE

Enables DNS- and reverse-DNS resolution to ensure that a domain or URL is correctly categorized even
when it is listed in the database using its domain name, but the client tries to access it with its IP address (or
vice-versa). See Section 4.6.2.12, URL filtering in HTTP (p. 56) for details.

error_files_directory (string, rw:rw)

Default: "/usr/share/vela/http"

Location of HTTP error messages.

error_headers (string, n/a:rw)

Default: n/a

A string included as a header in the error response. The string must be a valid header and must end with a "
" sequence.

error_info (string, n/a:rw)

Default: n/a

A string to be included in error messages.

error_msg (string, n/a:rw)

Default: n/a

A string used as an error message in the HTTP status line.

70www.balasys.hu

Class AbstractHttpProxy

error_silent (boolean, rw:rw)

Default: FALSE

Turns off verbose error reporting to the HTTP client (makes firewall fingerprinting more difficult).

error_status (integer, rw:rw)

Default: 500

If an error occurs, this value will be used as the status code of the HTTP response it generates.

keep_persistent (boolean, rw:r)

Default: FALSE

Try to keep the connection to the client persistent even if the server does not support it.

language (string, rw:r)

Default: "en"

Specifies the language of the HTTP error pages displayed to the client. English (en) is the default. Other
supported languages: de (German); hu (Hungarian).

max_auth_time (integer, rw:rw)

Default: 0

Request password authentication from the client, invalidating cached one-time-passwords. If the time specified
(in seconds) in this attribute expires, a new authentication from the client browser is requested even if it still
has a password cached.

max_body_length (integer, rw:rw)

Default: 0

Maximum allowed length of an HTTP request or response body. The default "0" value means that the length
of the body is not limited.

max_chunk_length (integer, rw:rw)

Default: 0

Maximum allowed length of a single chunk when using chunked transfer-encoding. The default "0" value
means that the length of the chunk is not limited.

max_header_lines (integer, rw:rw)

Default: 50

Maximum number of header lines allowed in a request or response.

71www.balasys.hu

Class AbstractHttpProxy

max_hostname_length (integer, rw:rw)

Default: 256

Maximum allowed length of the hostname field in URLs.

max_keepalive_requests (integer, rw:rw)

Default: 0

Maximum number of requests allowed in a single session. If the number of requests in the session the reaches
this limit, the connection is terminated. The default "0" value allows unlimited number of requests.

max_line_length (integer, rw:r)

Default: 4096

Maximum allowed length of lines in requests and responses. This value does not affect data transfer, as data
is transmitted in binary mode.

max_url_length (integer, rw:rw)

Default: 4096

Maximum allowed length of an URL in a request. Note that this directly affects forms using the 'GET' method
to pass data to CGI scripts.

parent_proxy (string, rw:rw)

Default: ""

The address or hostname of the parent proxy to be connected. Either DirectedRouter or InbandRouter has to
be used when using parent proxy.

parent_proxy_port (integer, rw:rw)

Default: 3128

The port of the parent proxy to be connected.

permit_ftp_over_http (boolean, rw:r)

Default: FALSE

Allow processing FTP URLs in non-transparent mode.

permit_http09_responses (boolean, rw:r)

Default: TRUE

Allow server responses to use the limited HTTP/0.9 protocol. As these responses carry no control information,
verifying the validity of the protocol stream is impossible. This does not pose a threat to web clients, but

72www.balasys.hu

Class AbstractHttpProxy

permit_http09_responses (boolean, rw:r)

exploits might pass undetected if this option is enabled for servers. It is recommended to turn this option off
for protecting servers and only enable it when Vela is used in front of users.

permit_invalid_hex_escape (boolean, rw:r)

Default: FALSE

Allow invalid hexadecimal escaping in URLs (% must be followed by two hexadecimal digits).

permit_null_response (boolean, rw:r)

Default: TRUE

Permit RFC incompliant responses with headers not terminated by CRLF and not containing entity body.

permit_proxy_requests (boolean, rw:r)

Default: FALSE

Allow proxy-type requests in transparent mode.

permit_server_requests (boolean, rw:r)

Default: TRUE

Allow server-type requests in non-transparent mode.

permit_unicode_url (boolean, rw:r)

Default: FALSE

Allow unicode characters in URLs encoded as %u. This is an IIS extension to HTTP, UNICODE (UTF-7,
UTF-8 etc.) URLs are forbidden by the RFC as default.

request (complex, rw:rw)

Default: empty

Normative policy hash for HTTP requests indexed by the HTTP method (e.g.: "GET", "PUT" etc.). See also
Section 4.6.2.2, Configuring policies for HTTP requests and responses (p. 50).

request_count (integer, n/a:r)

Default: 0

The number of keepalive requests within the session.

request_header (complex, rw:rw)

Default: empty

73www.balasys.hu

Class AbstractHttpProxy

request_header (complex, rw:rw)

Normative policy hash for HTTP header requests indexed by the header names (e.g.: "Set-cookie"). See also
Section 4.6.2.3, Configuring policies for HTTP headers (p. 52).

request_method (string, n/a:r)

Default: n/a

Request method (GET, POST, etc.) sent by the client.

request_mime_type (string, n/a:r)

Default: n/a

The MIME type of the request entity. Its value is only defined when the request is processed.

request_stack (complex, rw:rw)

Default: n/a

Attribute containing the request stacking policy: the hash is indexed based on method names (e.g.: GET). See
Section 4.6.2.9, Stacking (p. 55).

request_url (string, n/a:rw)

Default: n/a

The URL requested by the client. It can be modified to redirect the current request.

request_url_file (string, n/a:r)

Default: n/a

Filename specified in the URL.

request_url_host (string, n/a:r)

Default: n/a

Remote hostname in the URL.

request_url_passwd (string, n/a:r)

Default: n/a

Password in the URL (if specified).

request_url_port (integer, n/a:r)

Default: n/a

Port number as specified in the URL.

74www.balasys.hu

Class AbstractHttpProxy

request_url_proto (string, n/a:r)

Default: n/a

Protocol specifier of the URL. This attribute is an alias for request_url_scheme.

request_url_scheme (string, n/a:r)

Default: n/a

Protocol specifier of the URL (http://, ftp://, etc.).

request_url_username (string, n/a:r)

Default: n/a

Username in the URL (if specified).

request_version (string, n/a:r)

Default: n/a

Request version (1.0, 1.1, etc.) used by the client.

require_host_header (boolean, rw:r)

Default: TRUE

Require the presence of the Host header. If set to FALSE, the real URL cannot be recovered from certain
requests, which might cause problems with URL filtering.

rerequest_attempts (integer, rw:rw)

Default: 0

Controls the number of attempts the proxy takes to send the request to the server. In case of server failure, a
reconnection is made and the complete request is repeated along with POST data.

reset_on_close (boolean, rw:rw)

Default: FALSE

Whenever the connection is terminated without a proxy generated error message, send an RST instead of a
normal close. Causes some clients to automatically reconnect.

response (complex, rw:rw)

Default: empty

Normative policy hash for HTTP responses indexed by the HTTP method and the response code (e.g.: "PWD",
"209" etc.). See also Section 4.6.2.2, Configuring policies for HTTP requests and responses (p. 50).

75www.balasys.hu

Class AbstractHttpProxy

response_header (complex, rw:rw)

Default: empty

Normative policy hash for HTTP header responses indexed by the header names (e.g.: "Set-cookie"). See
also Section 4.6.2.3, Configuring policies for HTTP headers (p. 52).

response_mime_type (string, n/a:r)

Default: n/a

The MIME type of the response entity. Its value is only defined when the response is processed.

response_stack (complex, rw:rw)

Default: n/a

Attribute containing the response stacking policy: the hash is indexed based on method names (e.g.: GET).
See Section 4.6.2.9, Stacking (p. 55).

rewrite_host_header (boolean, rw:rw)

Default: TRUE

Rewrite the Host header in requests when URL redirection is performed.

server_response_time (integer, n/a:r)

Default: n/a

This value stores the time difference between sending the request to the server and receiving the response, in
milliseconds.

session_persistence_cookie_name (string, rw:rw)

Default: "JSESSIONID"

The name of the cookie which will be used to persist load balanced connections when accessing session-aware
application servers.

session_persistence_cookie_salt (string, rw:rw)

Default: n/a

The salt to use when hashing the target server addresses in persistent load balanced connections. If session
persistence is enabled, this parameter must be set.

strict_header_checking (boolean, rw:r)

Default: FALSE

Require RFC conformant HTTP headers.

76www.balasys.hu

Class AbstractHttpProxy

strict_header_checking_action (enum, rw:r)

Default: HTTP_HDR_DROP

This attribute controls what should happen if a non-rfc conform or unknown header found in the communication.
Only the HTTP_HDR_ACCEPT, HTTP_HDR_DROP and HTTP_HDR_ABORT can be used.

target_port_range (string, rw:rw)

Default: "80,443"

List of ports that non-transparent requests are allowed to use. The default is to allow port 80 and 443 to permit
HTTP and HTTPS traffic. (The latter also requires the CONNECT method to be enabled).

timeout (integer, rw:rw)

Default: 300000

General I/O timeout in milliseconds. If there is no timeout specified for a given operation, this value is used.

timeout_request (integer, rw:rw)

Default: 10000

Time to wait for a request to arrive from the client.

timeout_response (integer, rw:rw)

Default: 300000

Time to wait for the HTTP status line to arrive from the server.

transparent_mode (boolean, rw:r)

Default: TRUE

Set the operation mode of the proxy to transparent (TRUE) or non-transparent (FALSE).

url_category (complex, rw:rw)

Default: empty

Normative policy hash for category-based URL-filtering. The hash is indexed by the name of the category.

url_filter_uncategorized_action (enum, rw:rw)

Default: HTTP_URL_ACCEPT

The action applied to uncategorized (unknown) URLs when URL filtering is used. By default, uncategorized
URLs are accepted: self.url_filter_uncategorized_action=(HTTP_URL_ACCEPT,). Note that if
you set this option to HTTP_URL_REJECT, you must add every URL on your intranet to a category and set
an HTTP_URL_ACCEPT rule to this category, otherwise your clients will not able to access your intranet sites.
For details, see Section Configuring URL filtering in HTTP (p. 57).

77www.balasys.hu

Class AbstractHttpProxy

use_canonicalized_urls (boolean, rw:rw)

Default: TRUE

This attribute enables URL canonicalization, which means to automatically convert URLs to their canonical
form. This enhances security but might cause interoperability problems with some applications. It is
recommended to disable this setting on a per-destination basis. URL filtering still sees the canonicalized URL,
but at the end the proxy sends the original URL to the server.

use_default_port_in_transparent_mode (boolean, rw:rw)

Default: TRUE

Set the target port to the value of default_port in transparent mode. This ensures that only the ports
specified in target_port_range can be used by the clients, even if InbandRouter is used.

4.6.5.2. AbstractHttpProxy methods

DescriptionMethod

Function returning the value of a request header.getRequestHeader(self, header)

Function returning the value of a response header.getResponseHeader(self, header)

Function changing the value of a request header.setRequestHeader(self, header, new_value)

Function changing the value of a response header.setResponseHeader(self, header, new_value)
Table 4.14. Method summary

Method getRequestHeader(self, header)

This function looks up and returns the value of a header associated with the current request.

Arguments of getRequestHeader

header (unknown, n/a:n/a)

Default: n/a

Name of the header to look up.

Method getResponseHeader(self, header)

This function looks up and returns the value of a header associated with the current response.

Arguments of getResponseHeader

header (unknown, n/a:n/a)

Default: n/a

Name of the header to look up.

78www.balasys.hu

Class AbstractHttpProxy

Method setRequestHeader(self, header, new_value)

This function looks up and changes the value of a header associated with the current request.

Arguments of setRequestHeader

header (unknown, n/a:n/a)

Default: n/a

Name of the header to change.

new_value (unknown, n/a:n/a)

Default: n/a

Change the header to this value.

Method setResponseHeader(self, header, new_value)

This function looks up and changes the value of a header associated with the current response.

Arguments of setResponseHeader

header (unknown, n/a:n/a)

Default: n/a

Name of the header to change.

new_value (unknown, n/a:n/a)

Default: n/a

Change the header to this value.

4.6.6. Class HttpProxy

HttpProxy is a default HTTP proxy based on AbstractHttpProxy. It is transparent, and enables the most commonly
used HTTP methods: "GET", "POST" and "HEAD".

4.6.7. Class HttpProxyNonTransparent

HTTP proxy based on HttpProxy. This class is identical to HttpProxy with the only difference being that it is
non-transparent (transparent_mode = FALSE). Consequently, clients must be explicitly configured to
connect to this proxy instead of the target server and issue proxy requests. On the server side this proxy connects
transparently to the target server.

For the correct operation the proxy must be able to set the server address on its own. This can be accomplished
by using InbandRouter.

79www.balasys.hu

Class HttpProxy

4.6.8. Class HttpProxyURIFilter

HTTP proxy based on HttpProxy, having URL filtering capability. The matcher attribute should be initialized
to refer to a Matcher object. The initialization should be done in the class body as shown in the next example.

Example 4.13. URL filtering HTTP proxy

class MyHttp(HttpProxyURIFilter):

matcher = RegexpFileMatcher('/etc/vela/blacklist.txt',

'/etc/vela/whitelist.txt')

4.6.8.1. Attributes of HttpProxyURIFilter

matcher (class, rw:rw)

Default: None

Matcher determining whether access to an URL is permitted or not.

4.6.9. Class HttpProxyURIFilterNonTransparent

HTTP proxy based on HttpProxyURIFilter, but operating in non-transparent mode (transparent_mode =

FALSE).

4.6.10. Class HttpProxyURLCategoryFilter

HTTP proxy based on HttpProxy with enabled URL filtering (with DNS and reverse-DNS resolution) and
preconfigured default category actions.

The following categories have policy action HTTP_URL_REJECT:

■ Ad Fraud

■ Blacklist

■ Botnet

■ Child Abuse Images

■ Command and Control Centers

■ Compromised & Links To Malware

■ Criminal Skills

■ Gambling

■ Illegal Drugs

■ Malware Call-Home

■ Malware Distribution Point

■ Phishing/Fraud

■ Pornography

80www.balasys.hu

Class HttpProxyURIFilter

■ Self Harm

■ Sex & Erotic

■ Spam URLs

■ Spyware & Questionable Software

■ Violence

The following categories have policy action HTTP_URL_ACCEPT:

■ Whitelist

4.6.11. Class HttpWebdavProxy

HTTP proxy based on HttpProxy, also capable of inspecting WebDAV extensions of the HTTP protocol.

The following requests are permitted: PROPFIND; PROPPATCH; MKCOL; COPY; MOVE; LOCK; UNLOCK.

4.6.12. Class NontransHttpWebdavProxy

HTTP proxy based on HttpProxyNonTransparent, operating in non-transparent mode (transparent_mode
= FALSE) and capable of inspecting WebDAV extensions of the HTTP protocol.

The following requests are permitted: PROPFIND; PROPPATCH; MKCOL; COPY; MOVE; LOCK; UNLOCK.

4.7. Module Plug

This module defines an interface to the Plug proxy. Plug is a simple TCP or UDP circuit, which means that
transmission takes place without protocol verification.

4.7.1. Proxy behavior

This class implements a general plug proxy, and is capable of optionally disabling data transfer in either direction.
Plug proxy reads connection on the client side, then creates another connection at the server side. Arriving
responses are sent back to the client. However, it is not a protocol proxy, therefore PlugProxy does not implement
any protocol analysis. It offers protection to clients and servers from lower level (e.g.: IP) attacks. It is mainly
used to allow traffic pass the firewall for which there is no protocol proxy available.

By default plug copies all data in both directions. To change this behavior, set the copy_to_client or
copy_to_server attribute to FALSE.

Plug supports the use of secondary sessions. For details, see Section 2.2, Secondary sessions (p. 7).

Note
Copying of out-of-band data is not supported.

4.7.2. Related standards

Plug proxy is not a protocol specific proxy module, therefore it is not specified in standards.

81www.balasys.hu

Class HttpWebdavProxy

4.7.3. Classes in the Plug module

DescriptionClass

Class encapsulating the abstract Plug proxy.AbstractPlugProxy

Class encapsulating the default Plug proxy.PlugProxy
Table 4.15. Classes of the Plug module

4.7.4. Class AbstractPlugProxy

An abstract proxy class for transferring data.

4.7.4.1. Attributes of AbstractPlugProxy

bandwidth_to_client (integer, n/a:r)

Default: n/a

Read-only variable containing the bandwidth currently used in server->client direction.

bandwidth_to_server (integer, n/a:r)

Default: n/a

Read-only variable containing the bandwidth currently used in client->server direction.

buffer_size (integer, w:r)

Default: 1500

Size of the buffer used for copying data.

copy_to_client (boolean, w:r)

Default: TRUE

Allow data transfer in the server->client direction.

copy_to_server (boolean, w:r)

Default: TRUE

Allow data transfer in the client->server direction.

packet_stats_interval_packet (integer, w:r)

Default: 0

The number of passing packages between two successive packetStats() events. It can be useful when the
Quality of Service for the connection is influenced dynamically. Set to 0 to turn packetStats() off.

82www.balasys.hu

Classes in the Plug module

packet_stats_interval_time (integer, w:r)

Default: 0

The time in milliseconds between two successive packetStats() events. It can be useful when the Quality of
Service for the connection is influenced dynamically. Set to 0 to turn packetStats() off.

secondary_mask (secondary_mask, rw:r)

Default: 0xf

Specifies which connections can be handled by the same proxy instance. See Section 2.2, Secondary
sessions (p. 7) for details.

secondary_sessions (integer, rw:r)

Default: 10

Maximum number of allowed secondary sessions within a single proxy instance. See Section 2.2, Secondary
sessions (p. 7) for details.

shutdown_soft (boolean, w:r)

Default: FALSE

If enabled, the two sides of a connection are closed separately. (E.g.: if the server closes the connection the
client side connection is held until it is verified that no further data arrives, for example from a stacked proxy.)
It is automatically enabled when proxies are stacked into the connection.

stack_proxy (enum, w:r)

Default: n/a

Proxy class to stack into the connection. All data is passed to the specified proxy.

timeout (integer, w:r)

Default: 600000

I/O timeout in milliseconds.

83www.balasys.hu

Class AbstractPlugProxy

4.7.4.2. AbstractPlugProxy methods

DescriptionMethod

Function called when the packet_stats_interval is
elapsed.

packetStats(self, client_bytes, client_pkts, server_bytes,
server_pkts)

Table 4.16. Method summary

Method packetStats(self, client_bytes, client_pkts, server_bytes, server_pkts)

This function is called whenever the time interval set in packet_stats_interval elapses, or a given number of
packets were transmitted. This event receives packet statistics as parameters. It can be used in managing the
Quality of Service of the connections; e.g.: to terminate connections with excessive bandwidth requirements
(for instance to limit the impact of a covert channel opened when using plug instead of a protocol specific
proxy).

Arguments of packetStats

client_bytes (unknown, n/a:n/a)

Default: n/a

Number of bytes transmitted to the client.

client_pkts (unknown, n/a:n/a)

Default: n/a

Number of packets transmitted to the client.

server_bytes (unknown, n/a:n/a)

Default: n/a

Number of bytes transmitted to the server.

server_pkts (unknown, n/a:n/a)

Default: n/a

Number of packets transmitted to the server.

4.7.5. Class PlugProxy

A default PlugProxy based on AbstractPlugProxy.

4.8. Module Pop3

The Pop3 module defines the classes constituting the proxy for the POP3 protocol.

84www.balasys.hu

Class PlugProxy

4.8.1. The POP3 protocol

Post Office Protocol version 3 (POP3) is usually used by mail user agents (MUAs) to download messages from
a remote mailbox. POP3 supports a single mailbox only, it does not support advanced multi-mailbox operations
offered by alternatives such as IMAP.

The POP3 protocol uses a single TCP connection to give access to a single mailbox. It uses a simple
command/response based approach, the client issues a command and a server can respond either positively or
negatively.

4.8.1.1. Protocol elements

The basic protocol is the following: the client issues a request (also called command in POP3 terminology) and
the server responds with the result. Both commands and responses are line based, each command is sent as a
complete line, a response is either a single line or - in case of mail transfer commands - multiple lines.

Commands begin with a case-insensitive keyword possibly followed by one or more arguments (such as RETR
or DELE).

Responses begin with a status indicator ("+OK" or "-ERR") and a possible explanation of the status code (e.g.:
"-ERR Permission denied.").

Responses to certain commands (usually mail transfer commands) also contain a data attachment, such as the
mail body. See the Section 4.8.1.3, Bulk transfers (p. 85) for further details.

4.8.1.2. POP3 states

The protocol begins with the server displaying a greeting message, usually containing information about the
server.

After the greeting message the client takes control and the protocol enters the AUTHORIZATION state where
the user has to pass credentials proving his/her identity.

After successful authentication the protocol enters TRANSACTION state where mail access commands can
be issued.

When the client has finished processing, it issues a QUIT command and the connection is closed.

4.8.1.3. Bulk transfers

Responses to certain commands (such as LIST or RETR) contain a long data stream. This is transferred as a
series of lines, terminated by a "CRLF '.' CRLF" sequence, just like in SMTP.

Example 4.14. POP3 protocol sample

+OK POP3 server ready

USER account

+OK User name is ok

PASS password

+OK Authentication successful

LIST

+OK Listing follows

1 5758

85www.balasys.hu

The POP3 protocol

2 232323

3 3434

.

RETR 1

+OK Mail body follows

From: sender@sender.com

To: account@receiver.com

Subject: sample mail

This is a sample mail message. Lines beginning with

..are escaped, another '.' character is perpended which

is removed when the mail is stored by the client.

.

DELE 1

+OK Mail deleted

QUIT

+OK Good bye

4.8.2. Proxy behavior

Pop3Proxy is a module built for parsing messages of the POP3 protocol. It reads and parses COMMANDs on
the client side, and sends them to the server if the local security policy permits. Arriving RESPONSEs are
parsed as well, and sent to the client if the local security policy permits. It is possible to manipulate both the
requests and the responses.

4.8.2.1. Default policy for commands

By default, the proxy accepts all commands recommended in RFC 1939. Additionally, the following optional
commands are also accepted: USER, PASS, AUTH. The proxy understands all the commands specified in RFC
1939 and the AUTH command. These additional commands can be enabled manually.

4.8.2.2. Configuring policies for POP3 commands

Changing the default behavior of commands can be done using the hash named request. The hash is indexed
by the command name (e.g.: USER or AUTH). See Section 2.1, Policies for requests and responses (p. 4)
for details.

DescriptionAction

Accept the request without any modification.POP3_REQ_ACCEPT

Accept multiline requests without modification. Use
it only if unknown commands has to be enabled (i.e.
commands not specified in RFC 1939 or RFC 1734).

POP3_REQ_ACCEPT_MLINE

Reject the request. The second parameter contains a
string that is sent back to the client.

POP3_REQ_REJECT

Call the function specified to make a decision about
the event. See Section 2.1, Policies for requests and

POP3_REQ_POLICY

responses (p. 4) for details. This action uses two
additional tuple items, which must be callable Python

86www.balasys.hu

Proxy behavior

DescriptionAction

functions. The first function receives two parameters:
self and command.

The second one is called with an answer, (if the answer
is multiline, it is called with every line) and receives
two parameters: self and response_param.

Reject the request and terminate the connection.POP3_REQ_ABORT

Table 4.17. Action codes for POP3 requests

Example 4.15. Example for allowing only APOP authentication in POP3
This sample proxy class rejects the USER authentication requests, but allows APOP requests.

class APop3(Pop3Proxy):

def config(self):

Pop3Proxy.config(self)

self.request["USER"] = (POP3_REQ_REJECT)

self.request["APOP"] = (POP3_REQ_ACCEPT)

Example 4.16. Example for converting simple USER/PASS authentication to APOP in POP3
The above example simply rejected USER/PASS authentication, this one converts USER/PASS authentication to APOP authentication
messages.

class UToAPop3(Pop3Proxy):

def config(self):

Pop3Proxy.config(self)

self.request["USER"] = (POP3_REQ_POLICY,self.DropUSER)

self.request["PASS"] = (POP3_REQ_POLICY,self.UToA)

def DropUSER(self,command):

self.response_value = "+OK"

self.response_param = "User ok Send Password"

return POP3_REQ_REJECT

def UToA(self,command):

Username is stored in self->username,

password in self->request_param,

and the server timestamp in self->timestamp,

consequently the digest can be calculated.

NOTE: This is only an example, calcdigest must be

implemented separately

digest = calcdigest(self->timestamp+self->request_param)

self->request_command = "APOP"

self->request_param = name + " " + digest

return POP3_REQ_ACCEPT

4.8.2.3. Rewriting the banner

As in many other protocols, POP3 also starts with a server banner. This banner contains the protocol version
the server uses, the possible protocol extensions that it supports and, in many situations, the vendor and exact
version number of the POP3 server.

87www.balasys.hu

Proxy behavior

This information is useful only if the clients connecting to the POP3 server can be trusted, as it might make
bug hunting somewhat easier. On the other hand, this information is also useful for attackers when targeting
this service.

To prevent this, the banner can be replaced with a neutral one. Use the request hash with the 'GREETING'
keyword as shown in the following example.

Example 4.17. Rewriting the banner in POP3

class NeutralPop3(Pop3Proxy):

def config(self):

Pop3Proxy.config(self)

self.request["GREETING"] = (POP3_REQ_POLICY, None, self.rewriteBanner)

def rewriteBanner(self, response)

self.response_param = "Pop3 server ready"

return POP3_RSP_ACCEPT

Note
Some protocol extensions (most notably APOP) use random characters in the greeting message as salt in the authentication process, so
changing the banner when APOP is used effectively prevents APOP from working properly.

4.8.2.4. Stacking

The available stacking modes for this proxy module are listed in the following table. For additional information
on stacking, see Section 2.3.1, Proxy stacking (p. 7).

DescriptionAction

Call the function specified to decide which part (if
any) of the traffic should be passed to the stacked
proxy.

POP3_STK_POLICY

No additional proxy is stacked into the POP3 proxy.POP3_STK_NONE

The data part of the traffic including the MIME
headers is passed to the specified stacked proxy.

POP3_STK_MIME

Only the data part of the traffic is passed to the
specified stacked proxy.

POP3_STK_DATA

Table 4.18. Action codes for proxy stacking

4.8.2.5. Rejecting viruses and spam

When filtering messages for viruses or spam, the content vectoring modules reject infected and spam e-mails.
In such cases the POP3 proxy notifies the client about the rejected message in a special e-mail.

88www.balasys.hu

Proxy behavior

To reject e-mail messages using the ERR protocol element, set the reject_by_mail attribute to FALSE.
However, this is not recommended, because several client applications handle ERR responses incorrectly.

Note
Infected e-mails are put into the quarantine and deleted from the server.

4.8.3. Related standards

■ Post Office Protocol Version 3 is described in RFC 1939.

■ The POP3 AUTHentication command is described in RFC 1734.

4.8.4. Classes in the Pop3 module

DescriptionClass

Class encapsulating the abstract POP3 proxy.AbstractPop3Proxy

Default POP3 proxy based on AbstractPop3Proxy.Pop3Proxy

POP3 proxy based on Pop3Proxy allowing Start TLS.Pop3STLSProxy
Table 4.19. Classes of the Pop3 module

4.8.5. Class AbstractPop3Proxy

This class implements an abstract POP3 proxy - it serves as a starting point for customized proxy classes, but
is itself not directly usable. Service definitions should refer to a customized class derived from
AbstractPop3Proxy, or a predefined Pop3Proxy proxy class. AbstractPop3Proxy denies all requests by default.

4.8.5.1. Attributes of AbstractPop3Proxy

max_authline_count (integer, rw:r)

Default: 4

Maximum number of lines that can be sent during the authentication conversation. The default value is enough
for password authentication, but might have to be increased for other types of authentication.

max_password_length (integer, rw:r)

Default: 16

Maximum allowed length of passwords.

max_request_line_length (integer, rw:r)

Default: 90

Maximum allowed line length for client requests, without the CR-LF line ending characters.

89www.balasys.hu

Related standards

max_response_line_length (integer, rw:r)

Default: 512

Maximum allowed line length for server responses, without the CR-LF line ending characters.

max_username_length (integer, rw:r)

Default: 8

Maximum allowed length of usernames.

password (string, n/a:r)

Default:

Password sent to the server (if any).

permit_longline (boolean, rw:r)

Default: FALSE

In multiline answer (especially in downloaded messages) sometimes very long lines can appear. Enabling
this option allows the unlimited long lines in multiline answers.

permit_unknown_command (boolean, rw:r)

Default: FALSE

Enable unknown commands.

reject_by_mail (boolean, rw:r)

Default: TRUE

If the stacked proxy or content vectoring module rejects an e-mail message, reply with a special e-mail message
instead of an ERR response. See Section 4.8.2.5, Rejecting viruses and spam (p. 88) for details.

request (complex, rw:rw)

Default:

Normative policy hash for POP3 requests indexed by the command name (e.g.: "USER", "UIDL", etc.). See
also Section 4.8.2.2, Configuring policies for POP3 commands (p. 86).

request_command (string, n/a:rw)

Default: n/a

When a command is passed to the policy level, its value can be changed to this value.

90www.balasys.hu

Class AbstractPop3Proxy

request_param (string, n/a:rw)

Default: n/a

When a command is passed to the policy level, the value of its parameters can be changed to this value.

response_multiline (boolean, n/a:rw)

Default: n/a

Enable multiline responses.

response_param (string, n/a:rw)

Default: n/a

When a command or response is passed to the policy level, the value its parameters can be changed to this
value. (It has effect only if the return value is not POP3_*_ACCEPT).

response_stack (complex, rw:rw)

Default:

Hash containing the stacking policy for multiline POP3 responses. The hash is indexed by the POP3 response.
See also Section 4.8.2.4, Stacking (p. 88).

response_value (string, n/a:rw)

Default: n/a

When a command or response is passed to the policy level, its value can be changed to this value. (It has
effect only if the return value is not POP3_*_ACCEPT).

session_timestamp (string, n/a:r)

Default: n/a

If the POP3 server implements the APOP command, with the greeting message it sends a timestamp, which
is stored in this parameter.

timeout (integer, rw:r)

Default: 600000

Timeout in milliseconds. If no packet arrives within this interval, connection is dropped.

username (string, n/a:r)

Default: n/a

Username as specified by the client.

91www.balasys.hu

Class AbstractPop3Proxy

4.8.6. Class Pop3Proxy

Pop3Proxy is the default POP3 proxy based on AbstractPop3Proxy, allowing the most commonly used requests.

The following requests are permitted: APOP; DELE; LIST; LAST; NOOP; PASS; QUIT; RETR; RSET; STAT;
TOP; UIDL; USER; GREETING. All other requests (including CAPA) are rejected.

4.8.7. Class Pop3STLSProxy

Pop3STLSProxy is based on Pop3Proxy, allowing the most commonly used requests.

The following requests are permitted: APOP; DELE; LIST; LAST; NOOP; PASS; QUIT; RETR; RSET; STAT;
TOP; UIDL; USER; CAPA; STLS; GREETING. All other requests are rejected. The
self.max_request_line_length is set to 253.

4.9. Module Smtp

Simple Mail Transport Protocol (SMTP) is a protocol for transferring electronic mail messages from Mail User
Agents (MUAs) to Mail Transfer Agents (MTAs). It is also used for exchanging mails between MTAs.

4.9.1. The SMTP protocol

The main goal of SMTP is to reliably transfer mail objects from the client to the server. A mail transaction
involves exchanging the sender and recipient information and the mail body itself.

4.9.1.1. Protocol elements

SMTP is a traditional command based Internet protocol; the client issues command verbs with one or more
arguments, and the server responds with a 3 digit status code and additional information. The response can span
one or multiple lines, the continuation is indicated by an '-' character between the status code and text.

The communication itself is stateful, the client first specifies the sender via the "MAIL" command, then the
recipients using multiple "RCPT" commands. Finally it sends the mail body using the "DATA" command.
After a transaction finishes the client either closes the connection using the "QUIT" command, or starts a new
transaction with another "MAIL" command.

Example 4.18. SMTP protocol sample

220 mail.example.com ESMTP Postfix (Debian/GNU)

EHLO client.host.name

250-mail.example.com

250-PIPELINING

250-SIZE 50000000

250-VRFY

250-ETRN

250-XVERP

250 8BITMIME

MAIL From: <sender@sender.com>

250 Sender ok

RCPT To: <account@recipient.com>

250 Recipient ok

RCPT To: <account2@recipient.com>

250 Recipient ok

DATA

92www.balasys.hu

Class Pop3Proxy

354 Send mail body

From: sender@sender.com

To: account@receiver.com

Subject: sample mail

This is a sample mail message. Lines beginning with

..are escaped, another '.' character is perpended which

is removed when the mail is stored by the client.

.

250 Ok: queued as BF47618170

QUIT

221 Farewell

4.9.1.2. Extensions

Originally SMTP had a very limited set of commands (HELO, MAIL, RCPT, DATA, RSET, QUIT, NOOP)
but as of RFC 1869, an extension mechanism was introduced. The initial HELO command was replaced by an
EHLO command and the response to an EHLO command contains all the extensions the server supports. These
extensions are identified by an IANA assigned name.

Extensions are used for example to implement inband authentication (AUTH), explicit message size limitation
(SIZE) and explicit queue run initiation (ETRN). Each extension might add new command verbs, but might
also add new arguments to various SMTP commands. The SMTP proxy has built in support for the most
important SMTP extensions, further extensions can be added through customization.

4.9.1.3. Bulk transfer

The mail object is transferred as a series of lines, terminated by the character sequence "CRLF '.' CRLF". When
the '.' character occurs as the first character of a line, an escaping '.' character is prepended to the line which is
automatically removed by the peer.

4.9.2. Proxy behavior

The Smtp module implements the SMTP protocol as specified in RFC 2821. The proxy supports the basic
SMTP protocol plus five extensions, namely: PIPELINING, SIZE, ETRN, 8BITMIME, and STARTTLS. All
other ESMTP extensions are filtered by dropping the associated token from the EHLO response. If no connection
can be established to the server, the request is rejected with an error message. In this case the proxy tries to
connect the next mail exchange server.

4.9.2.1. Default policy for commands

The abstract SMTP proxy rejects all commands and responses by default. Less restrictive proxies are available
as derived classes (e.g.: SmtpProxy), or can be customized as required.

4.9.2.2. Configuring policies for SMTP commands and responses

Changing the default behavior of commands can be done by using the hash attribute request. These hashes
are indexed by the command name (e.g.: MAIL or DATA). Policies for responses can be configured using the
response attribute, which is indexed by the command name and the response code. The possible actions are
shown in the tables below. See Section 2.1, Policies for requests and responses (p. 4) for details. When looking

93www.balasys.hu

Proxy behavior

up entries of the response attribute hash, the lookup precedence described in Section 2.1.2, Response
codes (p. 6) is used.

DescriptionAction

Accept the request without any modification.SMTP_REQ_ACCEPT

Reject the request. The second parameter contains an
SMTP status code, the third one an associated
parameter which will be sent back to the client.

SMTP_REQ_REJECT

Reject the request and terminate the connection.SMTP_REQ_ABORT
Table 4.20. Action codes for SMTP requests

DescriptionAction

Accept the response without any modification.SMTP_RSP_ACCEPT

Reject the response. The second parameter contains
an SMTP status code, the third one an associated
parameter which will be sent back to the client.

SMTP_RSP_REJECT

Reject the response and terminate the connection.SMTP_RSP_ABORT
Table 4.21. Action codes for SMTP responses

SMTP extensions can be controlled using the extension hash, which is indexed by the extension name. The
supported extensions (SMTP_EXT_PIPELINING; SMTP_EXT_SIZE; SMTP_EXT_ETRN;
SMTP_EXT_8BITMIME) can be accepted or dropped (SMTP_EXT_ACCEPT or SMTP_EXT_DROP)
individually or all at once using the SMTP_EXT_ALL index value.

4.9.2.3. Stacking

The available stacking modes for this proxy module are listed in the following table. For additional information
on stacking, see Section 2.3.1, Proxy stacking (p. 7).

DescriptionAction

No additional proxy is stacked into the SMTP proxy.SMTP_STK_NONE

The data part including header information of the
traffic is passed to the specified stacked proxy.

SMTP_STK_MIME

Table 4.22. Stacking options for SMTP

4.9.3. Related standards

■ Simple Mail Transfer Protocol is described in RFC 2821.

■ SMTP Service Extensions are described in the obsoleted RFC 1869.

■ The STARTTLS extension is described in RFC 3207.

94www.balasys.hu

Related standards

4.9.4. Classes in the Smtp module

DescriptionClass

Class encapsulating the abstract SMTP proxy.AbstractSmtpProxy

Default SMTP proxy based on AbstractSmtpProxy.SmtpProxy
Table 4.23. Classes of the Smtp module

4.9.5. Class AbstractSmtpProxy

This class implements an abstract SMTP proxy - it serves as a starting point for customized proxy classes, but
is itself not directly usable. Service definitions should refer to a customized class derived from
AbstractSmtpProxy, or one of the predefined proxy classes.

The following requests are permitted: HELO; MAIL; RCPT; DATA; RSET; QUIT; NOOP; EHLO; AUTH;
ETRN. The following extensions are permitted: PIPELINING; SIZE; ETRN; 8BITMIME; STARTTLS.

4.9.5.1. Attributes of AbstractSmtpProxy

active_extensions (integer, n/a:r)

Default: n/a

Active extension bitmask, contains bits defined by the constants 'SMTP_EXT_*'

add_received_header (boolean, rw:rw)

Default: FALSE

Add a Received: header into the email messages transferred by the proxy.

append_domain (string, rw:rw)

Default:

Domain to append to email addresses which do not specify domain name. An address is rejected if it does
not contain a domain and append_domain is empty.

autodetect_domain_from (enum, rw:rw)

Default:

If you want to autodetect the domain name of the firewall and write it to the Received line, then set this. This
attribute either set the method how the mailname should be detected. Only takes effect if add_received_header
is TRUE.

domain_name (string, rw:rw)

Default:

95www.balasys.hu

Classes in the Smtp module

domain_name (string, rw:rw)

If you want to set a fix domain name into the added Receive line, set this. Only takes effect if
add_received_header is TRUE.

extensions (complex, rw:rw)

Default:

Normative policy hash for ESMTP extension policy, indexed by the extension verb (e.g. ETRN). It contains
an action tuple with the SMTP_EXT_* values as possible actions.

interval_transfer_noop (integer, rw:rw)

Default: 600000

The interval between two NOOP commands sent to the server while waiting for the results of stacked proxies.

max_auth_request_length (integer, rw:r)

Default: 256

Maximum allowed length of a request during SASL style authentication.

max_request_length (integer, rw:r)

Default: 256

Maximum allowed line length of client requests.

max_response_length (integer, rw:r)

Default: 512

Maximum allowed line length of a server response.

permit_long_responses (boolean, rw:r)

Default: FALSE

Permit overly long responses, as some MTAs include variable parts in responses which might get very long.
If enabled, responses longer than max_response_length are segmented into separate messages. If disabled,
such responses are rejected.

permit_omission_of_angle_brackets (boolean, rw:r)

Default: FALSE

Permit MAIL From and RCPT To parameters without the normally required angle brackets around them.
They will be added when the message leaves the proxy anyway.

96www.balasys.hu

Class AbstractSmtpProxy

permit_unknown_command (boolean, rw:r)

Default: FALSE

Enable unknown commands.

request (complex, rw:rw)

Default:

Normative policy hash for SMTP requests indexed by the command name (e.g.: "USER", "UIDL", etc.). See
also Section 4.9.2.2, Configuring policies for SMTP commands and responses (p. 93).

request_command (string, n/a:rw)

Default: n/a

When a command is passed to the policy level, its value can be changed to this value.

request_param (string, n/a:rw)

Default: n/a

When a command is passed to the policy level, the value of its parameter can be changed to this value.

request_stack (complex, rw:rw)

Default:

Attribute containing the stacking policy for SMTP commands. See Section 4.9.2.3, Stacking (p. 94).

require_crlf (boolean, rw:r)

Default: TRUE

Specifies whether the proxy should enforce valid CRLF line terminations.

resolve_host (boolean, rw:rw)

Default: FALSE

Resolve the client host from the IP address and add it to the Received line. Only takes effect if
add_received_header is TRUE.

response (complex, rw:rw)

Default:

Normative policy hash for SMTP responses indexed by the command name and the response code. See also
Section 4.9.2.2, Configuring policies for SMTP commands and responses (p. 93).

97www.balasys.hu

Class AbstractSmtpProxy

response_param (string, n/a:rw)

Default: n/a

When a response is passed to the policy level, the value of its parameter can be changed to this value. (It has
effect only when the return value is not SMTP_*_ACCEPT.)

response_value (string, n/a:rw)

Default: n/a

When a response is passed to the policy level, its value can be changed to this value. (It has effect only when
the return value is not SMTP_*_ACCEPT.)

timeout (integer, rw:r)

Default: 600000

Timeout in milliseconds. If no packet arrives within this in interval, the connection is dropped.

tls_passthrough (boolean, rw:r)

Default: FALSE

Change to passthrough mode after a successful STARTTLS request. The encrypted traffic is not processed
or changed in any way, it is transported intact between the client and server.

unconnected_response_code (integer, rw:rw)

Default: 451

Error code sent to the client if connecting to the server fails.

4.9.6. Class SmtpProxy

SmtpProxy implements a basic SMTP Proxy based on AbstractSmtpProxy, with relay checking and
sender/recipient check restrictions. (Exclamation marks and percent signs are not allowed in the e-mail addresses.)

4.9.6.1. Attributes of SmtpProxy

error_soft (boolean, rw:rw)

Default: FALSE

Return a soft error condition when recipient filter does not match. If enabled, the proxy will try to re-validate
the recipient and send the mail again. This option is useful when the server used for the recipient matching
is down.

permit_exclamation_mark (boolean, rw:rw)

Default: FALSE

98www.balasys.hu

Class SmtpProxy

permit_exclamation_mark (boolean, rw:rw)

Allow the '!' sign in the local part of e-mail addresses.

permit_percent_hack (boolean, rw:rw)

Default: FALSE

Allow the '%' sign in the local part of e-mail addresses.

recipient_matcher (class, rw:rw)

Default:

Matcher class (e.g.: SmtpInvalidRecipientMatcher) used to check and filter recipient e-mail addresses.

relay_check (boolean, rw:rw)

Default: TRUE

Enable/disable relay checking.

relay_domains (complex, rw:r)

Default:

Domains mails are accepted for. Use Postfix style lists. (E.g.: '.example.com' allows every subdomain of
example.com, but not example.com. To match example.com use 'example.com'.)

relay_domains_matcher (class, rw:r)

Default:

Domains mails are accepted for based on a matcher (e.g.: RegexpFileMatcher).

relay_zones (complex, rw:r)

Default:

Zones that are relayed. The administrative hierarchy of the zone is also used.

sender_matcher (class, rw:rw)

Default:

Matcher class (e.g.: SmtpInvalidRecipientMatcher) used to check and filter sender e-mail addresses.

4.10. Module Telnet

The Telnet module defines the classes constituting the proxy for the TELNET protocol.

99www.balasys.hu

Module Telnet

4.10.1. The Telnet protocol

The Telnet protocol was designed to remotely login to computers via the network. Although its main purpose
is to access a remote standard terminal, it can be used for many other functions as well.

The protocol follows a simple scenario. The client opens a TCP connection to the server at the port 23. The
server authenticates the client and opens a terminal. At the end of the session the server closes the connection.
All data is sent in plain text format whithout any encryption.

4.10.1.1. The network virtual terminal

The communication is based on the network virtual terminal (NVT). Its goal is to map a character terminal so
neither the "server" nor "user" hosts need to keep information about the characteristics of each other's terminals
and terminal handling conventions. NVT uses 7 bit code ASCII characters as the display device. An end of line
is transmitted as a CRLF (carriage return followed by a line feed). NVT ASCII is used by many other protocols
as well.

NVT defines three mandatory control codes which must be understood by the participants: NULL, CR (Carriage
Return), which moves the printer to the left margin of the current line and LF (Line Feed), which moves the
printer to the next line keeping the current horizontal position.

NVT also contains some optional commands which are useful. These are the following:

■ BELL is an audible or visual sign.

■ BS (Back Space) moves the printer back one position and deletes a character.

■ HT (Horizontal Tab) moves the printer to the next horizontal tabular stop.

■ VT Vertical Tab moves the printer to the next vertical tabular stop.

■ FF (Form Feed) moves the printer to the top of the next page.

4.10.1.2. Protocol elements

The protocol uses several commands that control the method and various details of the interaction between the
client and the server. These commands can be either mandatory commands or extensions. During the session
initialization the client and the server negotiates the connection parameters with these commands. Sub-negotiation
is a process during the protocol which is for exchanging extra parameters of a command (e.g.: sending the
window size). The commands of the protocol are:

DescriptionRequest/Response

End of sub-negotiation parameters.SE

No operation.NOP

Data mark - Indicates the position of Sync event within
the data stream.

DM

Break - Indicates that a break or attention key was hit.BRK

Suspend, interrupt or abort the process.IP

100www.balasys.hu

The Telnet protocol

DescriptionRequest/Response

Abort output - Run a command without sending the
output back to the client.

AO

Are you there - Request a visible evidence that the
AYT command has been received.

AYT

Erase character - Delete the character last received
from the stream.

EC

Erase line - Erase a line without a CRLF.EL

Go Ahead - Instruct the other machine to start the
transmission.

GA

Sub-negotiation starts here.SB

Will (option code) - Indicates the desire to begin
performing the indicated option, or confirms that it is
being performed.

WILL

Will not (option code) - Indicates the refusal to
perform, or continue performing, the indicated option.

WONT

Do (option code) - Indicates the request that the other
party perform, or confirmation that the other party is
expected to perform, the indicated option.

DO

Do not (option code) - Indicates the request that the
other party stop performing the indicated option, or
confirmation that its performing is no longer expected.

DONT

Interpret as command.IAC
Table 4.24. Telnet protocol commands

4.10.2. Proxy behavior

TelnetProxy is a module built for parsing TELNET protocol commands and the negotiation process. It reads
and parses COMMANDs on the client side, and sends them to the server if the local security policy permits.
Arriving RESPONSEs are parsed as well and sent to the client if the local security policy permits. It is possible
to manipulate options by using TELNET_OPT_POLICY. It is also possible to accept or deny certain options
and suboptions.

The Telnet shell itself cannot be controlled, thus the commands issued by the users cannot be monitored or
modified.

4.10.2.1. Default policy

The low level abstract Telnet proxy denies every option and suboption negotiation sequences by default. The
different options can be enabled either manually in a derived proxy class, or the predefined TelnetProxy class
can be used.

101www.balasys.hu

Proxy behavior

4.10.2.2. Configuring policies for the TELNET protocol

The Telnet proxy can enable/disable the use of the options and their suboptions within the session. Changing
the default policy can be done using the optionmulti-dimensional hash, indexed by the option and the suboption
(optional). If the suboption is specified, the lookup precedence described in Section 2.1.2, Response codes (p. 6)
is used. The possible action codes are listed in the table below.

DescriptionAction

Allow the option.TELNET_OPT_ACCEPT

Reject the option.TELNET_OPT_DROP

Reject the option and terminate the Telnet session.TELNET_OPT_ABORT

Call the function specified to make a decision about
the event. The function receives two parameters: self,

TELNET_OPT_POLICY

and option (an integer). See Section 2.1, Policies for
requests and responses (p. 4) for details.

Table 4.25. Action codes for Telnet options

Example 4.19. Example for disabling the Telnet X Display Location option

class MyTelnetProxy(TelnetProxy):

def config(self):

TelnetProxy.config(self)

self.option[TELNET_X_DISPLAY_LOCATION] = (TELNET_OPT_REJECT)

Constants have been defined for the easier use of TELNET options and suboptions. These are listed in Table
A.1, TELNET options and suboptions (p. 305).

Policy callback functions

Policy callback functions can be used to make decisions based on the content of the suboption negotiation
sequence. For example, the suboption negotiation sequences of the Telnet Environment option transfer
environment variables. The low level proxy implementation parses these variables, and passes their name and
value to the callback function one-by-one. These values can also be manipulated during transfer, by changing
the current_var_name and current_var_value attributes of the proxy class.

Example 4.20. Rewriting the DISPLAY environment variable

class MyRewritingTelnetProxy(TelnetProxy):

def config(self):

TelnetProxy.config()

self.option[TELNET_ENVIRONMENT, TELNET_SB_IS] = (TELNET_OPTION_POLICY, self.rewriteVar)

def rewriteVar(self, option, name, value):

if name == "DISPLAY":

self.current_var_value = "rewritten_value:0"

return TELNET_OPTION_ACCEPT

102www.balasys.hu

Proxy behavior

Option negotiation

In the Telnet protocol, options and the actual commands are represented on one byte. In order to be able to use
a command in a session, the option (and its suboptions if there are any) corresponding to the command has to
be negotiated between the client and the server. Usually the command and the option is represented by the same
value, e.g.: the TELNET_STATUS command and option are both represented by the value "5". However, this is
not always the case. The negotiation hash is indexed by the code of the command, and contains the code of
the option to be negotiated for the given command (or the TELNET_NEG_NONE when no negotation is needed).

Currently the only command where the code of the command differs from the related option is
self.negotiation["239"] = int(TELNET_EOR).

4.10.3. Related standards

The Telnet protocol is described in RFC 854. The different options of the protocol are described in various
other RFCs, listed in Table A.1, TELNET options and suboptions (p. 305).

4.10.4. Classes in the Telnet module

DescriptionClass

Class encapsulating the abstract Telnet proxy.AbstractTelnetProxy

Default Telnet proxy based on AbstractTelnetProxy.TelnetProxy

Telnet proxy based on AbstractTelnetProxy, allowing
only the minimal command set.

TelnetProxyStrict

Table 4.26. Classes of the Telnet module

4.10.5. Class AbstractTelnetProxy

This class implements the Telnet protocol (as described in RFC 854) and its most common extensions. Although
not all possible options are checked by the low level proxy, it is possible to filter any option and suboption
negotiation sequences using policy callbacks. AbstractTelnetProxy serves as a starting point for customized
proxy classes, but is itself not directly usable. Service definitions should refer to a customized class derived
from AbstractTelnetProxy, or one of the predefined TelnetProxy proxy classes. AbstractTelnetProxy denies all
options by default.

4.10.5.1. Attributes of AbstractTelnetProxy

current_var_name (string, n/a:rw)

Default: n/a

Name of the variable being negotiated.

current_var_value (string, n/a:rw)

Default: n/a

103www.balasys.hu

Related standards

current_var_value (string, n/a:rw)

Value of the variable being negotiated (e.g.: value of an environment variable, an X display location value,
etc.).

enable_audit (boolean, w:r)

Default: FALSE

Enable session auditing.

negotiation (complex, rw:rw)

Default:

Normative hash listing which options must be negotiated for a given command. See Section Option negotiation
(p. 103) for details.

option (complex, rw:rw)

Default: n/a

Normative policy hash for Telnet options indexed by the option and (optionally) the suboption. See also
Section 4.10.2.2, Configuring policies for the TELNET protocol (p. 102).

timeout (integer, rw:r)

Default: 600000

I/O timeout in milliseconds.

4.10.6. Class TelnetProxy

TelnetProxy is a proxy class based on AbstractTelnetProxy, allowing the use of all Telnet options.

4.10.7. Class TelnetProxyStrict

TelnetProxyStrict is a proxy class based on AbstractTelnetProxy, allowing the use of the options minimally
required for a useful Telnet session.

The following options are permitted: ECHO; SUPPRESS_GO_AHEAD; TERMINAL_TYPE; NAWS; EOR;
TERMINAL_SPEED; X_DISPLAY_LOCATION; ENVIRONMENT. All other options are rejected.

4.11. Module Imap

Internet Message Access Protocol (IMAP) is a protocol to access electronic mailboxes via a reliable TCP
connection between the client and the server.

104www.balasys.hu

Class TelnetProxy

4.11.1. The IMAP protocol

IMAP is a standard IETF protocol to access mail folders stored on a remote mail server. Unlike POP3 which
gives only limited access to a single INBOX, IMAP permits manipulation of a remote mail store in a way that
is functionally equivalent to local mailboxes.

Unlike many common IETF protocols, IMAP is not a one-request/one-response protocol. The client might issue
one or more actions to be performed in parallel, thus responses to those commands can arrive in an order
independent from the order they were issued. Requests and the appropriate responses are paired by a unique
request identifier called 'tag'. There is one exception to this rule: the server might return untagged responses,
when more than a single response is associated with a single command. In this case the server responds with
one or more untagged responses and at the end a tagged response to indicate the end of the processing.

4.11.1.1. Protocol elements

The syntax of the IMAP protocol is strictly defined, both the client and the server is either reading a complete
line or a sequence of octets prefixed with the length of the sequence.

Request lines start with the tag, followed by a command verb identifying the operation. Each command might
have one or more arguments separated by spaces. Each argument has an associated type, one of: ATOM,
LITERAL, STRING, LIST. The type further specifies the syntax how these arguments are represented.

A response from the server might be sent directly in response to a request, or unilaterally whenever the server
implementation feels it appropriate. The response includes a response verb with zero or more arguments. Note
that there might be more response verbs returned for a single command and the response verbs have no direct
relationship with the request verb.

Content (e.g.: mail bodies) are transferred as literals embedded in commands and responses. There is no separate
bulk transfer mode in the protocol like in POP3 or SMTP. This results in extremely large request/response
sizes.

Each message might have one or more associated message flags like '\Deleted' or '\Seen'.

4.11.1.2. Protocol states

IMAP defines four protocol states. Most commands are valid only in certain states. IMAP has the following
states:

■ Non-Authenticated State: This state is at the beginning of the protocol flow before the client
authenticates him/herself.

■ Authenticated State: In this state the client is authenticated and MUST select a mailbox to access
before commands that affect messages are be permitted.

■ Selected State: In this state, a mailbox is selected for access. The protocol enters this state when a
mailbox has been successfully selected.

■ Logout State: In this state the connection is being terminated and the server will close the connection.

IMAP is similar to other protocols in the sense that a connection is authenticated once, at the beginning of the
communication. Before authentication is performed only a limited set of commands can be issued, for example
AUTHENTICATE and LOGIN.

105www.balasys.hu

The IMAP protocol

Each IMAP operation requires a current mailbox which is similar to the current working directory on UNIX
systems. Without a selected mailbox, only a limited set of commands can be issued, for example SELECT,
CREATE or REMOVE.

Once a mailbox is selected using the SELECT command, further operations become available, like FETCH or
STORE.

Example 4.21. IMAP protocol sample

* OK newmail IMAP server ready

A001 CAPABILITY

* CAPABILITY IMAP4 IMAP4rev1 ACL QUOTA LITERAL+\

MAILBOX-REFERRALS NAMESPACE UIDPLUS ID\

NO_ATOMIC_RENAME UNSELECT CHILDREN\

MULTIAPPEND SORT THREAD=ORDEREDSUBJECT\

THREAD=REFERENCES IDLE STARTTLS LISTEXT\

LIST-SUBSCRIBED ANNOTATEMORE

A001 OK Completed

A002 LOGIN user password

A002 OK User logged in

A003 SELECT INBOX

* FLAGS (\Answered \Flagged \Draft \Deleted \Seen)

* OK [PERMANENTFLAGS (\Answered \Flagged \Draft\

\Deleted \Seen *)]

* 1094 EXISTS

* 3 RECENT

* OK [UNSEEN 1092]

* OK [UIDVALIDITY 1047554575]

* OK [UIDNEXT 36885]

A003 OK [READ-WRITE] Completed

A004 FETCH 1 RFC822

* 1 FETCH (RFC822 {12}

123456789012

)

A004 OK Completed

A005 LOGOUT

* BYE LOGOUT received

A005 OK Completed

Responses to IMAP requests come in two types: tagged and untagged. When a client issues a request, the server
responds with a single tagged response, which may be preceeded by a number of untagged response lines. In
the example above, the client issues a tagged A001 CAPABILITY command to ask the server for the supported
capabilities. The server replies with the untagged * CAPABILITY IMAP4 ... line, listing the capabilities, and
the tagged A001 OK Completed line, indicating that the request was successfully completed.

4.11.2. Proxy behavior

ImapProxy is a module built for parsing requests and responses of the IMAP protocol. It reads all the REQUESTs
at the client side, parses them and - if the local security policy permits - sends them to the server one-by-one.
When the RESPONSEs arrive they are parsed by the proxy and sent to the client one by one if the local security
policy permits it. Simple greeting rewriting is supported to hide the version of the server. ImapProxy also
implements the NAMESPACE, RLIST and RLSUB commands and the LOGIN authentication method. Other
authentication methods are not supported and are denied (the proxy does not send them to the policy level).

106www.balasys.hu

Proxy behavior

4.11.2.1. Configuring policies for IMAP requests and responses

Changing the default behaviour of requests is possible using the request attribute. This hash is indexed by
the IMAP command name.

The response attribute is indexed as follows: The response attribute hash is a three-dimensional hash,
indexed by the command name for which the response is sent; the type of the response (TAGGED or
UNTAGGED); and the response name. Untagged responses are accepted when there is a command in the
pending queue (i.e. no tagged response arrived to it yet). The following constants are defined for the response
types:

ValueName

Untagged responses.IMAP_TAG_UNTAGGED

Both types of responses.IMAP_TAG_ALL

Tagged responses.IMAP_TAG_TAGGED
Table 4.27. Constants for IMAP response types

The proxy looks up the hash value corresponding to the IMAP command name as the key. If the hash contains
no entry for a command, the "*" entry is used. If there is no "*" entry in the hash, the command is denied.

The possible actions are described in the following tables.

DescriptionAction

Allow the command to pass.IMAP_REQ_ACCEPT

Reject the command and send an error message to the
client.

IMAP_REQ_REJECT

Silently drop the command - reject the command
without sending an error message.

IMAP_REQ_DROP

Terminate the connection.IMAP_REQ_ABORT

Call the function specified in the argument to make a
decision about the event. See Section 4.11.2.1,

IMAP_REQ_POLICY

Configuring policies for IMAP requests and
responses (p. 107) for details.

Replace the request with a predefined one. See the
example below.

IMAP_REQ_REWRITE

Respond to the request instead of the server. The
request is not sent to the server. This action requires

IMAP_REQ_RESPOND

two arguments: a string containing a tagged response

107www.balasys.hu

Proxy behavior

DescriptionAction

for the request, and a string list containing the optional
untagged responses.

Table 4.28. Action codes for IMAP requests

DescriptionAction

Allow the response to pass.IMAP_RSP_ACCEPT

Reject the response and send an error message to the
client.

IMAP_RSP_REJECT

Silently drop the response.IMAP_RSP_DROP

Terminate the connection.IMAP_RSP_ABORT

Call the function specified to make a decision about
the event. See Section 4.11.2.1, Configuring policies
for IMAP requests and responses (p. 107) for details.

IMAP_RSP_POLICY

Replace the response containing the greeting string
with a predefined one. See the example below.

IMAP_RSP_REWRITE

Table 4.29. Action codes for IMAP responses

4.11.2.2. Calling methods

For calling a method, the hash must contain a tuple containing two values. The first value is
IMAP_REQ_POLICY and the second is the function to call. The function must return with one of the
IMAP_REQ_* values (excluding IMAP_*_POLICY), displayed in the table above.

The function is called with three arguments (apart from 'self'): the command tag, the command name, and its
arguments. The representation of arguments used by IMAP is described in Section 4.11.2.4, The IMAP command
structure in policies (p. 110).

If the proxy is to answer instead of the server, the action tuples must contain the following three items: The
value IMAP_REQ_RESPOND; the STRING to be sent back followed by a command tag, and a LIST containing
untagged lines to be sent back to the client.

For example, to reply to every CAPABILITY request on behalf of the server:

Example 4.22. Rewriting IMAP capability response

self.request["CAPABILITY"] = (IMAP_REQ_RESPOND, "OK CAPABILITY completed", ("[IMAP4rev1]",))

There are other methods to control which CAPABILITYs are known by the client. There is a separate capability
hash for this, indexed by the name of the capabilities. The valid values are listed below.

DescriptionAction

Allow use of the capability.IMAP_CAP_ACCEPT

108www.balasys.hu

Proxy behavior

DescriptionAction

Reject the capability.IMAP_CAP_DROP
Table 4.30. Action codes for IMAP capabilities

This hash has nothing to do with capabilities known by the proxy; it defines which answers can arrive to the
client for a CAPABILITY command.

Modifying the IMAP greeting string

The IMAP greeting string can be modified (rewritten) by the proxy to hide sensitive information about the
server. This can be realized as a rule defined as a tuple containing the following three items:

■ The value IMAP_REQ_REWRITE;

■ a default return value (e.g.: IMAP_REQ_ACCEPT);

■ and a string.

Example 4.23. Changing the greeting string in IMAP

def config(self):

...

self.response["GREETING", "UNTAGGED", "OK"] = /

(IMAP_REQ_REWRITE, IMAP_REQ_ACCEPT, "Welcome to IMAP proxy")

...

IMAP states

In IMAP there are some defined states, and some commands are allowed only in certain states. On the policy
level these states may be examined and modified if necessary. This can be accomplished by setting two attributes,
imap_state_old and imap_state_new. The possible values for these variables are listed in the following
table.

ValueName

Before any command arrived.IMAP_IS_INITIAL

Before authentication.IMAP_IS_NONAUTH

Authentication is in progress.IMAP_IS_AUTHENTICATING

Authentication performed.IMAP_IS_AUTH

A mailbox is selected.IMAP_IS_SELECTED

Logged out.IMAP_IS_QUIT
Table 4.31. IMAP states

4.11.2.3. Configuring acceptable flags

In the IMAP protocol the user can assign flags to mails (or other objects). For example, a flag is assigned to a
message to indicate that it has been read (\Seen), it can be marked as important mail or it can be indicated that

109www.balasys.hu

Proxy behavior

it has already been answered (\Answered). The usable flags are not predefined in the protocol, IMAP clients
can assign any flags they desire.

Flags can be controlled similarly to requests and responses using the flag hash. It is a normative hash indexed
by the name of the flag (case sensitive). The common practice is to accept any flags by default and explicitly
drop unneeded flags. The possible actions related to flags are shown in the table below.

DescriptionAction

Accept the flag.IMAP_FLAG_ACCEPT

Reject the flag, including the entire command or
response.

IMAP_FLAG_REJECT

Drop the flag silently, but accept the rest of the
command. If the command contains only the flag that
is dropped, the entire command is dropped.

IMAP_FLAG_DROP

Table 4.32. Action codes for IMAP flags

4.11.2.4. The IMAP command structure in policies

When using functions in policies to evaluate IMAP commands, the commands are represented as a recursive
tuple of tuples having the following structure. Every command is a tuple of length 3, containing the tag of the
command, the name of the command and a tuple containing the arguments.

The following values are possible as arguments (IMAP command structure in the policy layer):

■ (int, string) -- Integer

■ (int, int) -- Range

■ <LITERAL> -- Literal Literals (the actual messages) in the requests/responses are represented by a
string having the 'Literal' value. The reason for this is that literals can be very large, therefore they
are not sent to (thus not available) the policy level.

■ string -- A string or an atom

■ (",", a1, a2...) -- Comma-separated list

■ ("[", a1, a2...) -- Bracketed list

■ ("(", a1, a2...) -- Parenthesized list

Of course, lists can contain other lists recursively.

When processing IMAP responses where a number argument precedes the response name (e.g.: 1094 EXISTS),
the number counts as the first argument.

Below are some examples how the different argument types are used in the IMAP protocol.

Example 4.24. IMAP arguments in use

Issued command: a0001 FETCH 1,2 RFC822

The command as processed by the IMAP proxy:

tag: "a0001"

command: "FETCH"

arguments: ((',', (1, '1'), (2, '2')), 'RFC822');

110www.balasys.hu

Proxy behavior

where (',', (1, '1'), (2, '2') is a comma separated list,

(1, '1') is an integer, and RFC822 is a string.

Issued command: a0002 FETCH 1:2 RFC822

The command as processed by the IMAP proxy:

tag: a0002

command: FETCH

arguments: ((1, 2), 'RFC822');

where (1, 2) is a range.

Received response: * 1 FETCH (RFC822 <literal>)

The command as processed by the IMAP proxy:

command: FETCH

arguments: ((1, '1'), ('(', 'RFC822', '<LITERAL>'));

where <LITERAL> is a literal represented by a string.

4.11.2.5. Stacking

IMAP supports stacking proxies into different levels of the IMAP communication. Stacking is controlled by
the stack attribute hash. See also Section 2.3.1, Proxy stacking (p. 7). There are three stacking modes
available, described in the table below.

ValueName

Pass the complete IMAP messages to the stacked
proxy or program.

IMAP_BODY_FULL

Pass only the body part of IMAP messages to the
stacked proxy or program.

IMAP_BODY_PART

Pass only the text part of IMAP messages to the
stacked proxy or program.

IMAP_BODY_TEXT

Table 4.33. Body part selection for stacking

4.11.3. Related standards

■ Internet Message Access Protocol (v4rev1) is described in RFC 3501.

■ IMAP4 Binary Content Extension is described in RFC 3516.

■ The IMAP UNSELECT command is described in RFC 3691.

■ The IMAP MULTIAPPEND Extension is described in RFC 3502.

■ The IMAP4 ID Extension is described in RFC 2971.

■ IMAP4 Namespace is described in RFC 2342.

■ IMAP4 Login Referrals are described in RFC 2221.

■ IMAP4 Mailbox Referrals are described in RFC 2193.

■ The IMAP4 QUOTA Extension is described in RFC 2087.

■ The IMAP4 ACL Extension is described in RFC 2086.

■ IMAP/POP AUTHorize Extension for Simple Challenge/Response is described in RFC 2195.

111www.balasys.hu

Related standards

4.11.4. Classes in the Imap module

DescriptionClass

Class encapsulating the abstract IMAP proxy.AbstractImapProxy

Default IMAP proxy based on AbstractImapProxy.ImapProxy

IMAP proxy based on AbstractImapProxy, allowing
only the minimal command set.

ImapProxyStrict

Table 4.34. Classes of the Imap module

4.11.5. Class AbstractImapProxy

This class implements an abstract IMAP proxy - it serves as a starting point for customized proxy classes, but
is itself not directly usable. Service definitions should refer to a customized class derived from
AbstractImapProxy, or one of the predefined proxy classes, such as ImapProxy or ImapProxyStrict.
AbstractImapProxy denies every command, response, etc. by default.

4.11.5.1. Attributes of AbstractImapProxy

capability (complex, rw:rw)

Default:

Normative hash defining the capabilities accepted by the proxy. See Section 4.11.2.2, Calling methods (p. 108).

flag (complex, rw:rw)

Default:

Normative hash controlling flag values accepted by the proxy. See Section 4.11.2.3, Configuring acceptable
flags (p. 109).

imap_state_new (enum, n/a:rw)

Default: n/a

Protocol state after processing the line, one of the IMAP_IS_* constants. See Section 4.11.2.2, Calling
methods (p. 108).

imap_state_old (enum, n/a:rw)

Default: n/a

Protocol state before the command arrived, one of the IMAP_IS_* constants. See Section 4.11.2.2, Calling
methods (p. 108).

max_line_length (integer, rw:rw)

Default: 2048

112www.balasys.hu

Classes in the Imap module

max_line_length (integer, rw:rw)

Maximum allowed line length.

max_literal_count (integer, rw:rw)

Default: 32

Maximum number of literals allowed in one command or answer.

max_literal_length (integer, rw:rw)

Default: 65536

Maximum allowed literal length (e.g.: e-mail bodies are sent as literals).

max_password_length (integer, rw:rw)

Default: 32

Maximum allowed length of passwords.

max_pending_count (integer, rw:rw)

Default: 4

Maximum number of pending IMAP commands.

max_respond_lines (integer, rw:rw)

Default: 2

Maximum number of untagged lines that may be sent back to the client from policy.

max_username_length (integer, rw:rw)

Default: 32

Maximum allowed length of usernames.

password (string, n/a:r)

Default: n/a

Password sent to the remote server.

permit_alternative_login_challenges (boolean, rw:r)

Default: FALSE

Permit the use of "Username:" and "Password:" challenge strings durring LOGIN Authentication SASL
mechanism, described in section 2.2 of draft-murchison-sasl-login.

113www.balasys.hu

Class AbstractImapProxy

request (complex, rw:rw)

Default:

Normative policy hash for IMAP requests indexed by command name. See also Section 2.1, Policies for
requests and responses (p. 4).

response (complex, rw:rw)

Default:

Normative policy hash for IMAP responses, indexed by command name, response type and response name.
See Section 4.11.2.1, Configuring policies for IMAP requests and responses (p. 107).

stack (complex, rw:rw)

Default:

Attribute containing the stacking policy for IMAP messages. See Section 4.11.2.5, Stacking (p. 111) for details.

timeout (integer, rw:rw)

Default: 600000

Timeout value in milliseconds.

username (string, n/a:r)

Default: n/a

Username sent to the remote server.

4.11.6. Class ImapProxy

ImapProxy is the default proxy for the IMAP protocol, based on AbstractImapProxy.

All requests, responses and flags are permitted, as well as the following capabilities: IMAP4; IMAP4rev1;
ACL; QUOTA; NAMESPACE; X-NON-HIERARCHICAL-RENAME; NO_ATOMIC_RENAME; UNSELECT;
MAILBOX-REFERRALS; LOGIN-REFERRALS; AUTH=LOGIN; ID; CHILDREN; MULTIAPPEND;
SORT; THREAD=ORDEREDSUBJECT; THREAD=REFERENCES; LISTEXT; LIST-SUBSCRIBED;
ANNOTATEMORE.

4.11.7. Class ImapProxyStrict

IMAP proxy based on AbstractImapProxy, allowing only the minimal command set.

All flags are accepted. The following commands are permitted: AUTHENTICATE; CAPABILITY; CHECK;
CLOSE; EXAMINE; FETCH; FIND; GETACL; LIST; LOGIN; LOGOUT; LSUB; NAMESPACE; NOOP;
RLIST; RLSUB; SELECT; STATUS; UID; EXPUNGE; STORE.

114www.balasys.hu

Class ImapProxy

The permitted capabilities are the following IMAP4; IMAP4rev1; ACL; QUOTA; NAMESPACE;
X-NON-HIERARCHICAL-RENAME; NO_ATOMIC_RENAME; UNSELECT; MAILBOX-REFERRALS;
LOGIN-REFERRALS; AUTH=LOGIN.

4.12. Module Ldap

The Ldap module defines the classes constituting the proxy for the LDAP protocol.

4.12.1. The LDAP protocol

Lightweight Directory Access Protocol (LDAP) is designed to provide access to X.500 directory services (i.e.
to maintain directory databases). It is frequently used to distribute public key certificates, address book
information, and user authentication information. Clients can be controlled by individuals (via an application,
called LDAP browser) or an agent (e.g.: authentication module or any other application).

X.500 represents information in a hierarchical directory structure. Every entry in the tree is identified with a
unique distinguished name (DN) and contains several attributes. A DN looks like the following:

uid=username,ou=administrators,ou=some-department,ou=some-part-of-the-company,dc=company,dc=net

A schema defines sets of attribute entries in an ObjectClass. Every container can have different ObjectClasses,
with each ObjectClass having mandatory and optional entries. The following example defines a user with several
attributes from five ObjectClasses.

Example 4.25. Example Ldap entry

dn: uid=username,ou=departnent,dc=company,dc=hu

uid: username

cn: username

sn: username

uidNumber: 1234

gidNumber: 1234

mail: username@company.hu

displayName: Dr. UserName

homeDirectory: /home/username

objectClass: top

objectClass: posixAccount

objectClass: inetOrgPerson

objectClass: inetLocalMailRecipient

objectClass: sambaSamAccount

sambaSID: 1234

loginShell: /bin/bash

userPassword: {SMD5}fdsfhiz234dsadsad

telephoneNumber: 1234

street: Foo

postOfficeBox: 1234

roomNumber: 107

4.12.1.1. Protocol elements

LDAP is a request/response based binary protocol. The client can connect to the server on a channel at TCP/389
port and send REQUESTs. The client can request several operations in parallel. The following operations can
be performed:

■ Bind: Identify the client and optionally perform authentication.

115www.balasys.hu

Module Ldap

■ Unbind: Terminate a protocol session.

■ Search: Search for entries using filters.

■ Modify: Modify tree entries and attributes.

■ Add: Request the addition of an entry into the directory.

■ Delete: Request the deletion of an entry from the directory.

■ Modify DN: Change the leftmost component of the name of an entry in the directory, or to move a
subtree of entries to a new location in the directory.

■ Compare: Compare an assertion provided with an entry in the directory.

■ Abandon: Request the server to cancel an outstanding operation.

■ Extended: This operation is for additional operations to be defined for services not available elsewhere
in the protocol.

The protocol operates according to the following general scheme:

1. The client opens a connection at TCP/389 and binds to an object in the directory tree. The server
authenticates the client to this object. If authentication is not required, the client can use the given
tree anonymously.

2. If the authentication process is successful the client can perform requests (i.e. the above mentioned
operations: modify, add, delete etc.).

3. Finally the client unbinds and closes the connection.

The LDAP protocol is described using ASN.1 (Abstract Syntax Notation), and is typically transferred using
the Basic Encoding Rules, a subset of ASN.1.

4.12.2. Proxy behavior

LdapProxy is a module built for parsing the LDAP protocol version v2 and v3. It reads and parses the REQUESTs
at the client side and - if the local security policy permits - sends them to the server. It parses the arriving
RESPONSE and - if the local security policy permits - forwards it to the client. LdapProxy can parse the
following requests and responses, consequently, these requests can be accepted or denied:

DescriptionRequest/Response

Request for binding as an object.BindRequest

Response to BindRequests.BindResponse

Request for unbinding.UnbindRequest

Request for submitting an LDAP query.SearchRequest

Response to SearchRequests.SearchResultEntry

Response indicating the SearchRequest was performed.SearchResultDone

Request to modify an entry.ModifyRequest

Response to ModifyRequests.ModifyResponse

Request to add a new entry.AddRequest

116www.balasys.hu

Proxy behavior

DescriptionRequest/Response

Response to AddRequests.AddResponse

Request to delete an LDAP entry.DelRequest

Response to DelRequests.DelResponse

Request to modify a DN object.ModifyDNRequest

Response to ModifyDNRequests.ModifyDNResponse

Request to compare the provided assertion with an
entry in the directory.

CompareRequest

Response to CompareRequests.CompareResponse

Request to cancel a request.AbandonRequest

Response referring to another LDAP server.SearchResultReference

Request reserved for further queries.ExtendedRequest

Response to ExtendedRequests.ExtendedResponse
Table 4.35. Parsed LDAP operations

4.12.3. Configuring policies for LDAP requests

Changing the default behavior of requests can be done using the hash attribute request. The hash is indexed
by the request name. The possible values of these hashes are shown in the tables below. See Section 2.1, Policies
for requests and responses (p. 4) for details.

DescriptionAction

Allow the request to pass.LDAP_REQ_ACCEPT

Reject the request.LDAP_REQ_REJECT

Terminate the connection.LDAP_REQ_ABORT
Table 4.36. Action codes for LP requests

Example 4.26. Example of the commands usage
In the following example the Ldap proxy allows only BindRequest, UnbindRequest, SearchRequest and CompareRequest requests.

def config(self):

AbstractLdapProxy.config(self)

self.request["BindRequest"] = LDAP_REQ_ACCEPT

self.request["UnbindRequest"] = LDAP_REQ_ACCEPT

self.request["SearchRequest"] = LDAP_REQ_ACCEPT

self.request["CompareRequest"] = LDAP_REQ_ACCEPT

self.request["*"] = LDAP_REQ_REJECT

117www.balasys.hu

Configuring policies for LDAP requests

4.12.4. Simple Authentication and Security Layer (SASL) on LDAP messages

Simple Authentication and Security Layer (SASL) is a framework for authentication and data security in Internet
protocols. It is also used by Microsoft Active directory. Please note that support for the SASL security layer is
a work in progress - currently LDAP protocol analysis is effectively disabled for SASL wrapped requests.

4.12.5. Related standards

■ Lightweight Directory Access Protocol (v3) is described in RFC 2251.

■ The LDAP URL Format is described in RFC 2255.

■ Using Domains in LDAP/X.500 Distinguished Names is described in RFC 2247.

■ Lightweight Directory Access Protocol (v3): Technical Specification is in RFC 3377.

4.12.6. Classes in the Ldap module

DescriptionClass

Class encapsulating the abstract Ldap proxy.AbstractLdapProxy

Default Ldap proxy based on AbstractLdapProxy.LdapProxy

Ldap proxy enabling only read-only access.LdapProxyRO
Table 4.37. Classes of the Ldap module

4.12.7. Class AbstractLdapProxy

This class implements an abstract LDAP proxy - it serves as a starting point for customized proxy classes, but
is itself not directly usable. Service definitions should refer to a customized class derived from
AbstractLdapProxy, or one of the predefined proxy classes. AbstractLdapProxy denies all requests by default.

4.12.7.1. Attributes of AbstractLdapProxy

max_message_size (integer, rw:r)

Default: 65535

Maximum allowed size of requests and responses.

max_pending_request (integer, rw:r)

Default: 32

Maximum number of pending requests.

max_search_response_number (integer, w:r)

Default: 2147483648

118www.balasys.hu

Simple Authentication and Security Layer (SASL) on LDAP messages

max_search_response_number (integer, w:r)

Determines the maximal number of LDAP search results. The action to perform on results over this limit can
be set in the response_overrun_action attribute.

permit_sasl_transport (boolean, rw:r)

Default: FALSE

Permit the use of the Simple Authentication and Security Layer (SASL) on LDAP messages. See Section
4.12.4, Simple Authentication and Security Layer (SASL) on LDAP messages (p. 118) for details.

request (complex, rw:r)

Default: n/a

Normative policy hash for LDAP requests indexed by the request. See also Section 4.12.3, Configuring
policies for LDAP requests (p. 117).

response_overrun_action (enum, w:r)

Default: LDAP_RSP_DROP

The action to perform on search results over the limit set in the max_search_response_number attribute.

timeout (integer, rw:r)

Default: 600000

I/O timeout in milliseconds.

4.12.8. Class LdapProxy

LdapProxy is a default proxy for the LDAP protocol based on AbstractLdapProxy. All syntactically correct
operation is permitted.

4.12.9. Class LdapProxyRO

LDAP proxy based on AbstractLdapProxy, with read-only access. This proxy does not allow clients to write
or delete on the Ldap server, i.e. the Add, Modify, Delete operations are disabled.

4.13. Module Mime

This module defines the classes representing the MIME proxy.

4.13.1. The MIME protocol

Multipurpose Internet Mail Extensions (MIME) is a complex representation of multiple type of message bodies,
and refers to an official Internet standard that defines how messages must be formatted. It makes possible for

119www.balasys.hu

Class LdapProxy

different types of e-mail systems to exchange messages successfully. MIME is a flexible format which allows
to include different type of messages in a single e-mail message. It redefines message format to allow:

■ text messages in different character sets;

■ extensible set of non-text format messages;

■ multiple message types in one message body;

■ text header information.

The content of the message is shown by the MIME header, which indicates the type and number of parts the
message contains. The header also contains encoding system and version information. MIME supports the
following body-types:

DescriptionBody-type

The primary type of MIME content. The main subtype
is plain.

text

The message contains different types of data.multipart

Indicates an encapsulated text message.message

Indicates that the message contains image file.image

Indicates that the message contains audio data.audio

Indicates that the message contains video data.video
Table 4.38. MIME body-types

To make sure message contents arrive without corruption, non-text messages must be encoded to printable
ASCII characters. Older UNIX systems use uuencode/uudecode transformation. MIME encoding provides
base64 to encode any attachment as text.

MIME indicates the parameters of the message in the header field, which can be the following:

DescriptionMIME header

Indicates the exact version of the MIME message.MIME-Version

Indicates the type of the data contained in the body.
The default content type is 'text/plain;
charset=us-ascii'.

Content-Type

Indicates the encoding used in the message part. It is
also possible to create private transfer encoding, which
can be indicated by X-My-Private-Transfer-Encoding.

Content-Transfer-Encoding

Unique identifier of the MIME object.Content-ID

Extra comments added to the message by the user.Content-Description

120www.balasys.hu

The MIME protocol

DescriptionMIME header

Extra fields to be used by the developers in the future.Additional MIME Header Fields
Table 4.39. MIME headers

Note
MIME headers do not guarantee that the message really contains the type of content indicated in the header.

Example 4.27. Example mail header containing MIME message
A simple e-mail message containing text message.

From: Sender User <sender@balasys.hu>

To: Receiver User <receiver@balasys.com>

Message-Id: <asdfghjkl@balasys.internal.server>

Content-Type: text/plain

Mime-Version: 1.0

Date: Thu, 01 Jul 2004 11:34:30 +0200

Content-Transfer-Encoding: 7bit

Example 4.28. Example PNG format picture attachment
A message containing an image attachment in base64 encoding.

Mime-Version: 1.0

Content-Type: image/jpeg; name="image.png"

Content-Transfer-Encoding: base64

Content-Disposition: inline; filename="image.png"

Example 4.29. Example multipart message
A multipart type message containing a simple text message with a postscript attachment.

This is a multi-part message in MIME format.

--------------080709090505030904090905

Content-Type: text/plain; charset=us-ascii; format=flowed

Content-Transfer-Encoding: 7bit

us-ascii message comes here...

--------------080709090505030904090905

Content-Type: application/postscript; name="pns-reference-guide-3.0.ps"

Content-Transfer-Encoding: base64

Content-Disposition: inline; filename="pns-reference-guide-3.0.ps"

base64 message comes here...

4.13.2. Proxy behavior

MimeProxy is a module built for parsing MIME messages. Since MIME is not a communication protocol in
itself, the MIME proxy cannot be used on its own. It can only inspect data received from a protocol proxy (e.g.:
a HTTP proxy, POP3 proxy, etc. that stacks the MimeProxy). MimeProxy reads the data received from the
other proxy and handles message headers and bodies if there are any. If the message conforms to the RFC
standard it is accepted, otherwise the content is rejected. It is also possible to stack a further proxy into the
Mime module (e.g.: a virus filtering module).

121www.balasys.hu

Proxy behavior

4.13.2.1. Configuring policies for MIME headers and content types

Configuring the default behavior for MIME objects is possible using the header and body_type attributes.

MimeProxy parses MIME headers first. See Table 4.39, MIME headers (p. 120) and Table 4.38, MIME
body-types (p. 120) for the available headers and body-types. The following table shows the possible actions
on MIME headers. Headers may be accepted or dropped, or the entire object can be rejected. Subobjects (i.e.
MIME objects embedded into other MIME objects) cannot be dropped or rejected individually, the entire object
must be rejected/dropped.

DescriptionAction

Accept header.MIME_HDR_ACCEPT

Drop the header, but do not reject the entire MIME
object.

MIME_HDR_DROP

Reject the entire connection.MIME_HDR_ABORT

Call the function specified to make a decision about
the header. See Section 4.13.2.1, Configuring policies

MIME_HDR_POLICY

for MIME headers and content types (p. 122) for
details. Put header line into policy level.

Table 4.40. Action codes for MIME headers

Second, MimeProxy parses MIME content (or body) types. The following table shows the possible actions on
MIME types (body_type). Stacking another module is possible using the MIME_TPE_STACK action.

DescriptionAction

Accept the MIME type.MIME_TPE_ACCEPT

Drop the entire MIME object.MIME_TPE_DROP

Drop the MIME object. This does not affect other
objects in the object.

MIME_TPE_DROP_ONE

Modify the type of the object to the one specified in
the second argument.

MIME_TPE_CHANGE

Abort the connection and reject the entire MIME
object.

MIME_TPE_ABORT

Pass the content to be inspected by another proxy.MIME_TPE_STACK

Call the function specified to make a decision about
the event. See Section 4.13.2.1, Configuring policies

MIME_TPE_POLICY

for MIME headers and content types (p. 122) for
details.

Table 4.41. Action codes for MIME content types

If all contents and headers are acceptable by the local security policy, MimeProxy rebuilds the MIME message
and passes it back to the parent proxy.

122www.balasys.hu

Proxy behavior

Example 4.30. Example usage of MimeProxy module, denying applications
Removes all applications from the messages. An error message is sent to the client (silent_drop = FALSE; the directory where the
error messages are stored is specified in the mime_message_path attribute).

class MyMimeProxy(MimeProxy):

def config(self):

MimeProxy.config(self)

self.body_type["application" "*"] = (MIME_TPE_DROP)

self.silent_drop = FALSE

self.mime_message_path="/usr/share/vela/mime"

4.13.3. Related standards

■ RFC 2045: MIME Part One: Format of Internet Message Bodies

■ RFC 2046: MIME Part Two: Media Types

■ RFC 2047: MIME Part Three: Message Header Extensions for Non-ASCII Text

■ RFC 2048: MIME Part Four: Registration Procedures

■ RFC 2049: MIME Part Five: Conformance Criteria and Example

4.13.4. Classes in the Mime module

DescriptionClass

Class encapsulating the abstract MIME proxy.AbstractMimeProxy

Default MIME proxy based on AbstractMimeProxy.MimeProxy
Table 4.42. Classes of the Mime module

4.13.5. Class AbstractMimeProxy

This class implements an abstract MIME proxy - it serves as a starting point for customized proxy classes, but
is itself not directly usable. Service definitions should refer to a customized class derived from
AbstractMimeProxy, or the predefined MimeProxy proxy class. AbstractMimeProxy rejects all headers and
body-types by default.

4.13.5.1. Attributes of AbstractMimeProxy

append_object (string, rw:r)

Default: ""

Appends the specified file (e.g.: /tmp/attachment) as a new attachment. Requires the
permit_empty_headers parameter to be set to TRUE.

body_type (complex, rw:r)

Default:

Multi-dimensional policy hash for body-types, indexed by body-type name (major and minor parts of the
body type). See Section 4.13.2.1, Configuring policies for MIME headers and content types (p. 122).

123www.balasys.hu

Related standards

drop_bad_header (boolean, rw:r)

Default: FALSE

Reject the (sub)object or silently drop the header if it is syntactically or semantically incorrect. If the header
is essential for MIME parsing, this option is ignored and the message will be dropped.

error (complex, rw:rw)

Default: n/a

An alias of the error_action parameter. Obsolete, use error_action instead.

error_action (complex, rw:rw)

Default: n/a

With this normative hash you can control the action taken when some error occurs. For compatibility reasons,
the error parameter refers to the same hash.

header (complex, rw:r)

Default:

Normative policy hash for MIME header types, indexed by the header type. See Section 4.13.2.1, Configuring
policies for MIME headers and content types (p. 122).

keep_header_comments (boolean, rw:r)

Default: TRUE

Keep or remove header comments. The syntax of MIME headers is very complex and it is possible to confuse
a parser with a specially crafted comment. To prevent this, it is possible to remove all comments. (NOTE:
This option will be header-specific in future releases.)

max_header_length (integer, rw:r)

Default: 4096

The maximum length of a single header.

max_header_line_length (integer, rw:r)

Default: 1000

The maximum length of a single header line. A header may be split into multiple lines, this value limits the
length of a single line.

max_header_lines (integer, rw:r)

Default: 1024

124www.balasys.hu

Class AbstractMimeProxy

max_header_lines (integer, rw:r)

Maximum number of headers in a (sub)object. Different objects are counted separately even when these
objects are subobjects of the same object. If drop_bad_header turned on all headers above this number will
dropped. If not, the conversation will aborted.

max_multipart_level (integer, rw:r)

Default: 10

The maximum recursion level the proxy should check. If the number of levels in an object exceeds the allowed
limit, the object is rejected.

max_multipart_number (integer, rw:r)

Default: 100

Maximum number of subobjects that an object is allowed to contain. The default is 100. The counter is not
restarted when checking a new subobject. (i.e.: this limits the global number of objects)

mime_message_path (string, rw:r)

Default: "/usr/share/vela/mime"

Path to the directory where the custom error messages are stored.

permit_bad_continuous_line (boolean, rw:r)

Default: FALSE

Parse bad headers as continuous lines.

permit_empty_headers (boolean, rw:r)

Default: FALSE

If enabled (TRUE) and the first line of a MIME object (or subobject) is not parseable as a MIME header, it
is handled as a MIME body without a header.

silent_drop (boolean, rw:r)

Default: FALSE

If disabled (FALSE), dropped objects are replaced with an object containing an error message. If enabled
(TRUE), objects and headers are dropped without notification.

timeout (integer, rw:r)

Default: -1

I/O timeout in milliseconds. The default value (-1) means unlimited.

125www.balasys.hu

Class AbstractMimeProxy

4.13.6. Class MimeProxy

MimeProxy is a default MIME proxy based on the AbstractMimeProxy. All headers and body-types are accepted.

4.14. Module Modbus

4.14.1. Classes in the Modbus module

DescriptionClass

Class encapsulating the abstract MODBUS proxy.AbstractModbusProxy

Defaul t Modbus proxy based on
AbstractModbusProxy.

ModbusProxy

Table 4.43. Classes of the Modbus module

4.14.2. Class AbstractModbusProxy

This class implements an abstract MODBUS proxy - it serves as a starting point for customized proxy classes,
but is itself not directly usable. Service definitions should refer to a customized class derived from
AbstractModbusProxy, or one of the predefined proxy classes. AbstractModbusProxy denies all requests by
default.

4.14.2.1. Attributes of AbstractModbusProxy

allow_user_defined (boolean)

Default: FALSE

Allow user-defined function requests. User-defined functions are not specified by the MODBUS specification,
thus will not be intepreted by ModbusProxy, but passed through. Set value to FALSE to reject user-defined
functions, unless it is specified in the request policy expicitly.

buffer_size (integer)

Default: 8192

Size of the request/response buffer in bytes. Must be larger than the maximum size of a MODBUS ADU (260
bytes)

default_accept (boolean)

Default: FALSE

Allow all funcion requests by default, which are not specified in the request policy.

request (complex)

Default:

126www.balasys.hu

Class MimeProxy

request (complex)

Normative policy hash for MODBUS function requests indexed by the request.

timeout (integer)

Default: 10000

Initial timeout in milliseconds.

transaction_limit (integer)

Default: 64

Maximum number of pending tranasctions.

transaction_timeout (integer)

Default: 60

Transaction timeout in seconds.

4.14.3. Class ModbusProxy

ModbusProxy is a default proxy for the MODBUS protocol based on AbstractModbusProxy. All syntactically
correct operation is permitted.

4.15. Module MSRpc

Remote Procedure Call (RPC) is a protocol for calling procedures on remote machines.

4.15.1. The RPC protocol

The RPC protocol consists of two phases: negotiating an access point to a service and communicating with the
service itself. On the server side the negotiation is performed by a special service called 'Endpoint Mapper'
(EPM), which listens on the TCP/UDP port 135. The protocol of the communication is specified in the DCE
RPC Specification. If the client is allowed to use the requested service, the EPM passes its address and IP in
its response, and the client may connect to it and make any data transfer it wishes. The protocol format varies
from service to service, so with maintained transparent forwarding facilities between the client and the service,
only the communication between the client and the EPM is filtered.

The filtering of the traffic between the client and the EPM means that requests can be approved or rejected for
services specified by their UUID. The denial of a service is implemented as if the EPM had refused it, the
approval is transparent in a way that the resulting service access point has the same IP as in the original EPM
request: only the port is altered to point to the dedicated forwarder facility.

The timing parameters of the communication may also be limited by specifying the maximal allowed duration
of the requests/responses; the idle timeout between requests/responses and the maximal delay between the
service approval and the connection to the approved service.

127www.balasys.hu

Class ModbusProxy

4.15.2. Proxy behavior

The MSRpc proxy is a module supporting version 2 of the MSRPC protocol.

4.15.2.1. Setting policies for services

Changing the default behavior for services can be accomplished via the self.interface hash attribute. This
hash is indexed by the service UUID, and each item in this hash is an action code defining proxy behavior for
the given command. The available action codes are shown in the following table:

ValueName

Allow access to the requested service.MSRPC_UUID_ACCEPT

Reject access to the requested service.MSRPC_UUID_REJECT

Drop the request without further notice.MSRPC_UUID_DROP
Table 4.44. Action codes for MSRpc requests.

Example 4.31. Customising RPC to allow connection to service "11223344-5566-7788-99aa-bbccddeeff00"

class MyRpcProxy(MSRpcProxy):

def config(self):

self.interface["11223344-5566-7788-99aa-bbccddeeff00"] = MSRPC_UUID_ACCEPT

4.15.2.2. Restrictions

Currently the proxy handles only TCP connections, and tracks/filters only the traffic toward the EPM service.
Since this does not cover the protocols used by either the standardized or the proprietary DCOM services, some
applications may not work properly through this proxy. Some remote management applications that use the
ISystemActivator service and the notification feature of Exchange are known to have issues with the MSRpc
proxy.

4.15.2.3. Global options

The following global options apply to all classes of the the MSRpc proxy:

config.msrpc.forwarder_data_timeout Timeout value (in milliseconds) for forwarded traffic. Default
value: 60000 (60 sec)

4.15.3. Classes in the MSRpc module

DescriptionClass

Class encapsulating the abstract MSRpc proxy.AbstractMSRpcProxy

128www.balasys.hu

Proxy behavior

DescriptionClass

Default MSRpc proxy based on AbstractMSRpcProxy.MSRpcProxy
Table 4.45. Classes of the MSRpc module

4.15.4. Class AbstractMSRpcProxy

This class implements an abstract MSRpc proxy, denying access to all services by default.

4.15.4.1. Attributes of AbstractMSRpcProxy

command_timeout (integer, rw:r)

Default: 600000

Command timeout in milliseconds. If a packet cannot be transmitted during this interval, the connection is
dropped.

forwarder_timeout (integer, rw:r)

Default: 20000

Forwarder timeout in milliseconds. If no connection is established to a forwarder facility during this period
(measured from service approval), the forwarder will be cancelled.

interface (complex, rw:rw)

Default: empty

Normative policy hash indexed by the UUID of the services, specifying the security policy about the service.
See Section 4.15.2.1, Setting policies for services (p. 128) for details.

secondary_port_max (integer, rw:r)

Default: 0

The upper limit of the port range allocated for forwarders. (Zero means no restriction.)

secondary_port_min (integer, rw:r)

Default: 0

The lower limit of the port range allocated for forwarders. (Zero means no restriction.)

timeout (integer, rw:r)

Default: 600000

Idle timeout in milliseconds. If no packet arrives during this period, the connection is dropped.

129www.balasys.hu

Class AbstractMSRpcProxy

4.15.5. Class MSRpcProxy

This proxy allows access only to the most necessary EPM services for RPC to function. These services are
99fcfec4-5260-101b-bbcb-00aa0021347a and 8a885d04-1ceb-11c9-9fe8-08002b104860.

4.16. Module Radius

The Radius module defines the classes constituting the proxy for the RADIUS protocol.

4.16.1. The RADIUS protocol

Remote Authentication Dial In User Service (RADIUS) is a client-server protocol for user authentication
between the Network Access Server (NAS) and the authenticator server. The protocol has three participants:

■ The user requesting network access the service (e.g.: PPP, PLIP etc.).

■ The access point (modem pools or NAS servers), which delivers the service. The access point acts
as the client in the protocol.

■ The server which authenticates the user.

The RadiusProxy is installed between the server and client (i.e. the access point).

4.16.1.1. Protocol elements

During the authentication process the participants use the following protocol elements:

■ REQUEST: When a new connection attempt arrives to the NAS, it sends a message towards the
RADIUS server requesting the authentication of the user; or it sends an accounting related message.

■ RESPONSE: The RADIUS server attempts to authenticate the user when an authentication REQUEST
is received. The server returns the result of the process to the NAS in a RESPONSE message.

■ ATTRIBUTE: Both the REQUEST and RESPONSE packets contain a set of structured attribute-value
pairs containing information like username, password or the type of service requested by the user.
Attributes are identified by a number ranging from 0 to 255. Each attribute has an associated type
specified in the RADIUS RFCs which define the range of valid values.

Note
There are also some vendor-specific RADIUS dictionaries, where certain attributes are used for internal purposes.
Obviously, these are not discussed in the RFCs.

4.16.1.2. RADIUS states

The user initiates the authentication process when attempting to use a NAS service. When the user request
arrives, the NAS sends an Access-Request message containing the attributes username, MD5-hashed password,
the user IP and the port ID. The message is sent to port UDP/1812; if no response is received within a period
of time, the request is re-sent a number of times.

130www.balasys.hu

Class MSRpcProxy

If RADIUS is configured to use username/password based authentication, the server consults the database and
if all the terms match, the server replies with an Access-Accept message. When the challenge/response method
is used the server generates a challenge and sends it to the client in an Access-Challenge message. The client
displays it to the user who calculates the response which is resubmitted by the NAS client in another
Access-Request message with a new request ID, encrypted User-Password attribute and the State Attribute. If
the response is correct the server allows the connection request in an Access-Accept message and the NAS
starts to deliver the service. If the authentication process fails the server sends an Access-Reject message and
the NAS denies the delivery of the service.

The user and the NAS server (technically the radius client) are authenticated separately. The user is authenticated
only after the NAS has been verified via the Radius secret (i.e. password). Users can be authenticated by
username/password or challenge/response methods.

Username/password authentication is a traditional authentication method where the user id identifies the user
and the password authenticates him/her. During the challenge/response the user ID identifies the user itself and
the client is authenticated by a one time password. The server sends an unpredictable number to the client. The
user calculates it with a hardware or software tool and sends the result back. If the answer is correct, it validates
the client's identity and this is the response which authenticates the user.

The Access-Accept message might deliver additional parameters to the service, such as IP address. These
additional parameters are delivered as values of various attributes.

RADIUS can also be used to send Service-Start and Service-End messages for accounting purposes. While the
protocol is the same as the one described above, it uses a separate port and a separate set of attributes. When
the client is configured to use RADIUS Accounting, it sends an Accounting-Start message describing the type
of the service and the user using it. RADIUS accounting uses the port UDP/1813. The RADIUS server returns
an acknowledgment. The client repeats sending the request until it receives the acknowledgment. At the end
of delivering the service, the client sends an Accounting-Stop message to the server describing the type and
optionally the statistics about the connection. The server acknowledges the stop messages as well.

Note
Earlier UDP/1645 was also used by RADIUS servers, and accounting messages were sent using port UDP/1646.

4.16.2. Proxy behavior

RadiusProxy is a module built for parsing the messages of the RADIUS protocol. It reads the REQUESTs at
the client side and decrypts the user password with the given shared secret (known by both the client and the
server). If the REQUEST and all the ATTRIBUTEs are permitted by the local security policy, it sends the
message to the RADIUS server. It parses the arriving RESPONSE and validates the authenticator signature.
The authenticator signature is an MD5 hash included in the RADIUS message, generated from various message
parameters, including the shared secret. It is used to ensure that the response is genuine and was indeed sent
by the server. If the RESPONSE is permitted by the local security policy and is authentic, the message encrypted
with the secret is returned to the NAS. It is possible to keep different secrets on the two sides of the proxy (i.e.
password translation is possible). RadiusProxy is able to parse both authentication and accounting messages,
and it can also manipulate RESPONSEs if the secret is available. If the secret is not available, authenticator
signatures cannot be validated, thus it is not possible to verify that the received response was sent to a proper
request. Both the client and server side secrets are required for modifying the messages; for validating the
authenticator signature, the server side secret is sufficient.

131www.balasys.hu

Proxy behavior

4.16.2.1. Configuring policies for RADIUS commands and responses

Changing the default behavior of commands can be done by using the hash attribute request. There is a similar
attribute for responses called response. These hashes are indexed by the type of the request/response. The
possible values of these hashes are shown in the tables below. See Section 2.1, Policies for requests and
responses (p. 4) for details.

DescriptionAction

Allow the request to pass.RADIUS_REQ_ACCEPT

Block the request and report it to the client.RADIUS_REQ_REJECT

Terminate the connection.RADIUS_REQ_ABORT

Block the request without further action.RADIUS_REQ_DROP

Call the function specified to make a decision about
the event. See Section 2.1, Policies for requests and
responses (p. 4) for details.

RADIUS_REQ_POLICY

Table 4.46. Action codes for RADIUS requests

DescriptionAction

Allow the response to pass.RADIUS_RSP_ACCEPT

Block the response and report it to the client.RADIUS_RSP_REJECT

Terminate the connection.RADIUS_RSP_ABORT

Block the response without further action.RADIUS_RSP_DROP

Call the function specified to make a decision about
the event. See Section 2.1, Policies for requests and
responses (p. 4) for details.

RADIUS_RSP_POLICY

Table 4.47. Action codes for RADIUS responses

Similar policies can be defined for RADIUS attributes. For easier use, predefined constants are available for
the different attributes. The possible actions on the attributes are listed in the following table. The attribute
constants are listed in Table A.2, RADIUS Protocol Attribute types described in RFC 2865. (p. 311).

DescriptionAction

Allow the attribute to pass.RADIUS_ATR_ACCEPT

Block the attribute and report it to the client.RADIUS_ATR_REJECT

Terminate the connection.RADIUS_ATR_ABORT

Reject the entire message if it contains the specified
attribute.

RADIUS_ATR_DROP

Call the function specified to make a decision about
the event. See Section 2.1, Policies for requests and
responses (p. 4) for details.

RADIUS_ATR_POLICY

132www.balasys.hu

Proxy behavior

DescriptionAction

An alias of RADIUS_ATR_DROP the action code.RADIUS_ATR_ZERO

The message can contain zero or one of the specified
attribute.

RADIUS_ATR_ACCEPT_MAXONE

Accept exactly one attribute in the message. The
message is rejected if it does not contain the specified

RADIUS_ATR_ACCEPT_ONE

attribute. This action can be used to check the
existance of mandatory attributes.

Drop the attribute from the message; the message itself
is not rejected.

RADIUS_ATR_DROP_ONE

Table 4.48. Action codes for RADIUS attributes

4.16.2.2. Binding secondary sessions

The RADIUS protocol does not guarantee the delivery of the messages (since it uses UDP), consequently
packages are dropped if the system is overburden. Clients and servers attempt to send messages several times;
allowing secondary sessions increases reliability and decreases server load. See Section 2.2, Secondary
sessions (p. 7) for further information.

Example 4.32. Example RadiusProxy config
The following example defines a RADIUS proxy which serves 1000 parallel requests in one thread. Packet rebuilding is turned on as
well, therefore the server and client side secrets are also specified.

class MyRadiusProxy(RadiusProxy):

def config(self):

RadiusProxy.config(self)

self.client_secret="secret"

self.server_secret="secret"

self.rebuild_packets='TRUE'

self.secondary_mask = 0xC

self.secondary_sessions = 1000

4.16.3. Related standards

■ The RADIUS protocol is defined in RFC 2865.

■ The RADIUS Accounting protocol is defined in RFC 2866.

4.16.4. Classes in the Radius module

DescriptionClass

Class encapsulating the abstract RADIUS proxy.AbstractRadiusProxy

Default RADIUS proxy based on
AbstractRadiusProxy.

RadiusProxy

133www.balasys.hu

Related standards

DescriptionClass

RADIUS proxy based on AbstractRadiusProxy,
allowing only a minimal command set.

RadiusProxyStrict

Table 4.49. Classes of the Radius module

4.16.5. Class AbstractRadiusProxy

This class implements the RADIUS protocol as described by RFC 2865.

4.16.5.1. Attributes of AbstractRadiusProxy

attribute_desc (complex, rw:rw)

Default: n/a

Attribute descriptors, this hash is indexed by the attribute type and the value contains a tuple of (type, min,
max). The min and max values are interpreted depending on the RADIUS type. For integers it means the
minimum and maximum integer values, for strings it is applied to the string length.

attribute_usage (complex, rw:rw)

Default:

Describes attribute usage, the hash is indexed by the tuple of (packet type, attribute id). The value is a singleton
tuple containing one of the RADIUS_ATR values.

client_secret (string, rw:r)

Default:

Secret string (password) shared between the client (probably NAS) and Vela. Setting this value is not
mandatory, but some of the proxy functions will not be available (see Section 4.16.2, Proxy behavior (p. 131)
for details).

max_packet_length (integer, rw:r)

Default: 4096

Maximum allowed length of packets.

permit_trailing_zeroes (boolean, rw:rw)

Default: FALSE

Workaround for a Cisco bug (the router sometimes pads the packets with NUL bytes).

rebuild_packets (boolean, rw:rw)

Default: FALSE

134www.balasys.hu

Class AbstractRadiusProxy

rebuild_packets (boolean, rw:rw)

Specifies whether to rebuild packets (requires both shared secrets to be available, see Section 4.16.2, Proxy
behavior (p. 131) for details).

request (complex, rw:rw)

Default:

Normative policy hash for RADIUS request types indexed by the type of the request. See also Section 4.16.2.1,
Configuring policies for RADIUS commands and responses (p. 132).

response (complex, rw:rw)

Default:

Normative policy hash for RADIUS response types indexed by the type of the response. See also Section
4.16.2.1, Configuring policies for RADIUS commands and responses (p. 132).

secondary_mask (secondary_mask, rw:r)

Default: 0xf

Specifies which connections can be handled by the same proxy instance (the same connection is enabled as
secondary session by default). See Section 2.2, Secondary sessions (p. 7) for details.

secondary_sessions (integer, rw:r)

Default: 10

Maximum number of allowed secondary sessions within a single proxy instance. See Section 2.2, Secondary
sessions (p. 7) for details.

server_secret (string, rw:r)

Default:

Secret string (password) shared between the server and Vela. Setting this value is not mandatory, but some
of the proxy functions will not be available (see Section 4.16.2, Proxy behavior (p. 131) for details).

timeout (integer, rw:r)

Default: 60000

Timeout in milliseconds.

4.16.6. Class RadiusProxy

Default RADIUS proxy based on AbstractRadiusProxy allowing all well-formed RADIUS packets (all requests,
responses, and attributes) through the firewall. Secondary sessions are enabled for the same target
(secondary_mask=0xC) (maximum 10). For a stricter default configuration use the RadiusProxyStrict class.

135www.balasys.hu

Class RadiusProxy

4.16.7. Class RadiusProxyStrict

Radius proxy strictly checking RFC compliance of the passing packets. Packets containing attributes that are
not defined in the RFC are dropped.

The following requests and responses are permitted: radius_access_request; radius_access_challenge;
radius_access_reject; radius_access_accept; radius_accounting_request; radius_accounting_response. All other
requests and responses are rejected. The policy used for the attributes is listed in the Radius Appendix.

4.17. Module Sip

The Sip module defines the classes constituting the proxy for the Session Initiation Protocol (SIP).

4.17.1. The SIP protocol

SIP is a peer-to-peer protocol providing call processing functions and features similar to public switched
telephone networks. The SIP protocol (or protocol family rather) is not a conventional Internet protocol, because
it is not based on the traditional client-server model. Although there are prioritized servers for performing
certain tasks, in most cases SIP phones function as both clients and servers on the network. Consequently, the
protocol does not use the usual request/response based communication, and that has important consequences
in perimeter defense.

4.17.1.1. Protocol elements

The devices involved in SIP communication can have several different roles, but a single device can play the
part of different roles at the same time. The most important roles are briefly summarized below:

■ User-agent: The phone itself. In the traditional model, this would be called client.

■ Registrar: The registration service. The address where a particular user-agent is accessible is registered
here. It acts as a sort of a name service for the protocol.

■ Proxy: This device transmits the requests of the user-agents. It has nothing to do, and is not to be
confused with a proxy firewall or with a web cache proxy.

■ Presence server: Similar to the registrar; this device stores information about the availability of the
user-agents. Users can monitor if the VoIP devices of their contacts (friends, business partners, etc.)
are active (i.e. on-line) via the presence server.

■ Back2back user-agent: This is a special proxy implementing the functions of two user-agents. On
one side of a connection it acts as the caller, on the other side as the called party.

SIP is only involved in the signaling part of a communication session, and relies on other protocols to perform
the actual data transfer. SIP communication takes place in multiple channels: one is the signaling channel, the
other one the actual data channel used to transmit the voice and/or video data. This latter channel is opened
dynamically according to parameters negotiated in the signaling channel. The negotiation uses a separate -
embedded - protocol called Session Description Protocol (SDP) used to describe the channel and the type of
media used in a session (i.e. the IP ports, codecs, etc.). It is essential for the firewall to understand and inspect
the SDP protocol, since it contains all the information required to allow the VoIP traffic pass the firewall. The
SDP traffic also has to be modified in case network address translation is performed. To transfer the actual
voice, video, or other data, SIP uses the Real-time Transport Protocol (RTP). RTP defines a standardized packet

136www.balasys.hu

Class RadiusProxyStrict

format for delivering audio and video over the Internet, and is frequently used in audio/video streaming and
conferencing solutions.

From the signaling point of view, it is important to note that there is no client/server hierarchy between the
user-agents, only caller/called party. The signaling traffic is usually not transmitted directly between the
user-agents, generally proxies and back2back user-agents are also involved. Consequently, signaling messages
(for example a request and a corresponding answer) can take very different routes between two user-agents,
greatly complicating the secure transmission of the protocol. On the other hand, the RTP session is built directly
between the user-agents without the interaction of proxies, though back2back user-agents may still be involved
in the transmission of the audio/video data. Therefore a special care must be taken when creating the access
control rules of the SIP signaling and data traffic.

4.17.1.2. Proxy behavior

The SIP proxy allows SIP signaling (accepting SIP messages on the TCP port 5060) and the dynamic RTP
traffic through the firewall without compromising the security of the firewall and the defended network. Ports
are dynamically opened through the firewall based on information received in the signaling traffic. The signaling
part of the protocol is inspected on the application level for protocol conformance: SIP proxy enforces the
standards, protecting the network from attacks violating the protocol. This is especially important since SIP
clients and even servers are rarely designed with security in mind and many of them have issues from a security
point of view. As an application level gateway, PNS parses, checks, and rebuilds every passing signaling request
and response. The actual (audio, video, etc.) communication is not inspected, it is forwarded through PNS on
the kernel level using stateful package filtering. These connections are handled as related UDP connections.
Furthermore, it is possible to perform NATing and connection marking (see the description of the SIP proxy
classes for details).

When packets arrive to the port the SIP proxy is listening on, basic access control is performed based on the
source IP address of the packets. Each and every request and response is inspected on the application level
(Layer 7 in the OSI model). The requests and responses - including protocol elements like headers - are parsed
and strictly checked for conformance with the SIP standards. The SIP proxy understands and enforces the SIP
protocol as described in RFC 3261. The syntax and length of the various protocol elements (e.g.: length of
lines, headers, requests, etc.) is checked in order to repel various attack forms based on malformed messages,
such as buffer overflow attacks. The relation of the arriving packets relative to other packets and previous
communication information is also inspected. Packets not conforming to the logic and workflow of the protocol
(e.g.: responses without requests, etc.) are rejected. This step is important because SIP uses random ports for
transferring the actual communication data (the RTP stream, e.g.: voice, video), and otherwise it would be
possible to open covert channels through the firewall between machines, not only the intended VoIP
communication between the two SIP endpoints (i.e. the caller and the receiver).

The payload (SDP) part of the communication is parsed as well and modified if network address translation
(NAT) is used. In this case, the addresses and dynamic ports used by the RTP traffic stream have to be modified
accordingly. After all these sanity checks the policy settings of the firewall are consulted. Address, and media
type filtering is performed (e.g.: to allow only voice traffic to/from specific addresses). Network address
translation is also performed at this step if required.

Access control on the RTP stream part of the protocol is performed separately. This is important because RTP
and signaling streams can have different access control settings. If SIP servers or a SIP proxy is used on some
part of the network, the signaling and the RTP streams originate from different sources. (In such situation, the

137www.balasys.hu

The SIP protocol

signaling is originating from the proxy, but the RTP stream arrives directly from the actual client. However,
such a situation could also be used to initiate covert channels.)

The proxy supports the use of secondary sessions as described in Section 2.2, Secondary sessions (p. 7).

4.17.1.3. Keepalive messages in SIP

Keepalive messages in SIP are not originally part of the RFC. However, many SIP implementations actually
use them, sending UDP packets (containing only whitespaces) to maintain the connection. These packets are
accepted if they are not longer than a preset value (see the max_keepalive_size attribute of the
AbstractSipProxy proxy class) and interprets them as keepalive messages. Such packets are uniformly replaced
with UDP packets containing only a single line-feed.

4.17.1.4. Configuring SIP policies

The SIP proxy is capable of filtering the different media types in the SIP traffic based on their SDP headers
using the media hash attribute. The possible actions for the different media types are shown in the table below.
See Section 2.1, Policies for requests and responses (p. 4) for details.

DescriptionAction

Accept the media type.SIP_MEDIA_ACCEPT

Drop the media from the list of proposed media
channels but forward the message to the peer.

SIP_MEDIA_DROP

Drop the SIP message containing the corresponding
media type.

SIP_MEDIA_ABORT

Call the function specified to make a decision about
the media type. The function receives two parameters:

SIP_MEDIA_POLICY

self, and the media type string. See Section 2.1,
Policies for requests and responses (p. 4) for details.

Table 4.50. Action codes for SIP media types.

Media types are the strings in SDP headers that identify the type of media sent in the channel (e.g.: audio,
video, * for all types, etc.). There are no predefined constants for the media types, as they are not defined in
any RFCs or other standards. Typically, audio and video are used for voice and video streams, respectively.

Example 4.33. Disabling video traffic in SIP
This example class accepts only voice traffic, denying video streams and aborting on all other types of media streams.

class AudioSip(SipProxy)

def config(self):

self.media["audio"]=[SIP_MEDIA_ACCEPT]

self.media["video"]=[SIP_MEDIA_DROP]

self.media["*"]=[SIP_MEDIA_ABORT]

4.17.2. Related standards

■ The Session Initiation Protocol is described in RFC 3261.

138www.balasys.hu

Related standards

■ The Session Description Protocol is described in RFC 2327.

■ RTP: A Transport Protocol for Real-Time Applications is described in RFC 3550.

4.17.3. Classes in the Sip module

DescriptionClass

Class encapsulating the abstract SIP proxy.AbstractSipProxy

Default SIP proxy class based on AbstractSipProxy.SipProxy
Table 4.51. Classes of the Sip module

4.17.4. Class AbstractSipProxy

This proxy implements the SIP protocol as specified in RFC 3261. Service definitions should refer to a customized
class derived from AbstractSipProxy, or a predefined proxy class.

4.17.4.1. Attributes of AbstractSipProxy

max_keepalive_size (integer, w:r)

Default: 128

Maximum size for SIP signaling keepalive messages in bytes. See Section 4.17.1.3, Keepalive messages in
SIP (p. 138) for details.

max_message_size (integer, w:r)

Default: 65536

Maximum allowed size of a SIP signaling message in bytes.

media_connection_mark (integer, w:rw)

Default: 0

Connection mark value that is set on all on media connections. That way media connections can be easily
identified and handled by specific packet filtering rules.

secondary_mask (secondary_mask, rw:r)

Default: 0xf

Specifies which connections can be handled by the same proxy instance. See Section 2.2, Secondary
sessions (p. 7) for details.

secondary_sessions (integer, rw:r)

Default: 10

139www.balasys.hu

Classes in the Sip module

secondary_sessions (integer, rw:r)

Maximum number of allowed secondary sessions within a single proxy instance. See Section 2.2, Secondary
sessions (p. 7) for details.

timeout (integer, w:r)

Default: 600000

I/O timeout in milliseconds.

4.17.5. Class SipProxy

This class encapsulates the default SIP proxy.

4.17.5.1. Attributes of SipProxy

media (complex, rw:r)

Default:

Policy hash implementing media type filtering, indexed by the media type (as a string, e.g.: audio). See
Section 4.17.1.4, Configuring SIP policies (p. 138) for details.

permit_rtp_zones (complex, rw:r)

Default:

A comma-separated list of zone pairs that are permitted to exchange voice or video streams (e.g.:
(("internet", "intranet"),)). This option replaces the DAC decision (which is unavailable here,
since RTP streams are forwarded on the kernel level). NOTE: this is a two-way connection between the zones.

rtp_endpoint_rewrite_nat_policy (unknown, rw:r)

Default:

Reference to an existing NAT policy that rewrites RTP endpoints from internal to external addresses. The
policy is called for all messages containing an SDP part, since those may also contain addresses of the
endpoints.

4.18. Module Socks

The Socks module defines the classes for the proxy to inspect Socks communication.

140www.balasys.hu

Class SipProxy

4.18.1. The SOCKS protocol

4.18.2. Proxy behaviour

SOCKS is a network protocol for routing packets using a proxy server between the clients and the servers.
SOCKS performs at Layer 5 of the OSI model. SOCKS is typically used to proxy other, Layer 7 protocols,
most often HTTP.

Example 4.34. SOCKS and HTTP traffic
The following configuration example embeds an HTTP proxy into a Socks proxy and can be used to inspect HTTP traffic that uses a
SOCKS proxy to access the servers. Client authentication is disabled.

class MySocksProxy(SocksProxy):

def config(self):

SocksProxy.config(self)

self.enable_socks_v4 = TRUE;

self.require_auth_v5 = FALSE

def requestStack(self, ip, port):

return MyHttpProxy

4.18.2.1. Authenticating clients

The proxy can authenticate the clients using passwords. GSS-API and other authentication methods supported
by the SOCKSv5 protocol are not supported. The process of negotiating the authentication between the client
and the Socks proxy is the following:

1. The client sends the list of authentication methods is supports to the SOCKS server.

2. The Socks proxy replies to the client on behalf of the SOCKS server, depending on the configuration
of the Socks proxy:

■ If the client selected password-based authentication and the disable_auth_v5 option is set to
FALSE and the require_auth_v5 is set to TRUE (which are the defaults), PNS replies that
password authentication is supported.

■ If the require_auth_v5 is set to FALSE, and the client supports the none authentication method,
the connection is accepted without authentication.

■ In other cases, the client receives an authentication error.

The Socks proxy supports inband authentication as well. For details on inband authentication, see Section 5.1.10,
Class InbandAuthentication (p. 176).

4.18.3. Related standards

■ The SOCKS 5 protocol is defined in RFC 1928.

4.18.4. Classes in the Socks module

DescriptionClass

Class encapsulating the Socks Proxy.AbstractSocksProxy

141www.balasys.hu

The SOCKS protocol

http://tools.ietf.org/html/rfc1928

DescriptionClass

Default Socks proxy class based on
AbstractSocksProxy.

SocksProxy

Table 4.52. Classes of the Socks module

4.18.5. Class AbstractSocksProxy

This proxy validates SOCKS traffic. It serves as a starting point for customized proxy classes, but is itself not
directly usable. Service definitions should refer to a customized class derived from AbstractSocksProxy, or the
predefined SocksProxy proxy class.

4.18.5.1. Attributes of AbstractSocksProxy

auth (class)

Default:

The authentication provider object used in the authentication process, set in the authentication_policy()
parameter of the service. See Section 5.1.1, Authentication and authorization basics (p. 169) for details.

auth_server (boolean)

Default:

The address of the VAS server used to authenticate the connection. Note that this option cannot be modified
by the proxy, it is set in the AuthenticationPolicy used by the Service definition.

connect_server (boolean)

Default: TRUE

Set to TRUE, if the Socks proxy is connecting directly to the SOCKS server. Set to FALSE, if the Socks proxy
is an embedded proxy and another proxy is performing the actual connection.

disable_auth_v5 (boolean)

Default: FALSE

Disable authentication in the SOCKSv5 protocol. If this option is enabled, the proxy sends only the none
authentication method to the client.

enable_socks_v4 (boolean)

Default: FALSE

Accept SOCKSv4 connections as well. If the client is using an unsupported protocol version, or the client is
using SOCKSv4 but the enable_socks_v4() option is set to FALSE, the Unsupported protocol

version='4' log message is sent to the system logs.

142www.balasys.hu

Class AbstractSocksProxy

require_auth_v5 (boolean)

Default: TRUE

Require authentication in the SOCKSv5 protocol. If this option is enabled, the proxy sends only the password
authentication method to the client. Note that using this option requires a properly configured VAS
AuthenticationPolicy and an authentication backend in the definition of the service that uses the Socks proxy.

timeout (integer)

Default: 600000

Timeout in milliseconds. The -1 value disables the timeout.

4.18.5.2. AbstractSocksProxy methods

DescriptionMethod

Called when the SOCKS protocol reaches forward
state.

requestForward(self, ip, port)

Table 4.53. Method summary

Method requestForward(self, ip, port)

This method must determine whether to stack another proxy class into the traffic, or simply forward the traffic
without analyzing. The method can raise an exception which will result in denying any traffic. The default
behavior is to forward traffic without analyzing.

Arguments of requestForward

IP (string)

Default: n/a

The IP address of the target host.

port (integer)

Default: n/a

The port number to connect to.

return (complex)

Default: n/a

Tuple of SOCKS_STK_* and a class. SOCKS_STK_NONE will result in simple forwarding, while
SOCKS_STK_DATA will start a stacked proxy instance of the returned class.

143www.balasys.hu

Class AbstractSocksProxy

4.18.6. Class SocksProxy

A default proxy for the SOCKS protocol based on AbstractSocksProxy. It serves as a starting point for customized
proxy classes, but is itself not directly usable. Service definitions should refer to a customized class derived
from AbstractSocksProxy, or the predefined SocksProxy proxy class. By default, the proxy rejects SOCKSv4
connections, and requires authentication from the clients.

4.19. Module SQLNet

4.19.1. The SQL*Net protocol

This class implements parts of Oracle TNS (Transparent Network Substrate) to enable clients to communicate
with Oracle servers behind firewalls using port TCP/1521. This module is especially needed when tnslsnr (the
TNS listener) is in Multi-threaded Server (MTS) mode.

The SQL*Net proxy does not analyze the whole protocol stream, as the data protocol of Oracle operates on top
of TNS.

An example for the SQL*Net connection string is provided in Example A.1, An example for the SQL*Net
connection string (p. 327).

4.19.2. Proxy behavior

SQLNetProxy is a module built for parsing messages of the SQL*Net protocol. It reads and parses QUERYs
on the client side, and sends them to the server if the local security policy permits.

In MTS mode Oracle returns a redirect packet specifying where the client should connect to. The proxy processes
this packet and initiates a new connection to the address specified; all packets sent by the client will be
automatically redirected to this new address. This functionality is completely transparent to the clients. To
accomplish this, either InbandRouter has to be used, or the overridable option has to be set for DirectedRouter
and TransparentRouter.

SQLNet proxy is able to parse connect_string and connection_data containing the address and port of
the target server and information on the database.

When the connection is established the SQLNetProxy inspects TNS headers, but does not inspect the layers
above TNS.

4.19.3. Related standards

SQL*Net is a not specified in any public standards.

4.19.4. Classes in the SQLNet module

DescriptionClass

Class encapsulating the abstract SQLNet proxy.AbstractSQLNetProxy

144www.balasys.hu

Class SocksProxy

DescriptionClass

Default SQLNet proxy class based on
AbstractSQLNetProxy.

SQLNetProxy

Table 4.54. Classes of the SQLNet module

4.19.5. Class AbstractSQLNetProxy

AbstractSQLNetProxy is a default proxy for the SQL*Net protocol - it serves as a starting point for customized
proxy classes, but is itself not directly usable. Service definitions should refer to a customized class derived
from AbstractSQLNetProxy, or the predefined proxy class.

4.19.5.1. Attributes of AbstractSQLNetProxy

connect_data (string, n/a:rw)

Default: n/a

The TNS connect string as sent by the client, or as modified by the policy.

server_address (string, rw:rw)

Default: "n/a"

Name of the Oracle server to connect to. This value is only used together with InbandRouter, or if the
overridable option is set for DirectedRouter or TransparentRouter.

server_port (integer, rw:rw)

Default: "n/a"

Port of the Oracle listener to connect to.

split_connect_threshold (integer, rw:rw)

Default: 231

CONNECT data that is larger than this value will be split into smaller DATA packets.

strict_redirect_parsing (boolean, rw:rw)

Default: TRUE

Disabling this option allows improperly formed packets to pass the firewall.

timeout (integer, rw:r)

Default: 600000

Timeout in milliseconds.

145www.balasys.hu

Class AbstractSQLNetProxy

4.19.5.2. AbstractSQLNetProxy methods

DescriptionMethod

Function called when the client issues a CONNECT
request.

connectRequest(self, connect_data)

Table 4.55. Method summary

Method connectRequest(self, connect_data)

This function is called when the client issues a CONNECT request, to have a chance to validate and change
the CONNECT string sent by the client. The connect string can be found in the parameter connect_data.
The function has to return a logical TRUE or FALSE value, i.e. SQLNET_ACCEPT or SQLNET_ABORT.

Arguments of connectRequest

connect_data (unknown, n/a:n/a)

Default: n/a

The connect string as sent by the client.

4.19.6. Class SQLNetProxy

A transparent SQL*Net proxy based on AbstractSQLNetProxy.

In transparent mode the client addresses directly the server, so the target address is readily available; while in
nontransparent mode the client connects directly to Vela, and Vela receives the address of the server within the
protocol.

4.19.6.1. Attributes of SQLNetProxy

transparent_mode (boolean, rw:rw)

Default: TRUE

Enable/disable transparent mode operation.

4.20. Module Ssh

4.20.1. The Secure Shell protocol

Secure Shell (SSH) is a protocol designed to remotely access (login and execute commands) on a computer
connected to the network. SSH was aimed to replace the earlier unencrypted protocols (e.g.: rlogin, TELNET
and rsh), and provides secure encrypted communication between two hosts over an insecure network. Users of
SSH can also use it for tunneling, forwarding arbitrary TCP ports and X11 connections over the resultant secure
channel; and can transfer files using the embedded SFTP or SCP protocols.

146www.balasys.hu

Class SQLNetProxy

4.20.1.1. Protocol elements

One of the main features of the SSH protocol is that almost the entire communication between the client and
the server is encrypted - including the authentication of the user. (Naturally, the negotiation of the encryption
method to be used is in plain text). During the initialization of the session server authentication is performed
and parameters for encryption, data compression and integrity verification of the data transferred are negotiated.
The protocol enforces user authentication and is capable of authenticating the user via various methods: password,
RSA key, Challenge/Response schemes like S/Key and OPIE, etc.

The typical uses of SSH include the following:

Remote shell Remotely administer a computer via an interactive terminal
console. This is one of the most widespread uses of SSH.

Remote command execution Execute commands on the remote machine. Remote command
execution can also result in significant data transfer, for example
when performing scheduled or manual tasks such as file copying
(scp), data or file synchronization (rsync), creating archive
backups (tar), etc.

TCP IP forwarding (also known as
port forwarding)

It is possible to tunnel any TCP/IP connection from the client
or from the server into the encrypted SSH channel. It can also
be used to forward communication otherwise not allowed, such
as the access of ports banned by the security policy. This allows
to secure any - normally unencrypted - data transfer and is
frequently used as an easy way to secure connections between
the hosts without the need to set up full VPN connections.

File transfer Securely transfer files using SFTP.

X11 forwarding Applications running on the server and requiring graphical
interface (X Window) appear on the client's monitor, but run on
the server in all other respect, thus it is possible to work with
them remotely.

Agent forwarding: Transfer authentication requests to the client machine.

4.20.1.2. Protocol versions

The original version of the protocol (SSH-1, dated 1995) has been revised in 1996, and SSH-2 was created
offering improved security and new features. The two versions of the protocol are incompatible with each other.
Since SSH-1 has inherent design flaws and is vulnerable to attacks, it is now generally considered obsolete and
its use should not be permitted. Practically all server and client applications today support SSH-2, however,
software not supporting SSH-2 may still be in use by some organizations, posing a considerable security
vulnerability to them.

The SSH proxy supports only the SSHv2 protocol (SECSH).

4.20.2. Proxy behavior

SSH proxy uses man-in-the-middle technique to decrypt and terminate the SSH connections on the firewall. It
separates the connections into two parts and inspects all traffic, so that no data can be directly transferred

147www.balasys.hu

Proxy behavior

between the server and the client. Only the SSH-2 protocol is supported exclusively, but owing to the widespread
use and availability of SSH-2 implementations, this does not mean any hindrance. The general capabilities of
SSH proxy are summarized below.

■ Protocol inspection : All traffic is inspected and only permitted across the firewall if it fully complies
to the SSH-2 protocol. This feature provides effective protection against a great number of attacks
exploiting vulnerabilities of server and client applications, including buffer overflow vulnerabilities.

■ Verify encryption method : The internal parameters of the connections can also be controlled, allowing
the proxy to enforce the use of selected encryption methods (cipher type, key length, etc.), thus
provide protection against downgrade attacks.

■ Control user authentication : The different authentication methods can be separately enabled or
disabled, e.g.: it is possible to enforce the use of strong authentication methods by completely disabling
password based authentication. User-level filtering and access control can also be performed. Although
this can obviously be done on the servers themselves, PNS as an external device provides these
features reliably even if the server or the client machines get compromised.

■ Control of SSH channels : There is full control over the SSH channels, i.e. it can be specified which
channels are allowed to and from a given server or in a given connection. For instance, file transfer,
port forwarding, or X forwarding can be separately enabled/disabled based on various criteria.

■ Disable agent forwarding : Agent forwarding can be disabled, thus prevent that the keys used in the
internal network become accessible on external machines.

■ Control remote command execution : The SSH protocol can be fully inspected, thus it can be specified
which commands are allowed, which ones are disabled. More sophisticated decisions can also be
made based on the parameters of the session, e.g.: to allow the execution of a command only to
certain users, etc.

4.20.2.1. Configuring policies for SSH channels

The opening of SSH channels from the server and the client side is possible using the server_channel and
client_channel hashes. These hashes are indexed by the channel type (e.g.: session). The available channel
types are listed in the following table.

ValueName

Channels for terminal shells, remote execution requests
(e.g.: scp), and SFTP.

session

Channels for client-to-server forwarded connections.direct-tcpip

Channels for server-to-client forwarded connections.forwarded-tcpip

Channels for forwarding authentication agents.auth-agent

Channels for forwarding authentication agents, as
implemented in OpenSSH.

auth-agent@openssh.com

148www.balasys.hu

Proxy behavior

ValueName

Channels for forwarding graphical interfaces.x11
Table 4.56. The list of available channel types.

The possible actions are described in the following table. See also Section 2.1, Policies for requests and
responses (p. 4).

DescriptionAction

Accept the request without any modification.SSH_CHAN_ACCEPT

Reject the channel opening request.SSH_CHAN_REJECT

Call the function specified to make a decision about
the channel opening request.

SSH_CHAN_POLICY

Reject the channel opening request and terminate the
connection.

SSH_CHAN_ABORT

Table 4.57. Action codes for SSH channel open requests.

Example 4.35. Enabling and disabling SSH channels
The following proxy class accepts only terminal session (shell) connections, and rejects all other channel types.

class ShellonlySshProxy(SshProxy):

def config(self):

SshProxy.config(self)

self.client_channel["session"] = (SSH_CHAN_ACCEPT)

self.client_channel["session-shell"] = (SSH_CHAN_ACCEPT)

self.client_request["session-exec"] = (SSH_REQ_REJECT)

self.client_request["session-subsystem"] = (SSH_REQ_REJECT)

4.20.2.2. Configuring policies for SSH requests

Changing the default behavior of requests arriving from the server and the client side is possible using the
server_request and client_request attributes. All requests specified in the RFCs are supported. The
index of these hashes is composed of the channel type (e.g.: session, see Section 4.20.2.1, Configuring policies
for SSH channels (p. 148) for a detailed list), a single hyphen, and the request name as defined by the SSH
protocol specification. E.g.: session-x11-req. The possible actions are described in the following table. See
also Section 2.1, Policies for requests and responses (p. 4).

DescriptionAction

Accept the request without any modification.SSH_REQ_ACCEPT

Reject the request.SSH_REQ_REJECT

Call the function specified to make a decision about
the request.

SSH_REQ_POLICY

149www.balasys.hu

Proxy behavior

DescriptionAction

Reject the request and terminate the connection.SSH_REQ_ABORT
Table 4.58. Action codes for SSH channel and global requests.

For complex decisions that are based on the parameters of the requests, you have to use the SSH_REQ_POLICY
parameter and create a function within the proxy class that examines and optionally modifies the parameters.

This custom function can receive the following four attributes:

self

side The side of the connection relative to PNS: 0 for the client side, 1 for the server side.

index The name of the request, e.g., x11, subsystem, etc.

request A structure that has fields containing the parameters of the request. See Section 4.20.2.3,
Parameters of the SSH requests (p. 150) for details on the different request parameters.

See the following example.

Example 4.36. Enabling only SFTP connections
The following proxy class accepts SFTP connections. SFTP is a subsystem of SSH, therefore the parameters of the session-subsystem
request must be examined. (This is for example only, for SFTP only configuration use SshProxySftpOnly predefined class)

class SFtponlySshProxy(SshProxy):

def config(self):

SshProxy.config(self)

self.client_channel["session"] = (SSH_CHAN_ACCEPT)

self.client_request["session-subsystem"] = (SSH_REQ_POLICY, self.permitSFTPOnly)

self.client_request["session-pty-req"] = (SSH_REQ_REJECT)

self.client_request["session-shell"] = (SSH_REQ_REJECT)

self.client_request["session-exec"] = (SSH_REQ_REJECT)

def permitSFTPOnly(self, side, index, request):

if request.subsystem == "sftp":

return SSH_REQ_ACCEPT

return SSH_REQ_REJECT

4.20.2.3. Parameters of the SSH requests

SSH requests can be controlled using the server_request and client_request hashes. These hashes are
indexed by the channel type (e.g.: session). Some requests have additional parameters that are also listed.
Some channels (e.g., the X11 channel) require two request messages to open, the first message requests the
channel, while the second message actually opens the requested channel. The following requests are available
from the client side. For examples on local and remote forwarding, see Section 4.20.2.4, Configuring local and
remote forwarding (p. 153).

window-change

When the window (terminal) size changes on the client side a message may be sent to inform the server of
the new window dimensions. Parameters of the request:

Width of the terminal window in characters.width_cols

Height of the terminal window in characters.height_rows

Width of the terminal window in pixels.width_px

150www.balasys.hu

Proxy behavior

window-change

Height of the terminal window in pixels.height_px

pty-req

Request a pseudo-terminal for the session. Parameters of the request:

Requests a pseudo-terminal.term

Width of the terminal window in characters.width_cols

Height of the terminal window in characters.height_rows

Width of the terminal window in pixels.width_px

Height of the terminal window in pixels.height_px

x11-req

Request X11 forwarding for the session. Parameters of the request:

The name of the X11 authentication method used, e.g., MIT-MAGIC-COOKIE-1.x11_auth_proto

x11_auth_cookie

screen_number

If set to TRUE, the server forwards only a single connection.single_connection

x11

Open an X11 channel. Parameters of the request:

IP address of the host.originator_host

Port number of the host.originator_port

auth-agent-req

Request the forwarding of the authentication requests. This request has no additional parameters.

auth-agent-req@openssh.com

Request the forwarding of the authentication requests, as implemented in OpenSSH. This request has no
additional parameters.

env

Pass an environment variable and its value in the message. Parameters of the request:

The name of environment variable.name

The value of environment variable.value

151www.balasys.hu

Proxy behavior

shell

Request a shell be started on the server side. This request has no additional parameters.

exec

Request the server to start the execution of the command sent in the message. Parameters of the request:

The command to be executed. The command may include a path.command

subsystem

Request the server to execute a predefined subsystem. (Subsystems usually include a general file transfer
mechanism, and possibly other features as well.) Parameters of the request:

Name of the subsystem to be executed.subsystem

signal

A signal delivered to the remote process or service. Parameters of the request:

Name of the signal to be sent.signal

The following requests are available from the server side. Some requests have additional parameters that are
also listed.

exit-status

When the command running on the server terminates, an exit-status message can be sent to return the exit
status of the command.

exit_status

exit-signal

A message indicating that the remote command was terminated violently due to a signal. A zero usually means
that the command terminated successfully.

Name of the signal. One of: ABRT, ALRM, FPE, HUP, ILL, INT, KILL, PIPE, QUIT,
SEGV, TERM, USR1, USR2, or a custom signal consisting of two strings and the @

character (e.g., signal@ example).

signal_name

core_dumped

The text of the error message. The message may consist of multiple lines separated
by CRLF (Carriage Return - Line Feed) pairs.

error

Language tag confirming to RFC3066.lang

xon-xoff

A message informing the client when it can or cannot perform flow control.

152www.balasys.hu

Proxy behavior

xon-xoff

TRUE if the client can perform flow control.client_can_do

4.20.2.4. Configuring local and remote forwarding

Remote port-forwarding transfers connections arriving to a port of the server to the client. The client sends a
global-tcpip-forward request to the server. The parameters of this request tell the server which address
and port it should listen on for incoming connections (bind_address, bind_port). When the server receives
a connection to this address/port pair, it opens a forwarded-tcpip towards the client. The parameters of these
requests are summarized in the following tables.

Figure 4.7. Remote TCP forwarding

global-tcpip-forward

Connections arriving to the specified IP address and port of the server are forwarded to the client.

The server forwards connections received on this address to the client. The following
special addresses may be used:

bind_address

■ The "" parameter means that connections are to be accepted on all
protocol families supported by the SSH implementation.

■ The 0.0.0.0 parameter means to listen on all IPv4 addresses.

■ The :: parameter means to listen on all IPv6 addresses.

■ The localhost parameter means to listen on all protocol families
supported by the SSH implementation on loopback addresses only
([RFC3330] and [RFC3513]).

■ The 127.0.0.1 and ::1 parameters indicate listening on the loopback
interfaces for IPv4 and IPv6, respectively.

The server forwards connections received on this port to the client.bind_port

forwarded-tcpip

Opens a channel used to forward remote connections to the client.

The IP address of the server that received the connection.connected_addr

The port of the server that received the connection.connected_port

153www.balasys.hu

Proxy behavior

forwarded-tcpip

The IP address of the remote host whose connection is forwarded to the client.originator_addr

The port of the remote host whose connection is forwarded to the clientoriginator_port

Local port-forwarding transfers connections arriving to the client from a host to a remote host via the SSH
server. For local port-forwarding, the client sends a direct-tcpip channel opening request to the server. The
parameters of this request tell the server which host it should forward the connection, as well as the address of
the host that connects to the client (usually localhost). This request has the following parameters.

Figure 4.8. Local TCP forwarding

direct-tcpip

Opens a channel used to forward remote connections to the client.

The IP address of the host whose connection is forwarded to the remote host.originator_addr

The port of the host whose connection is forwarded to the remote host.originator_port

The IP address of the remote host that is the destination of the forwarded connection.host_addr

The port of the remote host that is the destination of the forwarded connection.host_port

Example 4.37. Restricting local forwarding
The following proxy class permits local forwading only to port 80 of the 192.168.1.1 remote host. Only shell and local forwarding
channels are permitted.

class RestrictedlocalforwardSshProxy(SshProxy):

def config(self):

SshProxy.config(self)

self.client_channel["session"] = (SSH_CHAN_ACCEPT)

self.client_channel["direct-tcpip"] = (SSH_CHAN_ACCEPT)

self.client_request["direct-tcpip"] = (SSH_REQ_POLICY, self.controllocalforward)

self.client_request["session-exec"] = (SSH_REQ_REJECT)

self.client_request["session-subsystem"] = (SSH_REQ_REJECT)

def controllocalforward(self, side, index, request):

if request.host_address == "192.168.1.1" and request.host_port == "80":

return SSH_REQ_ACCEPT

return SSH_REQ_REJECT

154www.balasys.hu

Proxy behavior

4.20.2.5. Configuring encryption parameters

The SSH proxy is able to enforce policies on the various elements of the encrypted SSH communication, such
as the MAC, key-exchange, etc. algorithms that are permitted to be used. The parameters can be set separately
for the client and for the server side. The attributes are represented as comma-separated strings listing the
enabled methods/algorithms, in the order of preference.

Key exchange algorithms

The permitted key exchange algorithms can be specified via the client_kex_algos and server_kex_algos
attributes. The SSH proxy supports the diffie-hellman-group16-sha512 and
diffie-hellman-group18-sha512 and diffie-hellman-group14-sha256 and
diffie-hellman-group14-sha1 and diffie-hellman-group1-sha1 algorithms.

Host key algorithms

The permitted host key algorithms can be specified via the client_hostkey_algos and
server_hostkey_algos attributes. The supported algorithms are ssh-rsa, rsa-sha2-256,

rsa-sha2-512 and ssh-dss.

Note
For a hostkey algorithm to work for the clients the corresponding private key has to be set in the host_key_rsa or the host_key_dss
attribute. The supported algorithms are ssh-rsa, rsa-sha2-256, rsa-sha2-512 and ssh-dss.

Public key algorithms

The permitted public key algorithms can be specified via the client_pubkey_algos and
server_pubkey_algos attributes. The supported algorithms are ssh-rsa, rsa-sha2-256, rsa-sha2-512

and ssh-dss.

Symmetric cipher algorithms

The permitted symmetric cipher algorithms can be specified via the client_cipher_algos and
server_cipher_algos attributes. The following algorithms are supported: aes128-cbc, 3des-cbc,
blowfish-cbc, cast128-cbc, arcfour, aes192-cbc, aes256-cbc, aes128-ctr, aes192-ctr,
aes256-ctr, aes128-gcm@openssh.com, aes256-gcm@openssh.com.

MAC algorithms

The permitted MAC algorithms can be specified via the client_mac_algos and server_mac_algos

attributes. The supported algorithms are: hmac-sha2-256 and hmac-sha2-512 and hmac-sha1 and hmac-md5.

4.20.2.6. Host key verification

To successfully build the required SSH connections both towards the client and the server, PNS has to show
the appropriate keys to the client (otherwise the client will reject the connection as the key does not match the
server it intends to connect). This problem can be easily overcome if PNS is used to protect the servers: the
server key has to be deployed on PNS as well. However, this is not possible when protecting clients, because
the private keys of all servers that will be contacted is rarely available. In this case, SSH proxy can be configured

155www.balasys.hu

Proxy behavior

to automatically verify the identity of the server using the server_hostkeys_verify attribute. This is similar
to certificate verification in SSL connections, but in SSH there is no certificate or other identity information
attached to the host keys.

The methods supported for host key verification are shown in the following table.

ValueName

Accept any host key.SSH_HKV_ACCEPT_ANY

Accept unknown host keys only on the first occassion.
The IP address-port pair of unknown host keys is

SSH_HKV_ACCEPT_ONCE

registered, later on that key is used to verify
connections from that address.

Accept only known host keys. Public keys can be
configured for each IP address or port pair (like in case

SSH_HKV_ACCEPT_KNOWN

of the known_hosts file). For any unknown IP
address-port pair the connection is terminated.

Table 4.59. SSH host key verification mode.

4.20.2.7. Auditing SSH channels

The SSH proxy supports the general auditing framework of PNS. The SSH proxy can even be configured to
audit only certain types of channels, it is not necessary to fully audit all sessions (e.g.: the auditing of large file
transfers such as backups is rarely needed). The channels to be audited can be set via the audit_trails

attribute. The available channel types are described in Section 4.20.2.1, Configuring policies for SSH
channels (p. 148).

4.20.2.8. Manipulating the keys of public-key authentication

The SSH proxy can use different keys in the server-side connection and the client-side connection. To use this
feature, you have to derive a custom proxy class from the SshProxy class, and override the mapUserKey

function. In the mapUserKey function, you can check the public key of the client, and return the private key
that will be used in the server-side connection. Using this function you can set every connection to use a single
key on the server side, change the type of the key from RSA to DSA, or restrict access of certain channels only
to the selected users.

The mapUserKey function receives the blob_type and blob parameters that contain the type of the key
(ssh-dss for DSA keys, ssh-rss for RSA keys) and the public key of the client. The function can return
None to reject the connection, or a key type and a private key that will be used to authenticate on the target
server.

Example 4.38. Modifying the keypair used in public-key authentication
The following proxy class accepts only connections that use a specific DSA public key, and uses a different RSA key-pair on the server
side.

class KeymappingSshProxy(SshProxy):

def config(self):

SshProxy.config(self)

def mapUserKey(self, blob_type, blob):

if blob_type != 'ssh-dss' or blob != """ssh-dss

156www.balasys.hu

Proxy behavior

AAAAB3NzaC1kc3MAAACBANhSxBWzv4kLvnBEV9sJX4rQkNtTxARJUP4l0u71Nu..."""

return None

return ('ssh-rss', """-----BEGIN RSA PRIVATE KEY-----

MIIEogIBAAKCAQEAz/U9WbGjeQfEj4nUoqSImQpKIPoNPIPQG2IPGTRC/ROc+VeQ

D/ax8n7wB3PF/1DB0WpHK5j075yJ6TPCPqFDYLOWOM41sBhyHsGCiGyDuNCOaRal

....

-----END RSA PRIVATE KEY-----""")

4.20.3. Related standards

The Secure Shell (SSH) Protocol is described in the following RFCs:Architecture is described in RFC 4251.

■ The Secure Shell (SSH) Protocol Architecture is described in RFC 4251.

■ The Secure Shell (SSH) Authentication Protocol is described in RFC 4252.

■ The Secure Shell (SSH) Transport Layer Protocol is described in RFC 4253.

■ The Secure Shell (SSH) Connection Protocol is described in RFC 4254.

4.20.4. Classes in the Ssh module

DescriptionClass

Class encapsulating the abstract SSH proxy.AbstractSshProxy

Class encapsulating the abstract SSH proxy.SshProxy

Ssh proxy based on SshProxy, allowing SFTP access
only.

SshProxySftpOnly

Class encapsulating an SFTP proxy.SshSFtpProxy

Class encapsulating an SCP proxy.SshScpProxy
Table 4.60. Classes of the Ssh module

4.20.5. Class AbstractSshProxy

This class implements an abstract SSH proxy for the SSH2 protocol - it serves as a starting point for customized
proxy classes, but is itself not directly usable. Service definitions should refer to a customized class derived
from AbstractSshProxy, or one of the predefined proxy classes.

4.20.5.1. Attributes of AbstractSshProxy

audit_channels (string, rw:r)

Default: ""

A comma separated list of channel types to be audited. See also Section 4.20.2.7, Auditing SSH channels (p. 156).

auth_agent_forward (boolean, w:r)

Default: FALSE

157www.balasys.hu

Related standards

auth_agent_forward (boolean, w:r)

Authenticate using the data received from the agent during agent-forwarding.

auth_methods (string, rw:rw)

Default: "password,keyboard-interactive,none"

A comma separated list of permitted authentication methods as defined in the SSH protocol specification.
The proxy currently supports the following authentication methods: publickey, keyboard-interactive,
password and none. The none method is only used to determine which authentication methods does the
server support.

check_insane_settings (boolean, w:r)

Default: TRUE

Reject unrealistic terminal and screen settings. The number of columns and rows of the terminal must be
lower than 512; the size of the screen cannot be greater than 8192 pixels in either directions.

client_channel (complex, r:r)

Default:

A normative policy hash defining the action to take when a specific channel type is opened on the client side.
See Section 4.20.2.1, Configuring policies for SSH channels (p. 148) for details.

client_cipher_algos (string, rw:r)

Default:
"aes128-gcm@openssh.com,aes256-gcm@openssh.com,aes128-ctr,aes192-ctr,aes256-ctr,aes128-cbc,blowfish-cbc,cast128-cbc,aes192-cbc,aes256-cbc,3des-cbc,arcfour"

A comma separated list of symmetric cipher algorithms permitted on the client side, in the order of preference.
See Section 4.20.2.5, Configuring encryption parameters (p. 155) for details.

client_comp_algos (string, rw:r)

Default:

A comma separated list of compression algorithms, in the order of preference. Currently no compression
algorithm is supported.

client_hostkey_algos (string, rw:r)

Default: "rsa-sha2-512,rsa-sha2-256,ssh-rsa,ssh-dss"

A comma separated list of hostkey algorithms permitted on the client side, in the order of preference. See
Section 4.20.2.5, Configuring encryption parameters (p. 155) for details.

158www.balasys.hu

Class AbstractSshProxy

client_kex_algos (string, rw:r)

Default:
"diffie-hellman-group16-sha512,diffie-hellman-group18-sha512,diffie-hellman-group14-sha256,diffie-hellman-group14-sha1,diffie-hellman-group1-sha1"

A comma separated list of allowed key exchange algorithms permitted on the client side, in the order of
preference. See Section 4.20.2.5, Configuring encryption parameters (p. 155) for details.

client_mac_algos (string, rw:r)

Default: "hmac-sha2-256,hmac-sha2-512,hmac-sha1,hmac-md5"

A comma separated list of MAC algorithms, in the order of preference. See Section 4.20.2.5, Configuring
encryption parameters (p. 155) for details.

client_pubkey_algos (string, rw:r)

Default: "rsa-sha2-512,rsa-sha2-256,ssh-rsa,ssh-dss"

A comma separated list of public key algorithms permitted on the client side, in the order of preference. See
Section 4.20.2.5, Configuring encryption parameters (p. 155) for details.

client_request (complex, r:r)

Default:

A normative policy hash defining the action to take when a specific channel request is received from the client
side. See Section 4.20.2.2, Configuring policies for SSH requests (p. 149) for details.

connection_start (enum, rw:r)

Default: SSH_CONN_START_IMMEDIATELY

Specifies when is the server-side connection started. When using agent authentication, set it to
SSH_CONN_START_AFTER_PROXY_AUTH.

greeting (string, rw:r)

Default:

The content of this attribute is sent to the SSH client before sending the protocol header, e.g.: before performing
key exchange or authentication. It is usually displayed to the user or sent to the system log.

host_key_x509_dss (string, rw:r)

Default:

The DSS host key in openssl PEM format used when communicating with SSH clients. Either host_key_rsa
or host_key_dss is required.

159www.balasys.hu

Class AbstractSshProxy

host_key_x509_dss_certificate (string, rw:r)

Default:

The DSS host key in openssl PEM format used when communicating with SSH clients. Either host_key_rsa
or host_key_dss is required.

host_key_x509_dss_files (certificate, rw:r)

Default:

A tuple of two file names containing the certificate and key files for the DSS host key in PEM format.

host_key_x509_rsa (string, rw:r)

Default:

The RSA host key in openssl PEM format used when communicating with SSH clients. Either host_key_rsa
or host_key_dss is required.

host_key_x509_rsa_certificate (string, rw:r)

Default:

The RSA host key in openssl PEM format used when communicating with SSH clients. Either host_key_rsa
or host_key_dss is required.

host_key_x509_rsa_files (certificate, rw:r)

Default:

A tuple of two file names containing the certificate and key files for the RSA host key in PEM format.

id_comment (string, rw:r)

Default:

Specifies the comment field in the SSH protocol header.

max_kbdint_prompt_len (integer, rw:r)

Default: 128

Specifies the maximum length of a prompt in the keyboard-interactive authentication method.

max_kbdint_prompts (integer, rw:r)

Default: 10

Specifies the maximum number of prompts in the keyboard-interactive authentication method.

160www.balasys.hu

Class AbstractSshProxy

max_kbdint_response_len (integer, rw:r)

Default: 128

Specifies the maximum length of a response in the keyboard-interactive authentication method.

server_channel (complex, r:r)

Default:

A normative policy hash defining the action to take when a specific channel type is opened on the server side.
See Section 4.20.2.1, Configuring policies for SSH channels (p. 148) for details.

server_cipher_algos (string, rw:r)

Default:
"aes128-gcm@openssh.com,aes256-gcm@openssh.com,aes128-ctr,aes192-ctr,aes256-ctr,aes128-cbc,blowfish-cbc,cast128-cbc,aes192-cbc,aes256-cbc,3des-cbc,arcfour"

A comma separated list of symmetric cipher algorithms permitted on the server side, in the order of preference.

server_comp_algos (string, rw:r)

Default:

A comma separated list of compression algorithms permitted on the server side, in the order of preference.
Currently no compression algorithm is supported.

server_hostkey_algos (string, rw:r)

Default: "rsa-sha2-512,rsa-sha2-256,ssh-rsa,ssh-dss"

A comma separated list of hostkey algorithms permitted on the server side, in the order of preference. See
Section 4.20.2.5, Configuring encryption parameters (p. 155) for details.

server_kex_algos (string, rw:r)

Default:
"diffie-hellman-group16-sha512,diffie-hellman-group18-sha512,diffie-hellman-group14-sha256,diffie-hellman-group14-sha1,diffie-hellman-group1-sha1"

A comma separated list of key exchange algorithms permitted on the server side, in the order of preference.
See Section 4.20.2.5, Configuring encryption parameters (p. 155) for details.

server_mac_algos (string, rw:r)

Default: "hmac-sha2-256,hmac-sha2-512,hmac-sha1,hmac-md5"

A comma separated list of MAC algorithms permitted on the server side, in the order of preference. See
Section 4.20.2.5, Configuring encryption parameters (p. 155) for details.

server_pubkey_algos (string, rw:r)

Default: "rsa-sha2-512,rsa-sha2-256,ssh-rsa,ssh-dss"

161www.balasys.hu

Class AbstractSshProxy

server_pubkey_algos (string, rw:r)

A comma separated list of public key algorithms permitted on the server side, in the order of preference. See
Section 4.20.2.5, Configuring encryption parameters (p. 155) for details.

server_request (complex, r:r)

Default:

A normative policy hash defining the action to take when a specific channel request is received from the
server side. See Section 4.20.2.2, Configuring policies for SSH requests (p. 149) for details.

software_version (string, rw:r)

Default: "SSH"

The string sent to the SSH peers as the version of the software. Before changing the default, please note that
peers enable or disable various protocol workarounds based on the value of this attribute.

timeout (integer, rw:r)

Default: 600000

I/O timeout in milliseconds. If no activity is detected within this period interval, the connection is terminated.

transparent_mode (boolean, rw:r)

Default: TRUE

Specifies whether the proxy is in transparent or non-transparent mode. In non-transparent mode the name of
destination server is extracted from the username, which should be in the format (user@host:port). The set
of characters accepted as username/hostname separators is '@' and '%'. The set of characters that separates
hostname from port number is ':', '+' and '/'.

userauth_banner (string, rw:r)

Default:

The content of this attribute is sent to the SSH client at the start of the SSH userauth protocol. It is usually
displayed by clients as a text message.

4.20.6. Class SshProxy

This proxy implements a default SSH proxy based on AbstractSshProxy. A number of higher-level attributes
have been defined that allow easy configuration of the various services offered by SSH (e.g.: port-forwarding,
etc.). Port-forwarding, X11-forwarding, and agent-forwarding are disabled by default, the clients may open
only session channels. The following client requests are accepted in the channel: window-change, pty-req,
shell, exec, subsystem, signal, exit-status, exit-signal, and xon-xoff. The env request is not
permitted. Only known host keys are accepted on the server side.

162www.balasys.hu

Class SshProxy

4.20.6.1. Attributes of SshProxy

enable_agent_forward (boolean, rw:r)

Default: FALSE

Enable SSH agent forwarding specific requests and channels. NOTE: this is a high level interface for changing
the low level attributes, thus using this setting while changing the low level policy hashes manually might
lead to conflicts.

enable_port_forward (boolean, rw:r)

Default: FALSE

Enable port forwarding (both client and server initiated) specific requests and channels. NOTE: this is a high
level interface for changing the low level attributes, thus using this setting while changing the low level policy
hashes manually might lead to conflicts.

enable_x11_forward (boolean, rw:r)

Default: FALSE

Enable X11 display forwarding specific requests and channels. NOTE: this is a high level interface for
changing the low level attributes, thus using this setting while changing the low level policy hashes manually
might lead to conflicts.

host_key_dss_file (certificate, rw:r)

Default: ""

Read the DSS hostkey from the file specified. This must be DSA, not RSA.

host_key_rsa_file (certificate, rw:r)

Default: ""

Read the RSA hostkey from the file specified. This must be RSA, not DSA.

server_hostkeys_dir (trustedkeydir, rw:r)

Default:

The directory containing known SSH host keys.

server_hostkeys_verify (enum, rw:r)

Default: SSH_HKV_ACCEPT_KNOWN

The verification mode for SSH host keys. See Section 4.20.2.6, Host key verification (p. 155).

163www.balasys.hu

Class SshProxy

4.20.6.2. SshProxy methods

DescriptionMethod

NonecheckUserKey(self, blob_type, blob)

NonemapUserKey(self, blob_type, blob)
Table 4.61. Method summary

Method checkUserKey(self, blob_type, blob)

This method is called by the proxy to check the publickey. It returns FALSE if it cannot be accepted, TRUE
otherwise.

Method mapUserKey(self, blob_type, blob)

This method is called by the proxy to map the publickey of a user to a keypair.

4.20.7. Class SshProxySftpOnly

Ssh proxy based on SshProxy, allowing SFTP access only. Commands other than 'sftp' subsystem request are
rejected.

4.20.8. Class SshSFtpProxy

This class implements an SFTP helper to be stacked into an SSH proxy parent.

4.20.8.1. Attributes of SshSFtpProxy

timeout (integer, rw:r)

Default: 600000

I/O timeout in milliseconds. If no activity is detected within this period interval, the connection is terminated.

4.20.9. Class SshScpProxy

This class implements an SCP helper to be stacked into an SSH proxy parent.

4.21. Module TFtp

The TFtp module defines the classes constituting the proxy for the TFTP protocol.

4.21.1. The TFtp protocol

Trivial File Transfer Protocol (TFTP) is a very simple protocol used to transfer files over the UDP transport
protocol. It is commonly used for bootstrapping diskless systems (normally workstations or routers).

164www.balasys.hu

Class SshProxySftpOnly

The protocol follows a very simple procedure. The client sends a request to read (RRQ) or write (WRQ) a file
to the server's UDP/69 port. If the server grants the request a connection is opened and the file server starts
sending the file in fixed length blocks of 512 bytes. TFTP transports data in netascii encoding format (ASCII
text with each line terminated by the 2-character sequence of a carriage return followed by a linefeed called
CR/LF) or octet (data as 8-bit bytes with no interpretation) which is set by the mode indicator at the end of the
RRQ/WRQ message. The DATA packet also contains a block number which is used later for acknowledgment.
Every packet sent must be acknowledged by the receiver, which guarantees that the previous packet has been
received. If a packet is lost the receiver sends a request after a timeout. The server keeps just one packet in store
for retransmission until the acknowledgment arrives. A packet shorter than 512 bytes indicates the end of the
transmission.

Most errors cause termination of the transfer process and are signaled by the sending of an error packet. This
is neither acknowledged nor retransmitted. If an error occurred, then an ERROR packet is sent. If a network
error occurred then even the ERROR packet might get lost, therefore timeout is also used to detect errors.

Normal transmission termination is started by a packet smaller than 512 bytes. The packet is acknowledged by
a normal ACK packet like all the previous packet. Then the host sends the final ACK and waits for a while
before it terminates the transmission. If the final ACK is not acknowledged or the the connection timed out the
final ACK packet is retransmitted.

4.21.1.1. Protocol elements

TFTP supports five types of packets, all of which have been mentioned above:

■ 1 - Read request (RRQ)

■ 2 - Write request (WRQ)

■ 3 - Data (DATA)

■ 4 - Acknowledgment (ACK)

■ 5 - Error (ERROR), which can contain the following error messages:

• 0 - Not defined, see error message (if any).

• 1 - File not found.

• 2 - Access violation.

• 3 - Disk full or allocation exceeded.

• 4 - Illegal TFTP operation.

• 5 - Unknown transfer ID.

• 6 - File already exists.

• 7 - No such user.

4.21.2. Proxy behavior

TFtpProxy is a module built for parsing messages of the TFTP protocol. It reads and parses REQUESTs on the
client side, and sends them to the server if the local security policy permits. The answers are similarly parsed
and returned to the client if the local security policy permits. Rewriting the requested filename and encoding
is supported (although transcoding is not).

165www.balasys.hu

Proxy behavior

One proxy instance is able to handle more than one session, if the Router and Chainer classes support fast path
operation (currently this is supported in DirectedRouter). This functionality is similar to, but different from the
secondary session handling used in PlugProxy and RadiusProxy. In TftpProxy the parameters of secondary
sessions cannot be set, they are managed automatically based on the logic of the protocol.

4.21.2.1. Configuring policies for TFTP commands

Changing the default behaviour of requests is possible using the request attribute. This hash is indexed by
the request method ("read" or "write"), and the requested filename. If the hash contains no entry for a given
combination, the "*" entry is used. If there is no matching entry in the hash, the command is rejected. The
possible actions are described in the following table. See also Section 2.1, Policies for requests and
responses (p. 4).

DescriptionAction

Allow the request to pass.TFTP_REQ_ACCEPT

Reject the request and send an error message. Message
code and text can be specified as second and third
elements of the tuple.

TFTP_REQ_REJECT

Drop the packet.TFTP_REQ_DROP

Call the function specified to make a decision about
the event. The function receives four parameters: self,

TFTP_REQ_POLICY

the method ("read"/"write"), the file name and the
encoding used in the request. See Section 2.1, Policies
for requests and responses (p. 4) for details.

Rewrite filename and/or encoding and accept the
packet. See Section Rewriting the request (p. 166) for
details.

TFTP_REQ_REWRITE

Table 4.62. Action codes on TFTP requests

Rewriting the request

To rewrite and accept a request, the hash value must be a tuple containing TFTP_REQ_REWRITE as the first
value, and the filename and encoding to be sent to the server as the second and third values.

Responding with a custom error

To respond with a user-defined error code and message, the hash value must be a tuple containing
TFTP_REQ_ERROR as the first value, the error code (an integer as defined by the TFTP RFC) as the second
one, and the error message as the third. The session is (obviously) terminated; the TFTP server is not notified.

4.21.3. Related standards

Trivial File Transfer Protocol is described in RFC 1350.

166www.balasys.hu

Related standards

4.21.4. Classes in the TFtp module

DescriptionClass

Class encapsulating the abstract TFtp proxy.AbstractTFtpProxy

Default TFtp proxy class based on AbstractTFtpProxy.TFtpProxy
Table 4.63. Classes of the TFtp module

4.21.5. Class AbstractTFtpProxy

This class implements the TFTP protocol as described in RFC 1350. It serves as a starting point for customized
proxy classes, but is itself not directly usable. Service definitions should refer to a customized class derived
from AbstractTFtpProxy, or the predefined TFtpProxy proxy class.

4.21.5.1. Attributes of AbstractTFtpProxy

encoding (string, n/a:r)

Default: n/a

Encoding used in the current transfer.

filename (string, n/a:r)

Default: n/a

Name of the file being transferred.

request (complex, rw:rw)

Default:

Normative policy hash for TFTP requests indexed by the request method and the filename. See also Section
4.21.2.1, Configuring policies for TFTP commands (p. 166).

timeout (integer, rw:r)

Default: -1

Timeout in milliseconds. The -1 value disables the timeout.

4.21.6. Class TFtpProxy

A default proxy for the TFTP protocol based on AbstractTFtpProxy, allowing only read-only access.

4.22. Module Vnc

VNC protocol is for accessing the desktop of remote computers.

167www.balasys.hu

Classes in the TFtp module

4.22.1. Classes in the Vnc module

DescriptionClass

Class encapsulating the abstract Vnc proxy.AbstractVncProxy

Default Vnc proxy based on AbstractVncProxy.VncProxy
Table 4.64. Classes of the Vnc module

4.22.2. Class AbstractVncProxy

This class implements the VNC protocol. AbstractVncProxy serves as a starting point for customized proxy
classes, but is itself not directly usable. Service definitions should refer to a customized class derived from
AbstractVncProxy, or one of the predefined VncProxy proxy classes.

4.22.2.1. Attributes of AbstractVncProxy

readonly (boolean)

Default: FALSE

Decides whether to block client activities or not.

4.22.3. Class VncProxy

VncProxy is a proxy class based on AbstractVncProxy, allowing the use of all Vnc options.

168www.balasys.hu

Classes in the Vnc module

Chapter 5. Core

This chapter provides detailed description for the core modules of PNS.

5.1. Module Auth

This module contains classes related to authentication and authorization. Together with the AuthDB module it
implements the Authentication and Authorization framework.

User authentication verifies the identity of the user trying to access a particular network service. When performed
on the connection level, that enables the full auditing of the network traffic. Authentication is often used in
conjunction with authorization, allowing access to a service only to clients who have the right to do so.

5.1.1. Authentication and authorization basics

Authentication is a method to ensure that certain services (access to a server, etc.) can be used only by the
clients allowed to access the service. The process generally called as authentication actually consists of three
distinct steps:

■ Identification: Determining the clients identity (e.g.: requesting a username).

■ Authentication: Verifying the clients identity (e.g.: requesting a password that only the real client
knows).

■ Authorization: Granting access to the service (e.g.: verifying that the authenticated client is allowed
to access the service).

Note
It is important to note that although authentication and authorization are usually used together, they can also be used
independently. Authentication verifies the identity of the client. There are situations where authentication is sufficient,
because all users are allowed to access the services, only the event and the user's identity has to be logged. On the other
hand, authorization is also possible without authentication, for example if access to a service is time-limited (e.g.: it can
only be accessed outside the normal work-hours, etc.). In such situations authentication is not needed.

5.1.2. Authentication and authorization in PNS

PNS can authenticate and authorize access to the services. The aim of authentication is to identify the user and
the associated group memberships. When the client initiates a connection, it actually tries to use a service. PNS
checks if an authentication policy is associated to the service. If an authentication policy is present, PNS contacts
the authentication provider specified in the authentication policy. The type of authentication (the authentication
class used, e.g., InbandAuthentication) is also specified in the authentication policy. The authentication provider
connects to an authentication backend (e.g., a user database) to perform the authentication of the client - PNS
itself does not directly communicate with the database.

If the authentication is successful, the client is verified if it is allowed to access the service (by evaluating the
authorization policy and the identity and group memberships of the client). If the client is authorized to access

169www.balasys.hu

Module Auth

the service, the server-side connection is built. The client is automatically authorized if no authorization policy
is assigned to the service.

Currently only one authentication provider, the Authentication Server (AS) is available via the
VAS2AuthenticationBackend class. Authentication providers are actually configured instances of the
authentication backends, and it is independent from the database that the backend connects to. The authentication
backend is that ties the authentication provider to the server storing the user data. For details on using AS, see
the Connection authentication and authorization chapter of the PNS Administrator's Guide.

The aim of authentication is to identify the user and resolve group memberships. The results are stored in the
in the auth_user and auth_groups attributes of the session object. Note that apart from the information
required for authentication, PNS also sends session information (e.g., the IP address of the client) to the
authentication provider.

PNS provides the following authentication classes:

■ InbandAuthentication: Use the built-in authentication of the protocol to authenticate the client on
the PNS.

■ ServerAuthentication: Enable the client to connect to the target server, and extract its authentication
information from the protocol.

■ VAAuthentication: Outband authentication using the Authentication Agent.

If the authentication is successful, PNS verifies that the client is allowed to access the service (by evaluating
the authorization policy). If the client is authorized to access the service, the server-side connection is built.
The client is automatically authorized if no authorization policy is assigned to the service.

Each service can use an authorization policy to determine whether a client is allowed to access the service. If
the authorization is based on the identity of the client, it takes place only after a successful authentication -
identity-based authorization can be performed only if the client's identity is known and has been verified. The
actual authorization is performed by PNS, based on the authentication information received from AS or extracted
from the protocol.

PNS provides the following authorization classes:

■ PermitUser: Authorize listed users.

■ PermitGroup: Authorize users belonging to the specified groups.

■ PermitTime: Authorize connections in a specified time interval.

■ BasicAccessList: Combine other authorization policies into a single rule.

■ PairAuthorization: Authorize only user pairs.

■ NEyesAuthorization: Have another client authorize every connection.

5.1.3. Classes in the Auth module

DescriptionClass

Class encapsulating the abstract authentication
interface.

AbstractAuthentication

170www.balasys.hu

Classes in the Auth module

DescriptionClass

Class encapsulating the authorization interface.AbstractAuthorization

Class encapsulating the authentication cache.AuthCache

A policy determining how the user is authenticated to
access the service.

AuthenticationPolicy

A policy determining how the user is authorized to
access the service.

AuthorizationPolicy

Class encapsulating the authorization by access list.BasicAccessList

Class encapsulating the inband authentication
interface.

InbandAuthentication

Class encapsulating N eyes authorization.NEyesAuthorization

Class encapsulating pair-based 4 eyes authorization.PairAuthorization

Class encapsulating the group membership based
authorization.

PermitGroup

Class encapsulating time based authorization.PermitTime

Class encapsulating the user-name based authorization.PermitUser

Class encapsulating the server authentication interface.ServerAuthentication

Class encapsulating the outband authentication
interface using the Vela Authentication Agent.

VAAuthentication

Table 5.1. Classes of the Auth module

5.1.4. Class AbstractAuthentication

This class encapsulates interfaces for inband and outband authentication procedures. Service definitions should
refer to a customized class derived from AbstractAuthentication, or one of the predefined authentication classes,
such as InbandAuthentication or VAAuthentication.

5.1.4.1. AbstractAuthentication methods

DescriptionMethod

Constructor to initialize an AbstractAuthentication
instance.

__init__(self)

Table 5.2. Method summary

Method __init__(self)

This constructor initializes an instance of the AbstractAuthentication class.

171www.balasys.hu

Class AbstractAuthentication

5.1.5. Class AbstractAuthorization

This class encapsulates an authorization interface. Authorization determines whether the authenticated entity
is in fact allowed to access a specific service. Service definitions should refer to a customized class derived
from AbstractAuthorization, or one of the predefined authorization classes, such as PermitUser or PermitGroup.

5.1.6. Class AuthCache

This class encapsulates an authentication cache which associates usernames with client IP addresses. The
association between a username and an IP address is valid only until the specified timeout. Caching the
authentication results means that the users do not need to authenticate themselves for every request: it is assumed
that the same user is using the computer within the timeout. E.g.: once authenticated for an HTTP service, the
client can browse the web for Timeout period, but has to authenticate again to use FTP.

To use a single authorization cache for every service request of a client, set the service_equiv attribute to
TRUE. That way Vela does not make difference between the different services (protocols) used by the client:
after a successful authentication the user can use all available services without having to perform another
authentication. E.g.: if this option is enabled in the example above, the client does not have to re-authenticate
for starting an FTP connection.

5.1.6.1. AuthCache methods

DescriptionMethod

Constructor to initialize an instance of the AuthCache
class.

__init__(self, timeout, update_stamp, service_equiv,
cleanup_threshold)

Table 5.3. Method summary

Method __init__(self, timeout, update_stamp, service_equiv, cleanup_threshold)

This constructor initializes and registers an AuthCache instance that can be referenced in authentication policies.

Arguments of __init__

cleanup_threshold (integer)

Default: 100

When the number of entries in the cache reaches the value of cleanup_threshold, old entries are
automatically deleted.

service_equiv (boolean)

Default: FALSE

If enabled, then a single authentication of a user applies to every service from that client.

172www.balasys.hu

Class AbstractAuthorization

timeout (integer)

Default: 600

Timeout while an authentication is assumed to be valid.

update_stamp (boolean)

Default: TRUE

If set to TRUE, then cached authentications increase the validity period of the authentication cache. Otherwise,
the authentication cache expires according to the timeout value set in attribute timeout (p. 173).

5.1.7. Class AuthenticationPolicy

Authentication policies determine how the user is authenticated to access the service. The
authentication_policy attribute of a service can reference an instance of the AuthenticationPolicy class.

Example 5.1. A simple authentication policy
The following example defines an authentication policy that can be referenced in service definitions. This policy uses inband authentication
and references an authentication provider.

AuthenticationPolicy(name="demo_authentication_policy", cache=None,

authentication=InbandAuthentication(), provider="demo_authentication_provider")

To use the authentication policy, include it in the definition of the service:

Service(name="office_http_inter", proxy_class=HttpProxy,

authentication_policy="demo_authentication_policy", authorization_policy="demo_authorization_policy")

Example 5.2. Caching authentication decisions
The following example defines an authentication policy that caches the authentication decisions for ten minutes (600 seconds). For
details on authentication caching, see Section 5.1.6, Class AuthCache (p. 172)).

AuthenticationPolicy(name="demo_authentication_policy", cache=AuthCache(timeout=600, update_stamp=TRUE,

service_equiv=TRUE, cleanup_threshold=100), authentication=InbandAuthentication(),

provider="demo_authentication_provider")

173www.balasys.hu

Class AuthenticationPolicy

5.1.7.1. AuthenticationPolicy methods

DescriptionMethod

Constructor to initialize an instance of the
AuthenticationPolicy class.

__init__(self, name, provider, authentication, cache)

Table 5.4. Method summary

Method __init__(self, name, provider, authentication, cache)

Arguments of __init__

authentication (class)

Default: None

The authentication method used in the authentication process. See Section 5.1.1, Authentication and
authorization basics (p. 169) for details.

cache (class)

Default: None

Caching method used to store authentication results.

name (string)

Default: n/a

Name identifying the AuthenticationPolicy instance.

provider (class)

Default: n/a

The authentication provider object used in the authentication process. See Section 5.1.1, Authentication and
authorization basics (p. 169) for details.

5.1.8. Class AuthorizationPolicy

Authorization policies determine how the user is authorized to access the service. The authorization_policy
attribute of a service can reference an instance of the AuthorizationPolicy class.

Example 5.3. A simple authorization policy
The following example defines an authotization policy that can be referenced in a service definition and permits only the members of
the admin or system groups to access the service.

AuthorizationPolicy(name="demo_authorization_policy", authorization=PermitGroup(grouplist=("admin",

"system")))

To use the authorization policy, include it in the definition of the service:

174www.balasys.hu

Class AuthorizationPolicy

Service(name="office_http_inter", proxy_class=HttpProxy,

authentication_policy="demo_authentication_policy", authorization_policy="demo_authorization_policy")

5.1.8.1. AuthorizationPolicy methods

DescriptionMethod

__init__(self, name, authorization)
Table 5.5. Method summary

Method __init__(self, name, authorization)

Arguments of __init__

authorization (class)

Default: n/a

The authorization method (e.g., PermitGroup) used in the instance. See Section 5.1.8, Class
AuthorizationPolicy (p. 174) for examples.

name (string)

Default: n/a

Name of the AuthorizationPolicy instance. This name can be referenced in service definitions.

5.1.9. Class BasicAccessList

This class encapsulates an access list that uses any class derived from the AbstractAuthorization class.
BasicAccessList allows to combine multiple access control requirements into a single decision.

BasicAccessList uses a list of rules. The rules are evaluated sequentially. Each rule can specify whether matching
the current rule is Sufficient or Required. A connection is authorized if a Sufficient rule matches the
connection, or all Required rules are fulfilled. If a Required rule is not met, the connection is refused.

Rules are represented as a list of Python tuples as the following example shows:

Example 5.4. BasicAccessList example
When referenced in a service definition, the following users can access the service:

members of the development group;■

■ anyone with the user1 username;

■ anyone with the user2 username.

AuthorizationPolicy(name='intra',

authorization=BasicAccessList(

((V_BACL_SUFFICIENT, PermitUser('user1')),

(V_BACL_SUFFICIENT, PermitUser('user2')),

(V_BACL_REQUIRED, PermitGroup('development')))))

175www.balasys.hu

Class BasicAccessList

5.1.9.1. BasicAccessList methods

DescriptionMethod

Constructor to initialize a BasicAccessList instance.__init__(self, acl)
Table 5.6. Method summary

Method __init__(self, acl)

This constructor creates a new BasicAccessList instance which can be referenced in an authentication policy.

Arguments of __init__

acl (complex)

Default: n/a

Access control rules represented as a list of tuple.

5.1.10. Class InbandAuthentication

This class encapsulates inband authentication. Inband authentication is performed by the proxy using the rules
of the application-level protocol. Only the authentication methods supported by the particular protocol can be
used during inband authentication. Authentication policies can refer to instances of the InbandAuthentication
class using the auth parameter.

Warning
Inband authentication is currently supported only for the Http, Ftp, and Socks proxy classes.

5.1.10.1. InbandAuthentication methods

DescriptionMethod

Constructor to initialize an InbandAuthentication
instance.

__init__(self)

Table 5.7. Method summary

Method __init__(self)

This constructor initializes an instance of the InbandAuthentication class.

5.1.11. Class NEyesAuthorization

This class encapsulates an N-eyes based authorization method, which means that connections are authorized
if other administrators authenticate themselves within the defined timelimits.

176www.balasys.hu

Class InbandAuthentication

When NEyesAuthorization is used, the client trying to access the service has to be authorized by another
(already authorized) client (this authorization chain can be expanded to multiple levels). NEyesAuthorization
can only be used in conjunction with another NEyesAuthorization policy. One of them is the authorizer set
to authorize the authorized policy.

In a simple 4-eyes scenario the authorizer policy points to the authorized policy in its Authorization policy

parameter, and has its wait_authorization parameter disabled. The authorized policy has an empty
Authorization policy parameter (meaning that it is at lower the end of an N-eyes chain), and has its
wait_authorization parameter enabled, meaning that it has to be authorized by another policy.

For examples on using the NEyesAuthorization class, see the Proxying secure channels - SSH tutorial available
from the BalaSys Documentation Page at http://www.balasys.hu/documentation/.

5.1.11.1. NEyesAuthorization methods

DescriptionMethod

Constructor to initialize a NEyesAuthorization
instance.

__init__(self, authorize_policy, wait_authorization,
wait_timeout)

Table 5.8. Method summary

Method __init__(self, authorize_policy, wait_authorization, wait_timeout)

This constructor initializes an NEyesAuthorization instance.

Arguments of __init__

authorize_policy (class)

Default: None

The authorization policy authorized by the current NEyesAuthorization policy.

wait_authorization (boolean)

Default: FALSE

Specifies whether the current authorization policy must wait for other authorization policies to finish. If this
parameter is set, the client has to be authorized by another client. If set to FALSE, the current client is at the
top of an authorizing chain.

wait_timeout (integer)

Default: 60000

The time (in milliseconds) Vela will wait for the authorizing user to authorize the one accessing the service.
If the other authorizations are not completed in time, the current authorization will fail.

177www.balasys.hu

Class NEyesAuthorization

http://www.balasys.hu/documentation/

5.1.12. Class PairAuthorization

This class encapsulates pair-based authorization method. Only two users simultaneously accessing the service
are authorized, single users are not permitted to access the service. Set the time (in milliseconds) Vela will wait
for the second user to access the service using the wait_timeout parameter.

Example 5.5. A simple PairAuthorization policy
The following example permits access to the service only if two users having different usernames authenticate successfully within one
minute.

AuthorizationPolicy(name="demo_pairauthorization_policy",

authorization=PairAuthorization(wait_timeout=60000))

For more detailed examples, see the Proxying secure channels - SSH tutorial available from the BalaSys Documentation Page at
http://www.balasys.hu/documentation/.

5.1.12.1. PairAuthorization methods

DescriptionMethod

Constructor to initialize a PairAuthorization instance.__init__(self, wait_timeout)
Table 5.9. Method summary

Method __init__(self, wait_timeout)

This constructor initializes a PairAuthorization instance.

Arguments of __init__

wait_timeout (integer)

Default: 60000

The time (in milliseconds) Vela will wait for the pair to complete the authorization. If the authorizations are
not completed in time, the current authorization will fail.

5.1.13. Class PermitGroup

This class encapsulates an authorization decision based on group membership. Users who authenticate as a
member of a usergroup specified in the policy receive access to the service. Otherwise access is denied.

Example 5.6. A simple PermitGroup policy
The following example permits only the members of the admin or system groups to access the service.

AuthorizationPolicy(name="demo_authorization_policy", authorization=PermitGroup(grouplist=("admin",

"system")))

178www.balasys.hu

Class PairAuthorization

http://www.balasys.hu/documentation/

5.1.13.1. PermitGroup methods

DescriptionMethod

Constructor to initialize a PermitGroup instance.__init__(self, grouplist)
Table 5.10. Method summary

Method __init__(self, grouplist)

This constructor initilizes a PermitGroup instance.

Arguments of __init__

grouplist (complex)

Default: n/a

The list of authorized groups, represented as group names.

5.1.14. Class PermitTime

This class encapsulates an authorization decision based on the time when the connection is started. The connection
is permitted if it is started in one of the permitted time periods (according to the system time of the host running
Vela).

Specify the permitted time intervals as a comma-separated list, where each element contains the beginning and
ending time of the permitted interval in HH:MM format.

Example 5.7. PermitTime example
When used in the intervals attribute of a PermitTime instance, the following example permits access only from 07:00 to 09:00 and
from 17:00 to 19:00.

(("7:00", "9:00"), ("17:00", "19:00"))

The following is a complete authorization policy using the above intervals:

AuthorizationPolicy(name="demo_permittime_policy", authorization=PermitTime(intervals=(("7:00",

"9:00"), ("17:00", "19:00"))))

5.1.14.1. PermitTime methods

DescriptionMethod

Constructor to initialize a PermitTime instance.__init__(self, intervals)
Table 5.11. Method summary

Method __init__(self, intervals)

This constructor initilizes a PermitTime instance.

179www.balasys.hu

Class PermitTime

Arguments of __init__

intervals (complex)

Default: n/a

List of time intervals when connections are permitted (in HH:MM, HH:MM format).

5.1.15. Class PermitUser

This class encapsulates an authorization decision based on usernames. Users who authenticate using one of the
usernames specified in the policy receive access to the service. Otherwise access is denied.

Example 5.8. A simple PermitUser policy
The following example permits only the admin and root users to access the service.

AuthorizationPolicy(name="demo_permituser", authorization=PermitUser(userlist=("admin", "root")))

5.1.15.1. PermitUser methods

DescriptionMethod

Constructor to initialize a PermitUser instance.__init__(self, userlist)
Table 5.12. Method summary

Method __init__(self, userlist)

This constructor initilizes a PermitUser instance.

Arguments of __init__

userlist (complex)

Default: n/a

Comma-separated list of authorized usernames.

5.1.16. Class ServerAuthentication

This class encapsulates server authentication: Vela authenticates the user based on the response of the server
to the user's authentication request. Server authentication is a kind of inband authentication, it is performed
within the application protocol, but the target server checks the credentials of the user instead of Vela. This
authentication method is useful when the server can be trusted for authentication purposes, but you need to
include an authorization decision in the service definition.

180www.balasys.hu

Class PermitUser

5.1.16.1. ServerAuthentication methods

DescriptionMethod

Constructor to initialize a ServerAuthentication
instance.

__init__(self)

Table 5.13. Method summary

Method __init__(self)

This constructor initializes an instance of the ServerAuthentication class.

5.1.17. Class VAAuthentication

This class encapsulates outband authentication using the Vela Authentication Agent (VAA). The Vela
Authentication Agent is an application that runs on the client computers and provides an interface for the users
to authenticate themselves when Vela requests authentication for accessing a service. This way any protocol,
even those not supporting authentication can be securely authenticated. All communication between Vela and
VAA is SSL-encrypted.

Example 5.9. Outband authentication example
The following authentication policy defines a class that uses outband authentication.

AuthenticationPolicy(name="demo_outbandauthentication_policy", cache=None,

authentication=VAAuthentication(port=1316, timeout=60000, connect_timeout=60000,

pki=("/etc/key.d/Vela_certificate/cert.pem", "/etc/key.d/Vela_certificate/key.pem")),

provider="demo_authentication_provider")

5.1.17.1. VAAuthentication methods

DescriptionMethod

Constructor to initialize an instance of the
VAAuthentication class.

__init__(self, pki, port, timeout, connect_timeout)

Table 5.14. Method summary

Method __init__(self, pki, port, timeout, connect_timeout)

This constructor initializes an instance of the VAAuthentication authentication class that can be referenced in
authentication policies to perform outband authentication.

Arguments of __init__

connect_timeout (integer)

Default: 60000

Connection timeout (in milliseconds) to the Vela Authentication Agent.

181www.balasys.hu

Class VAAuthentication

pki (certificate)

Default: None

A tuple containing the name of a certificate and a key file. Vela uses this certificate to encrypt the
communication with the Authentication Agents.

port (integer)

Default: 1316

The port number where the Vela Authentication Agent is listening. Default value: 1316.

timeout (integer)

Default: 60000

Authentication timeout in milliseconds.

5.2. Module AuthDB

This module contains classes related to authentication databases. Together with the Authmodule it implements
the Authentication and Authorization framework. See Section 5.1.1, Authentication and authorization
basics (p. 169) and Section 5.1.2, Authentication and authorization in PNS (p. 169) for details.

5.2.1. Classes in the AuthDB module

DescriptionClass

Class encapsulating the abstract authentication backend
like VAS.

AbstractAuthenticationBackend

A database-independent class used by Vela to connect
to an authentication backend.

AuthenticationProvider

Class encapsulating the VAS authentication backend.VAS2AuthenticationBackend
Table 5.15. Classes of the AuthDB module

5.2.2. Class AbstractAuthenticationBackend

This is an abstract class to encapsulate an authentication backend, which is responsible for checking authentication
credentials against a backend database. In actual configurations, use one of the derived classes like
VAS2AuthenticationBackend.

The interface defined here is used by various authentication methods like VAAuthentication and
InbandAuthentication.

182www.balasys.hu

Module AuthDB

5.2.3. Class AuthenticationProvider

The authentication provider is an intermediate layer that mediates between Vela and the authentication backend
(e.g., a user database) during connection authentication - Vela itself does not directly communicate with the
database.

Example 5.10. A sample authentication provider
The following example defines an authentication provider that uses the VAS2AuthenticationBackend backend.

AuthenticationProvider(name="demo_authentication_provider",

backend=VAS2AuthenticationBackend(serveraddr=SockAddrInet('192.168.10.10', 1317), use_ssl=TRUE,

ssl_verify_depth=3, pki_cert=("/etc/key.d/VAS_certificate/cert.pem",

"/etc/key.d/VAS_certificate/key.pem"), pki_ca=("/etc/ca.d/groups/demo_trusted_group/certs/",

"/etc/ca.d/groups/demo_trusted_group/crls/")))

5.2.3.1. AuthenticationProvider methods

DescriptionMethod

C o n s t r u c t o r t o i n i t i a l i z e a n
AbstractAuthorizationBackend instance.

__init__(self, name, backend)

Table 5.16. Method summary

Method __init__(self, name, backend)

This constructor initializes an AbstractAuthorizationBackend instance.

Arguments of __init__

backend (class)

Default: n/a

Type of the database backend used by the VAS instance.

name (string)

Default: n/a

Name of the VAS instance.

5.2.4. Class VAS2AuthenticationBackend

This class encapsulates a Vela Authentication Server database and provides interface to other authentication
classes to verify against users managed through VAS. See Section 5.2.3, Class AuthenticationProvider (p. 183)
for examples on using the VAS2AuthenticationBackend class.

183www.balasys.hu

Class AuthenticationProvider

5.2.4.1. VAS2AuthenticationBackend methods

DescriptionMethod

C o n s t r u c t o r t o i n i t i a l i z e a
VAS2AuthenticationProvider instance.

__init__(self, serveraddr, use_ssl, pki_cert, pki_ca,
ssl_verify_depth)

Table 5.17. Method summary

Method __init__(self, serveraddr, use_ssl, pki_cert, pki_ca, ssl_verify_depth)

This constructor creates a new VAS2AuthenticationProvider instance that can be used in authentication policies.

Arguments of __init__

pki_ca (cagroup)

Default: None

The name of a trusted CA group. When using SSL, VAS must show a certificate signed by a CA that belongs
to this group.

pki_cert (certificate)

Default: None

A tuple containing the name of a certificate and a key file. Vela shows this certificate to VAS when using
SSL.

serveraddr (sockaddr)

Default: n/a

The IP address of this VAS instance. VAS accepts connections on this address.

ssl_verify_depth (integer)

Default: 3

Specifies the maximum number of CAs in the trust chain when verifying the certificate of Vela.

use_ssl (boolean)

Default: FALSE

Enable this option if Vela communicates with VAS using SSL.

5.3. Module Chainer

Chainers establish a TCP or UDP connection between a proxy and a selected destination. The destination is
usually a server, but the SideStackChainer connects an additional proxy before connecting the server.

184www.balasys.hu

Module Chainer

5.3.1. Selecting the network protocol

The client-side and the server-side connections can use different networking protocols if needed. The protocol
attribute of the chainer classes determines the network protocol used in the server-side connection. By default,
the same protocol is used in both connections. The following options are available:

DescriptionName

Use the protocol that is used on the client side.ZD_PROTO_AUTO

Use the TCP protocol on the server side.ZD_PROTO_TCP

Use the UDP protocol on the server side.ZD_PROTO_UDP
Table 5.18. The network protocol used in the server-side connection

5.3.2. Classes in the Chainer module

DescriptionClass

Class encapsulating the abstract chainer.AbstractChainer

Class to establish the server-side TCP/IP connection.ConnectChainer

Class encapsulating the connection establishment with
multiple target addresses and keeping down state

FailoverChainer

between connects. FailoverChainer prefers connecting
to target hosts in the order they were specified.

Class encapsulating connection establishment with
multiple target addresses.

MultiTargetChainer

Class encapsulating the connection establishment with
multiple target addresses and keeping down state
between connects.

RoundRobinChainer

Class to pass the traffic to another proxy.SideStackChainer

Class encapsulating connection establishment with
multiple target addresses and keeping down state
between connects.

StateBasedChainer

Table 5.19. Classes of the Chainer module

5.3.3. Class AbstractChainer

AbstractChainer implements an abstract chainer that establishes a connection between the parent proxy and the
selected destination. This class serves as a starting point for customized chainer classes, but is itself not directly
usable. Service definitions should refer to a customized class derived from AbstractChainer, or one of the
predefined chainer classes, such as ConnectChainer or FailoverChainer.

185www.balasys.hu

Selecting the network protocol

5.3.4. Class ConnectChainer

ConnectChainer is the default chainer class based on AbstractChainer. This class establishes a TCP or UDP
connection between the proxy and the selected destination address.

ConnectChainer is used by default if no other chainer class is specified in the service definition.

ConnectChainer attempts to connect only a single destination address: if the connection establishment procedure
selects multiple target servers (e.g., a DNSResolver with the multi=TRUE parameter or a DirectedRouter with
multiple addresses), ConnectChainer will use the first address and ignore all other addresses. UseFailoverChainer
to select from the destination from multiple addresses in a failover fashion, and RoundRobinChainer to distribute
connections in a roundrobin fashion.

Example 5.11. A sample ConnectChainer
The following service uses a ConnectChainer that uses the UDP protocol on the server side.

Service(name="demo_service", proxy_class=HttpProxy, chainer=ConnectChainer(protocol=VD_PROTO_UDP),

router=TransparentRouter(overrideable=FALSE, forge_addr=FALSE))

5.3.4.1. ConnectChainer methods

DescriptionMethod

Constructor to initialize an instance of the
ConnectChainer class.

__init__(self, protocol, timeout_connect)

Table 5.20. Method summary

Method __init__(self, protocol, timeout_connect)

This constructor creates a new ConnectChainer instance which can be associated with a Service.

Arguments of __init__

protocol (enum)

Default: VD_PROTO_AUTO

Optional parameter that specifies the network protocol used in the connection protocol. By default, the
server-side communication uses the same protocol that is used on the client side. See Section 5.3.1, Selecting
the network protocol (p. 185) for details.

timeout_connect (integer)

Default: 30000

Specifies connection timeout to be used when connecting to the target server.

186www.balasys.hu

Class ConnectChainer

5.3.5. Class FailoverChainer

This class is based on the StateBasedChainer class and encapsulates a real TCP/IP connection establishment,
and is used when a top-level proxy wants to perform chaining. In addition to ConnectChainer this class adds
the capability to perform stateful, failover HA functionality across a set of IP addresses.

Note
Use FailoverChainer if you want to connect to the servers in a predefined order: i.e., connect to the first server, and only connect to the
second if the first server is unavailable.

If you want to distribute connections between the servers (i.e., direct every new connection to a different server to balance the load) use
RoundRobinChainer .

Example 5.12. A DirectedRouter using FailoverChainer
The following service definition uses a DirectedRouter class with two possible destination addresses. These destinations are used in a
failover fashion, targeting the second address only if the first one is unaccessible.

Service(name="intra_HTTP_inter", router=DirectedRouter(dest_addr=(SockAddrInet('192.168.55.55', 8080),

SockAddrInet('192.168.55.56', 8080)), forge_addr=FALSE, forge_port=V_PORT_ANY, overrideable=FALSE),

chainer=FailoverChainer(protocol=VD_PROTO_AUTO, timeout_state=60000, timeout_connect=30000),

max_instances=0, proxy_class=HttpProxy,)

5.3.5.1. FailoverChainer methods

DescriptionMethod

Constructor to initialize a FailoverChainer instance.__init__(self, protocol, timeout_state,
timeout_connect)

Table 5.21. Method summary

Method __init__(self, protocol, timeout_state, timeout_connect)

This constructor initializes a FailoverChainer class by filling arguments with appropriate values and calling the
inherited constructor.

Arguments of __init__

protocol (enum)

Default: VD_PROTO_AUTO

Optional, specifies connection protocol (VD_PROTO_TCP or VD_PROTO_UDP), when not specified it defaults
to the protocol used on the client side.

timeout_connect (integer)

Default: 30000

Specifies connection timeout to be used when connecting to the target server.

187www.balasys.hu

Class FailoverChainer

timeout_state (integer)

Default: 60000

The down state of remote hosts is kept for this interval in milliseconds.

5.3.6. Class MultiTargetChainer

This class encapsulates a real TCP/IP connection establishment, and is used when a top-level proxy wants to
perform chaining. In addition to ConnectChainer, this class adds the capability to perform stateless, simple load
balance server connections among a set of IP addresses.

The same mechanism is used to set multiple server addresses as with a single destination address: the Router
class sets a list of IP addresses in the session.target_address attribute.

5.3.6.1. MultiTargetChainer methods

DescriptionMethod

Constructor to initialize a MultiTargetChainer instance.__init__(self, protocol, timeout_connect)
Table 5.22. Method summary

Method __init__(self, protocol, timeout_connect)

This constructor initializes a MultiTargetChainer class by filling arguments with appropriate values and calling
the inherited constructor.

Arguments of __init__

protocol (enum)

Default: VD_PROTO_AUTO

Optional, specifies connection protocol (either VD_PROTO_TCP or VD_PROTO_UDP), when not specified
defaults to the same protocol as was used on the client side.

self (class)

Default: n/a

this instance

timeout_connect (integer)

Default: 30000

Specifies connection timeout to be used when connecting to the target server.

188www.balasys.hu

Class MultiTargetChainer

5.3.7. Class RoundRobinChainer

This class is based on the StateBasedChainer class and encapsulates a real TCP/IP connection establishment,
and is used when a top-level proxy wants to perform chaining. In addition to ConnectChainer this class adds
the capability to perform stateful, load balance server connections among a set of IP addresses.

Example 5.13. A DirectedRouter using RoundRobinChainer
The following service definition uses a RoundRobinChainer class with two possible destination addresses. These destinations are used
in a roundrobin fashion, alternating between the two destinations.

Service(name="intra_HTTP_inter", router=DirectedRouter(dest_addr=(SockAddrInet('192.168.55.55', 8080),

SockAddrInet('192.168.55.56', 8080)), forge_addr=FALSE, forge_port=V_PORT_ANY, overrideable=FALSE),

chainer=RoundRobinChainer(protocol=VD_PROTO_AUTO, timeout_state=60000, timeout_connect=30000),

max_instances=0, proxy_class=HttpProxy)

5.3.8. Class SideStackChainer

This class encapsulates a special chainer. Instead of establishing a connection to a server, it creates a new proxy
instance and connects the server side of the current (parent) proxy to the client side of the new (child) proxy.
The right_class parameter specifies the child proxy.

It is possible to stack multiple proxies side-by-side. The final step of sidestacking is always to specify a regular
chainer via the right_chainer parameter that connects the last proxy to the destination server.

Tip
Proxy sidestacking is useful for example to create one-sided SSL connections. See the tutorials of the BalaSys Documentation Page
available at http://www.balasys.hu/documentation/ for details.

5.3.8.1. Attributes of SideStackChainer

right_chainer (unknown)

Default: n/a

The chainer used to connect to the destination of the side-stacked proxy class set in the right_class attribute.

right_class (unknown)

Default: n/a

The proxy class to connect to the parent proxy. Both built-in and customized classes can be used.

189www.balasys.hu

Class RoundRobinChainer

http://www.balasys.hu/documentation/

5.3.8.2. SideStackChainer methods

DescriptionMethod

Constructor to initialize an instance of the
SideStackChainer class.

__init__(self, right_class, right_chainer)

Table 5.23. Method summary

Method __init__(self, right_class, right_chainer)

This constructor creates a new FailoverChainer instance which can be associated with a Service.

Arguments of __init__

right_chainer (class)

Default: None

The chainer used to connect to the destionation of the side-stacked proxy class set in the right_class
attribute.

right_class (class)

Default: n/a

The proxy class to connect to the parent proxy. Both built-in or customized classes can be used.

5.3.9. Class StateBasedChainer

This class encapsulates a real TCP/IP connection establishment, and is used when a top-level proxy wants to
perform chaining. In addition to ConnectChainer, this class adds the capability to perform stateful, load balance
server connections among a set of IP addresses.

Note
Both the FailoverChainer and RoundRobinChainer classes are derived from StateBasedChainer.

5.3.9.1. StateBasedChainer methods

DescriptionMethod

Constructor to initialize a StateBasedChainer instance.__init__(self, protocol, timeout_connect,
timeout_state)

Table 5.24. Method summary

Method __init__(self, protocol, timeout_connect, timeout_state)

This constructor initializes a StateBasedChainer class by filling arguments with appropriate values and calling
the inherited constructor.

190www.balasys.hu

Class StateBasedChainer

Arguments of __init__

protocol (enum)

Default: VD_PROTO_AUTO

Optional, specifies connection protocol (VD_PROTO_TCP or VD_PROTO_UDP), when not specified it defaults
to the same protocol used on the client side.

timeout_connect (integer)

Default: 30000

Specifies connection timeout to be used when connecting to the target server.

timeout_state (integer)

Default: 60000

The down state of remote hosts is kept for this interval in miliseconds.

5.4. Module Detector

Detectors can be used to determine if the traffic in the incoming connection uses a particular protocol (for
example, HTTP, SSH), or if it has other specific characteristics (for example, it uses SSL encryption with a
specific certificate). Such characteristics of the traffic can be detected, and start a specific service to inspect the
traffic (for example, start a specific HttpProxy for HTTP traffic, and so on).

5.4.1. Classes in the Detector module

DescriptionClass

Class encapsulating the abstract detector.AbstractDetector

Class encapsulating a Detector that determines if an
SSL/TLS-encrypted connection uses the specified
certificate

CertDetector

Class encapsulating a Detector which can be used by
a name.

DetectorPolicy

Class encapsulating a Detector that determines if the
traffic uses the HTTP protocol

HttpDetector

Class encapsulating a Detector that determines whether
a client targets a specific host in a SSL/TLS-encrypted
connection.

SniDetector

191www.balasys.hu

Module Detector

DescriptionClass

Class encapsulating a Detector that determines if the
traffic uses the SSHv2 protocol

SshDetector

Table 5.25. Classes of the Detector module

5.4.2. Class AbstractDetector

This abstract class encapsulates a detector that determines whether the traffic in a connection belongs to a
particular protocol.

5.4.3. Class CertDetector

This Detector determines if an SSL/TLS-encrypted connection uses the specified certificate, and rejects any
other protocols and certificates.

Example 5.14. CertDetector example
The following example defines a DetectorPolicy that detects if the traffic is SSL/TLS-encrypted, and uses the certificate specified.

mycertificate="-----BEGIN CERTIFICATE-----

MIIEdjCCA16gAwIBAgIIQ7Xu3Mwnk+4wDQYJKoZIhvcNAQEFBQAwSTELMAkGA1UE

BhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMxJTAjBgNVBAMTHEdvb2dsZSBJbnRl

cm5ldCBBdXRob3JpdHkgRzIwHhcNMTQwMTI5MTQwNTM3WhcNMTQwNTI5MDAwMDAw

WjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5pYTEWMBQGA1UEBwwN

TW91bnRhaW4gVmlldzETMBEGA1UECgwKR29vZ2xlIEluYzEXMBUGA1UEAwwOd3d3

Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCkeHmm

eYY7uMMRxKg14NPx8zFtD/VmUI2b4FdQYgD8AuRifA+fqvxicEki7Td1SrZ4zldn

AjbAS+fC0eQji8foJTosrkXgQgv5ds0+8lU3dooVXoqemeJKUihzI/h+7cf1287/

7EbMI5RaDBUPTHmZHeDtk38XUYsBrS93nICq4VDUAxy2BKsGSS2l9wRvl4fhdDDm

guQ5cRDKn/pqdYEqAqxFVEjamwjcUWSBsWlqSn37fI9s/MZDCzfMwz6AheFMrRNL

0oJ2Y3cVdBxiDVdqjGS+AG5qIUz/AsvHNL3JEsa55OSrMFubCPCzYDMAVLKziqZX

5G25c0e/qh0bSK4/AgMBAAGjggFBMIIBPTAdBgNVHSUEFjAUBggrBgEFBQcDAQYI

KwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdvb2dsZS5jb20waAYIKwYBBQUHAQEE

XDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3J0

MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50czEuZ29vZ2xlLmNvbS9vY3NwMB0G

A1UdDgQWBBR1IOrR+bm3NNXp5DWKruhkxnMrpDAMBgNVHRMBAf8EAjAAMB8GA1Ud

IwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEvMBcGA1UdIAQQMA4wDAYKKwYBBAHW

eQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRwOi8vcGtpLmdvb2dsZS5jb20vR0lB

RzIuY3JsMA0GCSqGSIb3DQEBBQUAA4IBAQA6j9oPKE5k/FX5sbLY4p7xsnltndHD

N1oyzmb8+cmke6W/eFHsY0g+zUeUBW3zb0EMBnNXWNTCB1aVIcRGe8GUDDAnAzSX

MQBeBisNb69kn2untS7RblL83+8H787RsLeXucahr3kCoc61oTemI0HEI43ODtVI

uFEDNJDE1wqsHkdZecnNS29IZySpK2skr3rH7qUkbP1lkzbFvsnFUyp3AJS4ib9+

4xPr65GQfUi/8vgoSVvOy5Y3rT/U3CtI9tPoDSZTYGTl64LDxJa8dEGYmTKHgjyJ

HmbKzes13N/BN18XUlvTnjEaifQXvJj9ypqcMHUFPjkqwI1HSyb1iRth

-----END CERTIFICATE-----"

DetectorPolicy(name="MyCertDetector", detector=CertDetector(certificate=mycertificate)

5.4.3.1. Attributes of CertDetector

certificate (unknown)

Default: n/a

The certificate to detect in PEM format. You can use the certificate directly, or store it in a file and reference
the file with full path, for example, DetectorPolicy(name="MyCertDetector",
detector=CertDetector(certificate=("/etc/key.d/mysite/cert.pem",)))

192www.balasys.hu

Class AbstractDetector

5.4.3.2. CertDetector methods

DescriptionMethod

Constructor to initialize a CertDetector instance.__init__(self, certificate)
Table 5.26. Method summary

Method __init__(self, certificate)

This constructor initializes a CertDetector instance

Arguments of __init__

certificate (certificate)

Default: n/a

The certificate in PEM format. This must contain either the certificate as a string, or a full pathname to a file
containing the certificate.

5.4.4. Class DetectorPolicy

DetectorPolicy instances are reusable detectors that contain configured instances of the detector classes (for
example, HttpDetector, SshDetector) that detect if the traffic uses a particular protocol, or a particular certificate
in an SSL/TLS connection. DetectorPolicy instances can be used in the detect option of firewall rules. For
examples, see the specific detector classes.

5.4.5. Class HttpDetector

This Detector determines if the traffic uses the HTTP protocol, and rejects any other protocol.

Example 5.15. HttpDetector example
The following example defines a DetectorPolicy that detects HTTP traffic.

DetectorPolicy(name="http", detector=HttpDetector()

5.4.5.1. Attributes of HttpDetector

ignore (unknown)

Default: n/a

A list of compiled regular expressions which should be ignored when detecting the traffic type. By default,
this list is empty.

match (unknown)

Default: n/a

193www.balasys.hu

Class DetectorPolicy

match (unknown)

A list of compiled regular expressions which result in a positive match. If the traffic matches this regular
expression, it is regarded as HTTP traffic. Default value:
[OPTIONS|GET|HEAD|POST|PUT|DELETE|TRACE|CONNECT] + ".*HTTP/1."

5.4.5.2. HttpDetector methods

DescriptionMethod

Constructor to initialize a HttpDetector instance.__init__(self, **kw)
Table 5.27. Method summary

Method __init__(self, **kw)

This constructor initializes a HttpDetector instance

5.4.6. Class SniDetector

Class encapsulating a Detector that determines whether a client targets a specific host in a SSL/TLS-encrypted
connection and rejects any other protocols and hostnames.

Example 5.16. SNIDetector example
The following example defines a DetectorPolicy that detects if the traffic is SSL/TLS-encrypted, and uses targets the host
www.example.com.

DetectorPolicy(name="MySniDetector",

detector=SniDetector(RegexpMatcher(match_list=("www.example.com",))))

5.4.6.1. Attributes of SniDetector

server_name_matcher (class)

Default: n/a

Matcher class (e.g.: RegexpMatcher) used to check and filter hostnames in Server Name Indication TLS
extension, for example, DetectorPolicy(name="MySniDetector",
detector=SniDetector(RegexpMatcher(match_list=("www.example.com",))))

194www.balasys.hu

Class SniDetector

5.4.6.2. SniDetector methods

DescriptionMethod

Constructor to initialize a SNIDetector instance.__init__(self, server_name_matcher)
Table 5.28. Method summary

Method __init__(self, server_name_matcher)

This constructor initializes a SNIDetector instance

Arguments of __init__

server_name_matcher (class)

Default: n/a

Matcher class (e.g.: RegexpMatcher) used to check and filter hostnames in Server Name Indication TLS
extension.

5.4.7. Class SshDetector

This Detector determines if the traffic uses the SSHv2 protocol, and rejects any other protocol.

Example 5.17. SshDetector example
The following example defines a DetectorPolicy that detects SSH traffic.

DetectorPolicy(name="ssh", detector=SshDetector()

5.5. Module Encryption

The TLS framework of the proxies is in a separate entity called Encryption policy. That way, you can easily
share and reuse encryption settings between different services: you have to configure the Encryption policy
once, and you can use it in multiple services. The TLS framework is described in Chapter 3, The PNS SSL
framework (p. 9).

Note
STARTTLS support is currently available only for the Ftp proxy to support FTPS sessions and for the SMTP and the Pop3 proxies.

5.5.1. TLS parameter constants

ValueName

n/aTLS_CIPHERS_DEFAULT

n/aTLS_CIPHERS_OLD

195www.balasys.hu

Class SshDetector

ValueName

n/aTLS_CIPHERS_CUSTOM
Table 5.29. Constants for cipher selection

ValueName

n/aTLSV1_3_CIPHERS_DEFAULT

n/aTLSV1_3_CIPHERS_CUSTOM
Table 5.30. Constants for TLSv1.3 cipher selection

ValueName

n/aTLS_SHARED_GROUPS_DEFAULT

n/aTLS_SHARED_GROUPS_CUSTOM
Table 5.31. Constants for shared group selection

ValueName

Perform the TLS-handshake with the client first.TLS_HSO_CLIENT_SERVER

Perform the TLS-handshake with the server first.TLS_HSO_SERVER_CLIENT
Table 5.32. Handshake order.

ValueName

Disable encryption between Vela and the peer.TLS_NONE

Require encrypted communication between Vela and
the peer.

TLS_FORCE_TLS

Permit STARTTLS sessions. Currently supported only
in the Ftp, Smtp and Pop3 proxies.

TLS_ACCEPT_STARTTLS

Table 5.33. Client connection security type.

ValueName

Disable encryption between Vela and the peer.TLS_NONE

Require encrypted communication between Vela and
the peer.

TLS_FORCE_TLS

Forward STARTTLS requests to the server. Currently
supported only in the Ftp, Smtp and Pop3 proxies.

TLS_FORWARD_STARTTLS

Table 5.34. Server connection security type.

ValueName

Accept invalid for example, expired certificates.TLS_TRUST_LEVEL_NONE

Both trusted and untrusted certificates are accepted.TLS_TRUST_LEVEL_UNTRUSTED

196www.balasys.hu

TLS parameter constants

ValueName

Only valid certificates signed by a trusted CA are
accepted.

TLS_TRUST_LEVEL_FULL

Table 5.35. Constants for trust level selection.

ValueName

Ignore result of CA certificate revocation status check.TLS_INTERMEDIATE_REVOCATION_NONE

Check every CA certificate revocation state in the
certificate chain. Uncertainty is tolerated.

TLS_INTERMEDIATE_REVOCATION_SOFT_FAIL

Check every CA certificate revocation state in the
certificate chain. Uncertainty is not tolerated.

TLS_INTERMEDIATE_REVOCATION_HARD_FAIL

Table 5.36. Constants for intermediate certificates revocation check type.

ValueName

Ignore result of leaf certificate revocation status check.TLS_LEAF_REVOCATION_NONE

Check the revocation state of the leaf certificate.
Uncertainty is tolerated.

TLS_LEAF_REVOCATION_SOFT_FAIL

Check the revocation state of the leaf certificate.
Uncertainty is not tolerated.

TLS_LEAF_REVOCATION_HARD_FAIL

Table 5.37. Constants for leaf certificate revocation check type.

ValueName

n/aTLS_ERROR

n/aTLS_DEBUG
Table 5.38. Verbosity level of the log messages

ValueName

0TLS_HS_ACCEPT

1TLS_HS_REJECT

6TLS_HS_POLICY

10TLS_HS_VERIFIED
Table 5.39. Handshake policy decisions

5.5.2. Classes in the Encryption module

DescriptionClass

Class encapsulating the abstract Certificate verifier.AbstractVerifier

197www.balasys.hu

Classes in the Encryption module

DescriptionClass

Class encapsulating a certificate and its private key,
and optionally the passphrase for the private key.

Certificate

Class encapsulating the certificate of a Certificate
Authority (CA certificate) and its private key, and
optionally the passphrase for the private key.

CertificateCA

Class that can be used to verify the certificate of the
client-side connection.

ClientCertificateVerifier

Disables certificate verification in client-side
connection.

ClientNoneVerifier

The ClientOnlyEncryption class handles scenarios
when only the client-Vela connection is encrypted,
the Vela-server connection is not

ClientOnlyEncryption

The client can optionally request STARTTLS
encryption, but the server-side connection is always
unencrypted.

ClientOnlyStartTLSEncryption

Class encapsulating a set of TLS options used in the
client-side connection.

ClientTLSOptions

Class encapsulating DH parameters.DHParam

Class to perform TLS keybridging.DynamicCertificate

The DynamicServerEncryption class handles scenarios
when both the client-firewall and the firewall-server

DynamicServerEncryption

connections could be encrypted but the server side
encryption parameters set dynamically from proxies.

Class encapsulating a named set of encryption settings.EncryptionPolicy

The client can optionally request STARTTLS
encryption, but the server-side connection is always
encrypted.

FakeStartTLSEncryption

The ForwardStartTLSEncryption class handles
scenarios when the client can optionally request
STARTTLS encryption.

ForwardStartTLSEncryption

Class encapsulating a private key.PrivateKey

Class to be used for Server Name Indication (SNI)SNIBasedCertificate

Class that can be used to verify the certificate of the
server-side connection.

ServerCertificateVerifier

Disables certificate verification in server-side
connection.

ServerNoneVerifier

198www.balasys.hu

Classes in the Encryption module

DescriptionClass

The ServerOnlyEncryption class handles scenarios
when only the Vela-server connection is encrypted,
the client-Vela connection is not

ServerOnlyEncryption

Class encapsulating a set of TLS options used in the
server-side connection.

ServerTLSOptions

Class encapsulating a static Certificate object.StaticCertificate

Class encapsulating the abstract TLS options.TLSOptions

The TwoSidedEncryption class handles scenarios when
both the client-Vela and the Vela-server connections
are encrypted.

TwoSidedEncryption

Table 5.40. Classes of the Encryption module

5.5.3. Class AbstractVerifier

This class includes the settings and options used to verify the certificates of the peers in TLS connections. Note
that you cannot use this class directly, use an appropriate derived class, for example, ClientCertificateVerifier
or ServerCertificateVerifier instead.

5.5.3.1. Attributes of AbstractVerifier

intermediate_revocation_check_type (enum)

Default: TLS_INTERMEDIATE_REVOCATION_SOFT_FAIL

Specify how intermediate certificates revocation status check should work.

leaf_revocation_check_type (enum)

Default: TLS_LEAF_REVOCATION_SOFT_FAIL

Specify how leaf certificate revocation status check should work.

required (boolean)

Default: trusted

If the required is TRUE, a certificate is required from the peer.

trust_level (enum)

Default: TLS_TRUST_LEVEL_FULL

Specify which certificate should be accepted as trusted.

199www.balasys.hu

Class AbstractVerifier

trusted_certs_directory (string)

Default: ""

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP
address shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA.
Each file in the directory should contain a certificate in PEM format. The filename must bethe IP address.

verify_ca_directory (string)

Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when the certificate of the peer is verified.

verify_crl_directory (string)

Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when the certificate of the peer is verified.

verify_depth (integer)

Default: 4

The length of the longest accepted CA verification chain. Longer CA chains are automatically rejected.

5.5.3.2. AbstractVerifier methods

DescriptionMethod

Constructor to initialize an AbstractVerifier instance._ _ i n i t _ _ (s e l f , t r u s t _ l e v e l ,
i n t e r m e d i a t e _ r e v o c a t i o n _ c h e c k _ t y p e ,
leaf_revocation_check_type, trusted_certs_directory,
required, verify_depth, verify_ca_directory,
verify_crl_directory)

Table 5.41. Method summary

Method __init__(self, trust_level, intermediate_revocation_check_type, leaf_revocation_check_type,
trusted_certs_directory, required, verify_depth, verify_ca_directory, verify_crl_directory)

This constructor defines an AbstractVerifier with the specified parameters.

Arguments of __init__

intermediate_revocation_check_type (enum)

Default: TLS_INTERMEDIATE_REVOCATION_SOFT_FAIL

Specify how intermediate certificates revocation status check should work.

200www.balasys.hu

Class AbstractVerifier

leaf_revocation_check_type (enum)

Default: TLS_LEAF_REVOCATION_SOFT_FAIL

Specify how leaf certificate revocation status check should work.

required (boolean)

Default: TRUE

If the required is TRUE, a certificate is required from the peer.

trust_level (enum)

Default: TLS_TRUST_LEVEL_FULL

Specify which certificate should be accepted as trusted.

trusted_certs_directory (string)

Default: ""

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP
address shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA.
Each file in the directory should contain a certificate in PEM format. The filename must bethe IP address.

verify_ca_directory (string)

Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when the certificate of the peer is verified.

verify_crl_directory (string)

Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when the certificate of the peer is verified.

verify_depth (integer)

Default: 4

The length of the longest accepted CA verification chain. Longer CA chains are automatically rejected.

5.5.4. Class Certificate

The Certificate class stores a certificate, its private key, and optionally a passphrase for the private key. The
certificate must be in PEM format.

201www.balasys.hu

Class Certificate

When configuring Vela manually using its configuration file, use the regular constructor of the Certificate class
to load a certificate from a string. To load a certificate from a file, use the Certificate.fromFile method.

Example 5.18. Loading a certificate
The following example loads a certificate from the configuration file.

my_certificate = "-----BEGIN CERTIFICATE-----

MIICUTCCAfugAwIBAgIBADANBgkqhkiG9w0BAQQFADBXMQswCQYDVQQGEwJDTjEL

MAkGA1UECBMCUE4xCzAJBgNVBAcTAkNOMQswCQYDVQQKEwJPTjELMAkGA1UECxMC

VU4xFDASBgNVBAMTC0hlcm9uZyBZYW5nMB4XDTA1MDcxNTIxMTk0N1oXDTA1MDgx

NDIxMTk0N1owVzELMAkGA1UEBhMCQ04xCzAJBgNVBAgTAlBOMQswCQYDVQQHEwJD

TjELMAkGA1UEChMCT04xCzAJBgNVBAsTAlVOMRQwEgYDVQQDEwtIZXJvbmcgWWFu

ZzBcMA0GCSqGSIb3DQEBAQUAA0sAMEgCQQCp5hnG7ogBhtlynpOS21cBewKE/B7j

V14qeyslnr26xZUsSVko36ZnhiaO/zbMOoRcKK9vEcgMtcLFuQTWDl3RAgMBAAGj

gbEwga4wHQYDVR0OBBYEFFXI70krXeQDxZgbaCQoR4jUDncEMH8GA1UdIwR4MHaA

FFXI70krXeQDxZgbaCQoR4jUDncEoVukWTBXMQswCQYDVQQGEwJDTjELMAkGA1UE

CBMCUE4xCzAJBgNVBAcTAkNOMQswCQYDVQQKEwJPTjELMAkGA1UECxMCVU4xFDAS

BgNVBAMTC0hlcm9uZyBZYW5nggEAMAwGA1UdEwQFMAMBAf8wDQYJKoZIhvcNAQEE

BQADQQA/ugzBrjjK9jcWnDVfGHlk3icNRq0oV7Ri32z/+HQX67aRfgZu7KWdI+Ju

Wm7DCfrPNGVwFWUQOmsPue9rZBgO

-----END CERTIFICATE-----"

my_certificate_object = Certificate(my_certificate, 'mypassphrase')

The following example loads a certificate from an external file.

my_certificate_object = Certificate.fromFile("/tmp/my_certificate.pem", 'mypassphrase')

5.5.4.1. Attributes of Certificate

certificate_file_path (certificatechain)

Default: n/a

The path and filename to the certificate file. The certificate must be in PEM format.

private_key_password (string)

Default: None

Passphrase used to access the private key of the certificate specified in certificate_file_path.

5.5.4.2. Certificate methods

DescriptionMethod

Load a certificate from a string, and access it using its
passphrase

__init__(self, certificate, private_key)

Load a certificate from a file, and access it using its
passphrase

fromFile(certificate_file_path, private_key)

Table 5.42. Method summary

Method __init__(self, certificate, private_key)

Initializes a Certificate instance by loading a certificate from a string, and accesses it using its passphrase. To
load a certificate from a file, use the Certificate.fromFile method.

202www.balasys.hu

Class Certificate

Arguments of __init__

certificate_file_path (certificate)

Default: n/a

The path and filename to the certificate file. The certificate must be in PEM format.

private_key_password (string)

Default: None

Passphrase used to access the private key of the certificate specified in certificate_file_path.

Method fromFile(certificate_file_path, private_key)

Initializes a Certificate instance by loading a certificate from a file, and accesses it using its passphrase.

Arguments of fromFile

certificate_file_path (certificate)

Default: n/a

The path and filename to the certificate file. The certificate must be in PEM format.

passphrase (string)

Default: None

Passphrase used to access the private key specified in certificate_file_path.

5.5.5. Class CertificateCA

The CertificateCA class stores a CA certificate, its private key, and optionally a passphrase for the private key.
The certificate must be in PEM format.

5.5.5.1. Attributes of CertificateCA

certificate_file_path (certificate)

Default: n/a

The path and filename to the certificate file. The certificate must be in PEM format.

private_key_password (string)

Default: None

Passphrase used to access the private key of the certificate specified in certificate_file_path.

203www.balasys.hu

Class CertificateCA

5.5.5.2. CertificateCA methods

DescriptionMethod

Load a CAcertificate from a string, and access it using
its passphrase

__init__(self, certificate, private_key)

Table 5.43. Method summary

Method __init__(self, certificate, private_key)

Initializes a CertificateCA instance by loading a CA certificate, and accesses it using its passphrase.

Arguments of __init__

certificate_file_path (certificate)

Default: n/a

The path and filename to the CA certificate file. The certificate must be in PEM format.

private_key_password (string)

Default: None

Passphrase used to access the private key specified in certificate_file_path.

5.5.6. Class ClientCertificateVerifier

This class includes the settings and options used to verify the certificates of the peers in client-side TLS
connections.

5.5.6.1. Attributes of ClientCertificateVerifier

ca_hint_directory (string)

Default: ""

Set directory containing certificates to provide the client the list of CA certificates (subject names) that are
used for verifying the client certificate.

intermediate_revocation_check_type (enum)

Default: TLS_INTERMEDIATE_REVOCATION_SOFT_FAIL

Specify how intermediate certificates revocation status check should work.

leaf_revocation_check_type (enum)

Default: TLS_LEAF_REVOCATION_SOFT_FAIL

Specify how leaf certificate revocation status check should work.

204www.balasys.hu

Class ClientCertificateVerifier

required (boolean)

Default: TRUE

If the required is TRUE, a certificate is required from the peer.

trust_level (enum)

Default: TLS_TRUST_LEVEL_FULL

Specify which certificate should be accepted as trusted.

trusted_certs_directory (string)

Default: ""

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP
address shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA.
Each file in the directory should contain a certificate in PEM format. The filename must bethe IP address.

verify_ca_directory (string)

Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when the certificate of the peer is verified.

verify_crl_directory (string)

Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when the certificate of the peer is verified.

verify_depth (integer)

Default: 4

The length of the longest accepted CA verification chain. Longer CA chains are automatically rejected.

205www.balasys.hu

Class ClientCertificateVerifier

5.5.6.2. ClientCertificateVerifier methods

DescriptionMethod

Constructor to initialize a ClientCertificateVerifier
instance.

_ _ i n i t _ _ (s e l f , t r u s t _ l e v e l ,
i n t e r m e d i a t e _ r e v o c a t i o n _ c h e c k _ t y p e ,
leaf_revocation_check_type, trusted_certs_directory,
required, verify_depth, verify_ca_directory,
verify_crl_directory, ca_hint_directory)

Table 5.44. Method summary

Method __init__(self, trust_level, intermediate_revocation_check_type, leaf_revocation_check_type,
trusted_certs_directory, required, verify_depth, verify_ca_directory, verify_crl_directory,
ca_hint_directory)

This constructor defines a ClientCertificateVerifier with the specified parameters.

Arguments of __init__

ca_hint_directory (string)

Default: ""

Set directory containing certificates to provide the client the list of CA certificates (subject names) that are
used for verifying the client certificate.

intermediate_revocation_check_type (enum)

Default: TLS_INTERMEDIATE_REVOCATION_SOFT_FAIL

Specify how intermediate certificates revocation status check should work.

leaf_revocation_check_type (enum)

Default: TLS_LEAF_REVOCATION_SOFT_FAIL

Specify how leaf certificate revocation status check should work.

required (boolean)

Default: TRUE

If the required is TRUE, a certificate is required from the peer.

trust_level (enum)

Default: TLS_TRUST_LEVEL_FULL

Specify which certificate should be accepted as trusted.

206www.balasys.hu

Class ClientCertificateVerifier

trusted_certs_directory (string)

Default: ""

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP
address shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA.
Each file in the directory should contain a certificate in PEM format. The filename must bethe IP address.

verify_ca_directory (string)

Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when the certificate of the peer is verified.

verify_crl_directory (string)

Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when the certificate of the peer is verified.

verify_depth (integer)

Default: 4

The length of the longest accepted CA verification chain. Longer CA chains are automatically rejected.

5.5.7. Class ClientNoneVerifier

This class disables every certificate verification in client-side TLS connections.

5.5.8. Class ClientOnlyEncryption

The ClientOnlyEncryption class handles scenarios when only the client-Vela connection is encrypted, the
Vela-server connection is not.

5.5.8.1. Attributes of ClientOnlyEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_tls_options (class)

Default: ClientTLSOptions()

The protocol-level encryption settings used on the client side. This must be a ClientTLSOptions instance.

207www.balasys.hu

Class ClientNoneVerifier

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

5.5.8.2. ClientOnlyEncryption methods

DescriptionMethod

Initializes TLS connection on the client side.__init__(self, client_certificate_generator,
client_verify, client_tls_options)

Table 5.45. Method summary

Method __init__(self, client_certificate_generator, client_verify, client_tls_options)

The ClientOnlyEncryption class handles scenarios when only the client-Vela connection is encrypted, the
Vela-server connection is not.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_tls_options (class)

Default: ClientTLSOptions()

The protocol-level encryption settings used on the client side. This must be a ClientTLSOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

5.5.9. Class ClientOnlyStartTLSEncryption

The ClientOnlyStartTLSEncryption class handles scenarios when the client can optionally request STARTTLS
encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS. The
server-side connection will not be encrypted.

Warning
If the client does not send a STARTTLS request, the client-side communication will not be encrypted at all. The server-side connection
will never be encrypted.

208www.balasys.hu

Class ClientOnlyStartTLSEncryption

5.5.9.1. Attributes of ClientOnlyStartTLSEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_tls_options (class)

Default: ClientTLSOptions()

The protocol-level encryption settings used on the client side. This must be a ClientTLSOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

5.5.9.2. ClientOnlyStartTLSEncryption methods

DescriptionMethod

The client can optionally request STARTTLS
encryption, but the server-side connection is always
unencrypted.

__init__(self, client_certificate_generator,
client_verify, client_tls_options)

Table 5.46. Method summary

Method __init__(self, client_certificate_generator, client_verify, client_tls_options)

The ClientOnlyStartTLSEncryption class handles scenarios when the client can optionally request STARTTLS
encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS. The
server-side connection will not be encrypted.

Warning
If the client does not send a STARTTLS request, the client-side communication will not be encrypted at all. The server-side connection
will never be encrypted.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

209www.balasys.hu

Class ClientOnlyStartTLSEncryption

client_tls_options (class)

Default: ClientTLSOptions()

The protocol-level encryption settings used on the client side. This must be a ClientTLSOptions instance.

client_verify (class)

Default: ClientCertificateVerifier()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

5.5.10. Class ClientTLSOptions

This class (based on the TLSOptions class) collects the TLS settings directly related to encryption, for example,
the permitted protocol versions, ciphers, session reuse settings, and so on.

5.5.10.1. Attributes of ClientTLSOptions

cipher_server_preference (boolean)

Default: FALSE

Use server and not client preference order when determining which cipher suite, signature algorithm or elliptic
curve to use for an incoming connection.

ciphers (enum)

Default: n/a

Specifies the allowed ciphers. For details, see Table 5.29, Constants for cipher selection (p. 195).

ciphers_tlsv1_3 (enum)

Default: n/a

Specifies the allowed ciphers for TLSv1.3 connections. For details, see Table 5.30, Constants for TLSv1.3
cipher selection (p. 196).

dh_params (dhparams)

Default: None

The DH parameter used by ephemeral DH key generarion. Please be mind that this option is ignored in
TLSv1.3 as it does not support custom DH parameters.

disable_compression (boolean)

Default: TRUE

Set this to FALSE to support TLS compression. Please be mind that this option is ignored in TLSv1.3 as it
does not support compression.

210www.balasys.hu

Class ClientTLSOptions

disable_renegotiation (boolean)

Default: TRUE

Set this to TRUE to disable client initiated renegotiation. Please be mind that this option is ignored in TLSv1.3
as it does not support renegotiation.

disable_send_root_ca (boolean)

Default: FALSE

Inhibit sending Root CA to client, even if present in local certificate chain.

disable_session_cache (boolean)

Default: TRUE

Do not store session information in the session cache. Set this option to FALSE to enable TLS session reuse.
Please be mind that this option is ignored in TLSv1.3 as it does not support session IDs.

disable_ticket (boolean)

Default: TRUE

Session tickets are a method for TLS session reuse, described in RFC 5077. Set this option to FALSE to
enable TLS session reuse using session tickets.

prioritize_chacha (boolean)

Default: FALSE

When cipher_server_preference is TRUE, reprioritize ChaCha20-Poly1305 cipher if it is at the top of the
client cipher list.

session_cache_size (integer)

Default: 20480

The number of sessions stored in the session cache for TLS session reuse. Please be mind that this option is
ignored in TLSv1.3 as it does not support session IDs.

shared_groups (enum)

Default: n/a

Specifies the allowed shared groups. For details, see Table 5.31, Constants for shared group selection (p. 196).

timeout (integer)

Default: 300

Drop idle connection if the timeout value (in seconds) expires.

211www.balasys.hu

Class ClientTLSOptions

tls_max_version (enum)

Default: TLS_VERSION_1_3

Specify the maximum supported TLS protocol version.

tls_min_version (enum)

Default: TLS_VERSION_1_2

Specify the minimum supported TLS protocol version.

5.5.10.2. ClientTLSOptions methods

DescriptionMethod

Constructor to initialize a ClientTLSOptions instance.__init__(self, tls_min_version, tls_max_version,
ciphers, ciphers_tlsv1_3, shared_groups, timeout,
session_cache_size, disable_session_cache,
disable_ticket, disable_compression,
cipher_server_preference, prioritize_chacha,
dh_params, disable_renegotiation,
disable_send_root_ca)

Table 5.47. Method summary

Method __init__(self, tls_min_version, tls_max_version, ciphers, ciphers_tlsv1_3, shared_groups,
timeout, session_cache_size, disable_session_cache, disable_ticket, disable_compression,
cipher_server_preference, prioritize_chacha, dh_params, disable_renegotiation, disable_send_root_ca)

This constructor defines a ClientTLSOptions with the specified parameters.

Arguments of __init__

cipher_server_preference (boolean)

Default: FALSE

Use server and not client preference order when determining which cipher suite, signature algorithm or elliptic
curve to use for an incoming connection.

ciphers (enum)

Default: n/a

Specifies the allowed ciphers. For details, see Table 5.29, Constants for cipher selection (p. 195).

ciphers_tlsv1_3 (enum)

Default: n/a

212www.balasys.hu

Class ClientTLSOptions

ciphers_tlsv1_3 (enum)

Specifies the allowed ciphers for TLSv1.3 connections. For details, see Table 5.30, Constants for TLSv1.3
cipher selection (p. 196).

dh_param_file_path (string)

Default: None

The path and filename to the DH parameter file. The DH parameter file must be in PEM format. Please be
mind that this option is ignored in TLSv1.3 as it does not support custom DH parameters.

disable_renegotiation (boolean)

Default: TRUE

Set this to TRUE to disable client initiated renegotiation. Please be mind that this option is ignored in TLSv1.3
as it does not support renegotiation.

disable_send_root_ca (boolean)

Default: FALSE

Set this to TRUE to inhibit sending root ca to client, even if present in local chain.

disable_session_cache (boolean)

Default: TRUE

Do not store session information in the session cache. Set this option to FALSE to enable TLS session reuse.
Please be mind that this option is ignored in TLSv1.3 as it does not support session IDs.

disable_ticket (boolean)

Default: TRUE

Session tickets are a method for TLS session reuse, described in RFC 5077. Set this option to FALSE to
enable TLS session reuse using session tickets.

prioritize_chacha (boolean)

Default: FALSE

When cipher_server_preference is TRUE, reprioritize ChaCha20-Poly1305 cipher if it is at the top of the
client cipher list.

session_cache_size (integer)

Default: 20480

The number of sessions stored in the session cache for TLS session reuse. Please be mind that this option is
ignored in TLSv1.3 as it does not support session IDs.

213www.balasys.hu

Class ClientTLSOptions

shared_groups (enum)

Default: n/a

Specifies the allowed shared groups. For details, see Table 5.31, Constants for shared group selection (p. 196).

timeout (integer)

Default: 300

Drop idle connection if the timeout value (in seconds) expires.

tls_max_version (enum)

Default: TLS_VERSION_1_3

Specify the maximum supported TLS protocol version.

tls_min_version (enum)

Default: TLS_VERSION_1_2

Specify the minimum supported TLS protocol version.

5.5.11. Class DHParam

The DHParam class stores DH parameters. The DH parameters must be in PEM format.

When configuring Vela manually using its configuration file, use the regular constructor of the DHParam class
to load DH parameters key from a string. To load DH parameters key from a file, use the DHParam.fromFile
method.

Example 5.19. Loading DH parameters
The following example loads DH parameters from the configuration file.

my_dh_params = "-----BEGIN DH PARAMETERS-----

MIIBCAKCAQEAvvO8WguTNtkDs33qe5u1T7IjllmTrRnwFV4z7W4A0Du9j+prdRdD

UAblHYBrQn30Fsfg/6WDVTmUj8Lvgn9aFjWYTe6U3Ey7CQt4MBw2BhCO3Rl9KDw7

Im8UdBBhxuekuqZGifMkEEFzAcbiQepvBXiGMucDWgbLaaTY/FrKqb5O9DvoenSV

Aj/VNFnsefQTHXGo1Urg8ixaWj7kTNhM3x7kj7BhK4ALfBuv/93aet2SQjU207C6

0j3mku8CD93Xsbng6rIzmRd6pCANEFH0Rgo1OX7+vMwwG5h5YDsF8cVAcRroZkxR

dyPdVNzYlz1X3Jxln3It/6F2yyx/FOXAGwIBAg==

-----END DH PARAMETERS-----"

my_dh_params_object = DHParam(my_dh_params)

The following example loads DH parameters key from an external file.

my_dh_params_object = DHParam.fromFile("/tmp/my_dh_params.pem")

5.5.11.1. Attributes of DHParam

params (string)

Default: ""

214www.balasys.hu

Class DHParam

params (string)

The path and filename to the DH parameters file. The DH parameters must be in PEM format.

5.5.11.2. DHParam methods

DescriptionMethod

Load DH parameters key from a string__init__(self, params)

Load a DH parameters from a filefromFile(file_path)
Table 5.48. Method summary

Method __init__(self, params)

Initializes a DHParam instance by loading DH parameters key from a string. To load a DH parameters from a
file, use the DHParam.fromFile method.

Arguments of __init__

params (certificate)

Default: n/a

The path and filename to the DH parameters file. The DH parameters must be in PEM format.

Method fromFile(file_path)

Initializes a DHParam instance by loading a DH parameters from a file.

Arguments of fromFile

file_path (dhparam)

Default: n/a

The path and filename to the DH parameters file. The DH parameters must be in PEM format.

5.5.12. Class DynamicCertificate

This class is able to generate certificates mimicking another certificate, primarily used to transfer the information
of a server's certificate to the client in keybridging. Can be used only in TwoSidedEncryption. For details on
configuring keybridging, see Procedure 3.2.8, Configuring keybridging (p. 26).

215www.balasys.hu

Class DynamicCertificate

5.5.12.1. DynamicCertificate methods

DescriptionMethod

Initializes a DynamicCertificate instance to use for
keybridging

__init__(self, private_key, trusted_ca, untrusted_ca,
cache_directory, extension_whitelist)

Table 5.49. Method summary

Method __init__(self, private_key, trusted_ca, untrusted_ca, cache_directory, extension_whitelist)

Arguments of __init__

cache_directory (string)

Default: None

The cache directory to store the keybridged generated certificates, for example, /var/lib/vela/tlsbridge/.
The vela user must have write privileges for this directory.

extension_whitelist (complex)

Default: None

private_key (class)

Default: n/a

The private key of the CA certificate set in trusted_ca

trusted_ca (class)

Default: n/a

The CA certificate that will used to sign the keybridged certificate of trusted peers.

untrusted_ca (class)

Default: n/a

The CA certificate that will used to sign the keybridged certificate of untrusted peers.

5.5.13. Class DynamicServerEncryption

The DynamicServerEncryption class handles scenarios when both the client-firewall and the firewall-server
connections could be encrypted but the server side encryption parameters set dynamically from proxies.

216www.balasys.hu

Class DynamicServerEncryption

5.5.13.1. Attributes of DynamicServerEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_security (enum)

Default: n/a

Set security mode.

client_tls_options (class)

Default: ClientTLSOptions()

The protocol-level encryption settings used on the client side. This must be a ClientTLSOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

5.5.13.2. DynamicServerEncryption methods

DescriptionMethod

Initializes TLS connection on the client side.__ i n i t __ (s e l f , c l i e n t _ s e cu r i t y,
client_certificate_generator, client_verify,
client_tls_options)

Table 5.50. Method summary

Method __init__(self, client_security, client_certificate_generator, client_verify, client_tls_options)

The DynamicServerEncryption class handles scenarios when both the client-firewall and the firewall-server
connections could be encrypted but the server side encryption parameters set dynamically from proxies.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

217www.balasys.hu

Class DynamicServerEncryption

client_tls_options (class)

Default: ClientTLSOptions()

The protocol-level encryption settings used on the client side. This must be a ClientTLSOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

5.5.14. Class EncryptionPolicy

This class encapsulates a named set of encryption settings and an associated Encryption policy instance.
Encryption policies provide a way to re-use encryption settings without having to define encryption settings
for each service individually.

5.5.14.1. Attributes of EncryptionPolicy

encryption (class)

Default: n/a

An encryption scenario instance that will be used in the Encryption Policy.
This describes the scenario and the settings how encryption is used in the scenario, for example:

■ Both the client-side and the server-side connections are encrypted (TwoSidedEncryption)

■ Only the client-side connection is encrypted (ClientOnlyEncryption)

■ Only the server-side connection is encrypted (ServerOnlyEncryption)

■ STARTTLS is enabled (ClientOnlyStartTLSEncryption, FakeStartTLSEncryption, or
ForwardStartTLSEncryption)

To customize the settings of a scenario (for example, to set the used certificates), derive a class from the
selected scenario, set its parameters as needed for your environment, and use the customized class.

name (string)

Default: n/a

Name identifying the Encryption policy.

218www.balasys.hu

Class EncryptionPolicy

5.5.14.2. EncryptionPolicy methods

DescriptionMethod

Constructor to create an Encryption policy.__init__(self, name, encryption)
Table 5.51. Method summary

Method __init__(self, name, encryption)

This constructor initializes an Encryption policy, based on the settings of the encryption parameter. This
describes the scenario and the settings how encryption is used in the scenario, for example:

■ Both the client-side and the server-side connections are encrypted (TwoSidedEncryption)

■ Only the client-side connection is encrypted (ClientOnlyEncryption)

■ Only the server-side connection is encrypted (ServerOnlyEncryption)

■ STARTTLS is enabled (ClientOnlyStartTLSEncryption, FakeStartTLSEncryption, or
ForwardStartTLSEncryption)

To customize the settings of a scenario (for example, to set the used certificates), derive a class from the selected
scenario, set its parameters as needed for your environment, and use the customized class.

Arguments of __init__

encryption (class)

Default: n/a

An encryption scenario instance that will be used in the Encryption Policy.

name (string)

Default: n/a

Name identifying the Encryption policy.

5.5.15. Class FakeStartTLSEncryption

The FakeStartTLSEncryption class handles scenarios when the client can optionally request STARTTLS
encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS. The
server-side connection will always be encrypted.

Warning
If the client does not send a STARTTLS request, the client-side communication will not be encrypted at all. The server-side connection
will always be encrypted.

219www.balasys.hu

Class FakeStartTLSEncryption

5.5.15.1. Attributes of FakeStartTLSEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_tls_options (class)

Default: ClientTLSOptions()

The protocol-level encryption settings used on the client side. This must be a ClientTLSOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

server_tls_options (class)

Default: ServerTLSOptions()

The protocol-level encryption settings used on the server side. This must be a ServerTLSOptions instance.

server_verify (class)

Default: ServerCertificateVerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.15.2. FakeStartTLSEncryption methods

DescriptionMethod

Initializes a FakeStartTLSEncryption instance to
handle scenarios when the client can optionally request
STARTTLS encryption.

__init__(self, client_certificate_generator,
client_verify, server_verify, client_tls_options,
server_tls_options)

Table 5.52. Method summary

Method __init__(self, client_certificate_generator, client_verify, server_verify, client_tls_options,
server_tls_options)

The FakeStartTLSEncryption class handles scenarios when the client can optionally request STARTTLS
encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS. The
server-side connection will always be encrypted.

220www.balasys.hu

Class FakeStartTLSEncryption

Warning
If the client does not send a STARTTLS request, the client-side communication will not be encrypted at all. The server-side connection
will always be encrypted.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_tls_options (class)

Default: ClientTLSOptions()

The protocol-level encryption settings used on the client side. This must be a ClientTLSOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

server_tls_options (class)

Default: ServerTLSOptions()

The protocol-level encryption settings used on the server side. This must be a ServerTLSOptions instance.

server_verify (class)

Default: ServerCertificateVerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.16. Class ForwardStartTLSEncryption

The ForwardStartTLSEncryption class handles scenarios when the client can optionally request STARTTLS
encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS, and the
request will be forwarded to the server. If the server supports STARTTLS, the server-side connection will also
use STARTTLS.

Warning
If the client does not send a STARTTLS request, the communication will not be encrypted at all. Both the client-Vela and the Vela-server
connections will be unencrypted.

221www.balasys.hu

Class ForwardStartTLSEncryption

5.5.16.1. Attributes of ForwardStartTLSEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_tls_options (class)

Default: ClientTLSOptions()

The protocol-level encryption settings used on the client side. This must be a ClientTLSOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

server_tls_options (class)

Default: ServerTLSOptions()

The protocol-level encryption settings used on the server side. This must be a ServerTLSOptions instance.

server_verify (class)

Default: ServerCertificateVerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.16.2. ForwardStartTLSEncryption methods

DescriptionMethod

Initializes a ForwardStartTLSEncryption instance to
handle scenarios when the client can optionally request
STARTTLS encryption.

__init__(self, client_certificate_generator,
client_verify, server_verify, client_tls_options,
server_tls_options)

Table 5.53. Method summary

Method __init__(self, client_certificate_generator, client_verify, server_verify, client_tls_options,
server_tls_options)

Initializes a ForwardStartTLSEncryption instance to handle scenarios when the client can optionally request
STARTTLS encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS,
and the request will be forwarded to the server. If the server supports STARTTLS, the server-side connection
will also use STARTTLS.

222www.balasys.hu

Class ForwardStartTLSEncryption

Warning
If the client does not send a STARTTLS request, the communication will not be encrypted at all. Both the client-Vela and the Vela-server
connections will be unencrypted.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_tls_options (class)

Default: ClientTLSOptions()

The protocol-level encryption settings used on the client side. This must be a ClientTLSOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

server_tls_options (class)

Default: ServerTLSOptions()

The protocol-level encryption settings used on the server side. This must be a ServerTLSOptions instance.

server_verify (class)

Default: ServerCertificateVerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.17. Class PrivateKey

The PrivateKey class stores a private key and optionally a passphrase for the private key. The private key must
be in PEM format.

When configuring Vela manually using its configuration file, use the regular constructor of the PrivateKey
class to load a private key from a string. To load a private key from a file, use the PrivateKey.fromFilemethod.

Example 5.20. Loading a private key
The following example loads a private key from the configuration file.

my_private_key = "-----BEGIN RSA PRIVATE KEY-----

MIIEpgIBAAKCAQEA9rbxqq+Zi70nRFAZe7SCTB6VgzP1PhkiUm0PmbwFmROSlSSy

yMPSyIzaQqwELyOSQTZtsT3jhd6MCFPBZntym63/GwDuethGSjE9y8rt/9yr+T3I

zz+6ABnZXHJ38tdGYataF1Ndi3CsY5NXGszVFv1Is17P5mbYWQgJ7QzI/a5mPKa+

9pVXsDQthEV3BVUawIEJJnS0THD5XVQJ/MX6F4RPn+2MC9i/RbcA0RVnLPmt2eiy

223www.balasys.hu

Class PrivateKey

NV3+55sKdd7GpdMmEbRv9HZyW2xJNyu1xYbwU9YIP88dHCgvqoOgkAX2HLxCJOy6

2gvsS8J7HEbohD98dxPJX7P8w9juORi6Hpsq0wIDAQABAoIBAQDXStIdJtuRC+GG

RXfXca/6iP3j3qV2KSzATRe+CkvAR0o1CC9T7z6zb+bPI5kLIblxWvPiJaW0nn4I

jj5JFhTvMalagTeaz7yW5d2NR2rlSkZwW7Au2uePSv9ZIzL1IVLzzDnz/PW2xv5I

br0mT/Tr+N9GV8iIwNqu5sryp6OFasKB/55LhCcKVYrkdy2WhJc8Y8TXUjF4n8Jn

Xuyd44N6uu5RUiEgN7bPszO1F1T8ujCICwDNnYUw9lwSVvEC2EbTg84lu2UcnE4k

grB7rCKLooDpYlKjXx/1o9Dj9Uv3hwLpSTw2dYRoZS0kOFIKYACP1QcininrTGeL

cOPXyK6BAoGBAPvnBd7/U94Krp9Bp3jjxUEnlFrgf+B7QgRKpG7tN3RDRJmIVL8Z

mnxvbW6o4hsq4TzF/ratnRjqp+79Tw5wUz36G98ftWlTUs62OBznIkwImDGo+ysv

3QK8XUZ4Wg3EcnE5bG8AmOKoDRazc0g7UxopbHC+SNLRMZA/2dBvVh4zAoGBAPq6

UWIfcSnLyFYy7EPh3P7qmotBNPORgcX6aKdwR7pzk6MqTADHxKvIP+eeDEWpF58T

RYBW7KxN4h6cNMglRZBbhED3hONJkpYMGSq0hyczN40SIHHrf3iBO7p35v7Eee82

2H/rT6BNrQF1fPIbz5spgT+eV5BuTAB7bsbWiuDhAoGBALVAgeT26y21mfhVkV9W

5LQA+qp5JworJlFYNADtBx3M2StwASqQDazDsIYTVr4dmHvWK3Teb09iaPt5oMzO

3daWhD+D3VCv98FtM+r4FKGI/Zmd8Twd8HTrfGIcbw/A7mex3efxEhDkwqY28Rhk

N2N3suNcx6GJjJQynVNxCRIpAoGBAOJyIEqUxynOiPOBLm3osiXxUP7wN5i8FA7w

qFCBUecNt4uoCdiyk+fqBf10evT3UQQ07ZKJ71t3RAANaIZTU06buQjMBFMbAa9O

4fP19BLtaQCaHH+HCCuX3I/+9rumS9JHIKX3qoTHYrdsmxo3D/u9MqR4p/EkDLRq

xpQC9I9BAoGBAPZtxtEKc0xhYeuor4qIQbt1edrO+cfEzaXyUvjleLdg8rU3Yeh3

JLbYgcSNr4rMvEwhuvwbwgWJjed7TvqjKKEYYSWW2ESwcmAjNIhDBVzX9oh1cY34

Ae/P63OHt89sWbb5oG2+fcb7xCwH3kYmVgT4/xPv0FQRspwpErKYlCWg

-----END RSA PRIVATE KEY-----"

my_private_key_object = PrivateKey(my_private_key, 'mypassphrase')

The following example loads a private key from an external file.

my_private_key_object = PrivateKey.fromFile("/tmp/my_private.key", 'mypassphrase')

5.5.17.1. Attributes of PrivateKey

key_file_path (string)

Default: ""

The path and filename to the private key file. The private key must be in PEM format.

passphrase (string)

Default: None

Passphrase used to access the private key specified in key_file_path.

5.5.17.2. PrivateKey methods

DescriptionMethod

Load a private key from a string, and access it using
its passphrase

__init__(self, key, passphrase)

Load a private key from a file, and access it using its
passphrase

fromFile(key_file_path, passphrase)

Table 5.54. Method summary

Method __init__(self, key, passphrase)

Initializes a PrivateKey instance by loading a private key from a string, and accesses it using its passphrase.
To load a private key from a file, use the PrivateKey.fromFile method.

224www.balasys.hu

Class PrivateKey

Arguments of __init__

key_file_path (certificate)

Default: n/a

The path and filename to the private key file. The private key must be in PEM format.

passphrase (string)

Default: None

Passphrase used to access the private key specified in key_file_path.

Method fromFile(key_file_path, passphrase)

Initializes a PrivateKey instance by loading a private key from a file, and accesses it using its passphrase.

Arguments of fromFile

key_file_path (certificate)

Default: n/a

The path and filename to the private key file. The private key must be in PEM format.

passphrase (string)

Default: None

Passphrase used to access the private key specified in key_file_path.

5.5.18. Class SNIBasedCertificate

This class adds support for the Server Name Indication (SNI) TLS extension, as described in RFC 6066. It
stores a mapping between hostnames and certificates, and automatically selects the certificate to show to the
peer if the peer has sent an SNI request.

5.5.18.1. Attributes of SNIBasedCertificate

default (complex)

Default: None

The certificate to show to the peer if no matching hostname is found in hostname_certificate_map.

hostname_certificate_map (complex)

Default: n/a

225www.balasys.hu

Class SNIBasedCertificate

http://tools.ietf.org/html/rfc6066

hostname_certificate_map (complex)

A hash containing a matcher-certificate map. Each element of the hash contains a matcher and a certificate:
if a matcher matches the hostname in the SNI request, the certificate is showed to the peer. You can use any
matcher policy, though in most cases, RegexpMatcher will be adequate. Different elements of the hash can
use different types of matchers, for example, RegexpMatcher and RegexpFileMatcher. For details on matcher
policies, see Section 5.8, Module Matcher (p. 243).

hostname_certificate_map={

RegexpMatcher(

match_list=("myfirstdomain.example.com",)): StaticCertificate(

certificates=(Certificate.fromFile(

certificate_file_path="/etc/key.d/myfirstdomain/cert.pem",

private_key=PrivateKey.fromFile(

"/etc/key.d/myfirstdomain/key.pem")),)),}

5.5.18.2. SNIBasedCertificate methods

DescriptionMethod

__init__(self, hostname_certificate_map, default)
Table 5.55. Method summary

Method __init__(self, hostname_certificate_map, default)

Arguments of __init__

default (complex)

Default: None

The certificate to show to the peer if no matching hostname is found in hostname_certificate_map.

hostname_certificate_map (complex)

Default: n/a

A matcher-certificate map that describes which certificate will be showed to the peer if the matcher part
matches the hostname in the SNI request. For details on matcher policies, see Section 5.8, Module
Matcher (p. 243).

5.5.19. Class ServerCertificateVerifier

This class includes the settings and options used to verify the certificates of the peers in server-side TLS
connections. Note that the ServerCertificateVerifier class always requests a certificate from the server.

226www.balasys.hu

Class ServerCertificateVerifier

5.5.19.1. Attributes of ServerCertificateVerifier

check_subject (boolean)

Default: TRUE

If the check_subject parameter is TRUE, the Subject of the server-side certificate is compared with
application-layer information (for example, it checks whether the Subject matches the hostname in the URL).
For details, see Section 3.2.5, Certificate verification options (p. 23).

intermediate_revocation_check_type (enum)

Default: TLS_INTERMEDIATE_REVOCATION_SOFT_FAIL

Specify how intermediate certificates revocation status check should work.

leaf_revocation_check_type (enum)

Default: TLS_LEAF_REVOCATION_SOFT_FAIL

Specify how leaf certificate revocation status check should work.

trust_level (enum)

Default: TLS_TRUST_LEVEL_FULL

Specify which certificate should be accepted as trusted.

trusted_certs_directory (string)

Default: ""

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP
address shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA.
Each file in the directory should contain a certificate in PEM format. The filename must bethe IP address.

verify_ca_directory (string)

Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when the certificate of the peer is verified.

verify_crl_directory (string)

Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when the certificate of the peer is verified.

verify_depth (integer)

Default: 4

227www.balasys.hu

Class ServerCertificateVerifier

verify_depth (integer)

The length of the longest accepted CA verification chain. Longer CA chains are automatically rejected.

5.5.19.2. ServerCertificateVerifier methods

DescriptionMethod

Constructor to initialize a ServerCertificateVerifier
instance.

_ _ i n i t _ _ (s e l f , t r u s t _ l e v e l ,
i n t e r m e d i a t e _ r e v o c a t i o n _ c h e c k _ t y p e ,
leaf_revocation_check_type, trusted_certs_directory,
verify_depth, verify_ca_directory, verify_crl_directory,
check_subject)

Table 5.56. Method summary

Method __init__(self, trust_level, intermediate_revocation_check_type, leaf_revocation_check_type,
trusted_certs_directory, verify_depth, verify_ca_directory, verify_crl_directory, check_subject)

This constructor defines a ServerCertificateVerifier with the specified parameters.

Arguments of __init__

check_subject (boolean)

Default: TRUE

If the check_subject parameter is TRUE, the Subject of the server-side certificate is compared with
application-layer information (for example, it checks whether the Subject matches the hostname in the URL).
For details, see Section 3.2.5, Certificate verification options (p. 23).

intermediate_revocation_check_type (enum)

Default: TLS_INTERMEDIATE_REVOCATION_SOFT_FAIL

Specify how intermediate certificates revocation status check should work.

leaf_revocation_check_type (enum)

Default: TLS_LEAF_REVOCATION_SOFT_FAIL

Specify how leaf certificate revocation status check should work.

trust_level (enum)

Default: TLS_TRUST_LEVEL_FULL

Specify which certificate should be accepted as trusted.

228www.balasys.hu

Class ServerCertificateVerifier

trusted_certs_directory (string)

Default: ""

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP
address shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA.
Each file in the directory should contain a certificate in PEM format. The filename must bethe IP address.

verify_ca_directory (string)

Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when the certificate of the peer is verified.

verify_crl_directory (string)

Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when the certificate of the peer is verified.

verify_depth (integer)

Default: 4

The length of the longest accepted CA verification chain. Longer CA chains are automatically rejected.

5.5.20. Class ServerNoneVerifier

This class disables every certificate verification in server-side TLS connections.

5.5.21. Class ServerOnlyEncryption

The ServerOnlyEncryption class handles scenarios when only the Vela-server connection is encrypted, the
client-Vela connection is not.

5.5.21.1. Attributes of ServerOnlyEncryption

server_certificate_generator (class)

Default: None

The class that will generate the certificate that will be showed to the server. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

server_tls_options (class)

Default: ServerTLSOptions()

The protocol-level encryption settings used on the server side. This must be a ServerTLSOptions instance.

229www.balasys.hu

Class ServerNoneVerifier

server_verify (class)

Default: ServerCertificateVerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.21.2. ServerOnlyEncryption methods

DescriptionMethod

Initializes TLS connection on the server side.__init__(self, server_certificate_generator,
server_verify, server_tls_options)

Table 5.57. Method summary

Method __init__(self, server_certificate_generator, server_verify, server_tls_options)

The ServerOnlyEncryption class handles scenarios when only the Vela-server connection is encrypted, the
client-Vela connection is not.

Arguments of __init__

server_certificate_generator (class)

Default: None

The class that will generate the certificate that will be showed to the server. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

server_tls_options (class)

Default: ServerTLSOptions()

The protocol-level encryption settings used on the server side. This must be a ServerTLSOptions instance.

server_verify (class)

Default: ServerCertificateVerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.22. Class ServerTLSOptions

This class (based on the TLSOptions class) collects the TLS settings directly related to encryption, for example,
the permitted protocol versions, ciphers, session reuse settings, and so on.

5.5.22.1. Attributes of ServerTLSOptions

ciphers (enum)

Default: n/a

230www.balasys.hu

Class ServerTLSOptions

ciphers (enum)

Specifies the allowed ciphers. For details, see Table 5.29, Constants for cipher selection (p. 195).

ciphers_tlsv1_3 (enum)

Default: n/a

Specifies the allowed ciphers for TLSv1.3 connections. For details, see Table 5.30, Constants for TLSv1.3
cipher selection (p. 196).

disable_compression (boolean)

Default: TRUE

Set this to FALSE to support TLS compression. Please be mind that this option is ignored in TLSv1.3 as it
does not support compression.

disable_session_cache (boolean)

Default: TRUE

Do not store session information in the session cache. Set this option to FALSE to enable TLS session reuse.
Please be mind that this option is ignored in TLSv1.3 as it does not support session IDs.

disable_ticket (boolean)

Default: TRUE

Session tickets are a method for TLS session reuse, described in RFC 5077. Set this option to FALSE to
enable TLS session reuse using session tickets.

session_cache_size (integer)

Default: 20480

The number of sessions stored in the session cache for TLS session reuse. Please be mind that this option is
ignored in TLSv1.3 as it does not support session IDs.

shared_groups (enum)

Default: n/a

Specifies the allowed shared groups. For details, see Table 5.31, Constants for shared group selection (p. 196).

timeout (integer)

Default: 300

Drop idle connection if the timeout value (in seconds) expires.

231www.balasys.hu

Class ServerTLSOptions

tls_max_version (enum)

Default: TLS_VERSION_1_3

Specify the maximum supported TLS protocol version.

tls_min_version (enum)

Default: TLS_VERSION_1_2

Specify the minimum supported TLS protocol version.

5.5.22.2. ServerTLSOptions methods

DescriptionMethod

Constructor to initialize a ServerTLSOptions instance.__init__(self, tls_min_version, tls_max_version,
ciphers, ciphers_tlsv1_3, shared_groups, timeout,
session_cache_size, disable_session_cache,
disable_ticket, disable_compression)

Table 5.58. Method summary

Method __init__(self, tls_min_version, tls_max_version, ciphers, ciphers_tlsv1_3, shared_groups,
timeout, session_cache_size, disable_session_cache, disable_ticket, disable_compression)

This constructor defines a ServerTLSOptions with the specified parameters.

Arguments of __init__

ciphers (enum)

Default: n/a

Specifies the allowed ciphers. For details, see Table 5.29, Constants for cipher selection (p. 195).

ciphers_tlsv1_3 (enum)

Default: n/a

Specifies the allowed ciphers for TLSv1.3 connections. For details, see Table 5.30, Constants for TLSv1.3
cipher selection (p. 196).

disable_session_cache (boolean)

Default: TRUE

Do not store session information in the session cache. Set this option to FALSE to enable TLS session reuse.
Please be mind that this option is ignored in TLSv1.3 as it does not support session IDs.

232www.balasys.hu

Class ServerTLSOptions

disable_ticket (boolean)

Default: TRUE

Session tickets are a method for TLS session reuse, described in RFC 5077. Set this option to FALSE to
enable TLS session reuse using session tickets.

session_cache_size (integer)

Default: 20480

The number of sessions stored in the session cache for TLS session reuse. Please be mind that this option is
ignored in TLSv1.3 as it does not support session IDs.

shared_groups (enum)

Default: n/a

Specifies the allowed shared groups. For details, see Table 5.31, Constants for shared group selection (p. 196).

timeout (integer)

Default: 300

Drop idle connection if the timeout value (in seconds) expires.

tls_max_version (enum)

Default: TLS_VERSION_1_3

Specify the maximum supported TLS protocol version.

tls_min_version (enum)

Default: TLS_VERSION_1_2

Specify the minimum supported TLS protocol version.

5.5.23. Class StaticCertificate

This class encapsulates a static Certificate that can be used in TLS connections.

5.5.23.1. Attributes of StaticCertificate

certificates (complex)

Default: n/a

List of certificate instances to show to the peer.

233www.balasys.hu

Class StaticCertificate

5.5.23.2. StaticCertificate methods

DescriptionMethod

Initializes a static Certificate object.__init__(self, certificates)
Table 5.59. Method summary

Method __init__(self, certificates)

A static Certificate that can be used in TLS connections.

Arguments of __init__

certificates (complex)

Default: n/a

List of certificate instances to show to the peer.

5.5.24. Class TLSOptions

This class collects the TLS settings directly related to encryption, for example, the permitted protocol versions,
ciphers, session reuse settings, and so on. Note that you cannot use this class directly, use an appropriate derived
class, for example, ClientTLSOptions or ServerTLSOptions instead.

5.5.24.1. Attributes of TLSOptions

ciphers (complex)

Default: n/a

Specifies the allowed ciphers. For details, see Table 5.29, Constants for cipher selection (p. 195).

ciphers_tlsv1_3 (complex)

Default: n/a

Specifies the allowed ciphers for TLSv1.3 connections. For details, see Table 5.30, Constants for TLSv1.3
cipher selection (p. 196).

disable_compression (boolean)

Default: TRUE

Set this to FALSE to support TLS compression. Please be mind that this option is ignored in TLSv1.3 as it
does not support compression.

disable_session_cache (boolean)

Default: TRUE

234www.balasys.hu

Class TLSOptions

disable_session_cache (boolean)

Do not store session information in the session cache. Set this option to FALSE to enable TLS session reuse.
Please be mind that this option is ignored in TLSv1.3 as it does not support session IDs.

disable_ticket (boolean)

Default: TRUE

Session tickets are a method for TLS session reuse, described in RFC 5077. Set this option to FALSE to
enable TLS session reuse using session tickets.

session_cache_size (integer)

Default: 20480

The number of sessions stored in the session cache for TLS session reuse. Please be mind that this option is
ignored in TLSv1.3 as it does not support session IDs.

shared_groups (complex)

Default: n/a

Specifies the allowed shared groups. For details, see Table 5.31, Constants for shared group selection (p. 196).

timeout (integer)

Default: 300

Drop idle connection if the timeout value (in seconds) expires.

tls_max_version (enum)

Default: TLS_VERSION_1_3

Specify the maximum supported TLS protocol version.

tls_min_version (enum)

Default: TLS_VERSION_1_2

Specify the minimum supported TLS protocol version.

235www.balasys.hu

Class TLSOptions

5.5.24.2. TLSOptions methods

DescriptionMethod

Constructor to initialize an TLSOptions instance.__init__(self, tls_min_version, tls_max_version,
ciphers, ciphers_tlsv1_3, shared_groups, timeout,
session_cache_size, disable_session_cache,
disable_ticket, disable_compression)

Table 5.60. Method summary

Method __init__(self, tls_min_version, tls_max_version, ciphers, ciphers_tlsv1_3, shared_groups,
timeout, session_cache_size, disable_session_cache, disable_ticket, disable_compression)

This constructor defines an TLSOptions with the specified parameters.

Arguments of __init__

ciphers (enum)

Default: n/a

Specifies the allowed ciphers. For details, see Table 5.29, Constants for cipher selection (p. 195).

ciphers_tlsv1_3 (enum)

Default: n/a

Specifies the allowed ciphers for TLSv1.3 connections. For details, see Table 5.30, Constants for TLSv1.3
cipher selection (p. 196).

disable_session_cache (boolean)

Default: TRUE

Do not store session information in the session cache. Set this option to FALSE to enable TLS session reuse.
Please be mind that this option is ignored in TLSv1.3 as it does not support session IDs.

disable_ticket (boolean)

Default: TRUE

Session tickets are a method for TLS session reuse, described in RFC 5077. Set this option to FALSE to
enable TLS session reuse using session tickets.

session_cache_size (integer)

Default: 20480

The number of sessions stored in the session cache for TLS session reuse. Please be mind that this option is
ignored in TLSv1.3 as it does not support session IDs.

236www.balasys.hu

Class TLSOptions

shared_groups (enum)

Default: n/a

Specifies the allowed shared groups. For details, see Table 5.31, Constants for shared group selection (p. 196).

timeout (integer)

Default: 300

Drop idle connection if the timeout value (in seconds) expires.

tls_max_version (enum)

Default: TLS_VERSION_1_3

Specify the maximum supported TLS protocol version.

tls_min_version (enum)

Default: TLS_VERSION_1_2

Specify the minimum supported TLS protocol version.

5.5.25. Class TwoSidedEncryption

The TwoSidedEncryption class handles scenarios when both the client-Vela and the Vela-server connections
are encrypted. If you do not need encryption on the client- or the server-side, use the ServerOnlyEncryption or
ClientOnlyEncryption classes, respectively. For a detailed example on keybridging, see Procedure 3.2.8,
Configuring keybridging (p. 26).

5.5.25.1. Attributes of TwoSidedEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_tls_options (class)

Default: ClientTLSOptions()

The protocol-level encryption settings used on the client side. This must be a ClientTLSOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

237www.balasys.hu

Class TwoSidedEncryption

server_certificate_generator (class)

Default: None

The class that will generate the certificate that will be showed to the server. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

server_tls_options (class)

Default: ServerTLSOptions()

The protocol-level encryption settings used on the server side. This must be a ServerTLSOptions instance.

server_verify (class)

Default: ServerCertificateVerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.25.2. TwoSidedEncryption methods

DescriptionMethod

Initializes TLS connection with both peers.__init__(self, client_certificate_generator,
server_certificate_generator, client_verify,
server_verify, client_tls_options, server_tls_options)

Table 5.61. Method summary

Method __init__(self, client_certificate_generator, server_certificate_generator, client_verify,
server_verify, client_tls_options, server_tls_options)

The TwoSidedEncryption class handles scenarios when both the client-Vela and the Vela-server connections
are encrypted.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate that will be showed to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_tls_options (class)

Default: ClientTLSOptions()

The protocol-level encryption settings used on the client side. This must be a ClientTLSOptions instance.

238www.balasys.hu

Class TwoSidedEncryption

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

server_certificate_generator (class)

Default: None

The class that will generate the certificate that will be showed to the server. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

server_tls_options (class)

Default: ServerTLSOptions()

The protocol-level encryption settings used on the server side. This must be a ServerTLSOptions instance.

server_verify (class)

Default: ServerCertificateVerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.6. Module Ids

The IDS settings of the proxies is in a separate entity called Ids policy. That way, you can easily share and
reuse encryption settings between different services: you have to configure the Ids policy once, and you can
use it in multiple services.

5.6.1. Classes in the Ids module

DescriptionClass

Settings needed to send data towards an IDS.Ids

Class encapsulating a named set of ids settings.IdsPolicy
Table 5.62. Classes of the Ids module

5.6.2. Class Ids

5.6.2.1. Attributes of Ids

interface_name (string)

Default: n/a

The network interface name on which the traffic is sent.

239www.balasys.hu

Module Ids

mac_address (string)

Default: n/a

The MAC address of the ids.

5.6.2.2. Ids methods

DescriptionMethod

Settings needed to send data towards an IDS.__init__(self, interface_name, mac_address)
Table 5.63. Method summary

Method __init__(self, interface_name, mac_address)

Arguments of __init__

interface_name (string)

Default: n/a

The network interface name on which the traffic is sent.

mac_address (string)

Default: n/a

The MAC address of the IDS.

5.6.3. Class IdsPolicy

This class encapsulates a named set of ids settings and an associated Ids policy instance. Ids policies provide
a way to re-use ids settings without having to define ids settings for each service individually.

5.6.3.1. Attributes of IdsPolicy

ids (class)

Default: n/a

An ids configuration instance that will be used in the Ids Policy.
This describes the settings to connect to the IDS.

name (string)

Default: n/a

Name identifying the Ids policy.

240www.balasys.hu

Class IdsPolicy

5.6.3.2. IdsPolicy methods

DescriptionMethod

Constructor to create an Ids policy.__init__(self, name, ids)
Table 5.64. Method summary

Method __init__(self, name, ids)

This constructor initializes an Ids policy, based on the settings of the ids parameter. This describes the settings
to connect to the IDS

Arguments of __init__

ids (class)

Default: n/a

An ids settings instance that will be used in the Ids Policy.

name (string)

Default: n/a

Name identifying the Ids policy.

5.7. Module Keybridge

Keybridging is a method to let the client see a copy of the server's certificate (or vice versa), allowing it to
inspect it and decide about its trustworthiness. Because of proxying the SSL/TLS connection, the client is not
able to inspect the certificate of the server directly, therefore a certificate based on the server's certificate is
generated on-the-fly. This generated certificate is presented to the client.

For details on configuring keybridging, see Procedure 3.2.8, Configuring keybridging (p. 26).

5.7.1. Classes in the Keybridge module

DescriptionClass

Class to perform SSL keybridging.X509KeyBridge
Table 5.65. Classes of the Keybridge module

5.7.2. Class X509KeyBridge

This class is able to generate certificates mimicking another certificate, primarily used to transfer the information
of a server's certificate to the client in keybridging. For details on configuring keybridging, see Procedure 3.2.8,
Configuring keybridging (p. 26).

241www.balasys.hu

Module Keybridge

5.7.2.1. Attributes of X509KeyBridge

cache_directory (string)

Default: ""

The directory where all automatically generated certificates are cached.

key_file (string)

Default: ""

Name of the private key to be used for the newly generated certificates.

key_passphrase (string)

Default: ""

Passphrase required to access the private key stored in key_file.

trusted_ca_files (certificate)

Default: None

A tuple of cert_file, key_file, passphrase) for the CA used for keybridging trusted certificates.

untrusted_ca_files (certificate)

Default: None

A tuple of cert_file, key_file, passphrase) for the CA used for keybridging untrusted certificates.

5.7.2.2. X509KeyBridge methods

DescriptionMethod

None_old_init(self, key_file, cache_directory,
trusted_ca_files, untrusted_ca_files, key_passphrase,
extension_whitelist)

Table 5.66. Method summary

Method _old_init(self, key_file, cache_directory, trusted_ca_files, untrusted_ca_files, key_passphrase,
extension_whitelist)

n/a

Arguments of _old_init

cache_directory (string)

Default: "/var/lib/vela/keybridge-cache"

242www.balasys.hu

Class X509KeyBridge

cache_directory (string)

The directory where all automatically generated certificates are cached.

extension_whitelist (complex)

Default: None

The following certificate extensions are transfered to the client side: Key Usage, Subject Alternative

Name, Extended Key Usage. Other extensions will be automatically deleted during keybridging. This is
needed because some certificate extensions contain references to the Issuer CA, which references become
invalid for keybridged certificates. To transfer other extensions, list them in the extension_whitelist
parameter. Note that modifying this parameter replaces the default values, so to extend the list of transferred
extensions, include the 'keyUsage', 'subjectAltName', 'extendedKeyUsage' list as well. For
example:

self.extension_whitelist = ('keyUsage', 'subjectAltName', 'extendedKeyUsage',

'customExtension')

key_file (certificate)

Default: n/a

Name of the private key to be used for the newly generated certificates.

key_passphrase (string)

Default: ""

Passphrase required to access the private key stored in key_file.

trusted_ca_files (certificate)

Default: n/a

A tuple of cert_file, key_file, passphrase) for the CA used for keybridging trusted certificates.

untrusted_ca_files (certificate)

Default: None

A tuple of cert_file, key_file, passphrase) for the CA used for keybridging untrusted certificates.

5.8. Module Matcher

In general, matcher policies can be used to find out if a parameter is included in a list (or which elements of a
list correspond to a certain parameter), and influence the behavior of the proxy class based on the results.
Matchers can be used for a wide range of tasks, for example, to determine if the particular IP address or URL
that a client is trying to access is on a black or whitelist, or to verify that a particular e-mail address is valid.

243www.balasys.hu

Module Matcher

5.8.1. Classes in the Matcher module

DescriptionClass

Class encapsulating the abstract string matcher.AbstractMatcher

Matcher for implementing logical expressions based
on other matchers.

CombineMatcher

DNS matcherDNSMatcher

Class encapsulating a Matcher which can be used by
a name.

MatcherPolicy

Class encapsulating Matcher which uses regular
expressions stored in files for string matching.

RegexpFileMatcher

Class encapsulating a Matcher which uses regular
expressions for string matching.

RegexpMatcher

Class verifying the validity of the recipient addresses
in E-mails.

SmtpInvalidRecipientMatcher

Windows Update matcherWindowsUpdateMatcher
Table 5.67. Classes of the Matcher module

5.8.2. Class AbstractMatcher

This abstract class encapsulates a string matcher that determines whether a given string is found in a backend
database.

Specialized subclasses of AbstractMatcher exist such as 'RegexpFileMatcher' which use regular expressions
stored in flat files to find matches.

5.8.3. Class CombineMatcher

This matcher makes it possible to combine the results of several matchers using logical operations.
CombineMatcher uses prefix-notation in its expressions and uses the following format: the operand, a comma,
first argument, a comma, second argument. For example, an AND expression should be formatted the following
way: (V_AND, matcher1, matcher2). Expressions using more than one operands should be bracketed,
e.g., (V_OR (V_AND, matcher1, matcher2), matcher3). The following oprations are available:

■ V_AND : Logical AND operation.

■ V_OR : Logical OR operation.

■ V_XOR : Logical XOR operation.

■ V_NOT : Logical negation.

■ V_EQ : Logical equation.

244www.balasys.hu

Classes in the Matcher module

Example 5.21. Whitelisting e-mail recipients
A simple use for CombineMatcher is to filter the recipients of e-mail addresses using the following process:

An SmtpInvalidMatcher (called SmtpCheckrecipient) verifies that the recipient exists.1.

2. A RegexpMatcher (called SmtpWhitelist) or RegexpFileMatcher is used to check if the address is on a predefined list
(list of permitted addresses).

3. A CombineMatcher (called SmtpCombineMatcher) sums up the results of the matchers with a logical AND operation.

4. An SmtpProxy (called SmtpRecipientMatcherProxy) references SmtpCombineMatcher in its recipient_matcher
attribute.

Python:

class SmtpRecipientMatcherProxy(SmtpProxy):

recipient_matcher="SmtpCombineMatcher"

def config(self):

super(SmtpRecipientMatcherProxy, self).config()

MatcherPolicy(name="SmtpCombineMatcher", matcher=CombineMatcher (expr=(V_AND, "SmtpCheckrecipient",

"SmtpWhitelist")))

MatcherPolicy(name="SmtpWhitelist", matcher=RegexpMatcher (match_list=("info@example.com",),

ignore_list=None))

MatcherPolicy(name="SmtpCheckrecipient", matcher=SmtpInvalidRecipientMatcher (server_port=25,

cache_timeout=60, force_delivery_attempt=FALSE, server_name="recipientcheck.example.com"))

5.8.4. Class DNSMatcher

DNSMatcher retrieves the IP addresses of domain names. This can be used in domain name based policy
decisions, for example to allow encrypted connections only to trusted e-banking sites.

DNSMatcher operates as follows: it resolves the IP addresses stored in the list of domain names using the
specified Domain Name Server, and compares the results to the IP address of the connection (i.e., the IP address
of the server or the client). The matcher returns a true value if the IP addresses resolved from the list of domain
names include the IP address of the connection.

Example 5.22. DNSMatcher example
The following DNSMatcher class uses the dns.example.com name server to resolve the example2.com and example3.com domain
names.

MatcherPolicy(name="ExampleDomainMatcher", matcher=DNSMatcher(server="dns.example.com",

hosts=("example2.com", "example3.com")))

5.8.4.1. DNSMatcher methods

DescriptionMethod

Constructor to initialize an instance of the
DNSMatcher class.

__init__(self, hosts, server, resolve_on_init)

Table 5.68. Method summary

Method __init__(self, hosts, server, resolve_on_init)

This constructor initializes an instance of the DNSMatcher class.

245www.balasys.hu

Class DNSMatcher

Arguments of __init__

hosts (complex)

Default: n/a

Hostnames to resolve.

resolve_on_init (boolean)

Default: FALSE

Resolve all hostnames on startup time. Otherwise, names will be resolved on-demand.

server (string)

Default: None

IP address of the DNS server to query. Defaults to the servers set in the resolv.conf file.

5.8.5. Class MatcherPolicy

Matcher policies can be used to find out if a parameter is included in a list, or which elements of a list correspond
to a certain parameter), and influence the behavior of the proxy class based on the results. Matchers can be used
for a wide range of tasks, for example, to determine if the particular IP address or URL that a client is trying
to access is on a black or whitelist, or to verify that a particular e-mail address is valid.

MatcherPolicy instances are reusable matchers that contain configured instances of the matcher classes (e.g.,
DNSMatcher, RegexpMatcher). For examples, see the specific matcher classes.

5.8.6. Class RegexpFileMatcher

This class is similar to RegexpMatcher, but stores the regular expressions to match and ignore in files. For
example, this class can be used for URL filtering. The matcher itself stores only the paths and the filenames to
the lists. The file is automatically monitored and reloaded when it is modified. Searches are case-insensitive.

Example 5.23. RegexpFileMatcher example

MatcherPolicy(name="demo_regexpfilematcher",

matcher=RegexpFileMatcher(match_fname="/tmp/match_list.txt", ignore_fname="/tmp/ignore_list.txt"))

5.8.6.1. Attributes of RegexpFileMatcher

ignore_date (unknown)

Default: n/a

Date (in unix timestamp format) when the ignore_file was loaded.

246www.balasys.hu

Class MatcherPolicy

ignore_file (unknown)

Default: n/a

Name of the file storing the patterns to ignore.

match_date (unknown)

Default: n/a

Date (in unix timestamp format) when the match_file was loaded.

match_file (unknown)

Default: n/a

Name of the file storing the patterns for positive matches.

5.8.6.2. RegexpFileMatcher methods

DescriptionMethod

Constructor to initialize a RegexpFileMatcher instance.__init__(self, match_fname, ignore_fname)
Table 5.69. Method summary

Method __init__(self, match_fname, ignore_fname)

This constructor initializes an instance of the RegexpFileMatcher class.

Arguments of __init__

ignore_fname (filename)

Default: None

Name of the file storing the patterns to ignore.

match_fname (filename)

Default: None

Name of the file storing the patterns for positive matches.

5.8.7. Class RegexpMatcher

A simple regular expression based matcher with a match and an ignore list. Searches are case-insensitive.

Example 5.24. RegexpMatcher example
The following RegexpMatcher matches only the smtp.example.com string.

MatcherPolicy(name="Smtpdomains", matcher=RegexpMatcher (match_list=("smtp.example.com",),

ignore_list=None))

247www.balasys.hu

Class RegexpMatcher

5.8.7.1. Attributes of RegexpMatcher

ignore (unknown)

Default: n/a

A list of compiled regular expressions defining the strings to be ignored even if match resulted in a positive
match.

match (unknown)

Default: n/a

A list of compiled regular expressions which result in a positive match.

5.8.7.2. RegexpMatcher methods

DescriptionMethod

Constructor to initialize a RegexpMatcher instance.__init__(self, match_list, ignore_list, ignore_case)
Table 5.70. Method summary

Method __init__(self, match_list, ignore_list, ignore_case)

This constructor initializes a RegexpMatcher instance by setting the match and ignore attributes to an empty
list.

Arguments of __init__

ignore_list (filename)

Default: None

The list of regular expressions to ignore.

match_list (filename)

Default: None

The list of regular expressions to match.

5.8.8. Class SmtpInvalidRecipientMatcher

This class encapsulates a VRFY/RCPT based validity checker to transparently verify the existance of E-mail
addresses. Instead of immediately sending the e-mail to the recipient SMTP server, an independent SMTP
server is queuried about the existance of the recipient e-mail address.

Instances of this class can be referred to in the recipient_matcher attribute of the SmtpProxy class. The
SmtpProxy will automatically reject unknown recipients even if the recipient SMTP server would accept them.

248www.balasys.hu

Class SmtpInvalidRecipientMatcher

Example 5.25. SmtpInvalidMatcher example

Python:

class SmtpRecipientMatcherProxy(SmtpProxy):

recipient_matcher="SmtpCheckrecipient"

def config(self):

super(SmtpRecipientMatcherProxy, self).config()

MatcherPolicy(name="SmtpCheckrecipient", matcher=SmtpInvalidRecipientMatcher (server_port=25,

cache_timeout=60, force_delivery_attempt=FALSE, server_name="recipientcheck.example.com"))

5.8.8.1. SmtpInvalidRecipientMatcher methods

DescriptionMethod

__init__(self, server_name, server_port,
cache_timeout, force_delivery_attempt,
sender_address, bind_name)

Table 5.71. Method summary

Method __init__(self, server_name, server_port, cache_timeout, force_delivery_attempt, sender_address,
bind_name)

Arguments of __init__

bind_name (string)

Default: ""

Specifies the hostname to bind to before initiating the connection to the SMTP server.

cache_timeout (integer)

Default: 60

How long will the result of an address verification be retained (in seconds).

force_delivery_attempt (boolean)

Default: FALSE

Force a delivery attempt even if the autodetection code otherwise would use VRFY. Useful if the server
always returns success for VRFY.

sender_address (string)

Default: "<>"

This value will be used as the mail sender for the attempted mail delivery. Mail delivery is attempted if the
force_delivery_attempt is TRUE, or the recipient server does not support the VRFY command.

249www.balasys.hu

Class SmtpInvalidRecipientMatcher

server_name (string)

Default: n/a

Domain name of the SMTP server that will verify the addresses.

server_port (integer)

Default: 25

Port of the target server.

5.8.9. Class WindowsUpdateMatcher

WindowsUpdateMatcher is actually a DNSMatcher used to retrieve the IP addresses currently associated with
the v5.windowsupdate.microsoft.nsatc.net, v4.windowsupdate.microsoft.nsatc.net, and
update.microsoft.nsatc.net domain names from the specified name server. Windows Update is running
on a distributed server farm, using the DNS round robin method and a short TTL to constantly change the set
of servers currently visible, consequently the IP addresses of the servers are constantly changing.

Example 5.26. WindowsUpdateMatcher example

MatcherPolicy(name="demo_windowsupdatematcher", matcher=WindowsUpdateMatcher())

5.8.9.1. WindowsUpdateMatcher methods

DescriptionMethod

Constructor to initialize an instance of the
WindowsUpdateMatcher class.

__init__(self, server)

Table 5.72. Method summary

Method __init__(self, server)

This constructor initializes an instance of the WindowsUpdateMatcher class.

Arguments of __init__

server (string)

Default: None

The IP address of the name server to query.

5.9. Module NAT

Network Address Translation (NAT) is a technology that can be used to change source or destination addresses
in a connection from one IP address to another one. This module defines the classes performing the translation
for IP addresses.

250www.balasys.hu

Class WindowsUpdateMatcher

Several different NAT methods are supported using different NAT classes, like GeneralNAT or StaticNAT. To
actually perform network address translation in a service, you have to use a NATPolicy instance that contains
a configured NAT class. NAT policies provide a way to re-use NAT instances whithout having to define NAT
mappings for each service individually.

5.9.1. Classes in the NAT module

DescriptionClass

Class encapsulating the abstract NAT interface.AbstractNAT

Helper class to create packet mark value from gateway
index number

FWMark

Class encapsulating a general subnet-to-subnet NAT.GeneralNAT

Class which sets the address from a hash table.HashNAT

Class encapsulating a general subnet-to-subnet NAT.LinkAvailabilityPFNat

Class that performs translation from IPv4 to IPv6
addresses (NAT46)

NAT46

Class that performs translation from IPv6 to IPv4
addresses (NAT64)

NAT64

Class encapsulating named NAT instances.NATPolicy

Class generating a random IP address.RandomNAT

Class that replaces the source or destination address
with a predefined address.

StaticNAT

Table 5.73. Classes of the NAT module

5.9.2. Class AbstractNAT

This class encapsulates an interface for application level network address translation (NAT). This NAT is
different from the NAT used by packet filters: it modifies the outgoing source/destination addresses just before
Vela connects to the server.

Source and destination NATs can be specified when a Service is created.

The NAT settings are used by the ConnectChainer class just before connecting to the server.

5.9.2.1. AbstractNAT methods

DescriptionMethod

Constructor to initialize an AbstractNAT instance.__init__(self)

251www.balasys.hu

Classes in the NAT module

DescriptionMethod

Function that performs the address translation.performTranslation(self, session, addrs, nat_type)
Table 5.74. Method summary

Method __init__(self)

This constructor initializes an AbstractNAT instance. Currently it does nothing, but serves as a placeholder for
future extensions.

Method performTranslation(self, session, addrs, nat_type)

This function is called before connecting a session to the destination server. The function returns the address
(a SockAddr instance) to bind to before establishing the connection.

Arguments of performTranslation

addrs (unknown)

Default: n/a

tuple of (source, destination) address, any of them can be none in case of the other translation

nat_type (unknown)

Default: n/a

translation type, either NAT_SNAT or NAT_DNAT

session (unknown)

Default: n/a

Session which is about to connect the server.

252www.balasys.hu

Class AbstractNAT

5.9.3. Class FWMark

5.9.3.1. FWMark methods

DescriptionMethod

Constructor to initialize an FWMark instance.__init__(self, gw_mark)
Table 5.75. Method summary

Method __init__(self, gw_mark)

Arguments of __init__

gw_mark (integer)

Default: n/a

Index of gateway where packets routed to in advanced routing mode. 0 means default gateway in main routing
table.

5.9.4. Class GeneralNAT

This class encapsulates a general subnet-to-subnet NAT. It requires a list of from, to, translated to

parameters:

■ from: the source address of the connection.

■ to: the destination address of the connection.

■ translated to: the translated address.

If the NAT policy is used as SNAT, the translated address is used to translate the source address of the connection;
if the NAT policy is used as DNAT, the translated address is used to translate the destination address of the
connection. The translation occurs according to the first matching rule.

Example 5.27. GeneralNat example
The following example defines a simple GeneralNAT policy that maps connections coming from the 192.168.1.0/24 subnet and
targeting the 192.168.10.0/24 subnet into the 10.70.0.0/24 subnet.

NATPolicy(name="Demo_GeneralNAT", nat=GeneralNAT(mapping=((InetSubnet("192.168.1.0/24"),

InetSubnet("192.168.10.0/24"), InetSubnet("10.70.0.0/24")),)))

If the policy is used as SNAT, the 192.168.1.0/24 subnet is translated into the 10.70.0.0/24 subnet and used as the source address
of the connection. If the policy is used as DNAT, the 192.168.10.0/24 subnet is translated into the 10.70.0.0/24 subnet and used
as the target address of the connection.

253www.balasys.hu

Class FWMark

5.9.4.1. GeneralNAT methods

DescriptionMethod

Constructor to initialize a GeneralNAT instance.__init__(self, mapping)
Table 5.76. Method summary

Method __init__(self, mapping)

This constructor initializes a GeneralNAT instance.

Arguments of __init__

mapping (complex)

Default: n/a

List of tuples of InetSubnets in (source domain, destination domain, mapped domain) format.

5.9.5. Class HashNAT

HashNAT statically maps an IP address to another using a hash table. The table is indexed by the source IP
address, and the value is the translated IP address. Both IP addresses are stored in string format.

5.9.5.1. HashNAT methods

DescriptionMethod

Constructor to initialize a HashNAT instance.__init__(self, ip_hash, default_reject)
Table 5.77. Method summary

Method __init__(self, ip_hash, default_reject)

This constructor initializes a HashNAT instance.

Arguments of __init__

default_reject (boolean)

Default: TRUE

Enable this parameter to reject all connections outside the specific source range.

ip_hash (complex)

Default: n/a

The hash storing the IP address.

254www.balasys.hu

Class HashNAT

5.9.6. Class LinkAvailabilityPFNat

This class encapsulates a subnet-to-subnet NAT, which is usable in PFService only, and limited to SNAT. It
requires a list of from, to, translated to, fwmark parameters:

■ from: the source address of the connection.

■ to: the destination address of the connection.

■ translated to: the translated address.

■ fwmark: mark the packets of the traffic.

The NAT policy could be only used as SNAT, the translated address is used to translate the source address of
the connection. The translation occurs according to the first matching rule. The translation happens in
POSTROUTING mangle chain. This NAT adds an extra 4 bit FWMARK to the traffic, additionally to the PNS
MARK bits. This can be used for advanced routing by FWMARK.

5.9.6.1. LinkAvailabilityPFNat methods

DescriptionMethod

Constructor to initialize a LinkAvailabilityPFNat
instance.

__init__(self, mapping)

Table 5.78. Method summary

Method __init__(self, mapping)

This constructor initializes a LinkAvailabilityPFNat instance.

Arguments of __init__

mapping (complex)

Default: n/a

List of tuples in (source domain, destination domain, mapped domain, fwmark) format.

5.9.7. Class NAT46

NAT46 embeds and IPv4 address into a specific portion of the IPv6 address according to the NAT46 specification
as described in RFC6052 (http://tools.ietf.org/html/rfc6052#section-2.2).

255www.balasys.hu

Class LinkAvailabilityPFNat

5.9.7.1. NAT46 methods

DescriptionMethod

Constructor to initialize a NAT46 instance.__init__(self, prefix, prefix_mask, suffix)
Table 5.79. Method summary

Method __init__(self, prefix, prefix_mask, suffix)

This constructor initializes a NAT46 instance.

Arguments of __init__

prefix (string)

Default: "64:ff9b::"

This parameter specifies the common leading part of the IPv6 address that the IPv4 address should map into.
Bits that exceed the mask will be overwritten by the mapping.

prefix_mask (integer)

Default: 96

This parameter specifies the position to embed the IPv4 address to and must be one of 32, 40, 48, 56, 64, or
96.

suffix (string)

Default: "::"

This parameter specifies the common trailing part of the IPv6 address that the IPv4 address should map into.
The length of the suffix must not exceed the empty bit count determined by the configured prefix mask.

5.9.8. Class NAT64

NAT64 maps specific bits of the IPv6 address to IPv4 addresses according to the NAT64 specification as
described in RFC6052 (http://tools.ietf.org/html/rfc6052#section-2.2).

5.9.8.1. NAT64 methods

DescriptionMethod

Constructor to initialize a NAT64 instance.__init__(self, prefix_mask)
Table 5.80. Method summary

Method __init__(self, prefix_mask)

This constructor initializes a NAT64 instance.

256www.balasys.hu

Class NAT64

Arguments of __init__

prefix_mask (integer)

Default: 96

This parameter specifies the length of the IPv6 address to consider and must be one of 32, 40, 48, 56, 64, or
96.

5.9.9. Class NATPolicy

This class encapsulates a name and an associated NAT instance. NAT policies provide a way to re-use NAT
instances whithout having to define NAT mappings for each service individually.

Example 5.28. Using Natpolicies
The following example defines a simple NAT policy, and uses this policy for SNAT in a service.

NATPolicy(name="demo_natpolicy", nat=GeneralNAT(mapping=((InetSubnet(addr="10.0.1.0/24"),

InetSubnet(addr="192.168.1.0/24")),)))

Service(name="office_http_inter", proxy_class=HttpProxy, snat_policy="demo_natpolicy")

5.9.9.1. NATPolicy methods

DescriptionMethod

Constructor to initialize a NAT policy.__init__(self, name, nat, cacheable)
Table 5.81. Method summary

Method __init__(self, name, nat, cacheable)

This contructor initializes a NAT policy.

Arguments of __init__

cacheable (boolean)

Default: TRUE

Enable this parameter to cache the NAT decisions.

name (string)

Default: n/a

Name identifying the NAT policy.

nat (class)

Default: n/a

257www.balasys.hu

Class NATPolicy

nat (class)

NAT object which performs address translation.

5.9.10. Class RandomNAT

This class randomly selects an address from a list of IP addresses. This can be used for load-balancing several
lines by binding each session to a different interface.

5.9.10.1. RandomNAT methods

DescriptionMethod

Constructor to initialize a RandomNAT instance.__init__(self, addresses)
Table 5.82. Method summary

Method __init__(self, addresses)

This constructor initializes a RandomNAT instance.

Arguments of __init__

addresses (complex)

Default: n/a

List of the available interfaces. Each item of the list must be am instance of the SockAddr (or a derived)
class.

5.9.11. Class StaticNAT

This class assigns a predefined value to the address of the connection.

5.9.11.1. StaticNAT methods

DescriptionMethod

Constructor to initialize a StaticNAT instance.__init__(self, addr)
Table 5.83. Method summary

Method __init__(self, addr)

This constructor initializes a StaticNAT instance.

258www.balasys.hu

Class RandomNAT

Arguments of __init__

addr (sockaddr)

Default: n/a

The address that replaces all addresses.

5.10. Module Notification

5.10.1. Classes in the Notification module

DescriptionClass

Class encapsulating the abstract notification method.AbstractNotificationMethod

Class sending out notifications in e-mail.EmailNotificationMethod

Class encapsulating a NotificationPolicy which
describes how to send out notifications.

NotificationPolicy

Table 5.84. Classes of the Notification module

5.10.2. Class AbstractNotificationMethod

This abstract class encapsulates a notification that is performed when a certain event occurs.

Specialized classes can be derived from AbstractNotification, such as the EmailNotificationMethod class.

5.10.3. Class EmailNotificationMethod

This class encapsulates a notification handler that sends an e-mail with the given mail properties.

5.10.3.1. Attributes of EmailNotificationMethod

recipient (string)

Default: n/a

The e-mail address of the recipient.

5.10.3.2. EmailNotificationMethod methods

DescriptionMethod

Constructor to initialize an EmailNotification instance.__init__(self, recipient)
Table 5.85. Method summary

Method __init__(self, recipient)

This constructor initializes an EmailNotification instance and sets the attributes of the outgoing e-mail.

259www.balasys.hu

Module Notification

Arguments of __init__

recipient (string)

Default: n/a

The e-mail address of the recipient.

5.10.4. Class NotificationPolicy

5.11. Module Proxy

This module encapsulates the Proxy component. The Proxy module provides a common framework for
protocol-specific proxies, implementing the functions that are used by all proxies. Protocol-specific proxy
modules are derived from the Proxy module, and are described in Chapter 4, Proxies (p. 34).

5.11.1. Functions in module Proxy

DescriptionFunction

Function to send a proxy-specific message to the
system log.

proxyLog

Table 5.86. Function summary

5.11.2. Classes in the Proxy module

DescriptionClass

Class encapsulating the abstract proxy.Proxy
Table 5.87. Classes of the Proxy module

5.11.3. Functions

5.11.3.1. Function proxyLog(self, type, level, msg, args)

This function sends a message into the system log. All messages start with the session_id that uniquely
identifies the connection.

Arguments of proxyLog

level (integer)

Default: n/a

Verbosity level of the log message.

260www.balasys.hu

Class NotificationPolicy

msg (string)

Default: n/a

The text of the log message.

type (string)

Default: n/a

The class of the log message.

5.11.4. Class Proxy

This class serves as the abstact base class for all proxies. When an instance of the Proxy class is created, it loads
and starts a protocol-specific proxy. Proxies operate in their own threads, so this constructor returns immediately.

5.11.4.1. Attributes of Proxy

encryption_policy (class)

Default: None

Name of the Encryption policy instance used to encrypt the sessions and verify the certificates used. For
details, see Section 5.5, Module Encryption (p. 195).

ids_policy (class)

Default: None

Name of the Ids policy instance used to send traffic to Intrusion Detection Systems. For details, see Section
5.6, Module Ids (p. 239).

language (string)

Default: "en"

Determines the language used for user-visible error messages. Supported languages: en - English; de -
German; hu - Hungarian.

5.11.4.2. Proxy methods

DescriptionMethod

Function called by the proxy core when an abort has
been occured.

closedByAbort(self)

Function called by the proxy core to initialize the
proxy instance.

config(self)

Function called by the proxy instance to establish the
server-side connection.

connectServer(self)

261www.balasys.hu

Class Proxy

DescriptionMethod

Function called when proxy requires credentials for
server side authentication.

getCredentials(self, method, username, domain, target,
port)

Invalid policy function called.invalidPolicyCall(self)

Function called by the proxy instance to set the address
of the destination server.

setServerAddress(self, host, port)

Function called by the proxy instance to set up the
server side encryption parameters dynamically.

setServerSideEncryption(self)

Function called when inband authentication is
successful.

userAuthenticated(self, entity, groups, auth_info)

Table 5.88. Method summary

Method closedByAbort(self)

This function is called when a callback gives abort or no result. It simply sets a flag that will be used for logging
the reason of the proxy's ending.

Method config(self)

This function is called during proxy startup. It sets the attributes of the proxy instance according to the
configuration of the proxy.

Method connectServer(self)

This function is called to establish the server-side connection. The function either connects a proxy to the
destination server, or an embedded proxy to its parent proxy. The proxy may set the address of the destination
server using the setServerAddress function.

The connectServer function calls the chainer specified in the service definition to connect to the remote
server using the host name and port parameters.

The connectServer function returns the descriptor of the server-side data stream.

Method getCredentials(self, method, username, domain, target, port)

The proxy instance calls this function to retrieve authentication credentials for authentication method method

and the target user username.

Arguments of getCredentials

domain (string)

Default: n/a

Domain the user name belongs to.

262www.balasys.hu

Class Proxy

method (string)

Default: n/a

Method that will be used for authentication on target server.

port (integer)

Default: n/a

Target server port.

target (string)

Default: n/a

Target server hostname.

username (string)

Default: n/a

Username that will be used for authentication on target server.

Method invalidPolicyCall(self)

This function is called when invalid policy function has been called.

Method setServerAddress(self, host, port)

The proxy instance calls this function to set the address of the destination server. This function attempts to
resolve the hostname of the server using the DNS; the result is stored in the session.server_address

parameter. The address of the server may be modified later by the router of the service. See Section 5.13, Module
Router (p. 266) for details.

Note
The setServerAddress function has effect only when InbandRouter is used.

Arguments of setServerAddress

host (string)

Default: n/a

The host name of the server.

port (integer)

Default: n/a

263www.balasys.hu

Class Proxy

port (integer)

The Port number of the server.

Method setServerSideEncryption(self)

Function called by the proxy instance when the encryption scenario is dynamic (eg.: DynamicServerEncryption)
to set up the server side encryption parameters. It should return with a DynamicServerEncryptionServerParams
if DynamicServerEncryption scenario used otherwise with None.

This method unconditionally raises a NotImplementedError exception to indicate that it must be overridden by
descendant classes like 'Proxy'.

Method userAuthenticated(self, entity, groups, auth_info)

The proxy instance calls this function to indicate that the inband authentication was successfully performed.
The name of the client is stored in the entity parameter.

Arguments of userAuthenticated

entity (unknown)

Default: n/a

Username of the authenticated client.

5.12. Module Resolver

This module defines the AbstractResolver interface and various derived classes to perform name lookups.

5.12.1. Classes in the Resolver module

DescriptionClass

Class encapsulating the abstract Resolver interface.AbstractResolver

Class encapsulating DNS-based name resolution.DNSResolver

Class encapsulating hash-based name resolution.HashResolver
Table 5.89. Classes of the Resolver module

5.12.2. Class AbstractResolver

This class encapsulates an interface for application level name resolution.

5.12.3. Class DNSResolver

DNSResolver policies query the domain name server to resolve domain names.

264www.balasys.hu

Module Resolver

Example 5.29. A simple DNSResolver policy
Below is a simple DNSResolver policy enabled to return multiple 'A' and 'AAAA' records from the nameserver 1.1.1.1 with 2s timeout.

ResolverPolicy(name="Mailservers", resolver=DNSResolver(name_server='1.1.1.1', timeout=2))

5.12.3.1. DNSResolver methods

DescriptionMethod

Constructor to initialize a DNSResolver instance.__init__(self, name_server, timeout,
use_search_domain)

Table 5.90. Method summary

Method __init__(self, name_server, timeout, use_search_domain)

This constructor initializes a DNSResolver instance.

Arguments of __init__

name_server (string)

Default: None

IP address of the DNS server to query. Defaults to the servers set in the resolv.conf file.

timeout (integer)

Default: 2

Seconds to wait a response from a server.

use_search_domain (boolean)

Default: FALSE

Append the host's search domain to the query.

5.12.4. Class HashResolver

HashResolver policies are used to locally store the IP addresses belonging to a domain name. A domain name
(Hostname) and one or more corresponding IP addresses (Addresses) can be stored in a hash. If the domain
name to be resolved is not included in the hash, the name resolution will fail. The HashResolver can be used
to direct incoming connections to specific servers based on the target domain name.

Example 5.30. A simple HashResolver policy
The resolver policy below associates the IP addresses 192.168.1.12 and 192.168.1.13with the mail.example.com domain name.

ResolverPolicy(name="DMZ", resolver=HashResolver(mapping={"mail.example.com": ("192.168.1.12",

"192.168.1.13")}))

265www.balasys.hu

Class HashResolver

5.12.4.1. HashResolver methods

DescriptionMethod

Constructor to initialize a HashResolver instance.__init__(self, mapping)
Table 5.91. Method summary

Method __init__(self, mapping)

This constructor initializes a HashResolver instance.

Arguments of __init__

mapping (complex)

Default: n/a

Mapping that describes hostname->IP address pairs.

5.13. Module Router

Routers define the target IP address and port of the destination server, based on information that is available
before started. The simplest router (DirectedRouter) selects a preset destination as the server address, while the
most commonly used TransparentRouter connects to the IP address requested by the client. Other routers may
make more complex decisions. The destination address selected by the router may be overridden by the proxy
and the DNAT classes used in the service.

5.13.1. The source address used in the server-side connection

Routers also define source address and port of the server-side connection. This is the IP address that is used to
connect the server. The server sees that the connection originates from this address. The following two parameters
determine the source address used in the server-side connection:

forge_addr: If set to TRUE, the client's source address is used as the source of the server-side connection.
Otherwise, the IP address of the interface connected to the server is used.

forge_port: This parameter defines the source port that is used in the server-side connection. Specify a port
number as an integer value, or use one of the following options:

DescriptionName

Selected a random port between 1024 and 65535.
This is the default behavior of every router.

V_PORT_ANY

Select a random port in the same group as the port
used by the client. The following groups are defined:
0-513, 514-1024, 1025-.

V_PORT_GROUP

Use the same port as the client.V_PORT_EXACT

266www.balasys.hu

Module Router

DescriptionName

Select a random port using a cryptographically secure
function.

V_PORT_RANDOM

Table 5.92. Options defining the source port of the server-side connection

5.13.2. Classes in the Router module

DescriptionClass

Class encapsulating the abstract router.AbstractRouter

Class encapsulating a Router which explicitly defines
the target address.

DirectedRouter

Class encapsulating the Router which extracts the
destination address from the application-level protocol.

InbandRouter

Class encapsulating a Router which provides
transparent services.

TransparentRouter

Table 5.93. Classes of the Router module

5.13.3. Class AbstractRouter

AbstractRouter implements an abstract router that determines the destination address of the server-side connection.
Service definitions should refer to a customized class derived from AbstractRouter, or one of the predefined
router classes, such as TransparentRouter orDirectedRouter. Different implementations of this interface perform
Transparent routing (directing the client to its original destination), and Directed routing (directing the client
to a given destination).

A proxy can override the destination selected by the router using the the setServerAddress method.

5.13.3.1. Attributes of AbstractRouter

forge_addr (boolean)

Default: n/a

If set to TRUE, the client's source address is used as the source of the server-side connection.

forge_port (unknown)

Default: n/a

Defines the source port that is used in the server-side connection. See Section 5.13.1, The source address
used in the server-side connection (p. 266) for details.

267www.balasys.hu

Classes in the Router module

5.13.4. Class DirectedRouter

This class implements directed routing, which means that the destination address is a preset address for each
session.

Example 5.31. DirectedRouter example
The following service uses a DirectedRouter that redirects every connection to the /var/sample.socket Unix domain socket.

Service(name="demo_service", proxy_class=HttpProxy,

router=DirectedRouter(dest_addr=SockAddrUnix('/var/sample.socket'), overrideable=FALSE,

forge_addr=FALSE))

The following service uses a DirectedRouter that redirects every connection to the 192.168.2.24:8080 IP address.

Service(name="demo_service", proxy_class=HttpProxy,

router=DirectedRouter(dest_addr=SockAddrInet('192.168.2.24', 8080), overrideable=FALSE,

forge_addr=FALSE))

5.13.4.1. Attributes of DirectedRouter

dest_addr (unknown)

Default: n/a

The destination address to connect to.

5.13.4.2. DirectedRouter methods

DescriptionMethod

Constructor to initialize a DirectedRouter.__init__(self, dest_addr, forge_addr, overrideable,
forge_port)

Table 5.94. Method summary

Method __init__(self, dest_addr, forge_addr, overrideable, forge_port)

This constructor initializes an instance of the DirectedRouter class.

Arguments of __init__

dest_addr (complex)

Default: n/a

The destination address to connect to.

forge_addr (boolean)

Default: FALSE

If set to TRUE, the client's source address is used as the source of the server-side connection.

268www.balasys.hu

Class DirectedRouter

forge_port (complex)

Default: V_PORT_ANY

Defines the source port that is used in the server-side connection. See Section 5.13.1, The source address
used in the server-side connection (p. 266) for details.

overrideable (boolean)

Default: FALSE

If set to TRUE, the proxy may override the selected destination. Enable this option when the proxy builds
multiple connections to the destination server, and the proxy knows the address of the destination server, for
example, because it receives a redirect request. This situation is typical for the SQLNet proxy.

5.13.5. Class InbandRouter

This class implements inband routing, which means that the destination address will be determined by the
protocol. Inband routing works only for protocols that can send routing information within the protocol, and is
mainly used for non-transparent proxying. The InbandRouter class currently supports only the HTTP and FTP
protocols.

Example 5.32. InbandRouter example
The following service uses an InbandRouter to extract the destination from the protocol.

Service(name="demo_service", proxy_class=HttpProxy, router=InbandRouter(forge_addr=FALSE))

5.13.5.1. InbandRouter methods

DescriptionMethod

Constructor to initialize a InbandRouter.__init__(self, forge_addr, forge_port)
Table 5.95. Method summary

Method __init__(self, forge_addr, forge_port)

This constructor initializes an instance of the InbandRouter class.

Arguments of __init__

forge_addr (boolean)

Default: FALSE

If set to TRUE, the client's source address is used as the source of the server-side connection.

269www.balasys.hu

Class InbandRouter

forge_port (complex)

Default: V_PORT_ANY

Defines the source port that is used in the server-side connection. See Section 5.13.1, The source address
used in the server-side connection (p. 266) for details.

5.13.6. Class TransparentRouter

This class implements transparent routing, which means that the destination server is the original destination
requested by the client.

Example 5.33. TransparentRouter example
The following service uses a TransparentRouter that connects to the 8080 port of the server and uses the client's IP address as the source
of the server-side connection.

Service(name="demo_service", proxy_class=HttpProxy, router=TransparentRouter(forced_port=8080,

overrideable=FALSE, forge_addr=TRUE))

5.13.6.1. Attributes of TransparentRouter

forced_port (unknown)

Default: n/a

Defines the source port that is used in the server-side connection. See Section 5.13.1, The source address
used in the server-side connection (p. 266) for details.

forge_addr (unknown)

Default: n/a

If set to TRUE, the client's source address is used as the source of the server-side connection.

5.13.6.2. TransparentRouter methods

DescriptionMethod

Constructor to initialize an instance of the
TransparentRouter class.

__init__(self, forced_port, forge_addr, overrideable,
forge_port)

Table 5.96. Method summary

Method __init__(self, forced_port, forge_addr, overrideable, forge_port)

This constructor creates a new TransparentRouter instance which can be associated with a Service.

270www.balasys.hu

Class TransparentRouter

Arguments of __init__

forced_port (integer)

Default: 0

Modify the destination port to this value. Default value: 0 (do not modify the target port)

forge_addr (boolean)

Default: FALSE

If set to TRUE, the client's source address is used as the source of the server-side connection.

forge_port (complex)

Default: V_PORT_ANY

Defines the source port that is used in the server-side connection. See Section 5.13.1, The source address
used in the server-side connection (p. 266) for details.

overrideable (boolean)

Default: FALSE

If set to TRUE, the proxy may override the selected destination. Enable this option when the proxy builds
multiple connections to the destination server, and the proxy knows the address of the destination server, for
example, because it receives a redirect request. This situation is typical for the SQLNet proxy.

5.14. Module Rule

The Rule module defines the classes needed to create firewall rules.

5.14.1. Evaluating firewall rules

When Application-level Gateway receives a connection request from a client, it tries to select a rule matching
the parameters of the connection. The following parameters are considered.

Name in policy.pyName in MC

reqidVPN

src_ifaceSource Interface

src_ifgroupSource Interface Group

protoProtocol

src_portSource Port

dst_portDestination Port

src_subnetSource Subnet

271www.balasys.hu

Module Rule

Name in policy.pyName in MC

src_zoneSource Zone

dst_subnetDestination Subnet

dst_ifaceDestination Interface

dst_ifgroupDestination Interface Group

dst_zoneDestination Zone
Table 5.97. Evaluated Rule parameters

Application-level Gateway selects the rule that most specifically matches the connection. Selecting the most
specific rule is based on the following method.

■ The order of the rules is not important.

■ The parameters of the connection act as filters: if you do not set any parameters, the rule will match
any connection.

■ If multiple connections would match a connection, the rule with the most-specific match is selected.
For example, you have configured two rules: the first has the Source Zone parameter set as the
office (which is a zone covering all of your client IP addresses), the second has the Source

Subnet parameter set as 192.168.15.15/32. The other parameters of the rules are the same. If a
connection request arrives from the 192.168.15.15/32 address, Application-level Gateway will
select the second rule. The first rule will match every other client request.

■ Application-level Gateway considers the parameters of a connection in groups. The first group is
the least-specific, the last one is the most-specific. The parameter groups are listed below.

■ The parameter groups are linked with a logical AND operator: if parameters of multiple groups are
set in a rule, the connection request must match a parameter of every group. For example, if both
the Source Interface and Destination Port are set, the connection must match both
parameters.

■ Parameters within the same group are linked with a logical OR operator: if multiple parameters of
a group are set for a rule, the connection must match any one of the parameters. If there are multiple
similar rules, the rule with the most specific parameter match for the connection will be selected.

Note
In general, avoid using multiple parameters of the same group in one rule, as it may lead to undesired side-effects. Use
only the most specific parameter matching your requirements.

For example, suppose that you have a rule with the Destination Zone parameter set, and you want to create a similar
rule for a specific subnet of this zone. In this case, create a new rule with the Destination Subnet parameter set, do
not set the Destination Zone parameter in both rules. Setting the Destination Zone parameter in both rules and
setting the Destination Subnet parameter in the second rule would work for connections targeting the specified subnet,
but it would cause Application-level Gateway to reject the connections that target other subnets of the specified destination
zone, because both rules would match for the connection.

■ The parameter groups are the following from the least specific to the most specific ones. Parameters
within each group are listed from left to right from the least specific to the most specific ones.

272www.balasys.hu

Evaluating firewall rules

1. Destination Zone > Destination Interface Group > Destination Interface >
Destination Subnet

2. Source Zone > Source Subnet

3. Destination Port (Note that port is more specific than port range.)

4. Source Port (Note that port is more specific than port range.)

5. Protocol

6. Source Interface Group > Source Interface > VPN

■ If no matching rule is found, Application-level Gateway rejects the connection.

Note
It is possible to create rules that are very similar, making debugging difficult.

5.14.2. Sample rules

Example 5.34. Sample rule definitions
The following rule starts the service called MyPFService for every incoming TCP connection (proto=6).

Rule(proto=6,

service='MyPFService'

)

The following rule starts a service for TCP or UDP connections from the office zone.

Rule(proto=(6,17),

src_zone='office',

service='MyService'

)

The following rule permits connections from the 192.168.0.0/16 IPv4 and the 2001:db8:c001:ba80::/58 IPv6 subnets. Note
that since the src_subnet parameter has two values, they are specified as a Python tuple: ('value1','value2').

Rule(proto=6,

src_subnet=('192.168.0.0/16', '2001:db8:c001:ba80::/58'),

service='MyService'

)

The following rule has almost every parameter set:

Rule(src_iface=('eth0',),

proto=6,

dst_port=443,

src_subnet=('192.168.10.0/24',),

src_zone=('office',),

dst_subnet=('192.168.50.50/32',),

dst_zone=('finance',),

service='MyHttpsService'

)

5.14.3. Adding metadata to rules: tags and description

To make the configuration file more readable and informative, you can add descriptions and tags to the rules.
Descriptions can be longer texts, while tags are simple labels, for example, to identify rules that belong to the

273www.balasys.hu

Sample rules

same type of traffic. Adding metadata to rules is not necessary, but can be a great help when maintaining large
configurations.

■ To add a description to a rule, add the text of the description before the rule, enclosed between three
double-quotes:

"""This rule is ..."""

■ To tag a rule, add a comment line before the rule that contains the list of tags applicable to the rule,
separated with commas.

#Tags: tag1, tag2

Example 5.35. Tagging rules
The following rule has two tags, marking the traffic type and the source zone: http and office.

#Tags: http, office

"""Description"""

Rule(proto=(6),

src_zone='office',

service='MyHttpService'

)

5.14.4. Classes in the Rule module

DescriptionClass

Specifies a port range for a rulePortRange

This class implements firewall rulesRule
Table 5.98. Classes of the Rule module

5.14.5. Class PortRange

This class specifies a port range for a firewall rule. It can be used in the src_port and dst_port parameters
of a rule. For example: src_port=PortRange(2000, 2100), or src_port=(PortRange(2000, 2100),

PortRange(2500, 2600)). When listing multiple elements, ports and port ranges can be mixed, for example:
src_port=(4433, PortRange(2000, 2100), PortRange(2500, 2600))

5.14.5.1. Attributes of PortRange

high (integer)

Default: n/a

The higher value of the port range.

low (integer)

Default: n/a

274www.balasys.hu

Classes in the Rule module

low (integer)

The lower value of the port range.

5.14.6. Class Rule

This class implements firewall rules. For details, see Section 5.14, Module Rule (p. 271).

5.14.6.1. Rule methods

DescriptionMethod

Initializes a rule__init__(self, **kw)
Table 5.99. Method summary

Method __init__(self, **kw)

Initializes a rule

Arguments of __init__

dst_iface (interface)

Default: n/a

Permit traffic only for connections that target a configured IP address of the listed interfaces. This parameter
can be used to provide nontransparent service on an interface that received its IP address dynamically. For
example, dst_iface='eth0', or dst_iface=('eth0', 'tun1'),.

dst_port (integer)

Default: n/a

Permit traffic only if the client targets the listed port. For example, dst_port=80, or dst_port=(80,
443). To specify port ranges, use thePortRange class, for example, dst_port=PortRange(2000, 2100).

dst_subnet (subnet)

Default: n/a

Permit traffic only for connections targeting a listed IP address, or an address belonging to the listed subnet.
The subnet can be IPv4 or IPv6 subnet. When listing multiple subnets, you can list both IPv4 and IPv6 subnets.
IP addresses are treated as subnets with a /32 (IPv4) or /128 (IPv6) netmask. If no netmask is set for a subnet,
it is treated as a specific IP address. For example, dst_subnet='192.168.10.16' or
dst_subnet=('192.168.0.0/16', '2001:db8:c001:ba80::/58').

dst_zone (zone)

Default: n/a

275www.balasys.hu

Class Rule

dst_zone (zone)

Permit traffic only for connections targeting an address belonging to the listed zones. For example,
dst_zone='office' or dst_zone=('office', 'finance'). Note that this applies to destination
address of the client-side connection request: the actual address of the server-side connection can be different
(for example, if a DirectedRouter is used in the service).

proto (integer)

Default: n/a

Permit only connections using the specified transport protocol. This is the transport layer (Layer 4) protocol
of the OSI model, for example, TCP, UDP, ICMP, and so on. The protocol must be specified using a number:
the decimal value of the "protocol" field of the IP header. This value is 6 for the TCP and 17 for the UDP
protocol. For a list of protocol numbers, see the Assigned Internet Protocol Numbers page of IANA. For
example: proto=(6,17).
To permit any protocol, do not add the proto parameter to the rule.

rule_id (integer)

Default: n/a

A unique ID number for the rule. This parameter is optional, an ID number is automatically generated for the
rule during startup.

service (service)

Default: n/a

The name of the service to start for matching connections. This is the only required parameter for the rule,
everything else is optional. For example, service='MyService'

src_iface (interface)

Default: n/a

Permit traffic only for connections received on the listed interface. For example, src_iface='eth0', or
src_iface=('eth0', 'tun1'),.

src_port (integer)

Default: n/a

Permit traffic only if the client sends the connection request from the listed port. For example, src_port=4455.
To specify port ranges, use the PortRange class, for example, src_port=PortRange(2000, 2100).

src_subnet (subnet)

Default: n/a

276www.balasys.hu

Class Rule

http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xml

src_subnet (subnet)

Permit traffic only for the clients of the listed subnet or IP addresses. The subnet can be IPv4 or IPv6 subnet.
When listing multiple subnets, you can list both IPv4 and IPv6 subnets. IP addresses are treated as subnets
with a /32 (IPv4) or /128 (IPv6) netmask. If no netmask is set for a subnet, it is treated as a specific IP address.
For example, src_subnet='192.168.10.16' or src_subnet=('192.168.0.0/16',
'2001:db8:c001:ba80::/58').

src_zone (zone)

Default: n/a

Permit traffic only for the clients of the listed zones. For example, src_zone='office' or
src_zone=('office', 'finance').

5.15. Module Service

This module defines classes encapsulating service descriptions. The services define how the incoming connection
requests are handled. When a connection is accepted by a Rule, the service specified in the Rule creates an
instance of itself. This instance handles the connection, and proxies the traffic between the client and the server.
It also handles TLS and SSL encryption of the traffic if needed, as configured in the encryption_policy

parameter of the service. The instance of the selected service is created using the 'startInstance()' method.

A service is not usable on its own, it needs a Rule to bind the service to a network interface of the firewall and
activate it when a matching connection request is received. New instances of the service are started as the Rule
accepts new connections.

5.15.1. Naming services

The name of the service must be a unique identifier; rules refer to this unique ID.

Use clear, informative, and consistent service names. Include the following information in the service name:

■ Source zones, indicating which clients may use the service (e.g., intranet).

■ The protocol permitted in the traffic (e.g., HTTP).

■ Destination zones, indicating which servers may be accessed using the service (e.g., Internet).

Tip
Name the service that allows internal users to browse the Web intra_HTTP_internet. Use dots to indicate child zones, e.g.,
intra.marketing_HTTP_inter.

5.15.2. Classes in the Service module

DescriptionClass

Class encapsulating the abstract Service properties.AbstractService

277www.balasys.hu

Module Service

DescriptionClass

DenyService prohibits access to certain servicesDenyService

Class encapsulating a packet-filter service definition.PFService

Class encapsulating a service definition.Service
Table 5.100. Classes of the Service module

5.15.3. Class AbstractService

AbstractService implements an abstract service. Service definitions should be based on a customized class
derived from AbstractService, or on the predefined Service class.

5.15.3.1. Attributes of AbstractService

name (string)

Default: n/a

The name of the service.

5.15.3.2. AbstractService methods

DescriptionMethod

Constructor to initialize an instance of the
AbstractService class.

__init__(self, name)

Table 5.101. Method summary

Method __init__(self, name)

This constructor creates an AbstractService instance and sets the attributes of the instance according to the
received arguments. It also registers the Service to the services hash so that rules can find the service instance.

Arguments of __init__

name (string)

Default: n/a

The name of the service.

5.15.4. Class DenyService

The DenyService class is a type of service that rejects connections with a predefined error code. DenyServices
can be specified in the service parameter ofRules. If the rule referencing the DenyService matches a connection
request, the connection is rejected. DenyService is a replacement for the obsolete Umbrella zone concept.

278www.balasys.hu

Class AbstractService

Example 5.36. A simple DenyService
The following defines a DenyService and a rule to reject all traffic that targets port 5555.

def demo() :

DenyService(name='DenyService', ipv4_setting=DenyIPv4.DROP, ipv6_setting=DenyIPv6.DROP)

Rule(dst_port=5555,

service='DenyService'

)

5.15.4.1. Attributes of DenyService

ipv4_setting (complex)

Default: n/a

Specifies how to reject IPv4 traffic. By default, the traffic is simply dropped without notifying the client
(DenyIPv4.DROP). The following values are available: DenyIPv4.DROP, DenyIPv4.TCP_RESET,
DenyIPv4.ICMP_NET_UNREACHABLE, DenyIPv4.ICMP_HOST_UNREACHABLE,
DenyIPv4.ICMP_PROTO_UNREACHABLE, DenyIPv4.ICMP_PORT_UNREACHABLE,
DenyIPv4.ICMP_NET_PROHIBITED, DenyIPv4.ICMP_HOST_PROHIBITED,
DenyIPv4.ICMP_ADMIN_PROHIBITED

Note
When the DenyIPv4.TCP_RESET option is used, the TCP RESET packet is sent as if it was sent by the target server.

When using an ICMP option, the appropriate ICMP packet is sent, just like a router would.

ipv6_setting (complex)

Default: n/a

Specifies how to reject IPv6 traffic. By default, the traffic is dropped without notifying the client
(DenyIPv6.DROP). The following values are available: DenyIPv6.DROP, DenyIPv6.TCP_RESET,
DenyIPv6.ICMP_NO_ROUTE, DenyIPv6.ICMP_ADMIN_PROHIBITED,
DenyIPv6.ICMP_ADDR_UNREACHABLE, DenyIPv6.ICMP_PORT_UNREACHABLE

limit_policy (class)

Default: None

Name of the LimitPolicy instance used to rate limit the sessions.

name (string)

Default: n/a

The name of the service.

279www.balasys.hu

Class DenyService

5.15.4.2. DenyService methods

DescriptionMethod

Constructor to initialize a DenyService instance.__init__(self, name, logging, ipv4_setting,
ipv6_setting, log_verbose, log_spec, limit_policy)

Table 5.102. Method summary

Method __init__(self, name, logging, ipv4_setting, ipv6_setting, log_verbose, log_spec, limit_policy)

This constructor defines a DenyService with the specified parameters.

Arguments of __init__

limit_policy (class)

Default: None

Name of the LimitPolicy instance used to rate limit the sessions.

log_spec (string)

Default: None

Message filter expression.

log_verbose (integer)

Default: None

Default log verbosity level.

name (string)

Default: n/a

The name identifying the service.

5.15.5. Class PFService

PFServices allow you to replace the FORWARD rules of iptables, and configure application-level and
packet-filter rules from Vela.

Note
The PFService class transfers packet-filter level services.

To transfer connections on the packet-filter level, use the PFService class.■

■ To transfer connections on the application-level, use the Service class.

280www.balasys.hu

Class PFService

Example 5.37. PFService example
The following packet-filtering service transfers TCP connections that arrive to port 5555.

PFService(name="intranet_PF5555_internet", router=TransparentRouter())

The following example defines a few classes: the client and server zones, a simple services, and a rule that starts the service.

Zone('internet', ['0.0.0.0/0'])

Zone('intranet', ['192.168.0.0/16'])

def demo() :

PFService(name="intranet_PF5555_internet", router=TransparentRouter())

Rule(dst_port=5555,

src_zone='intranet',

dst_zone='internet',

service='PFService'

)

5.15.5.1. Attributes of PFService

dnat_policy (class)

Default: n/a

Name of the NAT policy instance used to translate the destination addresses of the sessions. See Section 5.9,
Module NAT (p. 250) for details.

limit_policy (class)

Default: None

Name of the LimitPolicy instance used to rate limit the sessions.

router (class)

Default: n/a

A router instance used to determine the destination address of the server. See Section 5.13, Module
Router (p. 266) for details.

snat_policy (class)

Default: n/a

Name of the NAT policy instance used to translate the source addresses of the sessions. See Section 5.9,
Module NAT (p. 250) for details.

281www.balasys.hu

Class PFService

5.15.5.2. PFService methods

DescriptionMethod

Constructor to initialize a PFService instance.__init__(self, name, router, snat_policy, dnat_policy,
log_verbose, log_spec, limit_policy)

Table 5.103. Method summary

Method __init__(self, name, router, snat_policy, dnat_policy, log_verbose, log_spec, limit_policy)

This constructor defines a packetfilter-service with the specified parameters.

Arguments of __init__

limit_policy (class)

Default: None

Name of the LimitPolicy instance used to rate limit the sessions.

log_spec (string)

Default: None

Message filter expression.

log_verbose (integer)

Default: None

Default log verbosity level.

5.15.6. Class Service

A service is one of the fundamental objects. It stores the names of proxy-related parameters, and is also used
for access control purposes to decide what kind of traffic is permitted.

Note
The Service class transfers application-level (proxy) services.

To transfer connections on the packet-filter level, use the PFService class.■

■ To transfer connections on the application-level, use the Service class.

Example 5.38. Service example
The following service transfers HTTP connections. Every parameter is left at its default.

Service(name="demo_http, proxy_class=HttpProxy, router=TransparentRouter())

The following service handles HTTP connections. This service uses authentication and authorization, and network address translation
on the client addresses (SNAT).

Service(name="demo_http", proxy_class=HttpProxy, authentication_policy="demo_authentication_policy",

authorization_policy="demo_permituser", snat_policy="demo_natpolicy", router=TransparentRouter())

282www.balasys.hu

Class Service

The following example defines a few classes: the client and server zones, a simple services, and a rule that starts the service.

Zone('internet', ['0.0.0.0/0'])

Zone('office', ['192.168.1.0/32', '192.168.2.0/32'])

def demo_instance() :

Service(name="office_http_inter", proxy_class=HttpProxy, router=TransparentRouter())

Rule(src_zone='office',

proto=6,

dst_zone='internet',

service='office_http_inter'

)

5.15.6.1. Attributes of Service

auth_name (string)

Default: n/a

Authentication name of the service. This string informs the users of the Vela Authentication Agent about
which service they are authenticating for. Default value: the name of the service.

authentication_policy (class)

Default: n/a

Name of the AuthenticationPolicy instance used to authenticate the clients. See Section 5.1,Module Auth (p. 169)
for details.

authorization_policy (class)

Default: n/a

Name of the AuthorizationPolicy instance used to authorize the clients. See Section 5.1, Module Auth (p. 169)
for details.

chainer (class)

Default: n/a

A chainer instance used to connect to the destination server. See Section 5.3, Module Chainer (p. 184) for
details.

dnat_policy (class)

Default: n/a

Name of the NAT policy instance used to translate the destination addresses of the sessions. See Section 5.9,
Module NAT (p. 250) for details.

encryption_policy (class)

Default: None

283www.balasys.hu

Class Service

encryption_policy (class)

Name of the Encryption policy instance used to encrypt the sessions and verify the certificates used. For
details, see Section 5.5, Module Encryption (p. 195).

instance_id (integer)

Default: n/a

The sequence number of the last session started

keepalive (integer)

Default: V_KEEPALIVE_NONE

The TCP keepalive option, one of the V_KEEPALIVE_NONE, V_KEEPALIVE_CLIENT,
V_KEEPALIVE_SERVER, V_KEEPALIVE_BOTH values.

limit_policy (class)

Default: None

Name of the LimitPolicy instance used to rate limit the sessions.

max_instances (integer)

Default: n/a

Permitted number of concurrent instances of this service. Usually each service instance handles one connection.
The default value is 0, which allows unlimited number of instances.

max_sessions (integer)

Default: n/a

Maximum number of concurrent sessions handled by one thread.

num_instances (integer)

Default: n/a

The current number of running instances of this service.

proxy_class (class)

Default: n/a

Name of the proxy class instance used to analyze the traffic transferred in the session. See Section 5.11,
Module Proxy (p. 260) for details.

284www.balasys.hu

Class Service

resolver_policy (unknown)

Default: n/a

Name of the ResolvePolicy instance used to resolve the destination domain names. See Section 5.12, Module
Resolver (p. 264) for details. Default value: DNSResolver

router (class)

Default: n/a

A router instance used to determine the destination address of the server. See Section 5.13, Module
Router (p. 266) for details.

snat_policy (class)

Default: n/a

Name of the NAT policy instance used to translate the source addresses of the sessions. See Section 5.9,
Module NAT (p. 250) for details.

5.15.6.2. Service methods

DescriptionMethod

Constructor to initialize a Service instance.__init__(self, name, proxy_class, router, chainer,
snat_policy, dnat_policy, authentication_policy,
authorization_policy, max_instances, max_sessions,
auth_name, resolver_policy, keepalive,
encryption_policy, limit_target_zones_to,
detector_config, detector_default_service_name,
session_counting, limit_policy)

Start a service instance.startInstance(self, session)
Table 5.104. Method summary

Method __init__(self, name, proxy_class, router, chainer, snat_policy, dnat_policy, authentication_policy,
authorization_policy, max_instances, max_sessions, auth_name, resolver_policy, keepalive,
encryption_policy, limit_target_zones_to, detector_config, detector_default_service_name,
session_counting, limit_policy)

This contructor defines a Service with the specified parameters.

Arguments of __init__

auth_name (string)

Default: None

Authentication name of the service. This string informs the users of the Vela Authentication Agent about
which service they are authenticating for. Default value: the name of the service.

285www.balasys.hu

Class Service

authentication_policy (class)

Default: None

Name of the AuthenticationPolicy instance used to authenticate the clients. See Section 5.1,Module Auth (p. 169)
for details.

authorization_policy (class)

Default: None

Name of the AuthorizationPolicy instance used to authorize the clients. See Section 5.1, Module Auth (p. 169)
for details.

chainer (class)

Default: None

Name of the chainer instance used to connect to the destination server. Defaults to ConnectChainer if no
other chainer is specified.

dnat_policy (class)

Default: None

Name of the NAT policy instance used to translate the destination addresses of the sessions. See Section 5.9,
Module NAT (p. 250) for details.

encryption_policy (class)

Default: None

Name of the Encryption policy instance used to encrypt the sessions and verify the certificates used. For
details, see Section 5.5, Module Encryption (p. 195).

keepalive (integer)

Default: V_KEEPALIVE_NONE

The TCP keepalive option, one of the V_KEEPALIVE_NONE, V_KEEPALIVE_CLIENT,
V_KEEPALIVE_SERVER, V_KEEPALIVE_BOTH values.

limit_policy (class)

Default: None

Name of the LimitPolicy instance used to rate limit the sessions.

limit_target_zones_to (complex)

Default: None

286www.balasys.hu

Class Service

limit_target_zones_to (complex)

A comma-separated list of zone names permitted as the target of the service. No restrictions are applied if the
list is empty.

max_instances (integer)

Default: 0

Permitted number of concurrent instances of this service. Usually each service instance handles one connection.
Default value: 0 (unlimited).

max_sessions (integer)

Default: 0

Maximum number of concurrent sessions handled by one thread.

name (string)

Default: n/a

The name identifying the service.

proxy_class (class)

Default: n/a

Name of the proxy class instance used to analyze the traffic transferred in the session. See Section 5.11,
Module Proxy (p. 260) for details.

resolver_policy (class)

Default: None

Name of the ResolvePolicy instance used to resolve the destination domain names. See Section 5.12, Module
Resolver (p. 264) for details. Default value: DNSResolver.

router (class)

Default: None

Name of the router instance used to determine the destination address of the server. Defaults to
TransparentRouter if no other router is specified.

snat_policy (class)

Default: None

Name of the NAT policy instance used to translate the source addresses of the sessions. See Section 5.9,
Module NAT (p. 250) for details.

287www.balasys.hu

Class Service

Method startInstance(self, session)

Called by the Rule to create an instance of this service.

Arguments of startInstance

session (unknown)

Default: n/a

The session object

5.16. Module Session

This module defines the abstract session interface in a class named AbstractSession, and two descendants
MasterSession and StackedSession.

Sessions are hierarchically stacked into each other just like proxies. All sessions except the master session have
a parent session from which child sessions inherit variables. Child sessions are stacked into their master sessions,
so stacked sessions can inherit data from the encapsulating proxy instances. (Inheritance is implemented using
a simple getattr wrapper.)

Instances of the Session classes store the parameters of the client-side and server-side connections in a session
object (for example, the IP addresses and zone of the server and the client, and the username and group
memberships of the user when authentication is used). Other components refer to this data when making various
policy-based decisions.

5.16.1. Classes in the Session module

DescriptionClass

Class encapsulating a subsession.StackedSession
Table 5.105. Classes of the Session module

5.16.2. Class StackedSession

This class represents a stacked session, e.g., a session within the session hierarchy. Every subsession inherits
session-wide parameters from its parent.

5.16.2.1. Attributes of StackedSession

chainer (class)

Default: n/a

The chainer used to connect to the parent proxy. If unset, the server_stream parameter must be set.

288www.balasys.hu

Module Session

owner (class)

Default: n/a

The parent session of the current session.

server_address (class)

Default: n/a

The IP address to connect. Most often this is the IP address requested by the client, but the client requests
can be redirected to different IPs.

server_local (class)

Default: n/a

The server is connected from this IP address. This is either the IP address of Vela's external interface, or the
IP address of the client (if Forge Port is enabled). The client's original IP address may be modified if SNAT
policies are used.

server_stream (class)

Default: n/a

Server-side stream.

server_zone (class)

Default: n/a

Zone of the server.

target_address (class)

Default: n/a

The IP address to connect. Most often this is the IP address requested by the client, but the client requests
can be redirected to different IPs.

target_local (class)

Default: n/a

The server is connected from this IP address. This is either the IP address of Vela's external interface, or the
IP address of the client (if Forge Port is enabled). The client's original IP address may be modified if SNAT
policies are used.

target_zone (class)

Default: n/a

Zone of the server.

289www.balasys.hu

Class StackedSession

5.16.2.2. StackedSession methods

DescriptionMethod

Set the target server address.setTargetAddress(self, addr)
Table 5.106. Method summary

Method setTargetAddress(self, addr)

This is a compatibility function for proxies that override the routed target.

Arguments of setTargetAddress

addr (unknown)

Default: n/a

Server address

5.17. Module SockAddr

This module implements inet_ntoa and inet_aton. The module also provides an interface to the SockAddr
services of the Vela core. SockAddr is used for example to define the address of the VAS server in
AuthenticationProvider policies.

5.17.1. Classes in the SockAddr module

DescriptionClass

Class encapsulating an IPv4 address:port pair.SockAddrInet

Class encapsulating an IPv6 address:port pair.SockAddrInet6

Class encapsulating a hostname:port pair.SockAddrInetHostname

Class encapsulating an IPv4 address and a port range.SockAddrInetRange

Class encapsulating a UNIX domain socket.SockAddrUnix
Table 5.107. Classes of the SockAddr module

5.17.2. Class SockAddrInet

This class encapsulates an IPv4 address:port pair, similarly to the sockaddr_in struct in C. The class is
implemented and exported by the Vela core. The SockAddrInet Python class serves only documentation
purposes, and has no real connection to the behavior implemented in C.

Example 5.39. SockAddrInet example
The following example defines an IPv4 address:port pair.

SockAddrInet('192.168.10.10', 80)

The following example uses SockAddrInet in a dispatcher.

290www.balasys.hu

Module SockAddr

Dispatcher(transparent=TRUE, bindto=DBSockAddr(protocol=VD_PROTO_TCP, sa=SockAddrInet('192.168.11.11',

50080)), service="intra_HTTP_inter", backlog=255, rule_port="50080")

5.17.2.1. Attributes of SockAddrInet

ip (unknown)

Default: n/a

IP address (network byte order).

ip_s (unknown)

Default: n/a

IP address in string representation.

port (unknown)

Default: n/a

Port number (network byte order).

type (string)

Default: n/a

The inet value that indicates an address in the AF_INET domain.

5.17.3. Class SockAddrInet6

This class encapsulates an IPv6 address:port pair, similarly to the sockaddr_in struct in C. The class is
implemented and exported by the Vela core. The SockAddrInet Python class serves only documentation
purposes, and has no real connection to the behavior implemented in C.

Example 5.40. SockAddrInet example
The following example defines an IPv6 address:port pair.

SockAddrInet('fec0::1', 80)

The following example uses SockAddrInet in a dispatcher.

Dispatcher(transparent=TRUE, bindto=DBSockAddr(protocol=VD_PROTO_TCP, sa=SockAddrInet('fec0::1',

50080)), service="intra_HTTP_inter", backlog=255, rule_port="50080")

5.17.3.1. Attributes of SockAddrInet6

ip (unknown)

Default: n/a

IP address (network byte order).

291www.balasys.hu

Class SockAddrInet6

ip_s (unknown)

Default: n/a

IP address in string representation.

port (unknown)

Default: n/a

Port number (network byte order).

type (string)

Default: n/a

The inet value that indicates an address in the AF_INET domain.

5.17.4. Class SockAddrInetHostname

This class encapsulates a hostname:port or IPv4 address:port pair. Name resolution is only performed when
creating the SockAddrInetHostname object (that is, during startup and reload). The class is implemented and
exported by the Vela core. The SockAddrInetHostname Python class serves only documentation purposes,
and has no real connection to the behavior implemented in C.

Example 5.41. SockAddrInetHostname example
The following example defines a hostname:port or IPv4 address:port pair.

SockAddrInetHostname('www.example.com', 80)

SockAddrInetHostname('192.168.10.10', 80)

The following example uses SockAddrInetHostname in a dispatcher.

Dispatcher(transparent=TRUE, bindto=DBSockAddr(protocol=VD_PROTO_TCP,

sa=SockAddrInetHostname('www.example.com', 50080)), service="intra_HTTP_inter", backlog=255,

rule_port="50080")

5.17.4.1. Attributes of SockAddrInetHostname

ip (unknown)

Default: n/a

IP address (network byte order).

ip_s (unknown)

Default: n/a

IP address in string representation.

292www.balasys.hu

Class SockAddrInetHostname

port (unknown)

Default: n/a

Port number (network byte order).

type (string)

Default: n/a

The inet value that indicates an address in the AF_INET domain.

5.17.5. Class SockAddrInetRange

A specialized SockAddrInet class which allocates a new port within the given range of ports when a dispatcher
bounds to it. The class is implemented and exported by the Vela core. The SockAddrInetRange Python class
serves only documentation purposes, and has no real connection to the behavior implemented in C.

5.17.5.1. Attributes of SockAddrInetRange

ip (unknown)

Default: n/a

IP address (network byte order).

ip_s (unknown)

Default: n/a

IP address in string representation.

port (unknown)

Default: n/a

Port number (network byte order).

type (string)

Default: n/a

The inet value that indicates an address in the AF_INET domain.

5.17.6. Class SockAddrUnix

This class encapsulates a UNIX domain socket endpoint. The socket is represented by a filename. The
SockAddrUnix Python class serves only documentation purposes, and has no real connection to the behavior
implemented in C.

293www.balasys.hu

Class SockAddrInetRange

Example 5.42. SockAddrUnix example
The following example defines a Unix domain socket.

SockAddrUnix('/var/sample.socket')

The following example uses SockAddrUnix in a DirectedRouter.

Service(name="demo_service", proxy_class=HttpProxy,

router=DirectedRouter(dest_addr=SockAddrUnix('/var/sample.socket'), overrideable=FALSE,

forge_addr=FALSE))

5.17.6.1. Attributes of SockAddrUnix

type (string)

Default: n/a

The unix value that indicates an address in the UNIX domain.

5.18. Module Stack

Vela is capable of stacking, that is, handing over parts of the traffic to other modules for further inspection
(e.g., to other proxies to inspect embedded protocols, to content vectoring modules for virus filtering, etc.). The
Stack module defines the classes required for this functionality.

Stacking in services is performed using StackingProvider policies, which reference the host that performs the
stacked operations using the RemoteStackingBackend class.

5.18.1. Classes in the Stack module

DescriptionClass

This is an abstract class, currently without any
functionality.

AbstractStackingBackend

Constructor to initialize an instance of the
RemoteStackingBackend class.

RemoteStackingBackend

This is a policy class that is used to reference a
configured stacking provider in service definitions.

StackingProvider

Table 5.108. Classes of the Stack module

5.18.2. Class AbstractStackingBackend

This is an abstract class, currently without any functionality.

5.18.3. Class RemoteStackingBackend

This class contains the address of the host that performs the stacked operations. It is typically used to access
the Vela Content Vectoring Server (VCF) to perform virus filtering in the traffic. The remote backend can be
a c c e s s e d u s i n g t h e T C P p r o t o c o l o r a l o c a l s o c k e t , e . g . ,

294www.balasys.hu

Module Stack

RemoteStackingBackend(addrs=(SockAddrInet('192.168.2.3', 1318),)) or
RemoteStackingBackend(addrs=(SockAddrUnix('/var/run/vcf/vcf.sock'),)). .

5.18.3.1. RemoteStackingBackend methods

DescriptionMethod

__init__(self, addrs)
Table 5.109. Method summary

Method __init__(self, addrs)

Arguments of __init__

addrs (complex)

Default: n/a

The address of the remote backend in SockAddrInet or SockAddrUnix format. Separate addresses with commas
to list more than one address for a backend. Vela will connect to these addresses in a failover fashion.

5.18.4. Class StackingProvider

Instances of the StackingProvider class are policies that define which remote stacking backend a particular
service uses to inspect the contents of the traffic.

Example 5.43. A simple StackingProvider class
The following class creates a simple stacking provider that can be referenced in service definitions. The remote host that provides the
stacking services is located under the 192.168.12.12 IP address.

StackingProvider(name="demo_stackingprovider",

backend=RemoteStackingBackend(addrs=(SockAddrInet('192.168.12.12', 1318),)))

Example 5.44. Using a StackingProvider in an FTP proxy
The following classes define a stacking provider that can be accesses a local VCF instance using a domain socket. This service provider
is then used to filter FTP traffic. The configuration of the VCF (i.e., what modules it uses to filter the traffic is not discussed here).

class StackingFtpProxy(FtpProxy):

def config(self):

super(StackingFtpProxy, self).config()

self.request_stack["RETR"]=(FTP_STK_DATA, (V_STACK_PROVIDER, "demo_stackingprovider",

"default_rulegroup"))

StackingProvider(name="demo_stackingprovider_socket",

backend=RemoteStackingBackend(addrs=(SockAddrUnix('/var/run/vcf/vcf.sock'),)))

295www.balasys.hu

Class StackingProvider

5.18.4.1. StackingProvider methods

DescriptionMethod

Constructor to initialize an instance of the
StackingProvider class.

__init__(self, name, backend)

Table 5.110. Method summary

Method __init__(self, name, backend)

This constructor creates a StackingProvider instance and sets the attributes of the instance according to the
received arguments.

Arguments of __init__

backend (class)

Default: n/a

A configured RemoteStackingBackend class containing the address of the remote stacking backend, e.g.,
RemoteStackingBackend(addrs=(SockAddrInet('192.168.2.3', 1318),)) or
RemoteStackingBackend(addrs=(SockAddrUnix('/var/run/vcf/vcf.sock'),)). .

name (string)

Default: n/a

Name of the Stacking provider policy. This name can be referenced in the service definitions.

5.19. Module Zone

This module defines the Zone class.

Zones are the basis of access control. A zone consists of a set of IP addresses, address ranges, or subnet. For
example, a zone can contain an IPv4 or IPv6 subnet.

Zones are organized into a hierarchy created by the administrator. Child zones inherit the security attributes
(set of permitted services etc.) from their parents. The administrative hierarchy often reflects the organization
of the company, with zones assigned to the different departments.

When it has to be determined what zone a client belongs to, the most specific zone containing the searched IP
address is selected. If an IP address belongs to two different zones, the most specific zone is selected.

Example 5.45. Finding IP networks
Suppose there are three zones configured: Zone_A containing the 10.0.0.0/8 network, Zone_B containing the 10.0.0.0/16 network,
and Zone_C containing the 10.0.0.25 IP address. Searching for the 10.0.44.0 network returns Zone_B, because that is the most
specific zone matching the searched IP address. Similarly, searching for 10.0.0.25 returns only Zone_C.

This approach is used in the service definitions as well: when a client sends a connection request, the most specific zone containing the
IP address of the client is looked up. Suppose that the clients in Zone_A are allowed to use HTTP. If a client with IP 10.0.0.50 (thus
belonging to Zone_B) can only use HTTP if Zone_B is the child of Zone_A, or if a service definition explicitly permits Zone_B to use
HTTP.

296www.balasys.hu

Module Zone

Example 5.46. Zone examples
The following example defines a simple zone hierarchy. The following zones are defined:

internet: This zone contains every possible IP addresses, if an IP address does not belong to another zone, than it belongs
to the internet zone.

■

■ office: This zone contains the 192.168.1.0/32 and 192.168.2.0/32 networks.

■ management: This zone is separated from the office zone, because it contans an independent subnet 192.168.3.0/32 .
But from the administrator's view, it is the child zone of the office zone, meaning that it can use (and accept) the same
services as the office zone.

■ DMZ: This is a separate zone.

Zone('internet', ['0.0.0.0/0', '::0/0'])

Zone('office', ['192.168.1.0/32', '192.168.2.0/32'])

Zone('management', ['192.168.3.0/32'])

Zone('DMZ', ['10.50.0.0/32'])

5.19.1. Classes in the Zone module

DescriptionClass

Class encapsulating IP zones.Zone
Table 5.111. Classes of the Zone module

5.19.2. Class Zone

This class encapsulates IPv4 and IPv6 zones.

Example 5.47. Determining the zone of an IP address
An IP address always belongs to the most specific zone. Suppose that Zone A includes the IP network 10.0.0.0/8 and Zone B includes
the network 10.0.1.0/24. In this case, a client machine with the 10.0.1.100/32 IP address belongs to both zones from an IP
addressing point of view. But Zone B is more specific (in CIDR terms), so the client machine belongs to Zone B.

5.19.2.1. Zone methods

DescriptionMethod

Constructor to initialize a Zone instance__init__(self, name, addrs, hostnames, admin_parent)
Table 5.112. Method summary

Method __init__(self, name, addrs, hostnames, admin_parent)

This constructor initializes a Zone object.

Arguments of __init__

addr (complex)

Default: n/a

297www.balasys.hu

Classes in the Zone module

addr (complex)

A string representing an address range interpreted by the domain class (last argument), *or* a list of strings
representing multiple address ranges.

admin_parent (string)

Default: n/a

Name of the administrative parent zone. If set, the current zone inherits the lists of permitted inbound and
outbound services from its administrative parent zone.

hostnames (complex)

Default: n/a

A string representing a domain name, the addresses of its A and AAAA records are placed into the zone
hierarchy *or* a list of domain names representing multiple domain names

name (string)

Default: n/a

Name of the zone.

5.20. Module Vela

This module defines global constants (e.g., TRUE and FALSE) used by other components, and interface entry
points to the core.

298www.balasys.hu

Module Vela

Chapter 6. Core-internal

This chapter provides information about some of the internal PNS modules.

6.1. Module Cache

Caching is used throughout the policy layer to improve performance. This module includes a couple of general
caching classes used by various parts of the policy code.

6.2. Module Core

This module imports all public interfaces and makes it easy to use those from the user policy file by simply
importing all symbols from Vela.Core.

6.3. Module Dispatch

Dispatchers bind to a specific IP address and port of the Vela firewall and wait for incoming connection requests.
For each accepted connection, the Dispatcher creates a new service instance to handle the traffic arriving in the
connection.

Note
Earlier product versions used different classes to handle TCP and UDP connections (Dispatchers, respectively). These classes have been
merged into the Dispatcher module.

For each accepted connection, the Dispatcher creates a new service instance to handle the traffic arriving in the
connection. The service started by the dispatcher depends on the type of the dispatcher:

■ Dispatchers start the same service for every connection.

■ CSZoneDispatchers start different services based on the zones the client and the destination server
belong to.

Note
Only one dispatcher can bind to an IP address/port pair.

6.3.1. Zone-based service selection

Dispatchers can start only a predefined service. Use CSZonedDispatchers to start different services for different
connections. CSZoneDispatchers assign different services to different client-server zone pairs. Define the zones
and the related services in the services parameter. The * wildcard matches all client or server zones.

299www.balasys.hu

Module Cache

Note
The server zone may be modified by the proxy, the router, the chainer, or the NAT policy used in the service. To select the service,
CSZoneDispatcher determines the server zone from the original destination IP address of the incoming client request. Similarly, the
client zone is determined from the source IP address of the original client request.

To accept connections from the child zones of the selected client zones, set the follow_parent attribute to
TRUE. Otherwise, the dispatcher accepts traffic only from the client zones explicitly listed in the services

attribute of the dispatcher.

6.3.2. Classes in the Dispatch module

DescriptionClass

Class encapsulating the Dispatcher which starts a
service by the client and server zone.

CSZoneDispatcher

Class encapsulating the Dispatcher which starts a
service by the client and server zone.

Dispatcher

Table 6.1. Classes of the Dispatch module

6.3.3. Class CSZoneDispatcher

This class is similar to a simple Dispatcher, but instead of starting a fixed service, it chooses one based on the
client and the destined server zone.

It takes a mapping of services indexed by a client and the server zone name, with an exception of the '*' zone,
which matches anything.

NOTE: the server zone might change during proxy and NAT processing, therefore the server zone used here
only matches the real destination if those phases leave the server address intact.

Example 6.1. CSZoneDispatcher example
The following example defines a CSZoneDispatcher that starts the service called internet_HTTP_DMZ for connections received on
the 192.168.2.1 IP address, but only if the connection comes from the internet zone and the destination is in the DMZ zone.

CSZoneDispatcher(bindto=SockAddrInet('192.168.2.1', 50080), services={("internet",

"DMZ"):"internet_HTTP_DMZ"}, transparent=TRUE, backlog=255, threaded=FALSE, follow_parent=FALSE)

6.3.3.1. Attributes of CSZoneDispatcher

services (unknown)

Default: n/a

services mapping indexed by zone names

300www.balasys.hu

Classes in the Dispatch module

6.3.3.2. CSZoneDispatcher methods

DescriptionMethod

Constructor to initialize a CSZoneDispatcher instance.__init__(self, bindto, services, **kw)
Table 6.2. Method summary

Method __init__(self, bindto, services, **kw)

This constructor initializes a CSZoneDispatcher instance and sets its initial attributes based on arguments.

Arguments of __init__

bindto (sockaddr)

Default: n/a

An existing socket address containing the IP address and port number where the Dispatcher accepts connections.

follow_parent (boolean)

Default: n/a

Set this parameter to TRUE if the dispatcher handles also the connections coming from the child zones of the
selected client zones. Otherwise, the dispatcher accepts traffic only from the explicitly listed client zones.

services (complex)

Default: n/a

Client zone - server zone - service name pairs using the (("client_zone","server_zone"):"service")
format; specifying the service to start when the dispatcher accepts a connection from the given client zone
that targets the server zone.

6.3.4. Class Dispatcher

This class is the starting point of services. It listens on the given port, and when a connection is accepted it
starts a session and the given service.

Example 6.2. Dispatcher example
The following example defines a transparent dispatcher that starts the service called demo_http_service for connections received on
the 192.168.2.1 IP address.

Dispatcher(bindto=SockAddrInet('192.168.2.1', 50080), service="demo_http_service", transparent=TRUE,

backlog=255, threaded=FALSE)

301www.balasys.hu

Class Dispatcher

6.3.4.1. Attributes of Dispatcher

backlog (integer)

Default: n/a

Applies only to TCP connections. This parameter sets the queue size (maximum number) of TCP connections
that are established by the kernel, but not yet accepted by Vela. This queue stores the connections that
successfully performed the three-way TCP handshake with the Vela host, until the dispatcher sends theAccept
package.

bindto (sockaddr)

Default: n/a

An existing socket address containing the IP address and port number where the Dispatcher accepts connections.

protocol (unknown)

Default: n/a

the protocol we were bound to

service (service)

Default: n/a

Name of the service to start.

threaded (boolean)

Default: n/a

Set this parameter to TRUE to start a new thread for every client request. The proxy threads started by the
dispatcher will start from the dispatcher's thread instead of the main thread. Incoming connections are accepted
faster and optimizes queuing if this option is enabled. This improves user experience, but significantly increases
the memory consumption of Vela. Use it only if a very high number of concurrent connections have to be
transfered.

6.3.4.2. Dispatcher methods

DescriptionMethod

Constructor to initialize a Dispatcher instance.__init__(self, bindto, service, **kw)
Table 6.3. Method summary

Method __init__(self, bindto, service, **kw)

This constructor creates a new Dispatcher instance which can be associated with a Service.

302www.balasys.hu

Class Dispatcher

Arguments of __init__

bindto (sockaddr)

Default: n/a

An existing socket address containing the IP address and port number where the Dispatcher accepts connections.

service (service)

Default: n/a

Name of the service to start.

transparent (boolean)

Default: n/a

Set this parameter to TRUE if the dispatcher starts a transparent service.

6.4. Module Globals

Global variables used by the policy layer.

6.5. Module Stream

This module defines the Stream class, encapsulating file descriptors and related functions.

6.5.1. Classes in the Stream module

DescriptionClass

Class encapsulating the file descriptor and related
functions.

Stream

Table 6.4. Classes of the Stream module

6.5.2. Class Stream

This class encapsulates a full-duplex data tunnel, represented by a UNIX file descriptor. Proxies communicate
with its peers through instances of this class. The client_stream and server_stream attributes of the
Session class contain a Stream instance.

6.5.2.1. Attributes of Stream

bytes_recvd (integer)

Default: n/a

The number of bytes received in the stream.

303www.balasys.hu

Module Globals

bytes_sent (integer)

Default: n/a

The number of bytes sent in the stream.

fd (integer)

Default: n/a

The file descriptor associated to the stream.

name (string)

Default: n/a

The name of the stream.

6.5.2.2. Stream methods

DescriptionMethod

Constructor to initialize a stream.__init__(self, fd, name)
Table 6.5. Method summary

Method __init__(self, fd, name)

This constructor initializes a Stream instance setting its attributes according to arguments.

Arguments of __init__

fd (integer)

Default: n/a

The file descriptor associated to the stream.

name (string)

Default: n/a

The name of the stream.

304www.balasys.hu

Class Stream

Appendix A. Additional proxy information

A.1. TELNET appendix

The constants defined for the easier use of TELNET options and suboptions are listed in the table below.
Suboptions are listed directly under the option they refer to. All suboptions have the TELNET_SB prefix. The
RFC describing the given option is also shown in the table.

Detailed in RFC #C o n s t a n t v a l u e o f
option/suboption

Name

8560TELNET_BINARY

8571TELNET_ECHO

8583TELNET_SUPPRESS_GO_AHEAD

8595TELNET_STATUS

0TELNET_SB_STATUS_SB_IS

1TELNET_SB_STATUS_SB_SEND

8606TELNET_TIMING_MARK

7267TELNET_RCTE

65210TELNET_NAOCRD

0TELNET_SB_NAOCRD_DR

1TELNET_SB_NAOCRD_DS

65311TELNET_NAOHTS

0TELNET_SB_NAOHTS_DR

1TELNET_SB_NAOHTS_DS

65412TELNET_NAOHTD

0TELNET_SB_NAOHTD_DR

1TELNET_SB_NAOHTD_DS

65513TELNET_NAOFFD

0TELNET_SB_NAOFFD_DR

1TELNET_SB_NAOFFD_DS

65614TELNET_NAOVTS

0TELNET_SB_NAOVTS_DR

1TELNET_SB_NAOVTS_DS

305www.balasys.hu

TELNET appendix

Detailed in RFC #C o n s t a n t v a l u e o f
option/suboption

Name

65715TELNET_NAOVTD

0TELNET_SB_NAOVTD_DR

1TELNET_SB_NAOVTD_DS

65816TELNET_NAOLFD

0TELNET_SB_NAOLFD_DR

1TELNET_SB_NAOLFD_DS

69817TELNET_EXTEND_ASCII

72718TELNET_LOGOUT

73519TELNET_BM

1TELNET_SB_BM_DEFINE

2TELNET_SB_BM_ACCEPT

3TELNET_SB_BM_REFUSE

4TELNET_SB_BM_LITERAL

5TELNET_SB_BM_CANCEL

1043, 73220TELNET_DET

1TELNET_SB_DET_DEFINE

2TELNET_SB_DET_ERASE

3TELNET_SB_DET_TRANSMIT

4TELNET_SB_DET_FORMAT

5TELNET_SB_DET_MOVE_CURSOR

6TELNET_SB_DET_SKIP_TO_LINE

7TELNET_SB_DET_SKIP_TO_CHAR

8TELNET_SB_DET_UP

9TELNET_SB_DET_DOWN

10TELNET_SB_DET_LEFT

11TELNET_SB_DET_RIGHT

12TELNET_SB_DET_HOME

13TELNET_SB_DET_LINE_INSERT

14TELNET_SB_DET_LINE_DELETE

15TELNET_SB_DET_CHAR_INSERT

306www.balasys.hu

TELNET appendix

Detailed in RFC #C o n s t a n t v a l u e o f
option/suboption

Name

16TELNET_SB_DET_CHAR_DELETE

17TELNET_SB_DET_READ_CURSOR

18TELNET_SB_DET_CURSOR_POSITION

19TELNET_SB_DET_REVERSE_TAB

20TELNET_SB_DET_TRANSMIT_SCREEN

21TELNET_SB_DET_TRANSMIT_UNPROTECTED

22TELNET_SB_DET_TRANSMIT_LINE

23TELNET_SB_DET_TRANSMIT_FIELD

24TELNET_SB_DET_TRANSMIT_REST_SCREEN

25TELNET_SB_DET_TRANSMIT_REST_LINE

26TELNET_SB_DET_TRANSMIT_REST_FIELD

27TELNET_SB_DET_TRANSMIT_MODIFIED

28TELNET_SB_DET_DATA_TRANSMIT

29TELNET_SB_DET_ERASE_SCREEN

30TELNET_SB_DET_ERASE_LINE

31TELNET_SB_DET_ERASE_FIELD

32TELNET_SB_DET_ERASE_REST_SCREEN

33TELNET_SB_DET_ERASE_REST_LINE

34TELNET_SB_DET_ERASE_REST_FIELD

35TELNET_SB_DET_ERASE_UNPROTECTED

36TELNET_SB_DET_FORMAT_DATA

37TELNET_SB_DET_REPEAT

38TELNET_SB_DET_SUPPRESS_PROTECTION

39TELNET_SB_DET_FIELD_SEPARATOR

40TELNET_SB_DET_FN

41TELNET_SB_DET_ERROR

736, 73421TELNET_SUPDUP

74922TELNET_SUPDUP_OUTPUT

77923TELNET_SEND_LOCATION

109124TELNET_TERMINAL_TYPE

307www.balasys.hu

TELNET appendix

Detailed in RFC #C o n s t a n t v a l u e o f
option/suboption

Name

0TELNET_SB_TERMINAL_TYPE_IS

1TELNET_SB_TERMINAL_TYPE_SEND

88525TELNET_EOR

92726TELNET_TUID

93327TELNET_OUTMRK

28 946TELNET_TTYLOC

104129TELNET_3270_REGIME

0TELNET_SB_3270_REGIME_IS

1TELNET_SB_3270_REGIME_ARE

105330TELNET_X3_PAD

0TELNET_SB_X3_PAD_SET

1TELNET_SB_X3_PAD_RESPONSE_SET

2TELNET_SB_X3_PAD_IS

3TELNET_SB_X3_PAD_RESPONSE_IS

4TELNET_SB_X3_PAD_SEND

107331TELNET_NAWS

107932TELNET_TERMINAL_SPEED

0TELNET_SB_TERMINAL_SPEED_IS

1TELNET_SB_TERMINAL_SPEED_SEND

137233TELNET_TOGGLE_FLOW_CONTROL

0TELNET_SB_TOGGLE_FLOW_CONTROL_OFF

1TELNET_SB_TOGGLE_FLOW_CONTROL_ON

2TELNET_SB_TOGGLE_FLOW_CONTROL_RESTART_ANY

3TELNET_SB_TOGGLE_FLOW_CONTROL_RESTART_XON

118434TELNET_LINEMODE

1TELNET_SB_LINEMODE_MODE

2TELNET_SB_LINEMODE_FORWARDMASK

3TELNET_SB_LINEMODE_SLC

109635TELNET_X_DISPLAY_LOCATION

0TELNET_SB_X_DISPLAY_LOCATION_IS

308www.balasys.hu

TELNET appendix

Detailed in RFC #C o n s t a n t v a l u e o f
option/suboption

Name

1TELNET_SB_X_DISPLAY_LOCATION_SEND

140836TELNET_OLD_ENVIRONMENT

0TELNET_SB_OLD_ENVIRONMENT_IS

1TELNET_SB_OLD_ENVIRONMENT_SEND

2TELNET_SB_OLD_ENVIRONMENT_INFO

294137TELNET_AUTHENTICATION

0TELNET_SB_AUTHENTICATION_IS

1TELNET_SB_AUTHENTICATION_SEND

2TELNET_SB_AUTHENTICATION_REPLY

3TELNET_SB_AUTHENTICATION_NAME

294638TELNET_ENCRYPT

0TELNET_SB_ENCRYPT_IS

1TELNET_SB_ENCRYPT_SUPPORT

2TELNET_SB_ENCRYPT_REPLY

3TELNET_SB_ENCRYPT_START

4TELNET_SB_ENCRYPT_END

5TELNET_SB_ENCRYPT_REQUEST_START

6TELNET_SB_ENCRYPT_REQUEST_END

7TELNET_SB_ENCRYPT_ENC_KEYID

8TELNET_SB_ENCRYPT_DEC_KEYID

157239TELNET_ENVIRONMENT

0TELNET_SB_ENVIRONMENT_IS

1TELNET_SB_ENVIRONMENT_SEND

2TELNET_SB_ENVIRONMENT_INFO

164740TELNET_TN3270E

0TELNET_SB_TN3270E_ASSOCIATE

1TELNET_SB_TN3270E_CONNECT

2TELNET_SB_TN3270E_DEVICE_TYPE

3TELNET_SB_TN3270E_FUNCTIONS

4TELNET_SB_TN3270E_IS

309www.balasys.hu

TELNET appendix

Detailed in RFC #C o n s t a n t v a l u e o f
option/suboption

Name

5TELNET_SB_TN3270E_REASON

6TELNET_SB_TN3270E_REJECT

7TELNET_SB_TN3270E_REQUEST

8TELNET_SB_TN3270E_SEND

206642TELNET_CHARSET

1TELNET_SB_CHARSET_REQUEST

2TELNET_SB_CHARSET_ACCEPTED

3TELNET_SB_CHARSET_REJECTED

4TELNET_SB_CHARSET_TTABLE_IS

5TELNET_SB_CHARSET_TTABLE_REJECTED

6TELNET_SB_CHARSET_TTABLE_ACK

7TELNET_SB_CHARSET_TTABLE_NAK

221744TELNET_COM_PORT

1TELNET_SB_COM_PORT_CLI_SET_BAUDRATE

2TELNET_SB_COM_PORT_CLI_SET_DATASIZE

3TELNET_SB_COM_PORT_CLI_SET_PARITY

4TELNET_SB_COM_PORT_CLI_SET_STOPSIZE

5TELNET_SB_COM_PORT_CLI_SET_CONTROL

6TELNET_SB_COM_PORT_CLI_NOTIFY_LINESTATE

7TELNET_SB_COM_PORT_CLI_NOTIFY_MODEMSTATE

8TELNET_SB_COM_PORT_CLI_FLOWCONTROL_SUSPEND

9TELNET_SB_COM_PORT_CLI_FLOWCONTROL_RESUME

10TELNET_SB_COM_PORT_CLI_SET_LINESTATE_MASK

11TELNET_SB_COM_PORT_CLI_SET_MODEMSTATE_MASK

12TELNET_SB_COM_PORT_CLI_PURGE_DATA

101TELNET_SB_COM_PORT_SVR_SET_BAUDRATE

102TELNET_SB_COM_PORT_SVR_SET_DATASIZE

103TELNET_SB_COM_PORT_SVR_SET_PARITY

104TELNET_SB_COM_PORT_SVR_SET_STOPSIZE

105TELNET_SB_COM_PORT_SVR_SET_CONTROL

310www.balasys.hu

TELNET appendix

Detailed in RFC #C o n s t a n t v a l u e o f
option/suboption

Name

106TELNET_SB_COM_PORT_SVR_NOTIFY_LINESTATE

107TELNET_SB_COM_PORT_SVR_NOTIFY_MODEMSTATE

108TELNET_SB_COM_PORT_SVR_FLOWCONTROL_SUSPEND

109TELNET_SB_COM_PORT_SVR_FLOWCONTROL_RESUME

110TELNET_SB_COM_PORT_SVR_SET_LINESTATE_MASK

111TELNET_SB_COM_PORT_SVR_SET_MODEMSTATE_MASK

112TELNET_SB_COM_PORT_SVR_PURGE_DATA

284047TELNET_KERMIT

0TELNET_SB_KERMIT_START_SERVER

1TELNET_SB_KERMIT_STOP_SERVER

2TELNET_SB_KERMIT_REQ_START_SERVER

3TELNET_SB_KERMIT_REQ_STOP_SERVER

4TELNET_SB_KERMIT_SOP

8TELNET_SB_KERMIT_RESP_START_SERVER

9TELNET_SB_KERMIT_RESP_STOP_SERVER

861255TELNET_EXOPL

1097257TELNET_SUBLIMINAL_MSG
Table A.1. TELNET options and suboptions

A.2. RADIUS appendix

The list of RADIUS attributes as defined by the RADIUS RFC with their symbolic names:

ValueName

"1"RADIUS_USER_name

"2"RADIUS_USER_PASSWORD

"3"RADIUS_CHAP_PASSWORD

"4"RADIUS_NAS_IP_ADDRESS

"5"RADIUS_NAS_PORT

"6"RADIUS_SERVICE_TYPE

"7"RADIUS_FRAMED_PROTOCOL

"8"RADIUS_FRAMED_IP_ADDRESS

311www.balasys.hu

RADIUS appendix

ValueName

"9"RADIUS_FRAMED_IP_NETMASK

"10"RADIUS_FRAMED_ROUTING

"11"RADIUS_FILTER_ID

"12"RADIUS_FRAMED_MTU

"13"RADIUS_FRAMED_COMPRESSION

"14"RADIUS_LOGIN_IP_HOST

"15"RADIUS_LOGIN_SERVICE

"16"RADIUS_LOGIN_TCP_PORT

"18"RADIUS_REPLY_MESSAGE

"19"RADIUS_CALLBACK_NUMBER

"20"RADIUS_CALLBACK_ID

"22"RADIUS_FRAMED_ROUTE

"23"RADIUS_FRAMED_IPX_NETWORK

"24"RADIUS_STATE

"25"RADIUS_CLASS

"26"RADIUS_VENDOR_SPECIFIC

"27"RADIUS_SESSION_TIMEOUT

"28"RADIUS_IDLE_TIMEOUT

"29"RADIUS_TERMINATION_ACTION

"30"RADIUS_CALLED_STATION_ID

"31"RADIUS_CALLING_STATION_ID

"32"RADIUS_NAS_IDENTIFIER

"33"RADIUS_PROXY_STATE

"34"RADIUS_LOGIN_LAT_SERVICE

"35"RADIUS_LOGIN_LAT_NODE

"36"RADIUS_LOGIN_LAT_GROUP

"37"RADIUS_FRAMED_APPLETALK_LINK

"38"RADIUS_FRAMED_APPLETALK_NETWORK

"39"RADIUS_FRAMED_APPLETALK_ZONE

"40"RADIUS_ACCT_STATUS_TYPE

"41"RADIUS_ACCT_DELAY_TIME

312www.balasys.hu

RADIUS appendix

ValueName

"42"RADIUS_ACCT_INPUT_OCTETS

"43"RADIUS_ACCT_OUTPUT_OCTETS

"44"RADIUS_ACCT_SESSION_ID

"45"RADIUS_ACCT_AUTHENTIC

"46"RADIUS_ACCT_SESSION_TIME

"47"RADIUS_ACCT_INPUT_PACKETS

"48"RADIUS_ACCT_OUTPUT_PACKETS

"49"RADIUS_ACCT_TERMINATE_CAUSE

"50"RADIUS_ACCT_MULTI_SESSION_ID

"51"RADIUS_ACCT_LINK_COUNT

"52"RADIUS_ACCT_INPUT_GIGAWORDS

"53"RADIUS_ACCT_OUTPUT_GIGAWORDS

"55"RADIUS_EVENT_TIMESTAMP

"60"RADIUS_CHAP_CHALLENGE

"61"RADIUS_NAS_PORT_TYPE

"62"RADIUS_PORT_LIMIT

"63"RADIUS_LOGIN_LAT_PORT

"64"RADIUS_TUNNEL_TYPE

"65"RADIUS_TUNNEL_MEDIUM_TYPE

"66"RADIUS_TUNNEL_CLIENT_ENDPOINT

"67"RADIUS_TUNNEL_SERVER_ENDPOINT

"68"RADIUS_ACCT_TUNNEL_CONNECTION

"69"RADIUS_TUNNEL_PASSWORD

"70"RADIUS_ARAP_PASSWORD

"71"RADIUS_ARAP_FEATURES

"72"RADIUS_ARAP_ZONE_ACCESS

"73"RADIUS_ARAP_SECURITY

"74"RADIUS_ARAP_SECURITY_DATA

"75"RADIUS_PASSWORD_RETRY

"76"RADIUS_PROMPT

"77"RADIUS_CONNECT_INFO

313www.balasys.hu

RADIUS appendix

ValueName

"78"RADIUS_CONFIGURATION_TOKEN

"79"RADIUS_EAP_MESSAGE

"80"RADIUS_MESSAGE_AUTHENTICATOR

"81"RADIUS_TUNNEL_PRIVATE_GROUP_ID

"82"RADIUS_TUNNEL_ASSIGNMENT_ID

"83"RADIUS_TUNNEL_PREFERENCE

"84"RADIUS_ARAP_CHALLENGE_RESPONSE

"85"RADIUS_ACCT_INTERIM_INTERVAL

"86"RADIUS_ACCT_TUNNEL_PACKETS_LOST

"87"RADIUS_NAS_PORT_ID

"88"RADIUS_FRAMED_POOL

"90"RADIUS_TUNNEL_CLIENT_AUTH_ID

"91"RADIUS_TUNNEL_SERVER_AUTH_ID
Table A.2. RADIUS Protocol Attribute types described in RFC 2865.

Attribute policyAttributeAction

RADIUS_ATR_MAXONEradius_user_nameradius_access_request

RADIUS_ATR_MAXONEradius_user_passwordradius_access_request

RADIUS_ATR_MAXONEradius_chap_passwordradius_access_request

RADIUS_ATR_MAXONEradius_nas_ip_addressradius_access_request

RADIUS_ATR_MAXONEradius_nas_portradius_access_request

RADIUS_ATR_MAXONEradius_service_typeradius_access_request

RADIUS_ATR_MAXONEradius_framed_protocolradius_access_request

RADIUS_ATR_MAXONEradius_framed_ip_addressradius_access_request

RADIUS_ATR_MAXONEradius_framed_ip_netmaskradius_access_request

RADIUS_ATR_ZEROradius_framed_routingradius_access_request

RADIUS_ATR_ZEROradius_filter_idradius_access_request

RADIUS_ATR_MAXONEradius_framed_mturadius_access_request

RADIUS_ATR_MANYradius_framed_compressionradius_access_request

RADIUS_ATR_MANYradius_login_ip_hostradius_access_request

RADIUS_ATR_ZEROradius_login_serviceradius_access_request

RADIUS_ATR_ZEROradius_login_tcp_portradius_access_request

314www.balasys.hu

RADIUS appendix

Attribute policyAttributeAction

RADIUS_ATR_ZEROradius_reply_messageradius_access_request

RADIUS_ATR_MAXONEradius_callback_numberradius_access_request

RADIUS_ATR_ZEROradius_callback_idradius_access_request

RADIUS_ATR_ZEROradius_framed_routeradius_access_request

RADIUS_ATR_ZEROradius_framed_ipx_networkradius_access_request

RADIUS_ATR_MAXONEradius_stateradius_access_request

RADIUS_ATR_ZEROradius_classradius_access_request

RADIUS_ATR_MANYradius_vendor_specificradius_access_request

RADIUS_ATR_ZEROradius_session_timeoutradius_access_request

RADIUS_ATR_ZEROradius_idle_timeoutradius_access_request

RADIUS_ATR_ZEROradius_termination_actionradius_access_request

RADIUS_ATR_MAXONEradius_called_station_idradius_access_request

RADIUS_ATR_MAXONEradius_calling_station_idradius_access_request

RADIUS_ATR_MAXONEradius_nas_identifierradius_access_request

RADIUS_ATR_MANYradius_proxy_stateradius_access_request

RADIUS_ATR_MAXONEradius_login_lat_serviceradius_access_request

RADIUS_ATR_MAXONEradius_login_lat_noderadius_access_request

RADIUS_ATR_MAXONEradius_login_lat_groupradius_access_request

RADIUS_ATR_ZEROradius_framed_appletalk_linkradius_access_request

RADIUS_ATR_ZEROradius_framed_appletalk_networkradius_access_request

RADIUS_ATR_ZEROradius_framed_appletalk_zoneradius_access_request

RADIUS_ATR_MAXONEradius_chap_challengeradius_access_request

RADIUS_ATR_MAXONEradius_nas_port_typeradius_access_request

RADIUS_ATR_MAXONEradius_port_limitradius_access_request

RADIUS_ATR_MAXONEradius_login_lat_portradius_access_request

RADIUS_ATR_MANYradius_tunnel_typeradius_access_request

RADIUS_ATR_MANYradius_tunnel_medium_typeradius_access_request

RADIUS_ATR_MANYradius_tunnel_client_endpointradius_access_request

RADIUS_ATR_MANYradius_tunnel_server_endpointradius_access_request

RADIUS_ATR_ZEROradius_tunnel_passwordradius_access_request

RADIUS_ATR_MAXONEradius_arap_passwordradius_access_request

315www.balasys.hu

RADIUS appendix

Attribute policyAttributeAction

RADIUS_ATR_ZEROradius_arap_featuresradius_access_request

RADIUS_ATR_ZEROradius_arap_zone_accessradius_access_request

RADIUS_ATR_MAXONEradius_arap_securityradius_access_request

RADIUS_ATR_MANYradius_arap_security_dataradius_access_request

RADIUS_ATR_ZEROradius_password_retryradius_access_request

RADIUS_ATR_ZEROradius_promptradius_access_request

RADIUS_ATR_MAXONEradius_connect_inforadius_access_request

RADIUS_ATR_ZEROradius_configuration_tokenradius_access_request

RADIUS_ATR_MANYradius_eap_messageradius_access_request

RADIUS_ATR_MAXONEradius_message_authenticatorradius_access_request

RADIUS_ATR_MANYradius_tunnel_private_group_idradius_access_request

RADIUS_ATR_ZEROradius_tunnel_assignment_idradius_access_request

RADIUS_ATR_MANYradius_tunnel_preferenceradius_access_request

RADIUS_ATR_ZEROradius_arap_challenge_responseradius_access_request

RADIUS_ATR_ZEROradius_acct_interim_intervalradius_access_request

RADIUS_ATR_MAXONEradius_nas_port_idradius_access_request

RADIUS_ATR_ZEROradius_framed_poolradius_access_request

RADIUS_ATR_MANYradius_tunnel_client_auth_idradius_access_request

RADIUS_ATR_MANYradius_tunnel_server_auth_idradius_access_request

RADIUS_ATR_MAXONEradius_user_nameradius_access_accept

RADIUS_ATR_ZEROradius_user_passwordradius_access_accept

RADIUS_ATR_ZEROradius_chap_passwordradius_access_accept

RADIUS_ATR_ZEROradius_nas_ip_addressradius_access_accept

RADIUS_ATR_ZEROradius_nas_portradius_access_accept

RADIUS_ATR_MAXONEradius_service_typeradius_access_accept

RADIUS_ATR_MAXONEradius_framed_protocolradius_access_accept

RADIUS_ATR_MAXONEradius_framed_ip_addressradius_access_accept

RADIUS_ATR_MAXONEradius_framed_ip_netmaskradius_access_accept

RADIUS_ATR_MAXONEradius_framed_routingradius_access_accept

RADIUS_ATR_MANYradius_filter_idradius_access_accept

RADIUS_ATR_MAXONEradius_framed_mturadius_access_accept

316www.balasys.hu

RADIUS appendix

Attribute policyAttributeAction

RADIUS_ATR_MANYradius_framed_compressionradius_access_accept

RADIUS_ATR_MANYradius_login_ip_hostradius_access_accept

RADIUS_ATR_MAXONEradius_login_serviceradius_access_accept

RADIUS_ATR_MAXONEradius_login_tcp_portradius_access_accept

RADIUS_ATR_MANYradius_reply_messageradius_access_accept

RADIUS_ATR_MAXONEradius_callback_numberradius_access_accept

RADIUS_ATR_MAXONEradius_callback_idradius_access_accept

RADIUS_ATR_MANYradius_framed_routeradius_access_accept

RADIUS_ATR_MAXONEradius_framed_ipx_networkradius_access_accept

RADIUS_ATR_MAXONEradius_stateradius_access_accept

RADIUS_ATR_MANYradius_classradius_access_accept

RADIUS_ATR_MANYradius_vendor_specificradius_access_accept

RADIUS_ATR_MAXONEradius_session_timeoutradius_access_accept

RADIUS_ATR_MAXONEradius_idle_timeoutradius_access_accept

RADIUS_ATR_MAXONEradius_termination_actionradius_access_accept

RADIUS_ATR_ZEROradius_called_station_idradius_access_accept

RADIUS_ATR_ZEROradius_calling_station_idradius_access_accept

RADIUS_ATR_ZEROradius_nas_identifierradius_access_accept

RADIUS_ATR_MANYradius_proxy_stateradius_access_accept

RADIUS_ATR_MAXONEradius_login_lat_serviceradius_access_accept

RADIUS_ATR_MAXONEradius_login_lat_noderadius_access_accept

RADIUS_ATR_MAXONEradius_login_lat_groupradius_access_accept

RADIUS_ATR_MAXONEradius_framed_appletalk_linkradius_access_accept

RADIUS_ATR_MANYradius_framed_appletalk_networkradius_access_accept

RADIUS_ATR_MAXONEradius_framed_appletalk_zoneradius_access_accept

RADIUS_ATR_ZEROradius_chap_challengeradius_access_accept

RADIUS_ATR_ZEROradius_nas_port_typeradius_access_accept

RADIUS_ATR_MAXONEradius_port_limitradius_access_accept

RADIUS_ATR_MAXONEradius_login_lat_portradius_access_accept

RADIUS_ATR_MANYradius_tunnel_typeradius_access_accept

RADIUS_ATR_MANYradius_tunnel_medium_typeradius_access_accept

317www.balasys.hu

RADIUS appendix

Attribute policyAttributeAction

RADIUS_ATR_MANYradius_tunnel_client_endpointradius_access_accept

RADIUS_ATR_MANYradius_tunnel_server_endpointradius_access_accept

RADIUS_ATR_MANYradius_tunnel_passwordradius_access_accept

RADIUS_ATR_ZEROradius_arap_passwordradius_access_accept

RADIUS_ATR_MAXONEradius_arap_featuresradius_access_accept

RADIUS_ATR_MAXONEradius_arap_zone_accessradius_access_accept

RADIUS_ATR_ZEROradius_arap_securityradius_access_accept

RADIUS_ATR_ZEROradius_arap_security_dataradius_access_accept

RADIUS_ATR_ZEROradius_password_retryradius_access_accept

RADIUS_ATR_ZEROradius_promptradius_access_accept

RADIUS_ATR_ZEROradius_connect_inforadius_access_accept

RADIUS_ATR_MANYradius_configuration_tokenradius_access_accept

RADIUS_ATR_MANYradius_eap_messageradius_access_accept

RADIUS_ATR_MAXONEradius_message_authenticatorradius_access_accept

RADIUS_ATR_MANYradius_tunnel_private_group_idradius_access_accept

RADIUS_ATR_MANYradius_tunnel_assignment_idradius_access_accept

RADIUS_ATR_MANYradius_tunnel_preferenceradius_access_accept

RADIUS_ATR_MAXONEradius_arap_challenge_responseradius_access_accept

RADIUS_ATR_MAXONEradius_acct_interim_intervalradius_access_accept

RADIUS_ATR_ZEROradius_nas_port_idradius_access_accept

RADIUS_ATR_MAXONEradius_framed_poolradius_access_accept

RADIUS_ATR_MANYradius_tunnel_client_auth_idradius_access_accept

RADIUS_ATR_MANYradius_tunnel_server_auth_idradius_access_accept

RADIUS_ATR_ZEROradius_user_nameradius_access_reject

RADIUS_ATR_ZEROradius_user_passwordradius_access_reject

RADIUS_ATR_ZEROradius_chap_passwordradius_access_reject

RADIUS_ATR_ZEROradius_nas_ip_addressradius_access_reject

RADIUS_ATR_ZEROradius_nas_portradius_access_reject

RADIUS_ATR_ZEROradius_service_typeradius_access_reject

RADIUS_ATR_ZEROradius_framed_protocolradius_access_reject

RADIUS_ATR_ZEROradius_framed_ip_addressradius_access_reject

318www.balasys.hu

RADIUS appendix

Attribute policyAttributeAction

RADIUS_ATR_ZEROradius_framed_ip_netmaskradius_access_reject

RADIUS_ATR_ZEROradius_framed_routingradius_access_reject

RADIUS_ATR_ZEROradius_filter_idradius_access_reject

RADIUS_ATR_ZEROradius_framed_mturadius_access_reject

RADIUS_ATR_ZEROradius_framed_compressionradius_access_reject

RADIUS_ATR_ZEROradius_login_ip_hostradius_access_reject

RADIUS_ATR_ZEROradius_login_serviceradius_access_reject

RADIUS_ATR_ZEROradius_login_tcp_portradius_access_reject

RADIUS_ATR_MANYradius_reply_messageradius_access_reject

RADIUS_ATR_ZEROradius_callback_numberradius_access_reject

RADIUS_ATR_ZEROradius_callback_idradius_access_reject

RADIUS_ATR_ZEROradius_framed_routeradius_access_reject

RADIUS_ATR_ZEROradius_framed_ipx_networkradius_access_reject

RADIUS_ATR_ZEROradius_stateradius_access_reject

RADIUS_ATR_ZEROradius_classradius_access_reject

RADIUS_ATR_ZEROradius_vendor_specificradius_access_reject

RADIUS_ATR_ZEROradius_session_timeoutradius_access_reject

RADIUS_ATR_ZEROradius_idle_timeoutradius_access_reject

RADIUS_ATR_ZEROradius_termination_actionradius_access_reject

RADIUS_ATR_ZEROradius_called_station_idradius_access_reject

RADIUS_ATR_ZEROradius_calling_station_idradius_access_reject

RADIUS_ATR_ZEROradius_nas_identifierradius_access_reject

RADIUS_ATR_MANYradius_proxy_stateradius_access_reject

RADIUS_ATR_ZEROradius_login_lat_serviceradius_access_reject

RADIUS_ATR_ZEROradius_login_lat_noderadius_access_reject

RADIUS_ATR_ZEROradius_login_lat_groupradius_access_reject

RADIUS_ATR_ZEROradius_framed_appletalk_linkradius_access_reject

RADIUS_ATR_ZEROradius_framed_appletalk_networkradius_access_reject

RADIUS_ATR_ZEROradius_framed_appletalk_zoneradius_access_reject

RADIUS_ATR_ZEROradius_chap_challengeradius_access_reject

RADIUS_ATR_ZEROradius_nas_port_typeradius_access_reject

319www.balasys.hu

RADIUS appendix

Attribute policyAttributeAction

RADIUS_ATR_ZEROradius_port_limitradius_access_reject

RADIUS_ATR_ZEROradius_login_lat_portradius_access_reject

RADIUS_ATR_ZEROradius_tunnel_typeradius_access_reject

RADIUS_ATR_ZEROradius_tunnel_medium_typeradius_access_reject

RADIUS_ATR_ZEROradius_tunnel_client_endpointradius_access_reject

RADIUS_ATR_ZEROradius_tunnel_server_endpointradius_access_reject

RADIUS_ATR_ZEROradius_tunnel_passwordradius_access_reject

RADIUS_ATR_ZEROradius_arap_passwordradius_access_reject

RADIUS_ATR_ZEROradius_arap_featuresradius_access_reject

RADIUS_ATR_ZEROradius_arap_zone_accessradius_access_reject

RADIUS_ATR_ZEROradius_arap_securityradius_access_reject

RADIUS_ATR_ZEROradius_arap_security_dataradius_access_reject

RADIUS_ATR_MAXONEradius_password_retryradius_access_reject

RADIUS_ATR_ZEROradius_promptradius_access_reject

RADIUS_ATR_ZEROradius_connect_inforadius_access_reject

RADIUS_ATR_ZEROradius_configuration_tokenradius_access_reject

RADIUS_ATR_MANYradius_eap_messageradius_access_reject

RADIUS_ATR_MAXONEradius_message_authenticatorradius_access_reject

RADIUS_ATR_ZEROradius_tunnel_private_group_idradius_access_reject

RADIUS_ATR_ZEROradius_tunnel_assignment_idradius_access_reject

RADIUS_ATR_ZEROradius_tunnel_preferenceradius_access_reject

RADIUS_ATR_ZEROradius_arap_challenge_responseradius_access_reject

RADIUS_ATR_ZEROradius_acct_interim_intervalradius_access_reject

RADIUS_ATR_ZEROradius_nas_port_idradius_access_reject

RADIUS_ATR_ZEROradius_framed_poolradius_access_reject

RADIUS_ATR_ZEROradius_tunnel_client_auth_idradius_access_reject

RADIUS_ATR_ZEROradius_tunnel_server_auth_idradius_access_reject

RADIUS_ATR_MAXONEradius_user_nameradius_accounting_request

RADIUS_ATR_ZEROradius_user_passwordradius_accounting_request

RADIUS_ATR_ZEROradius_chap_passwordradius_accounting_request

RADIUS_ATR_MAXONEradius_nas_ip_addressradius_accounting_request

320www.balasys.hu

RADIUS appendix

Attribute policyAttributeAction

RADIUS_ATR_MAXONEradius_nas_portradius_accounting_request

RADIUS_ATR_MAXONEradius_service_typeradius_accounting_request

RADIUS_ATR_MAXONEradius_framed_protocolradius_accounting_request

RADIUS_ATR_MAXONEradius_framed_ip_addressradius_accounting_request

RADIUS_ATR_MAXONEradius_framed_ip_netmaskradius_accounting_request

RADIUS_ATR_MAXONEradius_framed_routingradius_accounting_request

RADIUS_ATR_MANYradius_filter_idradius_accounting_request

RADIUS_ATR_MAXONEradius_framed_mturadius_accounting_request

RADIUS_ATR_MANYradius_framed_compressionradius_accounting_request

RADIUS_ATR_MANYradius_login_ip_hostradius_accounting_request

RADIUS_ATR_MAXONEradius_login_serviceradius_accounting_request

RADIUS_ATR_MAXONEradius_login_tcp_portradius_accounting_request

RADIUS_ATR_ZEROradius_reply_messageradius_accounting_request

RADIUS_ATR_MAXONEradius_callback_numberradius_accounting_request

RADIUS_ATR_MAXONEradius_callback_idradius_accounting_request

RADIUS_ATR_MANYradius_framed_routeradius_accounting_request

RADIUS_ATR_MAXONEradius_framed_ipx_networkradius_accounting_request

RADIUS_ATR_ZEROradius_stateradius_accounting_request

RADIUS_ATR_MANYradius_classradius_accounting_request

RADIUS_ATR_MANYradius_vendor_specificradius_accounting_request

RADIUS_ATR_MAXONEradius_session_timeoutradius_accounting_request

RADIUS_ATR_MAXONEradius_idle_timeoutradius_accounting_request

RADIUS_ATR_MAXONEradius_termination_actionradius_accounting_request

RADIUS_ATR_MAXONEradius_called_station_idradius_accounting_request

RADIUS_ATR_MAXONEradius_calling_station_idradius_accounting_request

RADIUS_ATR_MAXONEradius_nas_identifierradius_accounting_request

RADIUS_ATR_MANYradius_proxy_stateradius_accounting_request

RADIUS_ATR_MAXONEradius_login_lat_serviceradius_accounting_request

RADIUS_ATR_MAXONEradius_login_lat_noderadius_accounting_request

RADIUS_ATR_MAXONEradius_login_lat_groupradius_accounting_request

RADIUS_ATR_MAXONEradius_framed_appletalk_linkradius_accounting_request

321www.balasys.hu

RADIUS appendix

Attribute policyAttributeAction

RADIUS_ATR_MAXONEradius_framed_appletalk_networkradius_accounting_request

RADIUS_ATR_MAXONEradius_framed_appletalk_zoneradius_accounting_request

RADIUS_ATR_ONEradius_acct_status_typeradius_accounting_request

RADIUS_ATR_MAXONEradius_acct_delay_timeradius_accounting_request

RADIUS_ATR_MAXONEradius_acct_input_octetsradius_accounting_request

RADIUS_ATR_MAXONEradius_acct_output_octetsradius_accounting_request

RADIUS_ATR_ONEradius_acct_session_idradius_accounting_request

RADIUS_ATR_MAXONEradius_acct_authenticradius_accounting_request

RADIUS_ATR_MAXONEradius_acct_session_timeradius_accounting_request

RADIUS_ATR_MAXONEradius_acct_input_packetsradius_accounting_request

RADIUS_ATR_MAXONEradius_acct_output_packetsradius_accounting_request

RADIUS_ATR_MAXONEradius_acct_terminate_causeradius_accounting_request

RADIUS_ATR_MANYradius_acct_multi_session_idradius_accounting_request

RADIUS_ATR_MANYradius_acct_link_countradius_accounting_request

RADIUS_ATR_MAXONEradius_acct_input_gigawordsradius_accounting_request

RADIUS_ATR_MAXONEradius_acct_output_gigawordsradius_accounting_request

RADIUS_ATR_MAXONEradius_event_timestampradius_accounting_request

RADIUS_ATR_ZEROradius_chap_challengeradius_accounting_request

RADIUS_ATR_MAXONEradius_nas_port_typeradius_accounting_request

RADIUS_ATR_MAXONEradius_port_limitradius_accounting_request

RADIUS_ATR_MAXONEradius_login_lat_portradius_accounting_request

RADIUS_ATR_MAXONEradius_tunnel_typeradius_accounting_request

RADIUS_ATR_MAXONEradius_tunnel_medium_typeradius_accounting_request

RADIUS_ATR_MAXONEradius_tunnel_client_endpointradius_accounting_request

RADIUS_ATR_MAXONEradius_tunnel_server_endpointradius_accounting_request

RADIUS_ATR_MAXONEradius_acct_tunnel_connectionradius_accounting_request

RADIUS_ATR_ZEROradius_tunnel_passwordradius_accounting_request

RADIUS_ATR_ZEROradius_arap_passwordradius_accounting_request

RADIUS_ATR_ZEROradius_arap_featuresradius_accounting_request

RADIUS_ATR_ZEROradius_arap_zone_accessradius_accounting_request

RADIUS_ATR_ZEROradius_arap_securityradius_accounting_request

322www.balasys.hu

RADIUS appendix

Attribute policyAttributeAction

RADIUS_ATR_ZEROradius_arap_security_dataradius_accounting_request

RADIUS_ATR_ZEROradius_password_retryradius_accounting_request

RADIUS_ATR_ZEROradius_promptradius_accounting_request

RADIUS_ATR_MANYradius_connect_inforadius_accounting_request

RADIUS_ATR_ZEROradius_configuration_tokenradius_accounting_request

RADIUS_ATR_ZEROradius_eap_messageradius_accounting_request

RADIUS_ATR_ZEROradius_message_authenticatorradius_accounting_request

RADIUS_ATR_MAXONEradius_tunnel_private_group_idradius_accounting_request

RADIUS_ATR_MAXONEradius_tunnel_assignment_idradius_accounting_request

RADIUS_ATR_ZEROradius_tunnel_preferenceradius_accounting_request

RADIUS_ATR_ZEROradius_arap_challenge_responseradius_accounting_request

RADIUS_ATR_ZEROradius_acct_interim_intervalradius_accounting_request

RADIUS_ATR_MAXONEradius_acct_tunnel_packets_lostradius_accounting_request

RADIUS_ATR_MAXONEradius_nas_port_idradius_accounting_request

RADIUS_ATR_ZEROradius_framed_poolradius_accounting_request

RADIUS_ATR_MAXONEradius_tunnel_client_auth_idradius_accounting_request

RADIUS_ATR_MAXONEradius_tunnel_server_auth_idradius_accounting_request

RADIUS_ATR_ZEROradius_user_nameradius_accounting_response

RADIUS_ATR_ZEROradius_user_passwordradius_accounting_response

RADIUS_ATR_ZEROradius_chap_passwordradius_accounting_response

RADIUS_ATR_ZEROradius_nas_ip_addressradius_accounting_response

RADIUS_ATR_ZEROradius_nas_portradius_accounting_response

RADIUS_ATR_ZEROradius_service_typeradius_accounting_response

RADIUS_ATR_ZEROradius_framed_protocolradius_accounting_response

RADIUS_ATR_ZEROradius_framed_ip_addressradius_accounting_response

RADIUS_ATR_ZEROradius_framed_ip_netmaskradius_accounting_response

RADIUS_ATR_ZEROradius_framed_routingradius_accounting_response

RADIUS_ATR_ZEROradius_filter_idradius_accounting_response

RADIUS_ATR_ZEROradius_framed_mturadius_accounting_response

RADIUS_ATR_ZEROradius_framed_compressionradius_accounting_response

RADIUS_ATR_ZEROradius_login_ip_hostradius_accounting_response

323www.balasys.hu

RADIUS appendix

Attribute policyAttributeAction

RADIUS_ATR_ZEROradius_login_serviceradius_accounting_response

RADIUS_ATR_ZEROradius_login_tcp_portradius_accounting_response

RADIUS_ATR_ZEROradius_reply_messageradius_accounting_response

RADIUS_ATR_ZEROradius_callback_numberradius_accounting_response

RADIUS_ATR_ZEROradius_callback_idradius_accounting_response

RADIUS_ATR_ZEROradius_framed_routeradius_accounting_response

RADIUS_ATR_ZEROradius_framed_ipx_networkradius_accounting_response

RADIUS_ATR_ZEROradius_stateradius_accounting_response

RADIUS_ATR_ZEROradius_classradius_accounting_response

RADIUS_ATR_MANYradius_vendor_specificradius_accounting_response

RADIUS_ATR_ZEROradius_session_timeoutradius_accounting_response

RADIUS_ATR_ZEROradius_idle_timeoutradius_accounting_response

RADIUS_ATR_ZEROradius_termination_actionradius_accounting_response

RADIUS_ATR_ZEROradius_called_station_idradius_accounting_response

RADIUS_ATR_ZEROradius_calling_station_idradius_accounting_response

RADIUS_ATR_ZEROradius_nas_identifierradius_accounting_response

RADIUS_ATR_MANYradius_proxy_stateradius_accounting_response

RADIUS_ATR_ZEROradius_login_lat_serviceradius_accounting_response

RADIUS_ATR_ZEROradius_login_lat_noderadius_accounting_response

RADIUS_ATR_ZEROradius_login_lat_groupradius_accounting_response

RADIUS_ATR_ZEROradius_framed_appletalk_linkradius_accounting_response

RADIUS_ATR_ZEROradius_framed_appletalk_networkradius_accounting_response

RADIUS_ATR_ZEROradius_framed_appletalk_zoneradius_accounting_response

RADIUS_ATR_ZEROradius_acct_status_typeradius_accounting_response

RADIUS_ATR_ZEROradius_acct_delay_timeradius_accounting_response

RADIUS_ATR_ZEROradius_acct_input_octetsradius_accounting_response

RADIUS_ATR_ZEROradius_acct_output_octetsradius_accounting_response

RADIUS_ATR_ZEROradius_acct_session_idradius_accounting_response

RADIUS_ATR_ZEROradius_acct_authenticradius_accounting_response

RADIUS_ATR_ZEROradius_acct_session_timeradius_accounting_response

RADIUS_ATR_ZEROradius_acct_input_packetsradius_accounting_response

324www.balasys.hu

RADIUS appendix

Attribute policyAttributeAction

RADIUS_ATR_ZEROradius_acct_output_packetsradius_accounting_response

RADIUS_ATR_ZEROradius_acct_terminate_causeradius_accounting_response

RADIUS_ATR_ZEROradius_acct_multi_session_idradius_accounting_response

RADIUS_ATR_ZEROradius_acct_link_countradius_accounting_response

RADIUS_ATR_ZEROradius_chap_challengeradius_accounting_response

RADIUS_ATR_ZEROradius_nas_port_typeradius_accounting_response

RADIUS_ATR_ZEROradius_port_limitradius_accounting_response

RADIUS_ATR_ZEROradius_login_lat_portradius_accounting_response

RADIUS_ATR_ZEROradius_tunnel_typeradius_accounting_response

RADIUS_ATR_ZEROradius_tunnel_medium_typeradius_accounting_response

RADIUS_ATR_ZEROradius_tunnel_client_endpointradius_accounting_response

RADIUS_ATR_ZEROradius_tunnel_server_endpointradius_accounting_response

RADIUS_ATR_ZEROradius_acct_tunnel_connectionradius_accounting_response

RADIUS_ATR_ZEROradius_tunnel_passwordradius_accounting_response

RADIUS_ATR_ZEROradius_tunnel_private_group_idradius_accounting_response

RADIUS_ATR_ZEROradius_tunnel_assignment_idradius_accounting_response

RADIUS_ATR_ZEROradius_tunnel_preferenceradius_accounting_response

RADIUS_ATR_ZEROradius_acct_tunnel_packets_lostradius_accounting_response

RADIUS_ATR_ZEROradius_user_nameradius_access_challenge

RADIUS_ATR_ZEROradius_user_passwordradius_access_challenge

RADIUS_ATR_ZEROradius_chap_passwordradius_access_challenge

RADIUS_ATR_ZEROradius_nas_ip_addressradius_access_challenge

RADIUS_ATR_ZEROradius_nas_portradius_access_challenge

RADIUS_ATR_ZEROradius_service_typeradius_access_challenge

RADIUS_ATR_ZEROradius_framed_protocolradius_access_challenge

RADIUS_ATR_ZEROradius_framed_ip_addressradius_access_challenge

RADIUS_ATR_ZEROradius_framed_ip_netmaskradius_access_challenge

RADIUS_ATR_ZEROradius_framed_routingradius_access_challenge

RADIUS_ATR_ZEROradius_filter_idradius_access_challenge

RADIUS_ATR_ZEROradius_framed_mturadius_access_challenge

RADIUS_ATR_ZEROradius_framed_compressionradius_access_challenge

325www.balasys.hu

RADIUS appendix

Attribute policyAttributeAction

RADIUS_ATR_ZEROradius_login_ip_hostradius_access_challenge

RADIUS_ATR_ZEROradius_login_serviceradius_access_challenge

RADIUS_ATR_ZEROradius_login_tcp_portradius_access_challenge

RADIUS_ATR_MANYradius_reply_messageradius_access_challenge

RADIUS_ATR_ZEROradius_callback_numberradius_access_challenge

RADIUS_ATR_ZEROradius_callback_idradius_access_challenge

RADIUS_ATR_ZEROradius_framed_routeradius_access_challenge

RADIUS_ATR_ZEROradius_framed_ipx_networkradius_access_challenge

RADIUS_ATR_MAXONEradius_stateradius_access_challenge

RADIUS_ATR_ZEROradius_classradius_access_challenge

RADIUS_ATR_MANYradius_vendor_specificradius_access_challenge

RADIUS_ATR_MAXONEradius_session_timeoutradius_access_challenge

RADIUS_ATR_MAXONEradius_idle_timeoutradius_access_challenge

RADIUS_ATR_ZEROradius_termination_actionradius_access_challenge

RADIUS_ATR_ZEROradius_called_station_idradius_access_challenge

RADIUS_ATR_ZEROradius_calling_station_idradius_access_challenge

RADIUS_ATR_ZEROradius_nas_identifierradius_access_challenge

RADIUS_ATR_MANYradius_proxy_stateradius_access_challenge

RADIUS_ATR_ZEROradius_login_lat_serviceradius_access_challenge

RADIUS_ATR_ZEROradius_login_lat_noderadius_access_challenge

RADIUS_ATR_ZEROradius_login_lat_groupradius_access_challenge

RADIUS_ATR_ZEROradius_framed_appletalk_linkradius_access_challenge

RADIUS_ATR_ZEROradius_framed_appletalk_networkradius_access_challenge

RADIUS_ATR_ZEROradius_framed_appletalk_zoneradius_access_challenge

RADIUS_ATR_ZEROradius_chap_challengeradius_access_challenge

RADIUS_ATR_ZEROradius_nas_port_typeradius_access_challenge

RADIUS_ATR_ZEROradius_port_limitradius_access_challenge

RADIUS_ATR_ZEROradius_login_lat_portradius_access_challenge

RADIUS_ATR_ZEROradius_tunnel_typeradius_access_challenge

RADIUS_ATR_ZEROradius_tunnel_medium_typeradius_access_challenge

RADIUS_ATR_ZEROradius_tunnel_client_endpointradius_access_challenge

326www.balasys.hu

RADIUS appendix

Attribute policyAttributeAction

RADIUS_ATR_ZEROradius_tunnel_server_endpointradius_access_challenge

RADIUS_ATR_ZEROradius_tunnel_passwordradius_access_challenge

RADIUS_ATR_ZEROradius_arap_passwordradius_access_challenge

RADIUS_ATR_MAXONEradius_arap_featuresradius_access_challenge

RADIUS_ATR_ZEROradius_arap_zone_accessradius_access_challenge

RADIUS_ATR_MAXONEradius_arap_securityradius_access_challenge

RADIUS_ATR_MANYradius_arap_security_dataradius_access_challenge

RADIUS_ATR_ZEROradius_password_retryradius_access_challenge

RADIUS_ATR_MAXONEradius_promptradius_access_challenge

RADIUS_ATR_ZEROradius_connect_inforadius_access_challenge

RADIUS_ATR_ZEROradius_configuration_tokenradius_access_challenge

RADIUS_ATR_MANYradius_eap_messageradius_access_challenge

RADIUS_ATR_MAXONEradius_message_authenticatorradius_access_challenge

RADIUS_ATR_ZEROradius_tunnel_private_group_idradius_access_challenge

RADIUS_ATR_ZEROradius_tunnel_assignment_idradius_access_challenge

RADIUS_ATR_ZEROradius_tunnel_preferenceradius_access_challenge

RADIUS_ATR_MAXONEradius_arap_challenge_responseradius_access_challenge

RADIUS_ATR_ZEROradius_acct_interim_intervalradius_access_challenge

RADIUS_ATR_ZEROradius_nas_port_idradius_access_challenge

RADIUS_ATR_ZEROradius_framed_poolradius_access_challenge

RADIUS_ATR_ZEROradius_tunnel_client_auth_idradius_access_challenge

RADIUS_ATR_ZEROradius_tunnel_server_auth_idradius_access_challenge
Table A.3. Default attribute policy in RadiusProxyStrict

A.3. SQL*Net appendix

Example A.1. An example for the SQL*Net connection string

No. Time Source Destination Protocol Info

344 48.463276 127.0.0.1 127.0.0.1 TNS Request, Connect (1), Connect

Frame 344 (269 bytes on wire, 269 bytes captured)

Arrival Time: Dec 20, 2005 11:10:58.166023000

Time delta from previous packet: 0.001255000 seconds

Time since reference or first frame: 48.463276000 seconds

Frame Number: 344

Packet Length: 269 bytes

Capture Length: 269 bytes

Protocols in frame: eth:ip:tcp:tns

327www.balasys.hu

SQL*Net appendix

Ethernet II, Src: 00:00:00:00:00:00, Dst: 00:00:00:00:00:00

Destination: 00:00:00:00:00:00 (00:00:00_00:00:00)

Source: 00:00:00:00:00:00 (00:00:00_00:00:00)

Type: IP (0x0800)

Internet Protocol, Src Addr: 127.0.0.1 (127.0.0.1), Dst Addr: 127.0.0.1 (127.0.0.1)

Version: 4

Header length: 20 bytes

Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)

.... ..0. = ECN-Capable Transport (ECT): 0

.... ...0 = ECN-CE: 0

Total Length: 255

Identification: 0x86bc (34492)

Flags: 0x04 (Don't Fragment)

0... = Reserved bit: Not set

.1.. = Don't fragment: Set

..0. = More fragments: Not set

Fragment offset: 0

Time to live: 64

Protocol: TCP (0x06)

Header checksum: 0xb53a (correct)

Source: 127.0.0.1 (127.0.0.1)

Destination: 127.0.0.1 (127.0.0.1)

Transmission Control Protocol, Src Port: 44404 (44404), Dst Port: 1521 (1521), Seq: 1, Ack: 1, Len:

203

Source port: 44404 (44404)

Destination port: 1521 (1521)

Sequence number: 1 (relative sequence number)

Next sequence number: 204 (relative sequence number)

Acknowledgement number: 1 (relative ack number)

Header length: 32 bytes

Flags: 0x0018 (PSH, ACK)

0... = Congestion Window Reduced (CWR): Not set

.0.. = ECN-Echo: Not set

..0. = Urgent: Not set

...1 = Acknowledgment: Set

.... 1... = Push: Set

.... .0.. = Reset: Not set

.... ..0. = Syn: Not set

.... ...0 = Fin: Not set

Window size: 32767

Checksum: 0xfef3 (incorrect, should be 0x5c50)

Options: (12 bytes)

NOP

NOP

Time stamp: tsval 35686106, tsecr 35686106

Transparent Network Substrate Protocol

Packet Length: 203

Packet Checksum: 0x0000

Packet Type: Connect (1)

Reserved Byte: 00

Header Checksum: 0x0000

Connect

Version: 312

Version (Compatible): 300

Service Options: 0x0c01

..0. = Broken Connect Notify: False

...0 = Packet Checksum: False

.... 1... = Header Checksum: True

.... .1.. = Full Duplex: True

.... ..0. = Half Duplex: False

.... ...0 = Don't Care: False

.... 0... = Don't Care: False

....0 = Direct IO to Transport: False

.... 0... = Attention Processing: False

....0.. = Can Receive Attention: False

....0. = Can Send Attention: False

Session Data Unit Size: 2048

Maximum Transmission Data Unit Size: 32767

NT Protocol Characteristics: 0x7f08

0... = Hangon to listener connect: False

.1.. = Confirmed release: True

..1. = TDU based IO: True

328www.balasys.hu

SQL*Net appendix

...1 = Spawner running: True

.... 1... = Data test: True

.... .1.. = Callback IO supported: True

.... ..1. = ASync IO Supported: True

.... ...1 = Packet oriented IO: True

.... 0... = Can grant connection to another: False

....0.. = Can handoff connection to another: False

....0. = Generate SIGIO signal: False

....0 = Generate SIGPIPE signal: False

.... 1... = Generate SIGURG signal: True

....0.. = Urgent IO supported: False

....0. = Full duplex IO supported: False

....0 = Test operation: False

Line Turnaround Value: 0

Value of 1 in Hardware: 0100

Length of Connect Data: 145

Offset to Connect Data: 58

Maximum Receivable Connect Data: 512

Connect Flags 0: 0x41

...0 = NA services required: False

.... 0... = NA services linked in: False

.... .0.. = NA services enabled: False

.... ..0. = Interchange is involved: False

.... ...1 = NA services wanted: True

Connect Flags 1: 0x41

...0 = NA services required: False

.... 0... = NA services linked in: False

.... .0.. = NA services enabled: False

.... ..0. = Interchange is involved: False

.... ...1 = NA services wanted: True

Trace Cross Facility Item 1: 0x00000000

Trace Cross Facility Item 2: 0x00000000

Trace Unique Connection ID: 0x0000660c007e4a09

Connect Data:

(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))(CONNECT_DATA=(SERVICE_NAME=OPT.BALASYS)(CID=(PROGRAM=)(HOST=crm)(USER=oracle))))

329www.balasys.hu

SQL*Net appendix

Appendix B. Global options of PNS

PNS has a number of global options and variables that are used during the initialization of the engine, before
any proxies or services are started. These options control the swapping of large data chunks (blobs) to disk, the
handling of audit trails, and other miscellaneous parameters. To set these options, complete the following steps:

B.1. Procedure – Setting global options of PNS

Step 1. Select the PNS MC component, then select Variables > New.

Step 2. Enter the name of the global option into the Name field, and select the type of the option in the Type
field.

Step 3. Select OK, then Edit.
Step 4. Enter the desired value of the option, then select OK.

Note
Global options can be also set at the beginning of the Config.py file if managing the configuration of PNS manually.

330www.balasys.hu

blob

blob

Description

These options control the handling of large data chunks (blobs), determine when the are swapped to disk, and
also how much disk space and memory can be used by PNS.

Blob options

config.blob.temp_directory The directory where the blobs are swapped to. Default value:
/var/lib/vela/tmp/

config.blob.hiwat PNS tries to store everything in the memory if possible. If the
memory usage of PNS reaches hiwat, it starts to swap the data
onto the hard disk, until the memory usage reaches lowat.
Default value: 128*0x100000 (128 MB)

config.blob.lowat Global options can be also set at the beginning of the
Config.py file if managing the configuration of PNS
manually.
Lower threshold of data swapping. Default value:
96*0x100000 (96 MB)

config.blob.max_disk_usage The maximum amount of hard disk space that PNS is allowed
to use. Default value: 1024*0x100000 (1 GB)

config.blob.max_mem_usage The maximum amount of memory that PNS is allowed to use.
Default value: 256*0x100000 (256 MB)

config.blob.noswap_max Objects smaller than this value (in bytes) are never swapped
to hard disk. Default value: 16384

331www.balasys.hu

audit

audit

Description

These options control the handling of audit trails in PNS.

Audit options

config.audit.compress Enable the compression of audit trail files. The level of
c o m p r e s s i o n c a n b e s e t v i a t h e
config.audit.compress_level parameter. Default value:
TRUE

config.audit.compress_level The level of compression ranging from 1 (lowest, default) to
9 (highest). Please note that higher compression levels use
significantly more CPU, therefore it is usually not
recommended to set it to higher than 4. Default value: 1

config.audit.encrypt Encrypt the audit trail files using the key provided in the
config.audit.encrypt_certificate parameter. Default
value: FALSE

config.audit.encrypt_certificate The X.509 PEM certificate used to encrypt the audit trail files.
Default value: empty.
The certificate should be placed in the following format:

-----BEGIN CERTIFICATE-----

insert key here

-----END CERTIFICATE-----

config.audit.encrypt_certificate_file Name and path of the file containing the X.509 PEM
certificate used to encrypt the audit trail files. If this parameter
i s s e t , i t o v e r r i d e s t h e s e t t i n g s o f
config.audit.encrypt_certificate. Default value:
empty.

config.audit.reopen_size_threshold The maximum size of a single audit trail file in bytes. Default
value: 2000000000L (2 GB)

config.audit.per_session Store each session in its own audit file. Default value: FALSE

config.audit.reopen_time_threshold The maximum time frame of a single audit file in seconds.
Default value: 28800 (8 hours)

config.audit.rate_limit PNS considers it abnormal if the size of an audit trail is
increasing faster than this value in byte/second. Default value:
2097152 (2 MB)

config.audit.rate_notification_interval Time in seconds before repeating the notification about
abnormally growing audit trails. Default value: 300 (5
minutes)

332www.balasys.hu

config.audit.write_size_max Maximum size of an audit trail file in bytes. Default value:
52428800 (50 MB)

config.audit.terminate_on_max_size If set to TRUE, PNS terminates the connection if the
corresponding audit trail file reaches the size limit set in
config.audit.write_size_max. Default value: FALSE

333www.balasys.hu

options

options

Description

These options control various behavior of PNS.

Options

config.options.dscp_prio_mapping Priority mapping for transferring Differentiated Services Code
Point (DSCP, also known as Type of Service or ToS). The
low (0), normal (1), high (2), and urgent (3) priorities can be
assigned to the DSCP classes. The assigned priority
determines the priority of the PNS thread that handles the
connection. The mapping is actually a hash table consisting
of the DSCP class ID, a colon (:), the priority of the class
(0-3), and a comma (,) except for the last row. For example:

config.options.dscp_mapping = { 1: 3,

2: 2,

3: 2,

4: 0 }

config.options.language The default language used to display user-visible messages,
e.g., HTTP error pages. Default value: en (English). Other
supported languages: de (German); hu (Hungarian).

config.options.timeout_server_connect The timeout (in milliseconds) used when establishing
server-side connections. Default value: 30000 (30 sec)

Cache options

PNS caches certain data (e.g., to which zone a particular IP address belongs to) to decrease the time required
to process a connection. The following parameters determine the size of these caches (the number of decisions
stored in the cache). Adjusting these parameters is required only in environments having very complex zone
structure and a large number of services. The following log message indicates that a cache is full: Cache over

shift-threshold, shifting

config.zone_cache_shift_threshold Stores IP addresses and the zone they belong to. Default value:
1000

config.inbound_service_cache_threshold Stores service-zone pairs, and if the service is permitted to
enter the zone. Default value: 1000

config.outbound_service_cache_threshold Stores service-zone pairs, and if the service is permitted to
leave the zone. Default value: 1000

334www.balasys.hu

Appendix C. PNS manual pages

335www.balasys.hu

vas

vas — Vela Authentication Server

Synopsis

vas [options]

Description

VAS is an authentication server providing authentication services to a Vela based firewall. Its behaviour is
controlled by vas.cfg(5) and router.cfg.

Options

--foreground or -F Do not daemonize, run in the foreground.

--no-syslog or -l Send log messages to the standard output instead of syslog. This
option implies foreground mode, overriding the contradicting
process options if present.

--verbose <num> or -v <num> Set verbosity level to <num>. Valid values are 0-10; default
value is 3.

--log-tags or -T Enable logging of message tags.

--log-spec <spec> or -s
<spec>

Set verbosity mask on a per category basis. The format of this
value is described in vela(8).

--config <file> or -c <file> Use <file> as configuration file instead of the default
/etc/vas/vas.cfg.

--help or -h Display a brief help message.

Files

/etc/vas/

/etc/vas/vas.cfg

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 1996-2024 Balasys IT Zrt. All rights reserved.

336www.balasys.hu

vas.cfg

vas.cfg — vas(8) configuration file.

Description

The vas.cfg file controls the operation of Vela Authentication Server.

Structure

The file uses an XML-like format to describe various configuration settings. It uses a
configuration/section/<setting> structure where the "name" attribute of the configuration block identifies the
VAS subsystem described by the nested tags. The example below sets the global options used by VAS, broken
down to three different sections: "log" for log related settings, "router" to set the path to the router.cfg file
and "ssl" for SSL related settings.

<configuration name="vas">
<section name="log">
<loglevel>3</loglevel>
<use_syslog>1</use_syslog>
<logtags>1</logtags>

</section>
<section name="router">
<router>/etc/vas/router.cfg</router>

</section>
<section name="ssl">
<use_ssl>0</use_ssl>
<key>/etc/vas/vas.key</key>
<cert>/etc/vas/vas.crt</cert>
<verify_mode>0</verify_mode>

</section>
</configuration>

The VAS plugins (backends) have a slightly different structure. The name attribute in the configuration tag of
the VAS plugin and the section name identifies an instance of that plugin. Each instance can be run with a
different parameter set. The example below shows a complete configuration block for the PAM backend with
two instances: intra and internet:

<configuration name="pam">
<section name="intra">
<service>vas_intra</service>
<sleep_time>0</sleep_time>
<fake_user>0</fake_user>

</section>
<section name="internet">

337www.balasys.hu

<service>vas_internet</service>
<sleep_time>10</sleep_time>
<fake_user>1</fake_user>

</section>
</configuration>

The router.cfg file

The router.cfg file controls the backend instance selection in VAS. When a new authentication request is
initiated by vela(8), VAS selects an authentication backend and an instance based on the meta-information that
Vela supplies. Each line in router.cfg comprises from a condition and an action, separated by whitespace.
When an incoming request matches a condition, the corresponding the action identifies the authentication
backend and its instance to be used.

The condition is a comma separated list of constraints, each constraint identifying an authentication header
and an expected value in the header=match,header=match,... format. Wildcard characters like '*' and
'?' can be included in the matches.The following headers are currently defined:

Client-Zone The name of the zone the client belongs to.

Client-IP The original IP address of the client initiating the connection to
be authenticated.

Service The name of the service the client is authenticating for.

The action identifies the VAS backend to use (e.g.: vas_db, pam, etc.) and the specific instance of that
backend. The backend and instance names are separeated by colon (:). Instances are identified by simple names
and are used distinguish between various setups of the same backend.

The example below selects the intra instance of the vas_db backend. If the configuration block for this
backend is not found, or the condition does not match, the vas_db:default instance is used.

Client-Zone=intra vas_db:intra
vas_db:default

Global VAS options

The global configuration options of VAS are described in the vas configuration block. The related options are
grouped into sections. The following options are available:

Section log

use_syslog Use syslog for logging.

logtags Enable the logging of message tags.

loglevel Level of verbosity for logging messages. Default value: 3.

Section bind

338www.balasys.hu

ip IP address to which VAS binds. Default value: 0.0.0.0.

port Port to which VAS binds. Default value: 1317.

Section ssl

use_ssl Enable SSL encryption.

cert The certificate file used to authenticate VAS.

key The private key file of the certificate used to authenticate VAS.

ca_dir Path to the directory where the certificates of the trusted CAs
are stored.

crl_dir Path to the directory where the certificate revocation lists are
stored.

verify_depth The maximum length of the verification chain. Default value:
3.

verify_mode Method how the certificates of the connections incoming to VAS
are verified.

0 No certificate is needed.

1 Certificate is optional, but has to be valid if present.

2 A valid certificate is required, untrusted (but valid)
certificates are also accepted.

3 A valid, trusted certificate is required.

Section router

router Path to the router.cfg file.

Section misc

trust_connection Permit password-based authentication methods even for
unencrypted connections. Default value: 0 (false).

Backends

VAS operates using several authentication backends, each with its own set of parameters. Currently the following
backends are available:

vas_db Database based backend which currently provides the most
features. It has a backing database (called "storage") and a set
of authentication methods (called "methods"). The name of the
configuration block is vas_db

pam Authenticates users against the local PAM libraries on the host
running VAS itself. The name of the configuration block is pam.

htpass Authenticates users against an Apache htpasswd style password
file. The name of the configuration block is htpass.

radius Authenticates users against a RADIUS server. The name of the
configuration block is radius.

339www.balasys.hu

tacacs Authenticates users against a TACACS+ server. The name of
the configuration block is tacacs.

All backends are capable of authentication faking. This is a method to hide the valid usernames, so that they
cannot be guessed (for example using brute-force methods). If somebody tries to authenticate with a non-existing
username, the attempt is not immediately rejected: the full authentication process is simulated (e.g.: password
is requested, etc.), and rejected only at the end of the process. That way it is not possible to determine if the
username itself was valid or not.

The Vas_db backend

The vas_db backend interprets the following parameters in its configuration block.

storage Specifies the database plugin to use. Currently only the ldap
database is supported.

methods Specifies a space separated list of enabled authentication
methods. The following authentication plugins are available:
passwd, skey, rb1, x509, ldapbind, and none.

fake_user Enables authentication faking.

fake_user_name Specifies a user name which is used for faking authentication.
This has to be an existing user name, used exclusively for this
purpose.

sleep_time Wait at least that many seconds after a failed authentication
attempt.

Storage plugins

The vas_db backend authenticates against an abstract database, the actual implementation is specified using
the storage parameter. The only storage plugin currently supported is ldap.

ldap The ldap storage plugin uses the Lightweight Directory Access
Protocol (LDAP) to access a directory based database. It has a
separate configuration block identified by the name
vas_db_storage_ldap.

The LDAP storage plugin

The LDAP storage plugin connects to an LDAP server, authenticates using a user-independent, service account
and runs queries against the database to provide a vas_db dependent view on the directory. It uses a VAS
specific LDAP scheme available in the vas package.

use_ssl Enables SSL/TLS when connecting to the LDAP server.

hostname Specifies the LDAP host to use.

port Specifies port of the LDAP server to use.

bind_dn Bind to this DN before accessing the database.

bind_pw Use this password when binding to LDAP.

340www.balasys.hu

base_dn Perform queries using this base DN.

filter Search for an account using this filter expression. Defaults to '(uid=%u)';
%u is expanded to the username being searched for.

scope Specifies the scope of the search. base, sub, and one are acceptable values,
specifying LDAP_SCOPE_BASE, LDAP_SCOPE_SUB, and
LDAP_SCOPE_ONE, respectively.

user_is_dn Specify that the incoming username is a fully qualified DN.

scheme Specify LDAP scheme to use: posix for POSIX, ad for ActiveDirectory,
or nds for Novell eDirectory/NDS style directory layout.

ldapbind_description When the ldapbind authentication method is used for authentication, the
value of this string is returned as method description to the user. NOTE:
This parameter is OBSOLETE, it must be set in the ldapbind

authentication method.

usercert_description When the directory contains user keys in the userCertificate attribute and
it is used for X.509 based authentication, the value of this string will be
returned as method description to the user. OBSOLETE. Set it in x509
authentication method.

follow_referral If this option is set, VAS will respect the referral response from the LDAP
server when looking up a user.

Authentication method plugins

The vas_db backend is general enough to allow the use of several different authentication methods. The set of
permitted authentication methods is defined using the methods configuration option as described in the previous
section. All pligins have a priority attribute. This attribute is used by the Authentication Agent client: the
authentication methods available to the user are displayed in the order of the priority (starting with the highest
value).

The following method plugins are available:

passwd Implements password authentication. Password authentication
is available only if the connection between Vela and VAS is
secure. The name of the configuration block is
vas_db_method_passwd.
The password authentication method has the following
parameters:

priority Pr io r i t y o f the
authentication type.

skey Implements S/Key authentication. The name of the configuration
block is vas_db_method_skey.
The S/Key authentication method has the following parameters:

priority Pr io r i t y o f the
authentication type.

341www.balasys.hu

rb1 Implements CryptoCard RB1 hardware token based
authentication. The name of the configuration block is
vas_db_method_rb1.
The RB1 authentication method has the following parameters:

priority Pr io r i t y o f the
authentication type.

x509 Implements X.509 certificate based authentication. The name
of the configuration block is vas_db_method_x509.
The X.509 authentication method has the following parameters:

compare_cert Compare the stored
certificate bit-by-bit to
the certificate supplied
by the client. The
authentication will fail
when the certificates do
not match, even if the
new certificate is trusted
by the CA. Default
value: 1 (TRUE).

trusted_ca_list Send a list of trusted
certificates to the client
to choose from to narrow
the list of available
certificates. Default
value: 1 (TRUE).

verify_cert Verify the validity of the
certificate (i.e. the
certificate has to be
issued by one of the
trusted CAs and not
revoked). This is
v e r i f i c a t i o n i s
independent from the
compare_cert setting,
so if both parameters are
set, both conditions must
be fulfilled to accept the
certificate. Default value:
1 (TRUE).

ca_locations A list of space separated
URLs to the trusted CAs.
The file:// and
ldap:// URLs are
supported.

342www.balasys.hu

crl_locations A list of space separated
URLs to the CRLs issued
by the trusted CAs. The
file:// and ldap://

URLs are supported.

verify_depth The maximum length of
the verification chain.

priority Pr io r i t y o f the
authentication type.

ldapbind Implements authentication against the target LDAP server. Only
password authentication is supported by this method, therefore
it is only available if the connection between VAS and Vela is
secured with SSL. The name of the configuration block is
vas_db_method_ldapbind.
The LDAP authentication method has the following parameters:

priority Pr io r i t y o f the
authentication type.

description The value of this string
is returned as method
description to the user.

none Implements NO authentication. This method accept every
authentication request if the user is exists in the database. The
main advantage of this method is when the authentication is
done somwhere outside of this program but the groups
information is needed. The name of the configuration block is
vas_db_method_none.
The None authentication method has the following parameters:

priority Pr io r i t y o f the
authentication type.

description The value of this string
is returned as method
description to the user.

gssapi Implements GSSAPI based authentication. NOTE: The
Kerberos5 keytab file to be used can be specified via the standard
KRB5_KTNAME environment variable. The name of the
configuration block is vas_db_method_gssapi.
The gssapi authentication method has the following parameters:

priority Pr io r i t y o f the
authentication type.

description The value of this string
is returned as method
description to the user.

343www.balasys.hu

principal_name Specifies the GSSAPI
principal name which
this authentication
service represents. Make
sure that the keys
associated with this
principal are present in
/etc/krb5.keytab.
Changing the keytab
location is currently not
possible.

The PAM backend

The PAM backend implements authentication based on the local authentication settings of the host running
VAS. It basically authenticates the users against the local PAM installation and/or using GSSAPI/krb5. The
PAM backend has the following parameters:

use_local_accounts Use the local passwd/group database to query group membership
of a given account. The Name Service Switch can also be used,
so integrating other naming services is possible. Defaults value:
0 (FALSE).

enable_pam_auth Enable PAM authentication. Default value: 1 (TRUE).

pam_service Specifies the PAM service to use for authentication. This option
is an alias for the now deprecated service option. Defaults
value: vas.

enable_gssapi_auth Enable GSSAPI/krb5 authentication in this backend. Defaults
value: 0 (FALSE). NOTE: The Kerberos5 keytab file to be used
can be specified via the standard KRB5_KTNAME environment
variable.

gssapi_princ_name Specifies the GSSAPI principal name which this authentication
service represents. Make sure that the keys associated with this
principal are present in /etc/krb5.keytab. Changing the
keytab location is currently not possible.

description The value of this string is returned as method description to the
user.

fake_user Enables authentication faking.

sleep_time Wait at least that many seconds after a failed authentication
attempt.

The Htpass backend

The htpass backend has the following parameters:

filename The file to be read as password file. The file should contain two
columns separated by colon (':'), with the first column containing

344www.balasys.hu

the username, the second the password encrypted by crypt(3)
function. This file can be created/maintained by the Apache
htpasswd(1) utility.

fake_user Enables authentication faking.

sleep_time Wait at least that many seconds after a failed authentication
attempt.

The Radius backend

The Radius backend has the following parameters:

hostname The hostname of the RADIUS server.

hostport The port of the RADIUS server.

secret The shared secret between the authentication server and VAS.

description The value of this string is returned as method description to the
user.

fake_user Enables authentication faking.

sleep_time Wait at least that many seconds after a failed authentication
attempt.

The TACACS+ backend

The TACACS backend has the following parameters:

hostname The hostname of the TACACS+ server.

hostport The port of the TACACS+ server, defaults to 49.

secret The shared secret between the authentication server and VAS.

description The value of this string is returned as method description to the
user.

fake_user Enables authentication faking.

sleep_time Wait at least that many seconds after a failed authentication
attempt.

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 1996-2024 Balasys IT Zrt. All rights reserved.

345www.balasys.hu

vcf

vcf — Vela Content Vectoring Server

Synopsis

vcf [options]

Description

The Vela Content Vectoring Server (VCF) is a content scanning framework providing stream and file scanning
services for vela(8). VCF runs as a separate application and can be accessed over TCP, UNIX domain sockets
and standard input and output file handles. The behaviour of VCF can be controlled via the vcf.cfg(5)

configuration file.

Options

--verbose

<verbosity> or -v
<verbosity>

Set verbosity level to <verbosity>, or if <verbosity> is omitted increment
it by one. Default the verbosity level is 3; possible values are 0-10.

--no-syslog or -l Send log messages to the standard output instead of syslog. This option
implies foreground mode, overriding the contradicting process options if
present.

--log-spec <spec> or
-s <spec>

Set verbosity mask on a per category basis. The format of this value is
described in vela(8).

--log-tags or -T Enable logging of message tags.

--foreground or -F Do not daemonize, run in the foreground.

--help or -h Display a brief help message.

--vela-mode

<ctrl-fd> or -z
<ctrl-fd>

Start in Vela mode using the <ctrl-fd> file descriptor and remain in the
foreground. In this mode only a single scan is performed on the data on
the standard input. Results are sent to the standard output. (Naturally, log
messages are not sent to the standard output in this mode, as this would
interfere with the scanning results.) This mode is used mainly for testing
purposes.

--rule-group

<rule-group> or -R
<rule-group>

The value for the vcf_rule_group routing variable in Vela mode.

--config <file> or -c
<file>

Use the configuration file <file> instead of the default /etc/vcf/vcf.cfg
file.

--pidfile <file> or
-P <file>

Use <file> as pid file instead of the default /var/run/vcf/vcf.pid file.

346www.balasys.hu

Operation

VCF scans the contents of incoming streams. VCF has multiple channels, each performing a possibly different
set of actions on the incoming stream. These channels are called "scanpaths", i.e. a scanpath is an ordered set
of modules and their associated settings. The scanpath to be used is selected based on meta information provided
by Vela and meta information gathered about the stream by VCF itself. This scanpath selection mechanism is
called "routing decision" and is controlled by the router rules.

To summarize, VCF operates as follows: A connection is established between Vela and VCF. VCF selects a
scanpath (i.e. makes the routing decision) based the collected information, the router rules and information
received from Vela. The scanpath determines the modules to use and their associated settings. After the modules
process the data received in the stream, the result of the scanning operation is sent back to Vela.

Files

/etc/vcf/

The routing and configuration file formats are described in /etc/vcf/vcf.cfg and /etc/vcf/router.cfg.

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 1996-2024 Balasys IT Zrt. All rights reserved.

347www.balasys.hu

vcf.cfg

vcf.cfg — vcf(8) configuration file format

Description

The vcf.cfg file controls the operation of VCF, the Vela Content Vectoring Server.

Structure

vcf.cfg uses an XML-like format to describe various configuration settings. The exact structure is
configuration/section/<setting>, where the "name" attribute of the configuration block identifies the
VCF subsystem described by the nested tags.

The main configuration blocks of the file are the following:

vcf Global options of vcf.

scanpaths Definitions and settings of the scanpaths.

nod32, html, etc. Definitions and instance-specific settings of the modules.

module-options Global settings of the modules that apply to every instance of
the module.

The example below sets the global options used by VCF, broken down to three different sections: log for log
related settings, router for setting the path to the router.cfg file and misc for miscellaneous parameters.

<configuration name="vcf">
<section name="log">
<loglevel>3</loglevel>
<use_syslog>true</use_syslog>
<logtags>true</logtags>

</section>
<section name="router">
<router>/etc/vcf/router.cfg</router>

</section>
<section name="misc">
<magic_length>2048</magic_length>

</section>
</configuration>

The VCF modules have a slightly different structure. The name attribute in the configuration tag of the VCF
module and the section name identifies an instance of that module. Each instance can be run with a different
parameter set. The example below shows a complete configuration block for the clamavmodule, with an instance
named intranet having normal, and another named internet having paranoid sensitivity.

<configuration name="clamav">
<section name="internet">

348www.balasys.hu

<mode>file</mode>
<scan_packed>1</scan_packed>
<disinfect>0</disinfect>
<scan_suspicious>1</scan_suspicious>
<heuristic_level>normal</heuristic_level>

</section>
<section name="intranet">
<mode>file</mode>
<scan_packed>1</scan_packed>
<disinfect>1</disinfect>
<scan_suspicious>0</scan_suspicious>
<heuristic_level>normal</heuristic_level>

</section>
</configuration>

The router.cfg file

The router.cfg file controls the scanpath selection in VCF. VCF selects the scanpath based on the
meta-information that Vela supplies. Each line in router.cfg comprises from a condition and an action,
separated by whitespace. When an incoming request matches a condition, the corresponding the action

identifies the scanpath and its instance to be used.

The condition is a comma separated list of constraints, each constraint identifying a variable and an expected
value in the header=match,header=match,... format. Wildcard characters like '*' and '?' can be included
in the matches.The following variables are currently defined:

vcf_rule_group The name of the rule group that the peer requests. Its value
is specified the -R command line option in Vela mode, or is
supplied by the peer during the handshake.

content_type_detected MIME type detected based on the first bytes of the file.

content_type_uncompressed MIME type detected based on the first bytes of the file looking
into a compressed file header and decompressing it if
necessary.

content_type MIME type as specified by the peer.

file_name File name or URL.

file_extension File extension. Please note that this information might not be
accurate as some URLs do not contain file extension in which
case this variable is empty. For example it is common to
reference directories in HTTP which implicitly map to a server
defined content and the URL does not contain a filename
extension as in http://domain.com/directory/. It is better to
use content_type or content_type_detected for content specific
scanning.

file_xfer_direction File transfer direction, either "upload" or "download".

vela_protocol Protocol that was used to transfer the checked file.

349www.balasys.hu

vela_session_id Vela session id that requested content vectoring.

vela_proxy_class The name of the proxy class that requested content vectoring.

vela_auth_user The authenticated username.

vela_client_address Client address in AF_INET(>ipaddr<, >port<) format.

vela_client_address.ip Client IP address.

vela_client_address.port Client TCP/UDP port.

vela_client_zone The name of the client zone.

vela_server_address Server address in AF_INET(>ipaddr<, >port<) format.

vela_server_address.ip Server IP address.

vela_server_address.port Server TCP/UDP port.

vela_server_zone The name of the server zone.

smtp_envelope_sender The envelope sender address in SMTP.

smtp_envelope_recipients Space separated list of envelope recipient addresses in SMTP.

http_request_method The type of the HTTP request.

http_request_url The HTTP request URL.

http_request_version The version of the HTTP request (e.g. 1.1).

http_request_host The Host header included in the HTTP request.

Furthermore, virtually all defined Vela variables can be used as variables with the 'vela.' prefix, which denotes
the 'session' object of the stacking proxy. For example: > vela.session_id, vela.client_address.ip_s,
etc.

The action identifies the VCF scanpath to use.

The example below selects the html scanpath for all files which are recognized as "text/html" files, and rejects
everything else. An object is scanned only by the scanpath of the first matching condition.

content_type="text/html" html
content_type_detected="text/html" html
REJECT

Global Options

Global options are stored in the configuration block named vcf. Related options are grouped into sections.

Section log

use_syslog Use syslog for logging.

logtags Enable the logging of message tags.

loglevel Level of verbosity for logging messages. Default value: 3.

350www.balasys.hu

logspec Set verbosity mask on a per category basis. The format of this
value is described in vela(8).

Section misc

magic_length This parameter determines the amount of data (in bytes) read
from MIME objects to detect their MIME-type. Higher value
increases the precision of MIME-type detection. Default value:
0.

tempdir Location of the temporal directory (used for swap files, etc.).
Default value: /var/lib/vela/tmp

Section router

router Location of the router.cfg file. Default value:
/etc/vcf/router.cfg

Section bind

ip IP address to which VCF binds. Default value: 0.0.0.0.

port Port to which VCF binds. Default value: 1318.

unix Bind to a unix domain socket. If only the empty tag is present,
the default socket (/var/run/vcf/vcf.sock) is used.

When binding to a unix domain socket, the owner and the permissions of the socket can be set using the following
parameters:

owner The owner of the socket. By default its value is NULL, meaning
that the owner of the socket is the user running VCF.

group The owner group of the socket. Default value: velastate.

perm The permission settings of the socket in Unix-style. Default
value: 770.

Section blob

hiwat VCF tries to store everything in the memory if possible. If the
memory usage of VCF reaches hiwat, it starts to swap the data
onto the hard disk, until the memory usage reaches lowat.
Default value: 960 *1024 *1024 (960 MB).

lowat Lower threshold of data swapping. Default value: 640 *1024
*1024 (640 MB).

max_disk_usage The maximum amount of hard disk space that VCF is allowed
to use. Default value: 64 * 1024 * 1024 * 1024 (64 GB).

max_mem_usage The maximum amount of memory that VCF is allowed to use.
Default value: 1024 * 1024 * 1024 (1 GB).

noswap_max Objects smaller than this value (in bytes) are never swapped to
hard disk. Default value: 16384.

deadlock_check_period The period of deadlock check in seconds, to resolve deadlock,
when storage is full. Default value: 5.

351www.balasys.hu

allocation_timeout The time in seconds of waiting for blob allocation, if storage is
full. Default value: 10.

Scanpath Options

The scanpath options are stored in the configuration block named scanpaths. Each section in this block has the
name of a scanpath and contains settings specific for the given scanpath.

Settings to control trickling can also be configured here. Content filtering cannot be performed on partial files:
the entire file has to be available on the firewall. Sending of the file to the client is started only if no virus was
found (or the file was successfully disinfected). Instead of receiving the data in a continuous stream, as when
connecting to the server “regularly”, the client does not receive any data for a while, then “suddenly” it starts
to flow. This phenomena is not a problem for small files, since these are transmitted and checked fast, probably
without the user ever noticing the delay, but can be an issue for larger files when the client application might
time out. Another source of annoyance can be when the bandwidth of the network on the client and server side
of the firewall is significantly different. In order to avoid time outs, a solution called trickling is used. This
means that the firewall starts to send small pieces of data to the client so it feels that it is receiving something
and does not time out. For further information on trickling, see the Virus filtering and HTTP Technical White
Paper available at the BalaSys Documentation Page at http://www.balasys.hu/en/documentation/

The following options are available for each scanpath:

plugins Comma-separated list of colon separated pairs listing the modules to be
executed in the scanpath. The colon-separated pairs specify the module
and its instance (e.g.: html:filterscripts, nod32:paranoid).

quarantine_mode Quarantine mode to be used. Always the original file is quarantined.

always Quarantine all objects rejected for any reason.

rejected Quarantine objects that could not be
disinfected.

modified+rejected Quarantine only the original version of the
files which were successfully disinfected. E.g.:
if an infected object is found but it is
successfully disinfected, the original (infected)
object is quarantined. That way, the object is
retained even if the disinfection eliminates
some important information.

never Disable quarantining, objects rejected for any
reason are dropped.

threshold_oversize Objects larger than threshold_oversize (in bytes) are not scanned,
because of performance/resource reasons (i.e. large archives, ISO files,
etc.).

trickle_mode Mode of trickling to be used. Default: NONE.

none Trickling is disabled.

percent Determine the amount of data to be trickled based on the size
of the object. Data is sent to the client only when VCF

352www.balasys.hu

http://www.balasys.hu/en/documentation/

receives new data; the size of the data trickled is the set
percentage of the total data received so far. This is the
recommended method to use.

steady Trickle fixed amount of data in fixed time intervals.

trickle_percent Amount of data to be trickled (percentage). Defailt value: 10.

trickle_steady_initial_delay When an object is downloaded, trickling is started after this period (in
seconds). Default value: 10.

trickle_steady_delay Period (in seconds) between trickling data chunks.

trickle_steady_bytes Amount of data (in bytes) that is sent to the client in a chunk during
trickling. Default value: 128 bytes.

Modules

The following modules are available in VCF:

sed Filters and rewrites the input in stream similarly to the operation
of the UNIX 'sed' command.

nod32 Performs virus scanning on the incoming data with the NOD32
engine. The data is processed in file mode.

clamav Performs virus scanning on the incoming data with the Clam
AntiVirus engine. The data is processed in file mode.

html Performs JavaScript/Java/ActiveX filtering of HTML data in
stream mode.

spamassassin Performs spam filtering on the incoming e-mails with the
SpamAssassin engine. The data is processed in file mode.

mail-hdr Performs filtering and manipulation on the headers of e-mail
messages. The data can be processed both in file and stream
mode.

modsecurity ModSecurity is a platform-independent web application level
security gateway module (Web Application Firewall (WAF)),
that can be integrated to Vela Gateway. ModSecurity's WAF
solution can look into the HTTP(S) traffic and provides a
powerful policy definition language and an API to achieve
advanced security.

program Performs filtering and/or manipulation of the data with an
external 3rd-party application. The data can be processed either
in file and stream mode.

The Sed module

The configuration name of the sed module is sed. This module has the following instance-specific options:

filter The stucture of this string is the following: a slash (/), the string
to be replaced, a slash (/), the replacement string, and the options.

353www.balasys.hu

Slashes in the string have to be escaped with backslashes.The
folowing options are available:

-g Replace all occurances of the string.

-i Run in case insensitive mode.
For example, the /example/sample/-g filter replaces all
occurances of 'example' to 'sample'.

The NOD32 module

The nod32 module has the following instance-specific options:

scan_packed Perform virus scanning on archived files. Default value: YES.

scan_suspicious Perform virus scanning on suspicious files (e.g.: suspicious files
are often new variants of known viruses). Default value: NO.

heuristic_level Level of heuristic sensitivity. The available levels are OFF,
NORMAL, and HIGH. Default value: OFF.

archive_max_size Archives larger than the specified value (in megabytes) are not
scanned. Zero means unlimited. Default value: 10.

The clamav module

The configuration name of the Clam AntiVirus module is clamav. The module has the following module options:

daemon_socket The domain socket used to communicate with the clamav engine.
Default value: /var/run/clamav/clamd.ctl

The clamav module has the following instance-specific options:

scan_packed Perform virus scanning on archived files. Default value: YES.

The SpamAssassin module

The configuration name of the SpamAssassin module is spamassassin. The module has the following
instance-specific options::

check_only Only check the e-mails, but do not make any modification to
the e-mail. The result of the spam filtering is returned to VCF
separately. Default value: FALSE.

host and port The hostname and port number of the machine SpamAssassin
is running on, if different from the VCF host.

socketpath The domain socket used to communicate with SpamAssassin if
it is running on the VCF host. Default value:
/var/run/spamassassin.sock

username The user under which SpamAssassin should filter e-mails.
Default value: not set, the user running SpamAssassin is used
(nobody).

354www.balasys.hu

timeout Timeout value for the scanning requests in seconds. Default
value: 60.

Note
If the timeout is set to -1 (unlimited), then no timeout is used for the
connection if SpamAssassin is running on a remote host.

threshold By default, VCF rejects all e-mails SpamAssassin detects as
spam. However, to minimize the impacts of false positives, if
the spam status of an e-mail (as calculated by SpamAssassin) is
over the required_score (default value: 5), but below the
value set in threshold, VCF only marks the e-mail as spam,
but does not reject it. If the spam status of an e-mail is above
the threshold, it is automatically rejected. Default value: 10.0.

The HTML module

The configuration name of the html module is html.

The html module has the following instance-specific options:

filter_javascript Remove javascript from HTML pages. Default value: NO.
Enabling this option removes all javascript and script tags,
and the conditional value prefixes (e.g.: onclick, onreset,
etc.).

filter_activex Remove ActiveX components from HTML pages. Default value:
NO. Enabling this option removes the applet tags and the
classid value prefix.

filter_java Remove java from HTML pages. Default value: NO. Enabling
t h i s o p t i o n r e m o v e s t h e java: a n d
application/java-archive inclusions, as well as the
applet tags.

filter_css Remove CSS (cascading style sheets) from HTML pages. Default
value: NO. Enabling this option removes the single link tags,
the style tags and options, as well as the class options.

filter_custom A whitespace-separated value of colon separated pairs, specifying
the headers, tags, etc. to be removed based on their names or
their values.
The following HTML elements can be filtered:

Tags: Remove everything between the specified tag and its
closing tag. Embedded structures are also handled. E.g.:
closed-tag:ul

Single tags: Remove all occurrences of the specified single tag
(img, hr, etc.). E.g.: tag:hr

355www.balasys.hu

Options: Remove options (e.g.: width, etc.) and their values.
E.g.: option:width

Prefixes: Remove all options starting with the set prefix. E.g.:
prefix:on will remove all options like onclick, etc.

buffer_size This attribute control the size of the internal buffer of this module

The mail header module

The configuration name of the mail header module is mail-hdr. A filter contains a pattern (i.e. the header line
to be found) enclosed within backslashes (/), a whitespace, the action to be performed on the header line, and
an optional argument. The pattern and the argument can be regular expressions. To search for the pattern in
case insensitive mode, add an i character after the closing backslash of the pattern. The following actions can
be performed on the mail headers:

■ Append: Add the argument of the filter as a new header line after the match.

■ Discard: Discard the entire e-mail message. The argument is returned to the mail server sending the
message as an error message.

■ Ignore: Remove the matching header line from the message.

■ Pass: Accept the matching header line. This action can be used to create exceptions from other filter
rules.

■ Prepend: Add the argument of the filter as a new header line before the match.

■ Reject: Reject the entire e-mail message. The argument is returned to the sender of the message as
an error message.

■ Replace: Replace the mathing header line to the argument of the filter.

The module has the following instance-specific options::

filter The list of filters to be applied on the mail headers. For example:

<filter>
/^Subject: hello$/i DISCARD
/^Date: (.*)/ APPEND "X-Date: \1 \1"

<filter>

header_wrap_length If a manipulated header line is longer than this value (in bytes),
is will be broken into a new lines. These new lines will not be
longer then header_wrap_length. Default value: .

max_line_length This attribute control the maximum length of a header line

356www.balasys.hu

The Modsecurity module

The configuration name of the Modsecurity module is modsecurity. The module has the following module
options:

config_file Ruleset configuration file for ModSecurity. Default value: not
set.

transaction_timeout Timeout value for transactions, in seconds. Default value: 60.

process_request_body Request bodies will be buffered and processed by ModSecurity.
Default value: YES.

process_response_body Response bodies will be buffered by ModSecurity. Default value:
YES.

request_body_limit The maximum request body size ModSecurity will accept for
buffering, in KBytes. Anything over the limit will be rejected
with status code 413 (Request Entity Too Large). Default value:
10000.

request_body_no_files_limit The maximum request body size ModSecurity will accept for
buffering in KBytes, excluding the size of any files being
transported in the request. Default value: 1000.

response_body_limit The maximum response body size that will be accepted for
buffering, in KBytes. Anything over this limit will be rejected
with status code 500 (Internal Server Error). Default value: 1000.

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 1996-2024 Balasys IT Zrt. All rights reserved.

357www.balasys.hu

vms

vms — Vela Management Server engine

Synopsis

vms [options]

Description

vms is the server component of Vela Management System, which is a distributed management system for Vela
firewalls. The server component is responsible for storing configuration data, distributing keys and certificates,
and accepting administrator changes via the VMC graphical user interface.

Options

--version or -V Display version information.

--foreground or -F Do not daemonize, run in the foreground.

--no-syslog or -l Send log messages to the standard output instead of syslog. This
option implies foreground mode, overriding the contradicting
process options if present.

--verbose <level> or -v
<level>

Set the verbosity level of logging to <level>. Default value: 3.

--tags or -t Enable tag logging.

--config <file> or -c <file> Use the configuration file <file> instead of the default file.

--log-spec <spec> or -s
<spec>

Set verbosity mask on a per category basis. The format of this
value is described in vela(8).

--bootstrap or -b Bootstrap the engine.

--help or -h Display a brief help message.

Files

Configuration information for vms(8) is stored in /etc/vms/vms.conf.

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 1996-2024 Balasys IT Zrt. All rights reserved.

358www.balasys.hu

vms.conf

vms.conf — Configuration file format for the Vela Management Server (vms(8).

Description

The vms.conf file controls the operation of the Vela Management Server vms(8). It is rarely needed to modify
the configuration manually.

WARNING: The settings stored in vms.conf are managed by the VMS engine via VMC. Do not modify the
settings manually unless you know exactly what you are doing.

Structure

vms.conf uses an XML-like format to describe various configuration settings. The exact structure is
configuration/section/<setting>, where the "name" attribute of the configuration block identifies the
subsystem described by the nested tags.

Main configuration blocks are found in the default configuration block, with related options grouped into
sections such as global, log, and ssl.

WARNING: The settings stored in the vms.conf file are used internally within Vela; the structure of the file
and the individual options may change between the different Vela releases.

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 1996-2024 Balasys IT Zrt. All rights reserved.

359www.balasys.hu

vms-integrity

vms-integrity — VMS Database Integrity Checker

Synopsis

vms-integrity [options]

Description

vms-integrity is a tool for checking the integrity of the VMS database. It can also be used for recovery if
the database contains errors.

Options

--datadir <dir> or -d <dir> Database directory. Default value: /var/lib/vms.

--recover or -r Try to recover database if integrity check fails. If not set, the
integrity check will only report the errors found.

--syslog or -l Use syslog for logging.

--verbose <level> or -v
<level>

Set the verbosity level of logging to <level>. Default value: 3.

--quiet or -q No logging, only exit status is set.

--help or -h Display a brief help message.

Example

When restoring an earlier VMS database and the process fails, the vms-integrity can fix the database backup
archive file. To recover a vms-backup-<timestamp>.tar.gz formatted file, complete the following steps.

Create a temporary working directory mkdir /tmp/vms-backup

Unpack the archive file tar -zxf <backup-file-to-restore> -C /tmp/vms-backup

Try to recover the database /usr/sbin/vms-integrity -r -d /tmp/vms-backup

Check the recovered database /usr/sbin/vms-integrity -d /tmp/vms-backup

Pack the database tar -C /tmp/vms-backup -czf <fixed-backup-file>

Delete the working directory rm -rf /tmp/vms-backup

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 1996-2024 Balasys IT Zrt. All rights reserved.

360www.balasys.hu

instances.conf

instances.conf — vela(8) instances database

Description

The instances.conf file describes the vela(8) instances to be run on the system. It is processed by
velactl(8) line by line, each line having the structure described below. Empty lines and lines beginning
with '#' are comments ignored by velactl.

Structure

instance-name parameters [-- velactl-options]

instance-name is the name of the Vela instance to be started; it is passed to vela with its --as parameter.
Instance names may consist of the characters [a-zA-Z0-9_] and must begin with a letter.

parameters are space separated parameters entered into the vela command-line. For details on these command-line
parameters see vela(8).

velactl-options are space separated parameters control startup specific options. They are processed by velactl
itself. The following velactl options are available:

--auto-restart or -A Enable the automatic restart feature of velactl. When an
instance is in auto-restart mode, it is restarted automatically in
case the instance exits.

--no-auto-restart or -a Disable automatic restart for this instance.

--fd-limit <number> or -f
<number>

Set the file descriptor limit to <number>. The file descriptor
limit defaults to the number of threads (specified by the --threads
parameter of vela(8)) multiplied by 4.

--num-of-processes <number>

or -P <number>

Run <number> of processes for the instance. velactl starts
exactly one Vela process in master mode and <number> of slave
Vela processes. This mode of operation is incompatible with
old-style dispatchers, you must use the new rule-based policy
with this option.

Examples

vela_ftp --policy /etc/vela/policy.py --verbose 5

The line above describes a Vela instance named vela_ftp using policy file /etc/vela/policy.py, and having
verbosity level 5.

vela_intra -v4 -p /etc/vela/policy.py --threads 500 --no-auto-restart --fd-limit

1024 --process-limit 512

This line describes a vela instance named vela_intra using the policy file /etc/vela/policy.py, verbosity
level 4. The maximum number of threads is set to 500, file descriptor limit to 1024, process limit to 512.

361www.balasys.hu

Files

The default location of instances.conf is /etc/vela/instances.conf. Defaults for velactl tunables can
be specified in /etc/vela/velactl.

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 1996-2024 Balasys IT Zrt. All rights reserved.

362www.balasys.hu

policy.py

policy.py — vela(8) policy file.

Description

The policy.py file is a Python module containing the zone and service definitions and other policy related
settings used by vela(8) . Empty lines and lines beginning with '#' are comments and are ignored.

The policy.py file is generated automatically by VMC, the Vela Management Console, or it can be edited
manually.

IMPORTANT: Do not edit manually a file generated by VMC, because the manual changes will not be retained
by VMC and will be lost when re-generating the file.

Files

The default location of policy.py is /etc/vela/policy.py.

See Also

For further information on policy.py refer to the following sources:

A tutorial on manually editing the policy.py file can be found at http://www.balasys.hu/documentation/.

Additional information can also be found in the Vela Administrator's Guide, the Vela Reference Guide, and in
the various tutorials available at the BalaSys Documentation Page at http://www.balasys.hu/documentation.

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 1996-2024 Balasys IT Zrt. All rights reserved.

363www.balasys.hu

http://www.balasys.hu/documentation/
http://www.balasys.hu/documentation

vela

vela — Vela Firewall Suite

Synopsis

vela [options]

Description

The vela command is the main entry point for a Vela instance, and as such it is generally called by velactl(8)
with command line parameters specified in instances.conf(5) .

Options

--version or -V Display version number and compilation information.

--as <name> or -a <name> Set instance name to <name>. Instance names may consist of
the characters [a-zA-Z0-9_] and must begin with a letter. Log
messages of this instance are prefixed with this name.

--no-syslog or -l Send log messages to the standard output instead of syslog. This
option implies foreground mode, overriding the contradicting
process options if present.

--log-tags or -T Prepend log category and log level to each message.

--log-escape Escape non-printable characters to avoid binary log files. Each
character less than 0x20 and greater than 0x7F are escaped in
the form <XX>.

--log-spec <spec> or -s
<spec>

Set verbosity mask on a per category basis. Each log message
has an assigned multi-level category, where levels are separated
by a dot. For example, HTTP requests are logged under
http.request. <spec> is a comma separated list of log
specifications. A single log specification consists of a wildcard
matching log category, a colon, and a number specifying the
verbosity level of that given category. Categories match from
left to right. E.g.: --logspec 'http.*:5,core:3'. The last
matching entry will be used as the verbosity of the given
category. If no match is found the default verbosity specified
with --verbose is used.

--threads <num> or -t <num> Set the maximum number of threads that can be used in parallel
by this Vela instance.

--idle-threads <num> or -I Set the maximum number of idle threads; this option has effect
only if threadpools are enabled (see the option --threadpools).

--threadpools or -O Enable the use of threadpools, which means that threads
associated with sessions are not automatically freed, only if the
maximum number of idle threads is exceeded.

--user <user> or -u <user> Switch to the supplied user after starting up.

364www.balasys.hu

--group <group> or -g <group> Switch to the supplied group after starting up.

--chroot <dir> or -R <dir> Change root to the specified directory before reading the
configuration file. The directory must be set up accordingly.

--caps <caps> or -C <caps> Switch to the supplied set of capabilities after starting up. This
should contain the required capabilities in the permitted set. For
the syntax of capability description see the man page of
cap_from_text(3).

--no-caps or -N Do not change capabilities at all.

--crypto-engine <engine> or
-E <engine>

Set the OpenSSL crypto engine to be used for hardware
accelerated crypto support.

Files

/etc/vela/

/etc/vela/policy.py

/etc/vela/instances.conf

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 1996-2024 Balasys IT Zrt. All rights reserved.

365www.balasys.hu

velactl

velactl — Start and stop vela instances.

Synopsis

velactl command [options [instances/@instance-list-file]]

Description

velactl starts and stops vela(8) instances based on the contents of the instances.conf(5) file. Multiple
instance names can be specified in the command-line or in a file to start or stop several instances. If an error
occurs while stopping or starting an instance, an exclamation mark is appended to the instance name as velactl
processes the request, and a summary is printed when the program exits. If no instance is specified, the command
is executed on all instances. The instances to be controlled can be specified in a file instead of listing them in
the command line, e.g.: velactl command options instances.txt. The instances.txt should contain
every instance name in a new line.

Commands

start Starts the specified Vela instance(s).

force-start Starts the specified Vela instance(s) even if they are disabled.

stop Stops the specified Vela instance(s).

force-stop Forces the specified Vela instance(s) to stop using the KILL
signal.

restart Restart the specified Vela instance(s).

force-restart Forces the specified Vela instance(s) to restart by stopping them
using the KILL signal.

reload Reload the specified Vela instance(s).

status Display the status of the specified Vela instance(s).

--verbose or -v Display detailed status
information.

gui-status Display the status of the specified Vela instance(s) in an internal
format easily parsable by VMC. NOTE: This command is mainly
used internally within Vela, and the structure of its output may
change.

version Display version information on Vela.

inclog Raise the verbosity (log) level of the specified Vela instance(s)
by one.

declog Decrease the verbosity (log) level of the specified Vela
instance(s) by one.

log Change various log related settings in the specified Vela
instance(s) using the following options:

366www.balasys.hu

--vinc or -i Increase verbosity level
by one.

--vdec or -d Decrease verbosity level
by one.

--vset <verbosity> or -s
<verbosity>

Set verbosity level to
<verbosity>.

--log-spec <spec> or -S
<spec>

Set verbosity mask on a
per category basis. The
format of this value is
described in vela(8).

--help or -h Display this help screen
on the options of the log
command.

szig Display internal information from the specified Vela instance(s).
The information to be disblayed can be specified with the
following options:

--walk or -w Walk the specified tree.

--root [node] or -r [node] Set the root node of the
walk operation to [node].

--help or -h Display a brief help on
the options of the szig

command.

help Display a brief help message.

Examples

velactl start vela_ftp

The command above starts the vela instance named vela-ftpwith parameters described in the instances.conf
file.

Files

The default location for instances.conf is /etc/vela/instances.conf.

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 1996-2024 Balasys IT Zrt. All rights reserved.

367www.balasys.hu

velactl.conf

velactl.conf — velactl(8) configuration file.

Description

The velactl.conf file describes various global options ifluencing the behavior of velactl(8) .
velactl(8) processes the file line by line, each line having the structure described below. Empty lines and
lines beginning with '#' are comments and are ignored.

Structure

variable name = variable value

Each non-empty line specifies a variable name and its value separated by the equal sign ('='). The following
variables are available:

AUTO_RESTART Enable the automatic restart feature of velactl. Instances
in auto-restart mode are restarted automatically when they
exit. Default value: 1 (TRUE).

STOP_CHECK_TIMEOUT The number of seconds to wait for a stopping Vela instance.
Default value: 3.

START_CHECK_TIMEOUT In auto-restart mode there is no real way to detect whether
Vela failed to load or not. Velactl waits
START_CHECK_TIMEOUT seconds and assumes that Vela
loaded successfully if it did not exit within this interval.
Default value: 5 seconds.

START_WAIT_TIMEOUT In no-auto-restart mode the successful loading of a Vela
instance can be verified by instructing Vela to daemonize
itself and waiting for the parent to exit. This parameter
specifies the number of seconds to wait for Vela to daemonize
itself. Default value: 60 seconds.

VELA_APPEND_ARGS Vela-specific arguments to be appended to the command line
of each Vela instance. Also recognised as APPEND_ARGS
(deprecated). Default value: "".

VELACTL_APPEND_ARGS Velactl-specific arguments to be appended to the command
line of each instance. Default value: "".

CHECK_PERMS Specifies whether to check the permissions of the Vela
configuration directory. If set, Vela refuses to run if the
/etc/vela directory can be written by user other then vela
Default value: 1 (TRUE).

CONFIG_DIR The path to the Vela configuration directory to check if
CHECK_PERMS is enabled. NOTE: it does not change the
Vela policy file argument, this parameter is only used by the
permission validating code. Default value:
${prefix}/etc/vela .

368www.balasys.hu

CONFIG_DIR_OWNER,

CONFIG_DIR_GROUP,

CONFIG_DIR_MODE

The owner/group/permissions values considered valid for the
configuration directory. velactl fails if the actual
owner/group/permissions values conflict the ones set here.
Default values: root.vela, 0750 .

PIDFILE_DIR The path to the Vela pid file directory. The directory is created
automatically prior to starting Vela if it does not already
exist.It is created if it does not exist, before NOTE: No
--pidfile argument is passed to Vela, only texistance of the
directory is verified. Default value: /var/run/vela.

PIDFILE_DIR_OWNER,

PIDFILE_DIR_GROUP,

PIDFILE_DIR_MODE

The owner/group/permission values the pidfile directory is
created with if it does not exist. Default values: root.root,
0700.

Files

The default location for velactl.conf is /etc/vela/velactl.conf.

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 1996-2024 Balasys IT Zrt. All rights reserved.

369www.balasys.hu

vela-zone-helper

vela-zone-helper — Zone helper daemon

Synopsis

vela-zone-helper [options]

Description

vela-zone-helper(8) is a daemon responsible for maintaining zone address information in
vela-nfqueue-helper and also for updating dynamic address information in hostname-based zones. Its behaviour
is controlled by vela-zone-helper.conf(5) or command-line options. Command-line options take
precedence over configuration files.

Options

--verbose <num> or -v <num> Set verbosity level to <num>. The valid values are 0-10; the
default value is 3.

--log-spec <spec> or -s
<spec>

Set verbosity mask on a per category basis. The format of this
value is described in vela(8).

--no-syslog or -l Send log messages to the standard output instead of syslog.

--dns-filter-level <num> or
-f

Set bogus DNS response filtering level to <num>. The valid
values are 0-3; the default value is 3. For more information see
vela-zone-helper.conf.5.

--resolver-threads or -t Set the maximum number of DNS resolver threads. The default
value is 8.

--reload or -r Reload running vela-zone-helper(8) daemon.

--config-file <filename> or
-c <filename>

Use <filename> as configuration file instead of the default
/etc/vela/vela-zone-helper.conf.

--help or -h Display a brief help message.

Files

/etc/vela/vela-zone-helper.conf

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 1996-2024 Balasys IT Zrt. All rights reserved.

370www.balasys.hu

vela-zone-helper.conf

vela-zone-helper.conf — vela-zone-helper(8) configuration file

Description

The vela-zone-helper.conf file describes various global options controlling the behavior of
vela-zone-helper(8).

vela-zone-helper(8) processes the lines of the file under [vela-zone-helper] group, each line having the
structure described below. Empty lines and lines beginning with '#' or ';' are comments and are ignored.

Structure

variable name = variable value

Each non-empty line specifies a variable name and its value separated by the equal sign ('='). The following
variables are available:

VERBOSE Set logging verbosity level. The default value is: 3.

LOG_SPEC Set verbosity mask on a per category basis. The format of this
value is described in vela-zone-helper(8). The default value
is: core.accounting:4.

NO_SYSLOG Send log messages to the standard output instead of syslog.
The default value is: 0 (False).

DNS_FILTER_LEVEL Set bogus DNS response filtering level. The default value is:
3. Filtered addresses will not be used in hostname-based
zones.
DNS_FILTER_LEVEL value is interpreted as:

■ 0 = No filtering takes place

■ 1 = Filter invalid host addresses: unspecified addresses
('0.0.0.0/32', '::/128').

■ 2 = Filter loopback address ranges ('127.0.0.0/8', '::1/128')

■ 3 = Filtering of private address ranges ('192.168.0.0/16',
'10.0.0.0/8', '172.16. 0.0/12', 'fc00::/7'), link-local address
ranges ('169.254.0.0/16', 'fe80::/10') and multicast ranges
(224.0.0.0/4 , 'ff00::/8')

RESOLVER_THREADS Set the maximum number of DNS resolver threads. To
perform non-threaded resolving operations, set the value to
0. The default value is 8.

Files

The default location for vela-zone-helper.conf is /etc/vela/vela-zone-helper.conf.

371www.balasys.hu

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 1996-2024 Balasys IT Zrt. All rights reserved.

372www.balasys.hu

vavupdate

vavupdate — Updates the various AntiVirus engine's databases.

Synopsis

vavupdate [options]

Description

vavupdate updates the databases of the various AntiVirus engines (Clamav, NOD32) used by Vela and VCF
to filter the contents of the incoming and outgoing traffic.

Options

-v <verbosity_level> The verbosity level of the program. Default value: 3.

■ 0: No messages.

■ 1: Show only error messages.

■ 2: Report successful database updates.

■ 3: Show also progress indicator messages.

■ 4: Show all messages. (NOTE: The output can be very large.)

-f Force the execution of vavupdate, with this option the HRS
settings in /etc/vela/*.options can be overridden.

-V Display the version number of vavupdate.

-s Use syslog for logging (otherwise vavupdate logs into the file
/var/log/vavupdate.log).

-h Display a brief help message.

Files

/etc/vela/vavupdate.conf

/var/log/vavupdate.log

See Also

vavupdate.conf(5)

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 2006-2015 BalaBit IT Security, 2015-2017 BalaSys IT Security. All rights reserved.

373www.balasys.hu

vavupdate.options

vavupdate.conf, clamav.options, nod32.options — vavupdate(8) configuration files.

Description

vavupdate reads its configuration from the /etc/vela/vavupdate.conf file and the various .options
files in the /etc/vela directory. vavupdate was designed to run regularly as a cron job.

Options

ADMINEMAIL The e-mail address(es) of the administrator(s). Leaving this field blank
suppresses the sending of notification e-mails.

VERBOSE The verbosity level of the program.

■ 0: no messages;

■ 1: show only error messages;

■ 2: report successful database upgrades;

■ 3: show also progress indicator messages;

■ 4: show all messages (NOTE: The output can be huge.).

SYSLOG When set to 1, vavupdate use syslog for logging (otherwise vavupdate
logs into the file /var/log/vavupdate.log).

FTPPROXY If access to FTP servers has to go through a proxy and the individual AV
engine's package do not handle proxy server settings, the following setting
has to be used: FTPPROXY="http://proxyhost:proxyport/" . If
the proxy requires authentication, specify the username and the password
a s w e l l :
FTPPROXY="http://username:password@proxyhost:proxyport/.

HTTPPROXY Access HTTP servers via proxy. The syntax is the same as the FTPPROXY's.

SUBJPREFIX An optional prefix which will be written to the subject line of the e-mail
messages sent by the program. When using vavupdate on multiple hosts,
this setting can be used to differentiate between the hosts. It is
recommended to set this parameter to the hostname of the host vavupdate
is running on.

HRS The hours when vavupdate will run the database update for the specied
AV engine. Example: HRS="5 11 17 23". If the HRS parameter is left
blank, vavupdate will updates the database every time it is invoked. It
has to be specified in the per-engine .options files.

DOENGINEUPGRADE DEPRECATED

Engine specific configuration files

Engine specific settings for the different AV engines are specified in the various .options files under
/etc/vela. This files contain per-engine settings for vavupdate, most notably the HRS setting.

374www.balasys.hu

Files

/etc/vela/vavupdate.conf

/etc/vela/nod32.options

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 2006-2015 BalaBit IT Security, 2015-2017 BalaSys IT Security. All rights reserved.

375www.balasys.hu

vqc

vqc — Vela Quarantine Checker

Synopsis

vqc [options]

Description

Check a quarantine directory and manage the files it contains.

There are no mandatory arguments; the settings may be specified as command-line options.

Options

-h Display a brief help message.

--quarantine <quarantine> or
-q <quarantine>

Directory used as quarantine. Default value:
/var/lib/vela/quarantine.

--format <format> or -t
<format>

Chooses output format (txt or xml). Default value: xml.

--verbose or -v Makes the output more verbose.

Selection options

--expr <expression> or -e
<expression>

Select only the objects matching <expression>.
NOTE: This option may not be used together with --id.

--id <id0, id1, ...> or -i
<id0, id1, ...>

Select only the objects having the specified ids.
NOTE: This option may not be used together with --expr.

Restrictive options

--older-than <days>, or -o
<days>

Select files older than <days> days.

--bigger-than <Bytes>, or -b
<Bytes>

Select only files larger than <Bytes> bytes. The size is specified
in bytes by default, the 'k' suffix means kilobytes, etc.

--more-than <Number>, or -m
<Number>

Select only objects above the total count limit <Number>.

Action options

--list_str <field0, field1,

...>, or -l <field0, field1,

...>

List the selected objects. Only the specified fields (<field0,
field1, ...>) are displayed.

--preview <Bytes>, or -p
<Bytes>

Dump the selected objects, or only the first <Bytes> bytes of
each object if <Bytes> is specified.

376www.balasys.hu

--delete, or -d Delete the selected objects.

--attachment-to <email

address>, or -a <email

address>

Send the selected objects as attachment to <email address>,

--subject <subject text>, or
-s <subject text>

Subject for email sent by --attachment-to, empty by default.

--forward-to <email

address>, or -f <email

address>

Forward the selected objects to <email address>.

See also

instances.conf(5), vela(8), velactl(8), velactl.conf(5)

Author

This manual page was written by the BalaSys Documentation Team <documentation@balasys.hu>.

Copyright

Copyright © 2006-2015 BalaBit IT Security, 2015-2017 BalaSys IT Security. All rights reserved.

377www.balasys.hu

Appendix D. Proxedo Network Security Suite
End-User License Agreement

(c) BalaSys IT Ltd.

D.1. 1. SUBJECT OF THE LICENSE CONTRACT

1.1 This License Contract is entered into by and between BalaSys and Licensee and sets out the terms and
conditions under which Licensee and/or Licensee's Authorized Subsidiaries may use the Proxedo Network
Security Suite under this License Contract.

D.2. 2. DEFINITIONS

In this License Contract, the following words shall have the following meanings:

2.1 BalaSys

Company name: BalaSys IT Ltd.

Registered office: H-1117 Budapest, Alíz Str. 4.

Company registration number: 01-09-687127

Tax number: HU11996468-2-43

2.2. Words and expressions

Annexed Software

Any third party software that is a not a BalaSys Product contained in the install media of the BalaSys Product.

Authorized Subsidiary

Any subsidiary organization: (i) in which Licensee possesses more than fifty percent (50%) of the voting power
and (ii) which is located within the Territory.

BalaSys Product

Any software, hardware or service licensed, sold, or provided by BalaSys including any installation, education,
support and warranty services, with the exception of the Annexed Software.

License Contract

The present Proxedo Network Security Suite License Contract.

Product Documentation

378www.balasys.hu

1. SUBJECT OF THE LICENSE CONTRACT

Any documentation referring to the Proxedo Network Security Suite or any module thereof, with special regard
to the reference guide, the administration guide, the product description, the installation guide, user guides and
manuals.

Protected Hosts

Host computers located in the zones protected by Proxedo Network Security Suite, that means any computer
bounded to network and capable to establish IP connections through the firewall.

Protected Objects

The entire Proxedo Network Security Suite including all of its modules, all the related Product Documentation;
the source code, the structure of the databases, all registered information reflecting the structure of the Proxedo
Network Security Suite and all the adaptation and copies of the Protected Objects that presently exist or that
are to be developed in the future, or any product falling under the copyright of BalaSys.

Proxedo Network Security Suite

Application software BalaSys Product designed for securing computer networks as defined by the Product
Description.

Warranty Period

The period of twelve (12) months from the date of delivery of the Proxedo Network Security Suite to Licensee.

Territory

The countries or areas specified above in respect of which Licensee shall be entitled to install and/or use Proxedo
Network Security Suite.

Take Over Protocol

The document signed by the parties which contains

a) identification data of Licensee;

b) ordered options of Proxedo Network Security Suite, number of Protected Hosts and designation of licensed
modules thereof;

c) designation of the Territory;

d) declaration of the parties on accepting the terms and conditions of this License Contract; and

e) declaration of Licensee that is in receipt of the install media.

D.3. 3. LICENSE GRANTS AND RESTRICTIONS

3.1. For the Proxedo Network Security Suite licensed under this License Contract, BalaSys grants to Licensee
a non-exclusive,

non-transferable, perpetual license to use such BalaSys Product under the terms and conditions of this License
Contract and the applicable Take Over Protocol.

379www.balasys.hu

3. LICENSE GRANTS AND RESTRICTIONS

3.2. Licensee shall use the Proxedo Network Security Suite in the in the configuration and in the quantities
specified in the Take Over Protocol within the Territory.

3.3. On the install media all modules of the Proxedo Network Security Suite will be presented, however, Licensee
shall not be entitled to use any module which was not licensed to it. Access rights to modules and IP connections
are controlled by an "electronic key" accompanying the Proxedo Network Security Suite.

3.4. Licensee shall be entitled to make one back-up copy of the install media containing the Proxedo Network
Security Suite.

3.5. Licensee shall make available the Protected Objects at its disposal solely to its own employees and those
of the Authorized Subsidiaries.

3.6. Licensee shall take all reasonable steps to protect BalaSys's rights with respect to the Protected Objects
with special regard and care to protecting it from any unauthorized access.

3.7. Licensee shall, in 5 working days, properly answer the queries of BalaSys referring to the actual usage
conditions of the

Proxedo Network Security Suite, that may differ or allegedly differs from the license conditions.

3.8. Licensee shall not modify the Proxedo Network Security Suite in any way, with special regard to the
functions inspecting the usage of the software. Licensee shall install the code permitting the usage of the Proxedo
Network Security Suite according to the provisions defined for it by BalaSys. Licensee may not modify or
cancel such codes. Configuration settings of the Proxedo Network Security Suite in accordance with the
possibilities offered by the system shall not be construed as modification of the software.

3.9. Licensee shall only be entitled to analize the structure of the BalaSys Products (decompilation or reverse-
engineering) if concurrent operation with a software developed by a third party is necessary, and upon request
to supply the information required for concurrent operation BalaSys does not provide such information within
60 days from the receipt of such a request. These user actions are limited to parts of the BalaSys Product which
are necessary for concurrent operation.

3.10. Any information obtained as a result of applying the previous Section

(i) cannot be used for purposes other than concurrent operation with the BalaSys Product;

(ii) cannot be disclosed to third parties unless it is necessary for concurrent operation with the BalaSys Product;

(iii) cannot be used for the development, production or distribution of a different software which is similar to
the BalaSys Product

in its form of expression, or for any other act violating copyright.

3.11. For any Annexed Software contained by the same install media as the BalaSys Product, the terms and
conditions defined by its copyright owner shall be properly applied. BalaSys does not grant any license rights
to any Annexed Software.

3.12. Any usage of the Proxedo Network Security Suite exceeding the limits and restrictions defined in this
License Contract shall qualify as material breach of the License Contract.

3.13. The Number of Protected Hosts shall not exceed the amount defined in the Take Over Protocol.

380www.balasys.hu

3. LICENSE GRANTS AND RESTRICTIONS

3.14. Licensee shall have the right to obtain and use content updates only if Licensee concludes a maintenance
contract that includes such content updates, or if Licensee has otherwise separately acquired the right to obtain
and use such content updates. This License Contract does not otherwise permit Licensee to obtain and use
content updates.

D.4. 4. SUBSIDIARIES

4.1 Authorized Subsidiaries may also utilize the services of the Proxedo Network Security Suite under the terms
and conditions of this License Contract. Any Authorized Subsidiary utilising any service of the Proxedo Network
Security Suite will be deemed to have accepted the terms and conditions of this License Contract.

D.5. 5. INTELLECTUAL PROPERTY RIGHTS

5.1. Licensee agrees that BalaSys owns all rights, titles, and interests related to the Proxedo Network Security
Suite and all of BalaSys's patents, trademarks, trade names, inventions, copyrights, know-how, and trade secrets
relating to the design, manufacture, operation or service of the BalaSys Products.

5.2. The use by Licensee of any of these intellectual property rights is authorized only for the purposes set forth
herein, and upon termination of this License Contract for any reason, such authorization shall cease.

5.3. The BalaSys Products are licensed only for internal business purposes in every case, under the condition
that such license does not convey any license, expressly or by implication, to manufacture, duplicate or otherwise
copy or reproduce any of the BalaSys Products.

No other rights than expressly stated herein are granted to Licensee.

5.4. Licensee will take appropriate steps with its Authorized Subsidiaries, as BalaSys may request, to inform
them of and assure compliance with the restrictions contained in the License Contract.

D.6. 6. TRADE MARKS

6.1. BalaSys hereby grants to Licensee the non-exclusive right to use the trade marks of the BalaSys Products
in the Territory in accordance with the terms and for the duration of this License Contract.

6.2. BalaSys makes no representation or warranty as to the validity or enforceability of the trade marks, nor as
to whether these infringe any intellectual property rights of third parties in the Territory.

D.7. 7. NEGLIGENT INFRINGEMENT

7.1. In case of negligent infringement of BalaSys's rights with respect to the Proxedo Network Security Suite,
committed by violating the restrictions and limitations defined by this License Contract, Licensee shall pay
liquidated damages to BalaSys. The amount of the liquidated damages shall be twice as much as the price of
the BalaSys Product concerned, on BalaSys's current Price List.

D.8. 8. INTELLECTUAL PROPERTY INDEMNIFICATION

8.1. BalaSys shall pay all damages, costs and reasonable attorney's fees awarded against Licensee in connection
with any claim brought against Licensee to the extent that such claim is based on a claim that Licensee's
authorized use of the BalaSys Product infringes a patent, copyright, trademark or trade secret. Licensee shall

381www.balasys.hu

4. SUBSIDIARIES

notify BalaSys in writing of any such claim as soon as Licensee learns of it and shall cooperate fully with
BalaSys in connection with the defense of that claim. BalaSys shall have sole control of that defense (including
without limitation the right to settle the claim).

8.2. If Licensee is prohibited from using any BalaSys Product due to an infringement claim, or if BalaSys
believes that any BalaSys Product is likely to become the subject of an infringement claim, BalaSys shall at its
sole option, either: (i) obtain the right for Licensee to continue to use such BalaSys Product, (ii) replace or
modify the BalaSys Product so as to make such BalaSys Product non-infringing and substantially comparable
in functionality or (iii) refund to Licensee the amount paid for such infringing BalaSys Product and provide a
pro-rated refund of any unused, prepaid maintenance fees paid by Licensee, in exchange for Licensee's return
of such BalaSys Product to BalaSys.

8.3. Notwithstanding the above, BalaSys will have no liability for any infringement claim to the extent that it
is based upon:

(i) modification of the BalaSys Product other than by BalaSys,

(ii) use of the BalaSys Product in combination with any product not specifically authorized by BalaSys to be
combined with the BalaSys Product or

(iii) use of the BalaSys Product in an unauthorized manner for which it was not designed.

D.9. 9. LICENSE FEE

9.1. The number of the Protected Hosts (including the server as one host), the configuration and the modules
licensed shall serve as the calculation base of the license fee.

9.2. Licensee acknowlegdes that payment of the license fees is a condition of lawful usage.

9.3. License fees do not contain any installation or post charges.

D.10. 10. WARRANTIES

10.1. BalaSys warrants that during the Warranty Period, the optical media upon which the BalaSys Product is
recorded will not be defective under normal use. BalaSys will replace any defective media returned to it,
accompanied by a dated proof of purchase, within the Warranty Period at no charge to Licensee. Upon receipt
of the allegedly defective BalaSys Product, BalaSys will at its option, deliver a replacement BalaSys Product
or BalaSys's current equivalent to Licensee at no additional cost. BalaSys will bear the delivery charges to
Licensee for the replacement Product.

10.2. In case of installation by BalaSys, BalaSys warrants that during the Warranty Period, the Proxedo Network
Security Suite, under normal use in the operating environment defined by BalaSys, and without unauthorized
modification, will perform in substantial compliance with the Product Documentation accompanying the BalaSys
Product, when used on that hardware for which it was installed, in compliance with the provisions of the user
manuals and the recommendations of BalaSys. The date of the notification sent to BalaSys shall qualify as the
date of the failure. Licensee shall do its best to mitigate the consequences of that failure. If, during the Warranty
Period, the BalaSys Product fails to comply with this warranty, and such failure is reported by Licensee to
BalaSys within the Warranty Period, BalaSys's sole obligation and liability for breach of this warranty is, at
BalaSys's sole option, either:

382www.balasys.hu

9. LICENSE FEE

(i) to correct such failure,

(ii) to replace the defective BalaSys Product or

(iii) to refund the license fees paid by Licensee for the applicable BalaSys Product.

D.11. 11. DISCLAIMER OF WARRANTIES

11.1. EXCEPT AS SET OUT IN THIS LICENSE CONTRACT, BALASYS MAKES NO WARRANTIES
OF ANY KIND WITH RESPECT TO THE Proxedo Network Security Suite. TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW, BALASYS EXCLUDES ANY OTHER WARRANTIES, INCLUDING
BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF SATISFACTORY QUALITY,
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF
INTELLECTUAL PROPERTY RIGHTS.

D.12. 12. LIMITATION OF LIABILITY

12.1. SOME STATES AND COUNTRIES, INCLUDING MEMBER COUNTRIES OF THE EUROPEAN
UNION, DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES AND, THEREFORE, THE FOLLOWING LIMITATION OR EXCLUSION
MAY NOT APPLY TO THIS LICENSE CONTRACT IN THOSE STATES AND COUNTRIES. TO THE
MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW AND REGARDLESS OF WHETHER ANY
REMEDY SET OUT IN THIS LICENSE CONTRACT FAILS OF ITS ESSENTIAL PURPOSE, IN NO
EVENT SHALL BALASYS BE LIABLE TO LICENSEE FOR ANY SPECIAL, CONSEQUENTIAL,
INDIRECT OR SIMILAR DAMAGES OR LOST PROFITS OR LOST DATA ARISING OUT OF THE USE
OR INABILITY TO USE THE Proxedo Network Security Suite EVEN IF BALASYS HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

12.2. IN NO CASE SHALL BALASYS'S TOTAL LIABILITY UNDER THIS LICENSE CONTRACT
EXCEED THE FEES PAID BY LICENSEE FOR THE Proxedo Network Security Suite LICENSED UNDER
THIS LICENSE CONTRACT.

D.13. 13.DURATION AND TERMINATION

13.1. This License Contract shall come into effect on the date of signature of the Take Over Protocol by the
duly authorized

representatives of the parties.

13.2. Licensee may terminate the License Contract at any time by written notice sent to BalaSys and by
simultaneously destroying all copies of the Proxedo Network Security Suite licensed under this License Contract.

13.3. BalaSys may terminate this License Contract with immediate effect by written notice to Licensee, if
Licensee is in material or persistent breach of the License Contract and either that breach is incapable of remedy
or Licensee shall have failed to remedy that breach within 30 days after receiving written notice requiring it to
remedy that breach.

383www.balasys.hu

11. DISCLAIMER OF WARRANTIES

D.14. 14. AMENDMENTS

14.1. Save as expressly provided in this License Contract, no amendment or variation of this License Contract
shall be effective unless in writing and signed by a duly authorised representative of the parties to it.

D.15. 15. WAIVER

15.1. The failure of a party to exercise or enforce any right under this License Contract shall not be deemed to
be a waiver of that right nor operate to bar the exercise or enforcement of it at any time or times thereafter.

D.16. 16. SEVERABILITY

16.1. If any part of this License Contract becomes invalid, illegal or unenforceable, the parties shall in such an
event negotiate in good faith in order to agree on the terms of a mutually satisfactory provision to be substituted
for the invalid, illegal or unenforceable

provision which as nearly as possible validly gives effect to their intentions as expressed in this License Contract.

D.17. 17. NOTICES

17.1. Any notice required to be given pursuant to this License Contract shall be in writing and shall be given
by delivering the notice by hand, or by sending the same by prepaid first class post (airmail if to an address
outside the country of posting) to the address of the relevant party set out in this License Contract or such other
address as either party notifies to the other from time to time. Any notice given according to the above procedure
shall be deemed to have been given at the time of delivery (if delivered by hand) and when received (if sent by
post).

D.18. 18. MISCELLANEOUS

18.1. Headings are for convenience only and shall be ignored in interpreting this License Contract.

18.2. This License Contract and the rights granted in this License Contract may not be assigned, sublicensed
or otherwise transferred in whole or in part by Licensee without BalaSys's prior written consent. This consent
shall not be unreasonably withheld or delayed.

18.3. An independent third party auditor, reasonably acceptable to BalaSys and Licensee, may upon reasonable
notice to Licensee and during normal business hours, but not more often than once each year, inspect Licensee's
relevant records in order to confirm that usage of the Proxedo Network Security Suite complies with the terms
and conditions of this License Contract. BalaSys shall bear the costs of such audit. All audits shall be subject
to the reasonable safety and security policies and procedures of Licensee.

18.4. This License Contract constitutes the entire agreement between the parties with regard to the subject
matter hereof. Any modification of this License Contract must be in writing and signed by both parties.

384www.balasys.hu

14. AMENDMENTS

Appendix E. Creative Commons Attribution
Non-commercial No Derivatives (by-nc-nd)
License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT
AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED
UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED. BY EXERCISING ANY RIGHTS TO
THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS
LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE
LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR
ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and other pre-existing works,
such as a translation, adaptation, derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and includes cinematographic adaptations
or any other form in which the Work may be recast, transformed, or adapted including in any
form recognizably derived from the original, except that a work that constitutes a Collection will
not be considered an Adaptation for the purpose of this License. For the avoidance of doubt,
where the Work is a musical work, performance or phonogram, the synchronization of the Work
in timed-relation with a moving image ("synching") will be considered an Adaptation for the
purpose of this License.

b. "Collection" means a collection of literary or artistic works, such as encyclopedias and anthologies,
or performances, phonograms or broadcasts, or other works or subject matter other than works
listed in Section 1(f) below, which, by reason of the selection and arrangement of their contents,
constitute intellectual creations, in which the Work is included in its entirety in unmodified form
along with one or more other contributions, each constituting separate and independent works in
themselves, which together are assembled into a collective whole. A work that constitutes a
Collection will not be considered an Adaptation (as defined above) for the purposes of this
License.

c. "Distribute" means to make available to the public the original and copies of the Work through
sale or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the
terms of this License.

e. "Original Author" means, in the case of a literary or artistic work, the individual, individuals,
entity or entities who created the Work or if no individual or entity can be identified, the publisher;
and in addition (i) in the case of a performance the actors, singers, musicians, dancers, and other
persons who act, sing, deliver, declaim, play in, interpret or otherwise perform literary or artistic
works or expressions of folklore; (ii) in the case of a phonogram the producer being the person
or legal entity who first fixes the sounds of a performance or other sounds; and, (iii) in the case
of broadcasts, the organization that transmits the broadcast.

385www.balasys.hu

f. "Work" means the literary and/or artistic work offered under the terms of this License including
without limitation any production in the literary, scientific and artistic domain, whatever may be
the mode or form of its expression including digital form, such as a book, pamphlet and other
writing; a lecture, address, sermon or other work of the same nature; a dramatic or
dramatico-musical work; a choreographic work or entertainment in dumb show; a musical
composition with or without words; a cinematographic work to which are assimilated works
expressed by a process analogous to cinematography; a work of drawing, painting, architecture,
sculpture, engraving or lithography; a photographic work to which are assimilated works expressed
by a process analogous to photography; a work of applied art; an illustration, map, plan, sketch
or three-dimensional work relative to geography, topography, architecture or science; a
performance; a broadcast; a phonogram; a compilation of data to the extent it is protected as a
copyrightable work; or a work performed by a variety or circus performer to the extent it is not
otherwise considered a literary or artistic work.

g. "You" means an individual or entity exercising rights under this License who has not previously
violated the terms of this License with respect to the Work, or who has received express permission
from the Licensor to exercise rights under this License despite a previous violation.

h. "Publicly Perform" means to perform public recitations of the Work and to communicate to the
public those public recitations, by any means or process, including by wire or wireless means or
public digital performances; to make available to the public Works in such a way that members
of the public may access these Works from a place and at a place individually chosen by them;
to perform the Work to the public by any means or process and the communication to the public
of the performances of the Work, including by public digital performance; to broadcast and
rebroadcast the Work by any means including signs, sounds or images.

i. "Reproduce" means to make copies of the Work by any means including without limitation by
sound or visual recordings and the right of fixation and reproducing fixations of the Work,
including storage of a protected performance or phonogram in digital form or other electronic
medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any uses free
from copyright or rights arising from limitations or exceptions that are provided for in connection
with the copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a
worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright)
license to exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce
the Work as incorporated in the Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated in Collections.
The above rights may be exercised in all media and formats whether now known or hereafter devised.
The above rights include the right to make such modifications as are technically necessary to exercise
the rights in other media and formats, but otherwise you have no rights to make Adaptations. Subject
to 8(f), all rights not expressly granted by Licensor are hereby reserved, including but not limited
to the rights set forth in Section 4(d).

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the
following restrictions:

386www.balasys.hu

a. You may Distribute or Publicly Perform the Work only under the terms of this License. You
must include a copy of, or the Uniform Resource Identifier (URI) for, this License with every
copy of the Work You Distribute or Publicly Perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of the recipient of the Work to
exercise the rights granted to that recipient under the terms of the License. You may not sublicense
the Work. You must keep intact all notices that refer to this License and to the disclaimer of
warranties with every copy of the Work You Distribute or Publicly Perform. When You Distribute
or Publicly Perform the Work, You may not impose any effective technological measures on the
Work that restrict the ability of a recipient of the Work from You to exercise the rights granted
to that recipient under the terms of the License. This Section 4(a) applies to the Work as
incorporated in a Collection, but this does not require the Collection apart from the Work itself
to be made subject to the terms of this License. If You create a Collection, upon notice from any
Licensor You must, to the extent practicable, remove from the Collection any credit as required
by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3 above in any manner that is
primarily intended for or directed toward commercial advantage or private monetary compensation.
The exchange of the Work for other copyrighted works by means of digital file-sharing or
otherwise shall not be considered to be intended for or directed toward commercial advantage
or private monetary compensation, provided there is no payment of any monetary compensation
in connection with the exchange of copyrighted works.

c. If You Distribute, or Publicly Perform the Work or Collections, You must, unless a request has
been made pursuant to Section 4(a), keep intact all copyright notices for the Work and provide,
reasonable to the medium or means You are utilizing: (i) the name of the Original Author (or
pseudonym, if applicable) if supplied, and/or if the Original Author and/or Licensor designate
another party or parties (for example a sponsor institute, publishing entity, journal) for attribution
("Attribution Parties") in Licensor's copyright notice, terms of service or by other reasonable
means, the name of such party or parties; (ii) the title of the Work if supplied; (iii) to the extent
reasonably practicable, the URI, if any, that Licensor specifies to be associated with the Work,
unless such URI does not refer to the copyright notice or licensing information for the Work.
The credit required by this Section 4(c) may be implemented in any reasonable manner; provided,
however, that in the case of a Collection, at a minimum such credit will appear, if a credit for all
contributing authors of Collection appears, then as part of these credits and in a manner at least
as prominent as the credits for the other contributing authors. For the avoidance of doubt, You
may only use the credit required by this Section for the purpose of attribution in the manner set
out above and, by exercising Your rights under this License, You may not implicitly or explicitly
assert or imply any connection with, sponsorship or endorsement by the Original Author, Licensor
and/or Attribution Parties, as appropriate, of You or Your use of the Work, without the separate,
express prior written permission of the Original Author, Licensor and/or Attribution Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to collect
royalties through any statutory or compulsory licensing scheme cannot be waived, the Licensor
reserves the exclusive right to collect such royalties for any exercise by You of the rights
granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect
royalties through any statutory or compulsory licensing scheme can be waived, the Licensor
reserves the exclusive right to collect such royalties for any exercise by You of the rights

387www.balasys.hu

granted under this License if Your exercise of such rights is for a purpose or use which is
otherwise than noncommercial as permitted under Section 4(b) and otherwise waives the right
to collect royalties through any statutory or compulsory licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to collect royalties, whether
individually or, in the event that the Licensor is a member of a collecting society that
administers voluntary licensing schemes, via that society, from any exercise by You of the
rights granted under this License that is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(b).

e. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by
applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by itself or as
part of any Collections, You must not distort, mutilate, modify or take other derogatory action
in relation to the Work which would be prejudicial to the Original Author's honor or reputation.

5. Representations, Warranties and Disclaimer UNLESS OTHERWISE MUTUALLY AGREED BY
THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO
REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK,
EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE.
SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES,
SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN
NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by
You of the terms of this License. Individuals or entities who have received Collections from You
under this License, however, will not have their licenses terminated provided such individuals
or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive
any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration
of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right
to release the Work under different license terms or to stop distributing the Work at any time;
provided, however that any such election will not serve to withdraw this License (or any other
license that has been, or is required to be, granted under the terms of this License), and this
License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to
the recipient a license to the Work on the same terms and conditions as the license granted to
You under this License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect
the validity or enforceability of the remainder of the terms of this License, and without further

388www.balasys.hu

action by the parties to this agreement, such provision shall be reformed to the minimum extent
necessary to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to unless
such waiver or consent shall be in writing and signed by the party to be charged with such waiver
or consent.

d. This License constitutes the entire agreement between the parties with respect to the Work licensed
here. There are no understandings, agreements or representations with respect to the Work not
specified here. Licensor shall not be bound by any additional provisions that may appear in any
communication from You. This License may not be modified without the mutual written agreement
of the Licensor and You.

e. The rights granted under, and the subject matter referenced, in this License were drafted utilizing
the terminology of the Berne Convention for the Protection of Literary and Artistic Works (as
amended on September 28, 1979), the Rome Convention of 1961, the WIPO Copyright Treaty
of 1996, the WIPO Performances and Phonograms Treaty of 1996 and the Universal Copyright
Convention (as revised on July 24, 1971). These rights and subject matter take effect in the
relevant jurisdiction in which the License terms are sought to be enforced according to the
corresponding provisions of the implementation of those treaty provisions in the applicable
national law. If the standard suite of rights granted under applicable copyright law includes
additional rights not granted under this License, such additional rights are deemed to be included
in the License; this License is not intended to restrict the license of any rights under applicable
law.

389www.balasys.hu

Index of Proxy attributes

F
Ftp

AbstractFtpProxy
active_connection_mode, 42
auth_tls_ok_client, 42
auth_tls_ok_server, 42
buffer_size, 42
data_mode, 42
data_port_max, 43
data_port_min, 43
data_protection_enabled_client, 43
data_protection_enabled_server, 43
features, 43
hostname, 43
hostport, 43
masq_address_client, 43
masq_address_server, 44
max_continuous_line, 44
max_hostname_length, 44
max_line_length, 44
max_password_length, 44
max_username_length, 44
password, 44
permit_client_bounce_attack, 44
permit_empty_command, 45
permit_server_bounce_attack, 45
permit_unknown_command, 45
proxy_password, 45
proxy_username, 45
request, 45
request_command, 45
request_parameter, 45
request_stack, 46
response, 46
response_parameter, 46
response_status, 46
response_strip_msg, 46
strict_port_checking, 46
target_port_range, 46
timeout, 46
transparent_mode, 47
username, 47
valid_chars_username, 47

H
Http

AbstractHttpProxy
auth_by_cookie, 68
auth_by_form, 68
auth_cache_time, 68
auth_cache_update, 68
auth_forward, 69
auth_realm, 69
buffer_size, 69
connection_mode, 69
connect_proxy, 69
current_header_name, 69
current_header_value, 69
default_port, 70
enable_session_persistence, 70
enable_url_filter, 70
enable_url_filter_dns, 70
error_files_directory, 70
error_headers, 70
error_info, 70
error_msg, 70
error_silent, 71
error_status, 71
keep_persistent, 71
language, 71
max_auth_time, 71
max_body_length, 71
max_chunk_length, 71
max_header_lines, 71
max_hostname_length, 72
max_keepalive_requests, 72
max_line_length, 72
max_url_length, 72
parent_proxy, 72
parent_proxy_port, 72
permit_ftp_over_http, 72
permit_http09_responses, 72
permit_invalid_hex_escape, 73
permit_null_response, 73
permit_proxy_requests, 73
permit_server_requests, 73
permit_unicode_url, 73
request, 73
request_count, 73
request_header, 74
request_method, 74
request_mime_type, 74

390www.balasys.hu

request_stack, 74
request_url, 74
request_url_file, 74
request_url_host, 74
request_url_passwd, 74
request_url_port, 74
request_url_proto, 75
request_url_scheme, 75
request_url_username, 75
request_version, 75
require_host_header, 75
rerequest_attempts, 75
reset_on_close, 75
response, 75
response_header, 76
response_mime_type, 76
response_stack, 76
rewrite_host_header, 76
server_response_time, 76
session_persistence_cookie_name, 76
session_persistence_cookie_salt, 76
strict_header_checking, 76
strict_header_checking_action, 77
target_port_range, 77
timeout, 77
timeout_request, 77
timeout_response, 77
transparent_mode, 77
url_category, 77
url_filter_uncategorized_action, 77
use_canonicalized_urls, 78
use_default_port_in_transparent_mode, 78

getRequestHeader
header, 78

getResponseHeader
header, 78

HttpProxyURIFilter
matcher, 80

setRequestHeader
header, 79
new_value, 79

setResponseHeader
header, 79
new_value, 79

I
Imap

AbstractImapProxy

capability, 112
flag, 112
imap_state_new, 112
imap_state_old, 112
max_line_length, 113
max_literal_count, 113
max_literal_length, 113
max_password_length, 113
max_pending_count, 113
max_respond_lines, 113
max_username_length, 113
password, 113
permit_alternative_login_challenges, 113
request, 114
response, 114
stack, 114
timeout, 114
username, 114

L
Ldap

AbstractLdapProxy
max_message_size, 118
max_pending_request, 118
max_search_response_number, 119
permit_sasl_transport, 119
request, 119
response_overrun_action, 119
timeout, 119

M
Mime

AbstractMimeProxy
append_object, 123
body_type, 123
drop_bad_header, 124
error, 124
error_action, 124
header, 124
keep_header_comments, 124
max_header_length, 124
max_header_lines, 125
max_header_line_length, 124
max_multipart_level, 125
max_multipart_number, 125
mime_message_path, 125
permit_bad_continuous_line, 125
permit_empty_headers, 125

391www.balasys.hu

silent_drop, 125
timeout, 125

MSRpc
AbstractMSRpcProxy

command_timeout, 129
forwarder_timeout, 129
interface, 129
secondary_port_max, 129
secondary_port_min, 129
timeout, 129

P
Plug

AbstractPlugProxy
bandwidth_to_client, 82
bandwidth_to_server, 82
buffer_size, 82
copy_to_client, 82
copy_to_server, 82
packet_stats_interval_packet, 82
packet_stats_interval_time, 83
secondary_mask, 83
secondary_sessions, 83
shutdown_soft, 83
stack_proxy, 83
timeout, 83

packetStats
client_bytes, 84
client_pkts, 84
server_bytes, 84
server_pkts, 84

Pop3
AbstractPop3Proxy

max_authline_count, 89
max_password_length, 89
max_request_line_length, 89
max_response_line_length, 90
max_username_length, 90
password, 90
permit_longline, 90
permit_unknown_command, 90
reject_by_mail, 90
request, 90
request_command, 90
request_param, 91
response_multiline, 91
response_param, 91
response_stack, 91

response_value, 91
session_timestamp, 91
timeout, 91
username, 91

R
Radius

AbstractRadiusProxy
attribute_desc, 134
attribute_usage, 134
client_secret, 134
max_packet_length, 134
permit_trailing_zeroes, 134
rebuild_packets, 135
request, 135
response, 135
secondary_mask, 135
secondary_sessions, 135
server_secret, 135
timeout, 135

S
Sip

AbstractSipProxy
max_keepalive_size, 139
max_message_size, 139
media_connection_mark, 139
secondary_mask, 139
secondary_sessions, 140
timeout, 140

SipProxy
media, 140
permit_rtp_zones, 140
rtp_endpoint_rewrite_nat_policy, 140

Smtp
AbstractSmtpProxy

active_extensions, 95
add_received_header, 95
append_domain, 95
autodetect_domain_from, 95
domain_name, 96
extensions, 96
interval_transfer_noop, 96
max_auth_request_length, 96
max_request_length, 96
max_response_length, 96
permit_long_responses, 96
permit_omission_of_angle_brackets, 96

392www.balasys.hu

permit_unknown_command, 97
request, 97
request_command, 97
request_param, 97
request_stack, 97
require_crlf, 97
resolve_host, 97
response, 97
response_param, 98
response_value, 98
timeout, 98
tls_passthrough, 98
unconnected_response_code, 98

SmtpProxy
error_soft, 98
permit_exclamation_mark, 99
permit_percent_hack, 99
recipient_matcher, 99
relay_check, 99
relay_domains, 99
relay_domains_matcher, 99
relay_zones, 99
sender_matcher, 99

SQLNet
AbstractSQLNetProxy

connect_data, 145
server_address, 145
server_port, 145
split_connect_threshold, 145
strict_redirect_parsing, 145
timeout, 145

connectRequest
connect_data, 146

SQLNetProxy
transparent_mode, 146

Ssh
AbstractSshProxy

audit_channels, 157
auth_agent_forward, 158
auth_methods, 158
check_insane_settings, 158
client_channel, 158
client_cipher_algos, 158
client_comp_algos, 158
client_hostkey_algos, 158
client_kex_algos, 159
client_mac_algos, 159
client_pubkey_algos, 159

client_request, 159
connection_start, 159
greeting, 159
host_key_x509_dss, 159
host_key_x509_dss_certificate, 160
host_key_x509_dss_files, 160
host_key_x509_rsa, 160
host_key_x509_rsa_certificate, 160
host_key_x509_rsa_files, 160
id_comment, 160
max_kbdint_prompts, 160
max_kbdint_prompt_len, 160
max_kbdint_response_len, 161
server_channel, 161
server_cipher_algos, 161
server_comp_algos, 161
server_hostkey_algos, 161
server_kex_algos, 161
server_mac_algos, 161
server_pubkey_algos, 162
server_request, 162
software_version, 162
timeout, 162
transparent_mode, 162
userauth_banner, 162

SshProxy
enable_agent_forward, 163
enable_port_forward, 163
enable_x11_forward, 163
host_key_dss_file, 163
host_key_rsa_file, 163
server_hostkeys_dir, 163
server_hostkeys_verify, 163

SshSFtpProxy
timeout, 164

T
Telnet

AbstractTelnetProxy
current_var_name, 103
current_var_value, 104
enable_audit, 104
negotiation, 104
option, 104
timeout, 104

TFtp
AbstractTFtpProxy

encoding, 167

393www.balasys.hu

filename, 167
request, 167
timeout, 167

394www.balasys.hu

Index of Core attributes

A
Auth

__init__
acl, 176
authentication, 174
authorization, 175
authorize_policy, 177
cache, 174
cleanup_threshold, 172
connect_timeout, 181
grouplist, 179
intervals, 180
name, 174, 175
pki, 182
port, 182
provider, 174
service_equiv, 172
timeout, 173, 182
update_stamp, 173
userlist, 180
wait_authorization, 177
wait_timeout, 177, 178

AuthDB
__init__

backend, 183
name, 183
pki_ca, 184
pki_cert, 184
serveraddr, 184
ssl_verify_depth, 184
use_ssl, 184

C
Chainer

SideStackChainer
right_chainer, 189
right_class, 189

__init__
protocol, 186, 187, 188, 191
right_chainer, 190
right_class, 190
self, 188
timeout_connect, 186, 187, 188, 191

timeout_state, 188, 191

D
Dispatch

CSZoneDispatcher
services, 300

Dispatcher
backlog, 302
bindto, 302
protocol, 302
service, 302
threaded, 302

__init__
bindto, 301, 303
follow_parent, 301
service, 303
services, 301
transparent, 303

M
Matcher

RegexpFileMatcher
ignore_date, 246
ignore_file, 247
match_date, 247
match_file, 247

RegexpMatcher
ignore, 248
match, 248

__init__
bind_name, 249
cache_timeout, 249
force_delivery_attempt, 249
hosts, 246
ignore_fname, 247
ignore_list, 248
match_fname, 247
match_list, 248
resolve_on_init, 246
sender_address, 249
server, 246, 250
server_name, 250
server_port, 250

N
NAT

performTranslation

395www.balasys.hu

addrs, 252
nat_type, 252
session, 252

__init__
addr, 259
addresses, 258
cacheable, 257
default_reject, 254
gw_mark, 253
ip_hash, 254
mapping, 254, 255
name, 257
nat, 258
prefix, 256
prefix_mask, 256, 257
suffix, 256

P
Proxy

getCredentials
domain, 262
method, 263
port, 263
target, 263
username, 263

Proxy
encryption_policy, 261
ids_policy, 261
language, 261

setServerAddress
host, 263
port, 264

userAuthenticated
entity, 264

R
Resolver

__init__
mapping, 266
name_server, 265
timeout, 265
use_search_domain, 265

Router
AbstractRouter

forge_addr, 267
forge_port, 267

DirectedRouter
dest_addr, 268

TransparentRouter
forced_port, 270
forge_addr, 270

__init__
dest_addr, 268
forced_port, 271
forge_addr, 268, 269, 271
forge_port, 269, 270, 271
overrideable, 269, 271

S
Service

AbstractService
name, 278

DenyService
ipv4_setting, 279
ipv6_setting, 279
limit_policy, 279
name, 279

PFService
dnat_policy, 281
limit_policy, 281
router, 281
snat_policy, 281

Service
authentication_policy, 283
authorization_policy, 283
auth_name, 283
chainer, 283
dnat_policy, 283
encryption_policy, 284
instance_id, 284
keepalive, 284
limit_policy, 284
max_instances, 284
max_sessions, 284
num_instances, 284
proxy_class, 284
resolver_policy, 285
router, 285
snat_policy, 285

startInstance
session, 288

__init__
authentication_policy, 286
authorization_policy, 286
auth_name, 285
chainer, 286

396www.balasys.hu

dnat_policy, 286
encryption_policy, 286
keepalive, 286
limit_policy, 280, 282, 286
limit_target_zones_to, 287
log_spec, 280, 282
log_verbose, 280, 282
max_instances, 287
max_sessions, 287
name, 278, 280, 287
proxy_class, 287
resolver_policy, 287
router, 287
snat_policy, 287

Session
setTargetAddress

addr, 290
StackedSession

chainer, 288
owner, 289
server_address, 289
server_local, 289
server_stream, 289
server_zone, 289
target_address, 289
target_local, 289
target_zone, 289

SockAddr
SockAddrInet

ip, 291
ip_s, 291
port, 291
type, 291

SockAddrInet6
ip, 291
ip_s, 292
port, 292
type, 292

SockAddrInetHostname
ip, 292
ip_s, 292
port, 293
type, 293

SockAddrInetRange
ip, 293
ip_s, 293
port, 293
type, 293

SockAddrUnix
type, 294

Z
Zone

__init__
addr, 298
admin_parent, 298
hostnames, 298
name, 298

397www.balasys.hu

Index of all attributes

A
acl, 176
active_connection_mode, 42
active_extensions, 95
addr, 259, 290, 298
addresses, 258
addrs, 252, 295
add_received_header, 95
admin_parent, 298
allow_user_defined, 126
append_domain, 95
append_object, 123
attribute_desc, 134
attribute_usage, 134
audit_channels, 157
auth, 142
authentication, 174
authentication_policy, 283, 286
authorization, 175
authorization_policy, 283, 286
authorize_policy, 177
auth_agent_forward, 158
auth_by_cookie, 68
auth_by_form, 68
auth_cache_time, 68
auth_cache_update, 68
auth_forward, 69
auth_methods, 158
auth_name, 283, 285
auth_realm, 69
auth_server, 142
auth_tls_ok_client, 42
auth_tls_ok_server, 42
autodetect_domain_from, 95

B
backend, 183, 296
backlog, 302
bandwidth_to_client, 82
bandwidth_to_server, 82
bindto, 301, 302, 303
bind_name, 249
body_type, 123

buffer_size, 42, 69, 82, 126
bytes_recvd, 303
bytes_sent, 304

C
cache, 174
cacheable, 257
cache_directory, 216, 242, 243
cache_timeout, 249
capability, 112
ca_hint_directory, 204, 206
certificate, 192, 193
certificates, 233, 234
certificate_file_path, 202, 203, 204
chainer, 283, 286, 288
check_insane_settings, 158
check_subject, 227, 228
ciphers, 210, 212, 231, 232, 234, 236
ciphers_tlsv1_3, 210, 213, 231, 232, 234, 236
cipher_server_preference, 210, 212
cleanup_threshold, 172
client_bytes, 84
client_certificate_generator, 207, 208, 209, 217, 220,
221, 222, 223, 237, 238
client_channel, 158
client_cipher_algos, 158
client_comp_algos, 158
client_hostkey_algos, 158
client_kex_algos, 159
client_mac_algos, 159
client_max_line_length, 35
client_pkts, 84
client_pubkey_algos, 159
client_request, 159
client_secret, 134
client_security, 217
client_tls_options, 207, 208, 209, 210, 217, 218, 220,
221, 222, 223, 237, 238
client_verify, 208, 209, 210, 217, 218, 220, 221, 222,
223, 237, 239
command_timeout, 129
connection_mode, 69
connection_start, 159
connect_data, 145, 146
connect_proxy, 69
connect_server, 142
connect_timeout, 181
copy_to_client, 82

398www.balasys.hu

copy_to_server, 82
current_header_name, 69
current_header_value, 69
current_var_name, 103
current_var_value, 104

D
data_mode, 42
data_port_max, 43
data_port_min, 43
data_protection_enabled_client, 43
data_protection_enabled_server, 43
default, 225, 226
default_accept, 126
default_port, 70
default_reject, 254
dest_addr, 268
dh_params, 210
dh_param_file_path, 213
disable_auth_v5, 142
disable_compression, 210, 231, 234
disable_renegotiation, 211, 213
disable_send_root_ca, 211, 213
disable_session_cache, 211, 213, 231, 232, 235, 236
disable_ticket, 211, 213, 231, 233, 235, 236
dnat_policy, 281, 283, 286
domain, 262
domain_name, 96
drop_bad_header, 124
dst_iface, 275
dst_port, 275
dst_subnet, 275
dst_zone, 276

E
enable_agent_forward, 163
enable_audit, 104
enable_port_forward, 163
enable_session_persistence, 70
enable_socks_v4, 142
enable_url_filter, 70
enable_url_filter_dns, 70
enable_x11_forward, 163
encoding, 167
encryption, 218, 219
encryption_policy, 261, 284, 286
entity, 264
error, 124

error_action, 124
error_files_directory, 70
error_headers, 70
error_info, 70
error_msg, 70
error_silent, 71
error_soft, 98
error_status, 71
extensions, 96
extension_whitelist, 216, 243

F
fd, 304
features, 43
filename, 167
file_path, 215
flag, 112
follow_parent, 301
forced_port, 270, 271
force_delivery_attempt, 249
forge_addr, 267, 268, 269, 270, 271
forge_port, 267, 269, 270, 271
forwarder_timeout, 129

G
greeting, 159
grouplist, 179
gw_mark, 253

H
header, 78, 79, 124
high, 274
host, 263
hostname, 43
hostnames, 298
hostname_certificate_map, 226
hostport, 43
hosts, 246
host_key_dss_file, 163
host_key_rsa_file, 163
host_key_x509_dss, 159
host_key_x509_dss_certificate, 160
host_key_x509_dss_files, 160
host_key_x509_rsa, 160
host_key_x509_rsa_certificate, 160
host_key_x509_rsa_files, 160

399www.balasys.hu

I
ids, 240, 241
ids_policy, 261
id_comment, 160
ignore, 193, 248
ignore_date, 246
ignore_file, 247
ignore_fname, 247
ignore_list, 248
imap_state_new, 112
imap_state_old, 112
instance_id, 284
interface, 129
interface_name, 239, 240
intermediate_revocation_check_type, 199, 200, 204,
206, 227, 228
intervals, 180
interval_transfer_noop, 96
IP, 143
ip, 291, 292, 293
ipv4_setting, 279
ipv6_setting, 279
ip_hash, 254
ip_s, 291, 292, 293

K
keepalive, 284, 286
keep_header_comments, 124
keep_persistent, 71
key_file, 242, 243
key_file_path, 224, 225
key_passphrase, 242, 243

L
language, 71, 261
leaf_revocation_check_type, 199, 201, 204, 206, 227,
228
level, 260
limit_policy, 279, 280, 281, 282, 284, 286
limit_target_zones_to, 287
log_spec, 280, 282
log_verbose, 280, 282
low, 275

M
mac_address, 240
mapping, 254, 255, 266

masq_address_client, 43
masq_address_server, 44
match, 194, 248
matcher, 80
match_date, 247
match_file, 247
match_fname, 247
match_list, 248
max_authline_count, 89
max_auth_request_length, 96
max_auth_time, 71
max_body_length, 71
max_chunk_length, 71
max_continuous_line, 44
max_header_length, 124
max_header_lines, 71, 125
max_header_line_length, 124
max_hostname_length, 44, 72
max_instances, 284, 287
max_kbdint_prompts, 160
max_kbdint_prompt_len, 160
max_kbdint_response_len, 161
max_keepalive_requests, 72
max_keepalive_size, 139
max_line_length, 44, 72, 113
max_literal_count, 113
max_literal_length, 113
max_message_size, 118, 139
max_multipart_level, 125
max_multipart_number, 125
max_packet_length, 134
max_password_length, 44, 89, 113
max_pending_count, 113
max_pending_request, 118
max_request_length, 96
max_request_line_length, 89
max_respond_lines, 113
max_response_length, 96
max_response_line_length, 90
max_search_response_number, 119
max_sessions, 284, 287
max_url_length, 72
max_username_length, 44, 90, 113
media, 140
media_connection_mark, 139
method, 263
mime_message_path, 125
msg, 261

400www.balasys.hu

N
name, 174, 175, 183, 218, 219, 240, 241, 257, 278,
279, 280, 287, 296, 298, 304
name_server, 265
nat, 258
nat_type, 252
negotiation, 104
new_value, 79
num_instances, 284

O
option, 104
overrideable, 269, 271
owner, 289

P
packet_stats_interval_packet, 82
packet_stats_interval_time, 83
params, 215
parent_proxy, 72
parent_proxy_port, 72
passphrase, 203, 224, 225
password, 44, 90, 113
permit_alternative_login_challenges, 113
permit_bad_continuous_line, 125
permit_client_bounce_attack, 44
permit_empty_command, 45
permit_empty_headers, 125
permit_exclamation_mark, 99
permit_ftp_over_http, 72
permit_http09_responses, 72
permit_invalid_hex_escape, 73
permit_longline, 90
permit_long_responses, 96
permit_null_response, 73
permit_omission_of_angle_brackets, 96
permit_percent_hack, 99
permit_proxy_requests, 73
permit_rtp_zones, 140
permit_sasl_transport, 119
permit_server_bounce_attack, 45
permit_server_requests, 73
permit_trailing_zeroes, 134
permit_unicode_url, 73
permit_unknown_command, 45, 90, 97
pki, 182
pki_ca, 184

pki_cert, 184
port, 143, 182, 263, 264, 291, 292, 293
prefix, 256
prefix_mask, 256, 257
prioritize_chacha, 211, 213
private_key, 216
private_key_password, 202, 203, 204
proto, 276
protocol, 186, 187, 188, 191, 302
provider, 174
proxy_class, 284, 287
proxy_password, 45
proxy_username, 45

R
readonly, 168
rebuild_packets, 135
recipient, 259, 260
recipient_matcher, 99
reject_by_mail, 90
relay_check, 99
relay_domains, 99
relay_domains_matcher, 99
relay_zones, 99
request, 45, 73, 90, 97, 114, 119, 127, 135, 167
request_command, 45, 90, 97
request_count, 73
request_header, 74
request_method, 74
request_mime_type, 74
request_param, 91, 97
request_parameter, 45
request_stack, 46, 74, 97
request_url, 74
request_url_file, 74
request_url_host, 74
request_url_passwd, 74
request_url_port, 74
request_url_proto, 75
request_url_scheme, 75
request_url_username, 75
request_version, 75
required, 199, 201, 205, 206
require_auth_v5, 143
require_crlf, 97
require_host_header, 75
rerequest_attempts, 75
reset_on_close, 75

401www.balasys.hu

resolver_policy, 285, 287
resolve_host, 97
resolve_on_init, 246
response, 46, 75, 97, 114, 135
response_header, 76
response_mime_type, 76
response_multiline, 91
response_overrun_action, 119
response_param, 91, 98
response_parameter, 46
response_stack, 76, 91
response_status, 46
response_strip_msg, 46
response_value, 91, 98
return, 143
rewrite_host_header, 76
right_chainer, 189, 190
right_class, 189, 190
router, 281, 285, 287
rtp_endpoint_rewrite_nat_policy, 140
rule_id, 276

S
secondary_mask, 83, 135, 139
secondary_port_max, 129
secondary_port_min, 129
secondary_sessions, 83, 135, 140
self, 188
sender_address, 249
sender_matcher, 99
server, 246, 250
serveraddr, 184
server_address, 145, 289
server_bytes, 84
server_certificate_generator, 229, 230, 238, 239
server_channel, 161
server_cipher_algos, 161
server_comp_algos, 161
server_hostkeys_dir, 163
server_hostkeys_verify, 163
server_hostkey_algos, 161
server_kex_algos, 161
server_local, 289
server_mac_algos, 161
server_max_line_length, 36
server_name, 250
server_name_matcher, 194, 195
server_pkts, 84

server_port, 145, 250
server_pubkey_algos, 162
server_request, 162
server_response_time, 76
server_secret, 135
server_stream, 289
server_tls_options, 220, 221, 222, 223, 229, 230, 238,
239
server_verify, 220, 221, 222, 223, 230, 238, 239
server_zone, 289
service, 276, 302, 303
services, 300, 301
service_equiv, 172
session, 36, 252, 288
session_cache_size, 211, 213, 231, 233, 235, 236
session_persistence_cookie_name, 76
session_persistence_cookie_salt, 76
session_timestamp, 91
shared_groups, 211, 214, 231, 233, 235, 237
shutdown_soft, 83
silent_drop, 125
snat_policy, 281, 285, 287
software_version, 162
split_connect_threshold, 145
src_iface, 276
src_port, 276
src_subnet, 277
src_zone, 277
ssl_verify_depth, 184
stack, 114
stack_proxy, 83
strict_header_checking, 76
strict_header_checking_action, 77
strict_port_checking, 46
strict_redirect_parsing, 145
suffix, 256

T
target, 263
target_address, 289
target_local, 289
target_port_range, 46, 77
target_zone, 289
threaded, 302
timeout, 46, 77, 83, 91, 98, 104, 114, 119, 125, 127,
129, 135, 140, 143, 145, 162, 164, 167, 173, 182, 211,
214, 231, 233, 235, 237, 265
timeout_connect, 186, 187, 188, 191

402www.balasys.hu

timeout_request, 77
timeout_response, 77
timeout_state, 188, 191
tls_max_version, 212, 214, 232, 233, 235, 237
tls_min_version, 212, 214, 232, 233, 235, 237
tls_passthrough, 98
transaction_limit, 127
transaction_timeout, 127
transparent, 303
transparent_mode, 47, 77, 146, 162
trusted_ca, 216
trusted_ca_files, 242, 243
trusted_certs_directory, 200, 201, 205, 207, 227, 229
trust_level, 199, 201, 205, 206, 227, 228
type, 261, 291, 292, 293, 294

U
unconnected_response_code, 98
untrusted_ca, 216
untrusted_ca_files, 242, 243
update_stamp, 173
url_category, 77
url_filter_uncategorized_action, 77
userauth_banner, 162
userlist, 180
username, 47, 91, 114, 263
use_canonicalized_urls, 78
use_default_port_in_transparent_mode, 78
use_search_domain, 265
use_ssl, 184

V
valid_chars_username, 47
verify_ca_directory, 200, 201, 205, 207, 227, 229
verify_crl_directory, 200, 201, 205, 207, 227, 229
verify_depth, 200, 201, 205, 207, 228, 229

W
wait_authorization, 177
wait_timeout, 177, 178

403www.balasys.hu

	Proxedo Network Security Suite 2 Reference Guide
	Table of Contents
	Preface
	1. Summary of contents
	2. Terminology
	3. Target audience and prerequisites
	4. Products covered in this guide
	5. Contact and support information
	5.1. Sales contact
	5.2. Support contact
	5.3. Training

	6. About this document
	6.1. Feedback

	Chapter 1. How PNS works
	1.1. PNS startup and initialization
	1.2. Handling incoming connections
	1.2.1. Handling packet filtering services
	1.2.2. Handling application-level services

	1.3. Proxy startup and the server-side connection

	Chapter 2. Configuring PNS proxies
	2.1. Policies for requests and responses
	2.1.1. Default actions
	2.1.2. Response codes

	2.2. Secondary sessions
	2.3. Embedded protocol analysis
	2.3.1. Proxy stacking
	2.3.2. Program stacking

	Chapter 3. The PNS SSL framework
	3.1. The SSL and TLS protocols
	3.1.1. The SSL handshake

	3.2. Handling TLS and SSL connections in Application-level Gateway
	3.2.1. Behavior of the SSL framework
	3.2.2. Session reuse in SSL and TLS connections
	3.2.3. Understanding Encryption policies
	3.2.4. Configuring Encryption policies
	3.2.4.1. Enabling TLS-encryption in the connection

	3.2.5. Certificate verification options
	3.2.6. Protocol-level TLS settings
	3.2.7. Enabling STARTTLS
	3.2.8. Configuring keybridging

	3.3. Related standards
	3.4. Encryption options reference
	3.5. X.509 Certificates
	3.5.1. X.509 Certificate Names
	3.5.2. X.509 Certificate Revocation List
	3.5.3. X.509 Online Certificate Status Protocol (OCSP) stapling
	3.5.4. X.509 Certificate hash
	3.5.5. X.509 CRL hash

	Chapter 4. Proxies
	4.1. General information on the proxy modules
	4.2. Attribute values
	4.3. Examples
	4.4. Module AnyPy
	4.4.1. Related standards
	4.4.2. Classes in the AnyPy module
	4.4.3. Class AbstractAnyPyProxy
	4.4.3.1. Attributes of AbstractAnyPyProxy
	4.4.3.2. AbstractAnyPyProxy methods
	Method __init__(self, session)
	Arguments of __init__

	Method proxyThread(self)

	4.4.4. Class AnyPyProxy
	4.4.4.1. Note

	4.5. Module Ftp
	4.5.1. The FTP protocol
	4.5.1.1. Protocol elements
	4.5.1.2. Data transfer

	4.5.2. Proxy behavior
	4.5.2.1. Configuring policies for FTP commands and responses
	4.5.2.2. Configuring policies for FTP features and FTPS support
	Enabling FTPS connections

	4.5.2.3. Stacking
	4.5.2.4. Configuring inband authentication

	4.5.3. Related standards
	4.5.4. Classes in the Ftp module
	4.5.5. Class AbstractFtpProxy
	4.5.5.1. Attributes of AbstractFtpProxy

	4.5.6. Class FtpProxy
	4.5.7. Class FtpProxyAnonRO
	4.5.8. Class FtpProxyAnonRW
	4.5.9. Class FtpProxyRO
	4.5.10. Class FtpProxyRW

	4.6. Module Http
	4.6.1. The HTTP protocol
	4.6.1.1. Protocol elements
	4.6.1.2. Protocol versions
	4.6.1.3. Bulk transfer

	4.6.2. Proxy behavior
	4.6.2.1. Transparent and non-transparent modes
	4.6.2.2. Configuring policies for HTTP requests and responses
	4.6.2.3. Configuring policies for HTTP headers
	4.6.2.4. Redirecting URLs
	4.6.2.5. Request types
	4.6.2.6. Using parent proxies
	4.6.2.7. FTP over HTTP
	4.6.2.8. Error messages
	4.6.2.9. Stacking
	4.6.2.10. Webservers returning data in 205 responses
	4.6.2.11. Session persistence in load balancing
	4.6.2.12. URL filtering in HTTP
	How URL filtering works
	Configuring URL filtering in HTTP
	List of URL-filtering categories
	Customizing the URL database

	4.6.3. Related standards
	4.6.4. Classes in the Http module
	4.6.5. Class AbstractHttpProxy
	4.6.5.1. Attributes of AbstractHttpProxy
	4.6.5.2. AbstractHttpProxy methods
	Method getRequestHeader(self, header)
	Arguments of getRequestHeader

	Method getResponseHeader(self, header)
	Arguments of getResponseHeader

	Method setRequestHeader(self, header, new_value)
	Arguments of setRequestHeader

	Method setResponseHeader(self, header, new_value)
	Arguments of setResponseHeader

	4.6.6. Class HttpProxy
	4.6.7. Class HttpProxyNonTransparent
	4.6.8. Class HttpProxyURIFilter
	4.6.8.1. Attributes of HttpProxyURIFilter

	4.6.9. Class HttpProxyURIFilterNonTransparent
	4.6.10. Class HttpProxyURLCategoryFilter
	4.6.11. Class HttpWebdavProxy
	4.6.12. Class NontransHttpWebdavProxy

	4.7. Module Plug
	4.7.1. Proxy behavior
	4.7.2. Related standards
	4.7.3. Classes in the Plug module
	4.7.4. Class AbstractPlugProxy
	4.7.4.1. Attributes of AbstractPlugProxy
	4.7.4.2. AbstractPlugProxy methods
	Method packetStats(self, client_bytes, client_pkts, server_bytes, server_pkts)
	Arguments of packetStats

	4.7.5. Class PlugProxy

	4.8. Module Pop3
	4.8.1. The POP3 protocol
	4.8.1.1. Protocol elements
	4.8.1.2. POP3 states
	4.8.1.3. Bulk transfers

	4.8.2. Proxy behavior
	4.8.2.1. Default policy for commands
	4.8.2.2. Configuring policies for POP3 commands
	4.8.2.3. Rewriting the banner
	4.8.2.4. Stacking
	4.8.2.5. Rejecting viruses and spam

	4.8.3. Related standards
	4.8.4. Classes in the Pop3 module
	4.8.5. Class AbstractPop3Proxy
	4.8.5.1. Attributes of AbstractPop3Proxy

	4.8.6. Class Pop3Proxy
	4.8.7. Class Pop3STLSProxy

	4.9. Module Smtp
	4.9.1. The SMTP protocol
	4.9.1.1. Protocol elements
	4.9.1.2. Extensions
	4.9.1.3. Bulk transfer

	4.9.2. Proxy behavior
	4.9.2.1. Default policy for commands
	4.9.2.2. Configuring policies for SMTP commands and responses
	4.9.2.3. Stacking

	4.9.3. Related standards
	4.9.4. Classes in the Smtp module
	4.9.5. Class AbstractSmtpProxy
	4.9.5.1. Attributes of AbstractSmtpProxy

	4.9.6. Class SmtpProxy
	4.9.6.1. Attributes of SmtpProxy

	4.10. Module Telnet
	4.10.1. The Telnet protocol
	4.10.1.1. The network virtual terminal
	4.10.1.2. Protocol elements

	4.10.2. Proxy behavior
	4.10.2.1. Default policy
	4.10.2.2. Configuring policies for the TELNET protocol
	Policy callback functions
	Option negotiation

	4.10.3. Related standards
	4.10.4. Classes in the Telnet module
	4.10.5. Class AbstractTelnetProxy
	4.10.5.1. Attributes of AbstractTelnetProxy

	4.10.6. Class TelnetProxy
	4.10.7. Class TelnetProxyStrict

	4.11. Module Imap
	4.11.1. The IMAP protocol
	4.11.1.1. Protocol elements
	4.11.1.2. Protocol states

	4.11.2. Proxy behavior
	4.11.2.1. Configuring policies for IMAP requests and responses
	4.11.2.2. Calling methods
	Modifying the IMAP greeting string
	IMAP states

	4.11.2.3. Configuring acceptable flags
	4.11.2.4. The IMAP command structure in policies
	4.11.2.5. Stacking

	4.11.3. Related standards
	4.11.4. Classes in the Imap module
	4.11.5. Class AbstractImapProxy
	4.11.5.1. Attributes of AbstractImapProxy

	4.11.6. Class ImapProxy
	4.11.7. Class ImapProxyStrict

	4.12. Module Ldap
	4.12.1. The LDAP protocol
	4.12.1.1. Protocol elements

	4.12.2. Proxy behavior
	4.12.3. Configuring policies for LDAP requests
	4.12.4. Simple Authentication and Security Layer (SASL) on LDAP messages
	4.12.5. Related standards
	4.12.6. Classes in the Ldap module
	4.12.7. Class AbstractLdapProxy
	4.12.7.1. Attributes of AbstractLdapProxy

	4.12.8. Class LdapProxy
	4.12.9. Class LdapProxyRO

	4.13. Module Mime
	4.13.1. The MIME protocol
	4.13.2. Proxy behavior
	4.13.2.1. Configuring policies for MIME headers and content types

	4.13.3. Related standards
	4.13.4. Classes in the Mime module
	4.13.5. Class AbstractMimeProxy
	4.13.5.1. Attributes of AbstractMimeProxy

	4.13.6. Class MimeProxy

	4.14. Module Modbus
	4.14.1. Classes in the Modbus module
	4.14.2. Class AbstractModbusProxy
	4.14.2.1. Attributes of AbstractModbusProxy

	4.14.3. Class ModbusProxy

	4.15. Module MSRpc
	4.15.1. The RPC protocol
	4.15.2. Proxy behavior
	4.15.2.1. Setting policies for services
	4.15.2.2. Restrictions
	4.15.2.3. Global options

	4.15.3. Classes in the MSRpc module
	4.15.4. Class AbstractMSRpcProxy
	4.15.4.1. Attributes of AbstractMSRpcProxy

	4.15.5. Class MSRpcProxy

	4.16. Module Radius
	4.16.1. The RADIUS protocol
	4.16.1.1. Protocol elements
	4.16.1.2. RADIUS states

	4.16.2. Proxy behavior
	4.16.2.1. Configuring policies for RADIUS commands and responses
	4.16.2.2. Binding secondary sessions

	4.16.3. Related standards
	4.16.4. Classes in the Radius module
	4.16.5. Class AbstractRadiusProxy
	4.16.5.1. Attributes of AbstractRadiusProxy

	4.16.6. Class RadiusProxy
	4.16.7. Class RadiusProxyStrict

	4.17. Module Sip
	4.17.1. The SIP protocol
	4.17.1.1. Protocol elements
	4.17.1.2. Proxy behavior
	4.17.1.3. Keepalive messages in SIP
	4.17.1.4. Configuring SIP policies

	4.17.2. Related standards
	4.17.3. Classes in the Sip module
	4.17.4. Class AbstractSipProxy
	4.17.4.1. Attributes of AbstractSipProxy

	4.17.5. Class SipProxy
	4.17.5.1. Attributes of SipProxy

	4.18. Module Socks
	4.18.1. The SOCKS protocol
	4.18.2. Proxy behaviour
	4.18.2.1. Authenticating clients

	4.18.3. Related standards
	4.18.4. Classes in the Socks module
	4.18.5. Class AbstractSocksProxy
	4.18.5.1. Attributes of AbstractSocksProxy
	4.18.5.2. AbstractSocksProxy methods
	Method requestForward(self, ip, port)
	Arguments of requestForward

	4.18.6. Class SocksProxy

	4.19. Module SQLNet
	4.19.1. The SQL*Net protocol
	4.19.2. Proxy behavior
	4.19.3. Related standards
	4.19.4. Classes in the SQLNet module
	4.19.5. Class AbstractSQLNetProxy
	4.19.5.1. Attributes of AbstractSQLNetProxy
	4.19.5.2. AbstractSQLNetProxy methods
	Method connectRequest(self, connect_data)
	Arguments of connectRequest

	4.19.6. Class SQLNetProxy
	4.19.6.1. Attributes of SQLNetProxy

	4.20. Module Ssh
	4.20.1. The Secure Shell protocol
	4.20.1.1. Protocol elements
	4.20.1.2. Protocol versions

	4.20.2. Proxy behavior
	4.20.2.1. Configuring policies for SSH channels
	4.20.2.2. Configuring policies for SSH requests
	4.20.2.3. Parameters of the SSH requests
	4.20.2.4. Configuring local and remote forwarding
	4.20.2.5. Configuring encryption parameters
	4.20.2.6. Host key verification
	4.20.2.7. Auditing SSH channels
	4.20.2.8. Manipulating the keys of public-key authentication

	4.20.3. Related standards
	4.20.4. Classes in the Ssh module
	4.20.5. Class AbstractSshProxy
	4.20.5.1. Attributes of AbstractSshProxy

	4.20.6. Class SshProxy
	4.20.6.1. Attributes of SshProxy
	4.20.6.2. SshProxy methods
	Method checkUserKey(self, blob_type, blob)
	Method mapUserKey(self, blob_type, blob)

	4.20.7. Class SshProxySftpOnly
	4.20.8. Class SshSFtpProxy
	4.20.8.1. Attributes of SshSFtpProxy

	4.20.9. Class SshScpProxy

	4.21. Module TFtp
	4.21.1. The TFtp protocol
	4.21.1.1. Protocol elements

	4.21.2. Proxy behavior
	4.21.2.1. Configuring policies for TFTP commands
	Rewriting the request
	Responding with a custom error

	4.21.3. Related standards
	4.21.4. Classes in the TFtp module
	4.21.5. Class AbstractTFtpProxy
	4.21.5.1. Attributes of AbstractTFtpProxy

	4.21.6. Class TFtpProxy

	4.22. Module Vnc
	4.22.1. Classes in the Vnc module
	4.22.2. Class AbstractVncProxy
	4.22.2.1. Attributes of AbstractVncProxy

	4.22.3. Class VncProxy

	Chapter 5. Core
	5.1. Module Auth
	5.1.1. Authentication and authorization basics
	5.1.2. Authentication and authorization in PNS
	5.1.3. Classes in the Auth module
	5.1.4. Class AbstractAuthentication
	5.1.4.1. AbstractAuthentication methods
	Method __init__(self)

	5.1.5. Class AbstractAuthorization
	5.1.6. Class AuthCache
	5.1.6.1. AuthCache methods
	Method __init__(self, timeout, update_stamp, service_equiv, cleanup_threshold)
	Arguments of __init__

	5.1.7. Class AuthenticationPolicy
	5.1.7.1. AuthenticationPolicy methods
	Method __init__(self, name, provider, authentication, cache)
	Arguments of __init__

	5.1.8. Class AuthorizationPolicy
	5.1.8.1. AuthorizationPolicy methods
	Method __init__(self, name, authorization)
	Arguments of __init__

	5.1.9. Class BasicAccessList
	5.1.9.1. BasicAccessList methods
	Method __init__(self, acl)
	Arguments of __init__

	5.1.10. Class InbandAuthentication
	5.1.10.1. InbandAuthentication methods
	Method __init__(self)

	5.1.11. Class NEyesAuthorization
	5.1.11.1. NEyesAuthorization methods
	Method __init__(self, authorize_policy, wait_authorization, wait_timeout)
	Arguments of __init__

	5.1.12. Class PairAuthorization
	5.1.12.1. PairAuthorization methods
	Method __init__(self, wait_timeout)
	Arguments of __init__

	5.1.13. Class PermitGroup
	5.1.13.1. PermitGroup methods
	Method __init__(self, grouplist)
	Arguments of __init__

	5.1.14. Class PermitTime
	5.1.14.1. PermitTime methods
	Method __init__(self, intervals)
	Arguments of __init__

	5.1.15. Class PermitUser
	5.1.15.1. PermitUser methods
	Method __init__(self, userlist)
	Arguments of __init__

	5.1.16. Class ServerAuthentication
	5.1.16.1. ServerAuthentication methods
	Method __init__(self)

	5.1.17. Class VAAuthentication
	5.1.17.1. VAAuthentication methods
	Method __init__(self, pki, port, timeout, connect_timeout)
	Arguments of __init__

	5.2. Module AuthDB
	5.2.1. Classes in the AuthDB module
	5.2.2. Class AbstractAuthenticationBackend
	5.2.3. Class AuthenticationProvider
	5.2.3.1. AuthenticationProvider methods
	Method __init__(self, name, backend)
	Arguments of __init__

	5.2.4. Class VAS2AuthenticationBackend
	5.2.4.1. VAS2AuthenticationBackend methods
	Method __init__(self, serveraddr, use_ssl, pki_cert, pki_ca, ssl_verify_depth)
	Arguments of __init__

	5.3. Module Chainer
	5.3.1. Selecting the network protocol
	5.3.2. Classes in the Chainer module
	5.3.3. Class AbstractChainer
	5.3.4. Class ConnectChainer
	5.3.4.1. ConnectChainer methods
	Method __init__(self, protocol, timeout_connect)
	Arguments of __init__

	5.3.5. Class FailoverChainer
	5.3.5.1. FailoverChainer methods
	Method __init__(self, protocol, timeout_state, timeout_connect)
	Arguments of __init__

	5.3.6. Class MultiTargetChainer
	5.3.6.1. MultiTargetChainer methods
	Method __init__(self, protocol, timeout_connect)
	Arguments of __init__

	5.3.7. Class RoundRobinChainer
	5.3.8. Class SideStackChainer
	5.3.8.1. Attributes of SideStackChainer
	5.3.8.2. SideStackChainer methods
	Method __init__(self, right_class, right_chainer)
	Arguments of __init__

	5.3.9. Class StateBasedChainer
	5.3.9.1. StateBasedChainer methods
	Method __init__(self, protocol, timeout_connect, timeout_state)
	Arguments of __init__

	5.4. Module Detector
	5.4.1. Classes in the Detector module
	5.4.2. Class AbstractDetector
	5.4.3. Class CertDetector
	5.4.3.1. Attributes of CertDetector
	5.4.3.2. CertDetector methods
	Method __init__(self, certificate)
	Arguments of __init__

	5.4.4. Class DetectorPolicy
	5.4.5. Class HttpDetector
	5.4.5.1. Attributes of HttpDetector
	5.4.5.2. HttpDetector methods
	Method __init__(self, **kw)

	5.4.6. Class SniDetector
	5.4.6.1. Attributes of SniDetector
	5.4.6.2. SniDetector methods
	Method __init__(self, server_name_matcher)
	Arguments of __init__

	5.4.7. Class SshDetector

	5.5. Module Encryption
	5.5.1. TLS parameter constants
	5.5.2. Classes in the Encryption module
	5.5.3. Class AbstractVerifier
	5.5.3.1. Attributes of AbstractVerifier
	5.5.3.2. AbstractVerifier methods
	Method __init__(self, trust_level, intermediate_revocation_check_type, leaf_revocation_check_type, trusted_certs_directory, required, verify_depth, verify_ca_directory, verify_crl_directory)
	Arguments of __init__

	5.5.4. Class Certificate
	5.5.4.1. Attributes of Certificate
	5.5.4.2. Certificate methods
	Method __init__(self, certificate, private_key)
	Arguments of __init__

	Method fromFile(certificate_file_path, private_key)
	Arguments of fromFile

	5.5.5. Class CertificateCA
	5.5.5.1. Attributes of CertificateCA
	5.5.5.2. CertificateCA methods
	Method __init__(self, certificate, private_key)
	Arguments of __init__

	5.5.6. Class ClientCertificateVerifier
	5.5.6.1. Attributes of ClientCertificateVerifier
	5.5.6.2. ClientCertificateVerifier methods
	Method __init__(self, trust_level, intermediate_revocation_check_type, leaf_revocation_check_type, trusted_certs_directory, required, verify_depth, verify_ca_directory, verify_crl_directory, ca_hint_directory)
	Arguments of __init__

	5.5.7. Class ClientNoneVerifier
	5.5.8. Class ClientOnlyEncryption
	5.5.8.1. Attributes of ClientOnlyEncryption
	5.5.8.2. ClientOnlyEncryption methods
	Method __init__(self, client_certificate_generator, client_verify, client_tls_options)
	Arguments of __init__

	5.5.9. Class ClientOnlyStartTLSEncryption
	5.5.9.1. Attributes of ClientOnlyStartTLSEncryption
	5.5.9.2. ClientOnlyStartTLSEncryption methods
	Method __init__(self, client_certificate_generator, client_verify, client_tls_options)
	Arguments of __init__

	5.5.10. Class ClientTLSOptions
	5.5.10.1. Attributes of ClientTLSOptions
	5.5.10.2. ClientTLSOptions methods
	Method __init__(self, tls_min_version, tls_max_version, ciphers, ciphers_tlsv1_3, shared_groups, timeout, session_cache_size, disable_session_cache, disable_ticket, disable_compression, cipher_server_preference, prioritize_chacha, dh_params, disable_renegotiation, disable_send_root_ca)
	Arguments of __init__

	5.5.11. Class DHParam
	5.5.11.1. Attributes of DHParam
	5.5.11.2. DHParam methods
	Method __init__(self, params)
	Arguments of __init__

	Method fromFile(file_path)
	Arguments of fromFile

	5.5.12. Class DynamicCertificate
	5.5.12.1. DynamicCertificate methods
	Method __init__(self, private_key, trusted_ca, untrusted_ca, cache_directory, extension_whitelist)
	Arguments of __init__

	5.5.13. Class DynamicServerEncryption
	5.5.13.1. Attributes of DynamicServerEncryption
	5.5.13.2. DynamicServerEncryption methods
	Method __init__(self, client_security, client_certificate_generator, client_verify, client_tls_options)
	Arguments of __init__

	5.5.14. Class EncryptionPolicy
	5.5.14.1. Attributes of EncryptionPolicy
	5.5.14.2. EncryptionPolicy methods
	Method __init__(self, name, encryption)
	Arguments of __init__

	5.5.15. Class FakeStartTLSEncryption
	5.5.15.1. Attributes of FakeStartTLSEncryption
	5.5.15.2. FakeStartTLSEncryption methods
	Method __init__(self, client_certificate_generator, client_verify, server_verify, client_tls_options, server_tls_options)
	Arguments of __init__

	5.5.16. Class ForwardStartTLSEncryption
	5.5.16.1. Attributes of ForwardStartTLSEncryption
	5.5.16.2. ForwardStartTLSEncryption methods
	Method __init__(self, client_certificate_generator, client_verify, server_verify, client_tls_options, server_tls_options)
	Arguments of __init__

	5.5.17. Class PrivateKey
	5.5.17.1. Attributes of PrivateKey
	5.5.17.2. PrivateKey methods
	Method __init__(self, key, passphrase)
	Arguments of __init__

	Method fromFile(key_file_path, passphrase)
	Arguments of fromFile

	5.5.18. Class SNIBasedCertificate
	5.5.18.1. Attributes of SNIBasedCertificate
	5.5.18.2. SNIBasedCertificate methods
	Method __init__(self, hostname_certificate_map, default)
	Arguments of __init__

	5.5.19. Class ServerCertificateVerifier
	5.5.19.1. Attributes of ServerCertificateVerifier
	5.5.19.2. ServerCertificateVerifier methods
	Method __init__(self, trust_level, intermediate_revocation_check_type, leaf_revocation_check_type, trusted_certs_directory, verify_depth, verify_ca_directory, verify_crl_directory, check_subject)
	Arguments of __init__

	5.5.20. Class ServerNoneVerifier
	5.5.21. Class ServerOnlyEncryption
	5.5.21.1. Attributes of ServerOnlyEncryption
	5.5.21.2. ServerOnlyEncryption methods
	Method __init__(self, server_certificate_generator, server_verify, server_tls_options)
	Arguments of __init__

	5.5.22. Class ServerTLSOptions
	5.5.22.1. Attributes of ServerTLSOptions
	5.5.22.2. ServerTLSOptions methods
	Method __init__(self, tls_min_version, tls_max_version, ciphers, ciphers_tlsv1_3, shared_groups, timeout, session_cache_size, disable_session_cache, disable_ticket, disable_compression)
	Arguments of __init__

	5.5.23. Class StaticCertificate
	5.5.23.1. Attributes of StaticCertificate
	5.5.23.2. StaticCertificate methods
	Method __init__(self, certificates)
	Arguments of __init__

	5.5.24. Class TLSOptions
	5.5.24.1. Attributes of TLSOptions
	5.5.24.2. TLSOptions methods
	Method __init__(self, tls_min_version, tls_max_version, ciphers, ciphers_tlsv1_3, shared_groups, timeout, session_cache_size, disable_session_cache, disable_ticket, disable_compression)
	Arguments of __init__

	5.5.25. Class TwoSidedEncryption
	5.5.25.1. Attributes of TwoSidedEncryption
	5.5.25.2. TwoSidedEncryption methods
	Method __init__(self, client_certificate_generator, server_certificate_generator, client_verify, server_verify, client_tls_options, server_tls_options)
	Arguments of __init__

	5.6. Module Ids
	5.6.1. Classes in the Ids module
	5.6.2. Class Ids
	5.6.2.1. Attributes of Ids
	5.6.2.2. Ids methods
	Method __init__(self, interface_name, mac_address)
	Arguments of __init__

	5.6.3. Class IdsPolicy
	5.6.3.1. Attributes of IdsPolicy
	5.6.3.2. IdsPolicy methods
	Method __init__(self, name, ids)
	Arguments of __init__

	5.7. Module Keybridge
	5.7.1. Classes in the Keybridge module
	5.7.2. Class X509KeyBridge
	5.7.2.1. Attributes of X509KeyBridge
	5.7.2.2. X509KeyBridge methods
	Method _old_init(self, key_file, cache_directory, trusted_ca_files, untrusted_ca_files, key_passphrase, extension_whitelist)
	Arguments of _old_init

	5.8. Module Matcher
	5.8.1. Classes in the Matcher module
	5.8.2. Class AbstractMatcher
	5.8.3. Class CombineMatcher
	5.8.4. Class DNSMatcher
	5.8.4.1. DNSMatcher methods
	Method __init__(self, hosts, server, resolve_on_init)
	Arguments of __init__

	5.8.5. Class MatcherPolicy
	5.8.6. Class RegexpFileMatcher
	5.8.6.1. Attributes of RegexpFileMatcher
	5.8.6.2. RegexpFileMatcher methods
	Method __init__(self, match_fname, ignore_fname)
	Arguments of __init__

	5.8.7. Class RegexpMatcher
	5.8.7.1. Attributes of RegexpMatcher
	5.8.7.2. RegexpMatcher methods
	Method __init__(self, match_list, ignore_list, ignore_case)
	Arguments of __init__

	5.8.8. Class SmtpInvalidRecipientMatcher
	5.8.8.1. SmtpInvalidRecipientMatcher methods
	Method __init__(self, server_name, server_port, cache_timeout, force_delivery_attempt, sender_address, bind_name)
	Arguments of __init__

	5.8.9. Class WindowsUpdateMatcher
	5.8.9.1. WindowsUpdateMatcher methods
	Method __init__(self, server)
	Arguments of __init__

	5.9. Module NAT
	5.9.1. Classes in the NAT module
	5.9.2. Class AbstractNAT
	5.9.2.1. AbstractNAT methods
	Method __init__(self)
	Method performTranslation(self, session, addrs, nat_type)
	Arguments of performTranslation

	5.9.3. Class FWMark
	5.9.3.1. FWMark methods
	Method __init__(self, gw_mark)
	Arguments of __init__

	5.9.4. Class GeneralNAT
	5.9.4.1. GeneralNAT methods
	Method __init__(self, mapping)
	Arguments of __init__

	5.9.5. Class HashNAT
	5.9.5.1. HashNAT methods
	Method __init__(self, ip_hash, default_reject)
	Arguments of __init__

	5.9.6. Class LinkAvailabilityPFNat
	5.9.6.1. LinkAvailabilityPFNat methods
	Method __init__(self, mapping)
	Arguments of __init__

	5.9.7. Class NAT46
	5.9.7.1. NAT46 methods
	Method __init__(self, prefix, prefix_mask, suffix)
	Arguments of __init__

	5.9.8. Class NAT64
	5.9.8.1. NAT64 methods
	Method __init__(self, prefix_mask)
	Arguments of __init__

	5.9.9. Class NATPolicy
	5.9.9.1. NATPolicy methods
	Method __init__(self, name, nat, cacheable)
	Arguments of __init__

	5.9.10. Class RandomNAT
	5.9.10.1. RandomNAT methods
	Method __init__(self, addresses)
	Arguments of __init__

	5.9.11. Class StaticNAT
	5.9.11.1. StaticNAT methods
	Method __init__(self, addr)
	Arguments of __init__

	5.10. Module Notification
	5.10.1. Classes in the Notification module
	5.10.2. Class AbstractNotificationMethod
	5.10.3. Class EmailNotificationMethod
	5.10.3.1. Attributes of EmailNotificationMethod
	5.10.3.2. EmailNotificationMethod methods
	Method __init__(self, recipient)
	Arguments of __init__

	5.10.4. Class NotificationPolicy

	5.11. Module Proxy
	5.11.1. Functions in module Proxy
	5.11.2. Classes in the Proxy module
	5.11.3. Functions
	5.11.3.1. Function proxyLog(self, type, level, msg, args)
	Arguments of proxyLog

	5.11.4. Class Proxy
	5.11.4.1. Attributes of Proxy
	5.11.4.2. Proxy methods
	Method closedByAbort(self)
	Method config(self)
	Method connectServer(self)
	Method getCredentials(self, method, username, domain, target, port)
	Arguments of getCredentials

	Method invalidPolicyCall(self)
	Method setServerAddress(self, host, port)
	Arguments of setServerAddress

	Method setServerSideEncryption(self)
	Method userAuthenticated(self, entity, groups, auth_info)
	Arguments of userAuthenticated

	5.12. Module Resolver
	5.12.1. Classes in the Resolver module
	5.12.2. Class AbstractResolver
	5.12.3. Class DNSResolver
	5.12.3.1. DNSResolver methods
	Method __init__(self, name_server, timeout, use_search_domain)
	Arguments of __init__

	5.12.4. Class HashResolver
	5.12.4.1. HashResolver methods
	Method __init__(self, mapping)
	Arguments of __init__

	5.13. Module Router
	5.13.1. The source address used in the server-side connection
	5.13.2. Classes in the Router module
	5.13.3. Class AbstractRouter
	5.13.3.1. Attributes of AbstractRouter

	5.13.4. Class DirectedRouter
	5.13.4.1. Attributes of DirectedRouter
	5.13.4.2. DirectedRouter methods
	Method __init__(self, dest_addr, forge_addr, overrideable, forge_port)
	Arguments of __init__

	5.13.5. Class InbandRouter
	5.13.5.1. InbandRouter methods
	Method __init__(self, forge_addr, forge_port)
	Arguments of __init__

	5.13.6. Class TransparentRouter
	5.13.6.1. Attributes of TransparentRouter
	5.13.6.2. TransparentRouter methods
	Method __init__(self, forced_port, forge_addr, overrideable, forge_port)
	Arguments of __init__

	5.14. Module Rule
	5.14.1. Evaluating firewall rules
	5.14.2. Sample rules
	5.14.3. Adding metadata to rules: tags and description
	5.14.4. Classes in the Rule module
	5.14.5. Class PortRange
	5.14.5.1. Attributes of PortRange

	5.14.6. Class Rule
	5.14.6.1. Rule methods
	Method __init__(self, **kw)
	Arguments of __init__

	5.15. Module Service
	5.15.1. Naming services
	5.15.2. Classes in the Service module
	5.15.3. Class AbstractService
	5.15.3.1. Attributes of AbstractService
	5.15.3.2. AbstractService methods
	Method __init__(self, name)
	Arguments of __init__

	5.15.4. Class DenyService
	5.15.4.1. Attributes of DenyService
	5.15.4.2. DenyService methods
	Method __init__(self, name, logging, ipv4_setting, ipv6_setting, log_verbose, log_spec, limit_policy)
	Arguments of __init__

	5.15.5. Class PFService
	5.15.5.1. Attributes of PFService
	5.15.5.2. PFService methods
	Method __init__(self, name, router, snat_policy, dnat_policy, log_verbose, log_spec, limit_policy)
	Arguments of __init__

	5.15.6. Class Service
	5.15.6.1. Attributes of Service
	5.15.6.2. Service methods
	Method __init__(self, name, proxy_class, router, chainer, snat_policy, dnat_policy, authentication_policy, authorization_policy, max_instances, max_sessions, auth_name, resolver_policy, keepalive, encryption_policy, limit_target_zones_to, detector_config, detector_default_service_name, session_counting, limit_policy)
	Arguments of __init__

	Method startInstance(self, session)
	Arguments of startInstance

	5.16. Module Session
	5.16.1. Classes in the Session module
	5.16.2. Class StackedSession
	5.16.2.1. Attributes of StackedSession
	5.16.2.2. StackedSession methods
	Method setTargetAddress(self, addr)
	Arguments of setTargetAddress

	5.17. Module SockAddr
	5.17.1. Classes in the SockAddr module
	5.17.2. Class SockAddrInet
	5.17.2.1. Attributes of SockAddrInet

	5.17.3. Class SockAddrInet6
	5.17.3.1. Attributes of SockAddrInet6

	5.17.4. Class SockAddrInetHostname
	5.17.4.1. Attributes of SockAddrInetHostname

	5.17.5. Class SockAddrInetRange
	5.17.5.1. Attributes of SockAddrInetRange

	5.17.6. Class SockAddrUnix
	5.17.6.1. Attributes of SockAddrUnix

	5.18. Module Stack
	5.18.1. Classes in the Stack module
	5.18.2. Class AbstractStackingBackend
	5.18.3. Class RemoteStackingBackend
	5.18.3.1. RemoteStackingBackend methods
	Method __init__(self, addrs)
	Arguments of __init__

	5.18.4. Class StackingProvider
	5.18.4.1. StackingProvider methods
	Method __init__(self, name, backend)
	Arguments of __init__

	5.19. Module Zone
	5.19.1. Classes in the Zone module
	5.19.2. Class Zone
	5.19.2.1. Zone methods
	Method __init__(self, name, addrs, hostnames, admin_parent)
	Arguments of __init__

	5.20. Module Vela

	Chapter 6. Core-internal
	6.1. Module Cache
	6.2. Module Core
	6.3. Module Dispatch
	6.3.1. Zone-based service selection
	6.3.2. Classes in the Dispatch module
	6.3.3. Class CSZoneDispatcher
	6.3.3.1. Attributes of CSZoneDispatcher
	6.3.3.2. CSZoneDispatcher methods
	Method __init__(self, bindto, services, **kw)
	Arguments of __init__

	6.3.4. Class Dispatcher
	6.3.4.1. Attributes of Dispatcher
	6.3.4.2. Dispatcher methods
	Method __init__(self, bindto, service, **kw)
	Arguments of __init__

	6.4. Module Globals
	6.5. Module Stream
	6.5.1. Classes in the Stream module
	6.5.2. Class Stream
	6.5.2.1. Attributes of Stream
	6.5.2.2. Stream methods
	Method __init__(self, fd, name)
	Arguments of __init__

	Appendix A. Additional proxy information
	A.1. TELNET appendix
	A.2. RADIUS appendix
	A.3. SQL*Net appendix

	Appendix B. Global options of PNS
	B.1. Setting global options of PNS
	blob
	Description
	Blob options

	audit
	Description
	Audit options

	options
	Description
	Options
	Cache options

	Appendix C. PNS manual pages
	vas
	Synopsis
	Description
	Options
	Files
	Author
	Copyright

	vas.cfg
	Description
	Structure
	The router.cfg file

	Global VAS options
	Backends
	The Vas_db backend
	Storage plugins
	The LDAP storage plugin
	Authentication method plugins

	The PAM backend
	The Htpass backend
	The Radius backend
	The TACACS+ backend
	Author
	Copyright

	vcf
	Synopsis
	Description
	Options
	Operation
	Files
	Author
	Copyright

	vcf.cfg
	Description
	Structure
	The router.cfg file

	Global Options
	Scanpath Options
	Modules
	The Sed module
	The NOD32 module
	The clamav module
	The SpamAssassin module
	The HTML module
	The mail header module
	The Modsecurity module
	Author
	Copyright

	vms
	Synopsis
	Description
	Options
	Files
	Author
	Copyright

	vms.conf
	Description
	Structure
	Author
	Copyright

	vms-integrity
	Synopsis
	Description
	Options
	Example
	Author
	Copyright

	instances.conf
	Description
	Structure
	Examples
	Files
	Author
	Copyright

	policy.py
	Description
	Files
	See Also
	Author
	Copyright

	vela
	Synopsis
	Description
	Options
	Files
	Author
	Copyright

	velactl
	Synopsis
	Description
	Commands
	Examples
	Files
	Author
	Copyright

	velactl.conf
	Description
	Structure
	Files
	Author
	Copyright

	vela-zone-helper
	Synopsis
	Description
	Options
	Files
	Author
	Copyright

	vela-zone-helper.conf
	Description
	Structure
	Files
	Author
	Copyright

	vavupdate
	Synopsis
	Description
	Options
	Files
	See Also
	Author
	Copyright

	vavupdate.options
	Description
	Options
	Engine specific configuration files
	Files
	Author
	Copyright

	vqc
	Synopsis
	Description
	Options
	See also
	Author
	Copyright

	Appendix D. Proxedo Network Security Suite End-User License Agreement
	D.1. 1. SUBJECT OF THE LICENSE CONTRACT
	D.2. 2. DEFINITIONS
	D.3. 3. LICENSE GRANTS AND RESTRICTIONS
	D.4. 4. SUBSIDIARIES
	D.5. 5. INTELLECTUAL PROPERTY RIGHTS
	D.6. 6. TRADE MARKS
	D.7. 7. NEGLIGENT INFRINGEMENT
	D.8. 8. INTELLECTUAL PROPERTY INDEMNIFICATION
	D.9. 9. LICENSE FEE
	D.10. 10. WARRANTIES
	D.11. 11. DISCLAIMER OF WARRANTIES
	D.12. 12. LIMITATION OF LIABILITY
	D.13. 13.DURATION AND TERMINATION
	D.14. 14. AMENDMENTS
	D.15. 15. WAIVER
	D.16. 16. SEVERABILITY
	D.17. 17. NOTICES
	D.18. 18. MISCELLANEOUS

	Appendix E. Creative Commons Attribution Non-commercial No Derivatives (by-nc-nd) License
	Index of Proxy attributes
	Index of Core attributes
	Index of all attributes

