Proxedo Network Security Suite 1.0 Reference
Guide

Publication date June 04, 2020

Abstract
This document is a detailed reference guide for Proxedo Network Security Suite
administrators.

e BALASYS

Copyright © 1996-2020 BalaSys IT Ltd.

This documentation and the product it describes are considered protected by copyright according to the applicable laws.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/). This product includes
cryptographic software written by Eric Young (eay@cryptsoft.com)

Linux™ is a registered trademark of Linus Torvalds.

Windows™ 10 is registered trademarks of Microsoft Corporation.

All other product names mentioned herein are the trademarks of their respective owners.
DISCLAIMER

is not responsible for any third-party websites mentioned in this document. does not endorse and is not responsible or liable for any content, advertising,
products, or other material on or available from such sites or resources. will not be responsible or liable for any damage or loss caused or alleged to be
caused by or in connection with use of or reliance on any such content, goods, or services that are available on or through any such sites or resources.

www.balasys.hu ii

http://www.openssl.org

Table of Contents

2 4 L xvii
1. SUMMATY Of COMEEIES ...vvvivvvvrvrrrrreresrrerersrerrresererreererreeeererrrerrreee—....——.....—...r.r.........—.—.—.—...—.———. xvii

B R 011 0] [0TSR xvii

3. Target audience and PrereQUISITEScceeereeeeiiuriniieeeeeeeeeiiiereeeeeeeeerarennaeeseeererarsnnaseseseeenssens xviii

4. Products covered in this GUIAEcceiiiiiiiiiiieii e eeerrere e e e e e eer e e e e e e eeeearnnaeeeaaans Xix

5. About this dOCUMENT ceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiettt ettt ettt ettt et eeee ettt ettt eeeeeeeeeeeeeeeaeaeeees xix

5.1, FEADACK ittt ettt ettt et bttt e bt tebbttbeaebabeaene xix

1. HOW ZOYP WOTKS .ooviiiiiiiiiiiiiiniiiisiss 1
1.1. Zorp startup and initialiZation ccceeiieiiiiieiee e e e e e e e ee e e e e e e e e e raaa e eaaaes 1

1.2. Handling inCOMINg CONNECHIONS uuuuueeeieeiieiiiiiiiieeeeeeeeeeitteiaeeeeeeeeeeeannnaaeseeeseessnnnnaesseesseesnsnns 1
1.2.1. Handling packet-filtering SEIVICEScciiviiiiiiiiiiiiieiiceceeeeeeeeeeeeeeee e 2

1.2.2. Handling application-1eVel SEIVICESuieeeeiiiiiiiiiiiiieeeeeeeeeiiiere e e e e e e eeeeaaeeeeeeeeeeeenes 2

1.3. Proxy startup and the server-side CONNECHION ccevvuuueiieererieeiiiiiiieeeeeeeeeerrereeeeeeeereenenneens 3

2, CONfIGUIING ZOTP PIOXIES ..eevevvrvrvess 4
2.1. Policies for requests and TESPONSES evevererrrerrrererererererssrrrresrrrrrrerererer——.....—.————————". 4

B 0 R B T 101 L= Tl o) 1 ST SUPP 5

N O U] 1) 1 i o Ta PP 6

2.2, SECONAATY SESSIOMS ...eeeeerriuuniieereeeeetiiuteiaeeeeeeerearnnaaeeeeeeeresssnsnaeeeseesssssssssaesesesssssssssnaeessessesssnnns 7

2.3. Embedded protoCol aNalySisccuuuieeeeiiieiiiiiiiiieieeeeeteiiiiieeeeeeererrtaraaaeeeeeaerraaneeeeeeenreannnns 7
2.3.1. ProXy StACKITIZ ...ceeiiiiiiiiiiiiiee et ceeeiiieee e e e e eeeetiteee e e e e ee e ettt aeeeeeeaeesssannnaeeeaaeneesnnnnnaeeaaans 7

2.3.2. Program StaCKiNEccuuuiieieieiiiiiiiiiieeeeeeeeettitiiaaeeeeeeetetannnaeseeaeeeersnnnnaeesaseseessnnnnneess 8

3. The PNS SSL frameWorKcccciiiiiiiviieeiiiiiiiiiiiiinnettiiiciiiinssstitiescissssnsseseissesssssssssssesssssssssssssssesees 9
3.1. The SSL and TLS PrOtOCOLIScccciiiiiiiiiiieeeeieitiiiiiieeeeeeeeeriieaeeeseeeeeearannaeesaeseeessnnsaeeseessenesnns 9
3.1.1. The SSL handshakeccoiiiiiiiiiiiiiiiiiiiiiiiiiiiieeetteetteee ettt eeeeeeee e eeeeeeeee 9

3.2. Handling TLS and SSL connections in Application-level Gatewayccccceeeeeererreeeervvennnnnnn 10
3.2.1. Behavior of the SSL frameworkccccceiiiiiii 10

3.2.2. Session reuse in SSL and TLS CONNECHIONS ccovviiuiieerriiiiiiiiiiieeeeeeeeeeriieeeeeeeeeeeennes 11

3.2.3. Understanding Encryption POLICIESccuuvuiiieriiiiiiiiiiiiiiee e eeeceriieie e e e e e eeeeevaee e e e e e eeeeaaees 11

3.2.4. Configuring ENcryption POLICIES cccceeeieieieioieiiieieieieieec e aanennenannes 12

3.2.5. Certificate verification OptionSccceeeiiiiiiiiii i 23

3.2.6. Protocol-level TLS SEtNES ...cccvvvurriiereieieiiiiiiiieeeeeretertieiieeeeeeeeerrrnrenneeeseseeesssnnnseeess 24

3.2.7. Enabling STARTTLS oottt ettt e e e e e e et eeeeeeeas 25

3.2.8. Configuring Keybridgingcccceeeeeieiiiiieieieieieiccecere e e 25

3.3. Related StandardsSeeeeee s 33

S 07 0 20 T 4 0 10 0 s 0] o 10100 1 B 1o) =) 1 [33

3.5, X509 CITIfICALES .uuuueeiiiteeeeeeieiiet ettt e et e e ettt e e e e e e e sttt teeeeeeee s aaattteeeeeeeeaaannbeaeaeeeeesasaannnes 33
3.5.1. X.509 Certificate NAIMESueeiiiieeeiiieiiiiiteeee ettt e e e e e e ettt et e e e e e e s arbeeeeeaeeeeans 33

3.5.2. X.509 Certificate Revocation LiStcceeeeeiiieiiieiiieieieeeeeeeeeeeseeeseessesee s e e ese s e s s s esenes 34

3.5.3. X.509 Certificate hashooouiiiiiiiiiiii e 34

3.5.4. X.509 CRL hash ..ttt et e e e 34

4. PYOXIES oociiiirunneneiiiiiiiiiiinnteteeiieiisisssssseeteesessssssssseeessssssssssssssessssssssssssssseseessesssssssssssetssssssssssnnssnees 35
4.1. General information on the proxy modulescceeiiieiiiiiiiiiiiiiiiiieeeeeeeeeeeeeree e 35

4.2, ATTIDULE VALUES ettt e e e e e e ettt e e e e e s e et e e e e e e e e e eaaaes 35

4.3, EXAIMPIES oo 36

4.4, MOdUIE ANYPY oo 36

www.balasys.hu iii

4.4.1. Related Standardseeeeeeeririiiieieeeeeeeeeniiee e e e e e e e e e e e e e e e e eeeeeeeens 36
4.4.2. Classes in the AnyPy moduleoooeviiiiiiiiiiii e, 36
4.4.3. Class AbSITaCtANYPYPIOXY oeeeeeeeieieieeeieieeeee e 36
4.4.4. Class ANYPYPIOXY oeeiiiiiiiiiiiiiieieee e 37
4.5, MOAUIE FIN@OI .. 37
4.5.1. The FINGer PrOtOCO]cooeiiiiiiiie e 37
4.5.2. Proxy Behaviorcoooiiiiiiiii e 38
4.5.3. Related Standardsceceeeerieiiiiieieeieee it r e e e e e eeeeeeeees 38
4.5.4. Classes in the Finger module ..o 38
4.5.5. Class AbStractFiNGerPIOXY ...cccooviiiiiiiiiiiiii e 39
4.5.6. Class FINGEIPIOXY eeeeeeeeeieieieieieieieee e e 40
4.6. MOQUIE FIP oo 41
4.6.1. The FTP PIOtOCOL ..cceiiiiiiiiiiiiiiiiiiiiiiiiiteeieteet ettt ettt ettt ettt eeeeteee et et teeeeeeeeeeeeeeeeeeeeeeeeeees 41
4.6.2. Proxy Behaviorccooiiiiiiiiii e 42
4.6.3. Related Standardsceceeeeririiiiieieeteen i tee et e e e e e e e e eereeeeees 45
4.6.4. Classes in the Ftp MOdUlecooiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee e e e e 45
4.6.5. Class ADSIIaCtFIPPIOXY ..cciiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeee ettt ettt e e e e e e e e e e e e e e e e e eeeeeeees 45
4.6.6. Class FIPPIOXY cocoeeiiiiiiiiiieeeee e 50
4.6.7. Class FtpProxyAnonRO ... 50
4.6.8. Class FIPPTOXYANONRW ... 50
4.6.9. Class FIPPTOXYRO ..ccoiiiiiiiiiiiii 51
4.6.10. Class FIPPTOXYRW ...iiiiiiiiiiiiiiiiiiiiiiitititttitttee ettt ettt ettt ettt ettt ettt eeee e e eeeee e e e eeeeeeeeeeeeeeees 51
v B\ (o Ta 111 (<IN = L o U SRRRPINS 51
B R N Tl = U o o) 0] (T o) P 51
4.7.2. Proxy Behaviorcoooiiiiiiii 52
4.7.3. Related Standardsceceeeerrriiiiieieeteet i tee e e e e et e e e e e eereeeeees 58
4.7.4. Classes in the Http MOAUIEcoeieiiiiiiiiiieee e e e e e e eeeaeee e e e e e e eeeaeees 59
4.7.5. Class AbStraCtHtPPIOXY .oeoeeiiiiiiiiiiiiee e 59
4.7.6. Class HIPPIOXY ..cetitttiiiitiiiiiiiitiitiittitttettttttttttetttet ettt ettt ettt e et ettt e teeeeee ettt eeeeeaeeeeeeeeeeeseae 69
4.7.7. Class HttpProxXyNONTTaNSPAIEI ..ccceeeeieiiiiieiiieieieeeieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeaeeeaeaeaeeas 69
4.7.8. Class HttpProXyURIFIIET ...ccooeeeeiieeieeeeeeee s 69
4.7.9. Class HttpProxyURIFilterNonTransparentcccccceees 70
4.7.10. Class HttpWebdavPIOXycccoiiiiiiiiiiiiiiiiiiiiieeieieeeeeeeeeeeeeeeeeeeeee ettt a e e e 70
4.7.11. Class NontransHttpWebdavPIOXY cceeeieieiieeieiee e 70
T\ (T4 11 (= o LT 70
4.8.1. Proxy behaviorccooiiiiiiiii e 70
4.8.2. Related StandardSceeeeeerirriiiiiiieteee e tee et e e e e e e e eeeeeeeees 71
4.8.3. Classes in the Plug modulecooooiiiiiiiiiiiiiiiiieeeeeeeeee 71
4.8.4. Class AbStractPIUgPIOXY ..ccceiiiiiiiiiiiiiiiiii 71
v/ RS O] T o 11T 3 (o) o O 73
v TR\ o a 111 (<IN =) 1 RSP 73
4.9.1. The POP3 PIOLOCO] ...uuiieiiiiiiiiiiiieee e e e eeetiteeeeeeeeeeeetsteaeeeeeeeeesssennnaaeeeeseessssnnnnseseeasenes 74
4.9.2. Proxy behaviorcoooiiiiiiii e 75
4.9.3. Related StandardSceeeeeerirriiiiiieeteee it e e e e e eee e e e 78
4.9.4. Classes in the POP3 MOAUIEcoeiiiiiiiiiiiiiee e e eeeereee e e e e e e ee e e e e e e eeeeaenns 78
4.9.5. Class AbStraCtPOP3PIOXY ..oceiiiiiiiiiiiiiiee e 78
4.9.6. Class POD3PIOXY i s 80
Y o 101 (IS 114 PP 80

www.balasys.hu iv

4.10.1. The SMTP PIrotOCOL ...eeeeeeeeeeeeeeeeeee e 81
v/ L 4 10> 4 A 1 1 4 o) 82
4.10.3. Related Standardscoeeeiiiiiiiiiiiiiiii e 83
4.10.4. Classes in the Smtp Moduleoooiiiiiiiiiiiiii 83
4.10.5. Class ADSraCtSMIPPIOXY ceeeieiiiiiiiiiiiiiiieiiieeee e 83
v/ (O ST O F- R 1013 20 (0)7 87
v Y (o a1 (I =Y 1 T 88
4.11.1. The Telnet ProtOCOL ...ccciiiiiiiiiiiiiiee e 88
4.11.2. ProxXy DERAVIOT ..o s 89
4.11.3. Related standardscoooiiiiiiiiiiiiiii 91
4.11.4. Classes in the Telnet ModUleccooeiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee e 91
4.11.5. Class AbStractTeINetPIOXYccciiiiiiiiiiiiiiiiiiieiieeeeee e 91
v T O =T 1 1 1S4 & o) /U 92
v N A O =T) i T o 00 25 113 [92
v D\ (o Ta L [V 1 o) £ PP 92
4.12.1. The WhOis ProtOCOL ... s 93
v/ R 4 100 4 A 1 1 4 To) 93
4.12.3. Related StandardsS coeeiiiiiiiiiiiiiii e 93
4.12.4. Classes in the Whois module ... 93
4.12.5. Class AbStraCtWhOISPIOXY ..cceeeeiieieiiieeeee e 93
4.12.6. Class WHOISPIOXY .ccceiiiiiiiiiiiiiiiiiiiiiiiititiittttieteeteeteeeteteteteeeee et eeeeeeeeeeeeteeeeeeeeeeeeeeaeaeaees 94
G T\ [a LU (I Naa - o U 94
4.13.1. The IMAP DPIOtOCOL ...cceeeiiiiiieee e e e et e e e e e ettt ee e e e e e e e e erabeaaeeeeeeeeessennnaeeeeeesesssnnnn 94
v/ IO I 4 10> 4 A 1< 1 4 o) 96
4.13.3. Related StANAArdSeueueeeee s 101
4.13.4. Classes in the Imap MOdUleuuiieiiiiiiiiiciee e e e e e e e e aaeeans 101
4.13.5. Class ADbStractImMapPIOXY ceeueieueriieieiiiiiiiiiiieiiieiteeeeeerererereeeeeeeeeaeeeeeeeeereaeeerereaaee 101
4.13.6. Class IMAPPTOXY ..uuuuu s 104
4.13.7. Class IMaPPIOXYSIIICE ... 104
I Y [Ta L8| [PG o PSSPt 104
4.14.1. The LDAP PIOtOCO] ...euneiiieeieiiiiie e e e et e e e e e e e ettteee e e e e e e eeraraeaeeeeeeeesnnnnnnaaaaaaes 104
4.14.2. ProxXy DeRaVIOT cciiiiiiiiiiiiiiiiiiiiiiiiiiiiititt ettt ettt e e e eeeeeeaaee 106
4.14.3. Configuring policies for LDAP reqUESEScceecuvrieieeeeereeiiiiiieeeeeeeeseeneeeeeeeeeeseennnes 106
4.14.4. Simple Authentication and Security Layer (SASL) on LDAP messages 107
4.14.5. Related StANAArdS eeeeeeeee e 107
4.14.6. Classes in the Ldap Moduleeioeiiiiiiiiiiiiiee e e e e e e e era s 107
4.14.7. Class AbStractLdapPIOXYceeeeeeueiiieieiiuiiiiiiieitiitiereeeieeereeereeereeeeeeereeeeeeereeeeeeereaeee 107
4.14.8. Class LdapPIOXY ... 108
4.14.9. Class LdapProXyRO ... 109
T Y (o 111 (<IN 5o T PSRRIt 109
4.15.1. The LPD PIOtOCOL ..cceeiiiiiieeeeeieeeiiieee e e eee ettt e e e e e e e eeettee e e e e eeeeeeaaanaaeeeeeeeeeesnnnnns 109
4.15.2. Proxy BeRaviOrccciiiiiiiiiiiiiiiiiiiiiiiiiiitititi ettt eeeeeaeee 111
4.15.3. Related StAaNdArdS eeeeeee s 111
4.15.4. Classes in the Lp MOdUlecouuuiiiiiiiiiiiiiiieee e e e e e e e e 111
4.15.5. Class ADSITACtLPPIOXY ...uuuuui s 111
4.15.6. ClasSS LPPIOXY ..etettittuiuuiiitetutttetetetetetetetetatttaeeeeteteaeeebebesebetabesesebeeebessbesebsssnesesenennnes 112
4.16. MOAUIE MIINIE .. s 112
T R I T 0 1LY D) 0] (o Yol o) U 112

www.balasys.hu v

O L o 00 4 2 1<) 1 F: A 1) AP PP P PP PPPPPPPPPPPPPPPPPRY 114
4.16.3. Related StANAArdS eueueuuee s 115
4.16.4. Classes in the Mime mModule ... 115
4.16.5. Class ADSIIaCtMIMEPIOXY uvuvuvuuururiiiiitittiititiiiietateteteteaeeatatababebebebebebabsbenabasanenanes 116
4.16.6. Class MIMEPIOXY ...uuuuiieee s 118
4.17. MOAUIE MISRDC ittt etsbntnne 118
4.17.1. The RPC PIrOtOCOL ..eeeeiiiiiiiiiiiiiiiiiitititt et 118
4.17.2. ProxXy BeRaVIOT coiiiiiiiiiiiiiiiiiiiiiiiiiiiiti ettt ettt e e e e aeeebereaaee 118
4.17.3. Classes in the MSRPC MOAUIE ... 119
v/ W B O E TSI 1 0 = Tl 1Y 5] 24 0 Tad 0 (0) S 119
4.17.5. Class MSRPCPIOXY ..vuuuuutiiiiiiiiiitt s 120
.18, MOAUIE NNIID e e 120
4.18.1. The ININTP PrOtOCOLceuieieiiiiieieiiietiieieteiettteteteeeteteeeeeeeseaeeeeeessesesesesesesasesenesesesenenes 120
4.18.2. ProxXy BeRaVIOr ciiiiiiiiiiiiiiiiiiiiiiiiiiiiieitt ettt ettt e e eeeeaaee 122
4.18.3. Related StANdArdSueueueee s 124
4.18.4. Classes in the Nntp Module ... 125
4.18.5. Class ADSTaCtNIEPPIOXY ...uuueu s 125
4.18.6. Class NIPPIOXY ...uuuuuuiiiii s 126
4.18.7. Class NNtpProXyGroupFiltercccoioiiieeeeee e 127
4.18.8. Class NNPPIOXYRO ... s 127
4.18.9. Class NIIPPIOXYSITICE ...uuueueiiiiiee s 127
4.19. MOAUIE RAGIUS ..evvteiiiiiiiiiiiiteiitet ittt essseee 127
4.19.1. The RADIUS PIOtOCOLcciiiiiiiiiiiieeeeeeeeiiieeee e e e eeeeeteeeeeeeeeeeeeraeaeaeeseesenssnnnnaeaaaaans 127
4.19.2. ProxXy DeRAVIOT ...c.ciiiiiiiiiiiiiiiiiiiiiiiiiiiiititt ettt ettt ee ettt aeeeeeeeaaee 129
4.19.3. Related StANAArdS ueuueeee s 131
4.19.4. Classes in the Radius MOdUIeccooiiiiiiii e 131
4.19.5. Class AbStractRAAIUSPIOXY uuueieieieieie e 131
4.19.6. Class RAAIUSPIOXY uuuuuiuiitiiiiiiiiiiitititiiitieet ettt 133
4.19.7. Class RadiuSPIOXYSITICE euuuuruieiieeiiiiiiiiiiiiiiieeetitetetetetetetetatebebebeeebabsaeaeesbeaeeebeeeeeees 133
I\ 0T 111 LT 2 | o SRRt 133
4.20.1. The Remote Desktop Protocol protoColccceeeeiieiiiiiiiiieieeeeeeeeeiiceee e e e eeeereeanes 133
4.20.2. ProxXy BeRaVIOT ciiiiiiiiiiiiiiiiiiiiiiiiiiiiititi ettt ettt eeeee e eeeeeeaaee 134
4.20.3. Classes in the RAP MOdULEcovvviniieeiiicececeee e e e e e 136
4.20.4. Class ADSITaCtRAPPIOXY ...uuuiii e 136
4.20.5. Class RAPAFalIDACKPIOXY ... 139
4.20.6. Class RAPAPIOXY ..ceeuttttitiiiiiititiiiiititteittttetttteeeeetataeeeteeeeeaeeaeeeeseeeeeaeseseaeeesesesesesesnees 139
4.20.7. Class RAPSPIOXY ..ceeititiiiiiiiiiiiiitiiititteititittttttteeetetateeteeeetaeeeeeeeseeeeeaeseeeeeeeseaeeesesesnees 139
4.20.8. Class RAPSPIOXYSIIICE ..ceeiiiiiiiiiiiiiiiiiiiiiiiiititiiitettttteetttetetteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeee 139
4.20.9. Class RAPPIOXY ..evuvuruuuiuieiiiitiiiieiitetitetttetetetettaeettetebetatebebeeebebebebebebessaebebssesebebenannne 139
4.21. MOAUIE RSI e e e e e 140
0 T R s T 2] =) 0] (o 1o) P 140
4.21.2. Proxy beRaviorccciiiiiiiiiiiiiiiiiiiiiiiiiiieitite ettt ettt eeeeeeaaee 141
4.21.3. Related StAaNdArdS eeeeeeeee s 141
4.21.4. Classes in the Rsh module ... 141
4.21.5. Class ADSIraCtRSNPIOXY evuuuuuiiiiiiiiiitiiiiiieiiiieetiteteeebeteteteeebebebebeaebebeaebaeebeaeeebeeeeeees 142
4.21.6. Class RSN PIOXY ... 143
| (o4 LTI 1 PPN 143
R TR s TSI) 1o o) o (Y o) R 143

www.balasys.hu vi

4.22.2. Related StANAArdS ueuuueeeiiee s 146
4.22.3. Classes in the Sip MOAUIE uiui s 146
4.22.4. Class ADSITACtSIPPIOXY ...uuuuuiuiiiiit s 146
4.22.5. Class SIPPTOXY .eeeitititiiiiitiiiiiiiiititittttettete ettt eeeeteeeeeeeeeeaeeeeeeeeeeeeeeeaeseaeseeesesesesereseees 147
4.23. MOAUIE SOCKS .. e 148
4.23.1. The SOCKS PIOtOCOL ...eeeeieieiiiiieiiieiiieteietettieteteteretaeerereseresasesesesesesasesesesessnesesenennses 148
4.23.2. PrOXY DERAVIOUT ...eiei e 148
4.23.3. Related StANAArdSeueueueeei s 149
4.23.4. Classes in the SOCKS MOAUIE uuuuiiii e 149
4.23.5. Class ADSIIaCtSOCKSPIOXY ...uvuvuvurururirutiiiiiiiiiiiteiititatetetetebataeesabebebebabsbebabsbebesasebasene 149
4.23.6. Class SOCKSPIOXY ..uuueiee s 151
Y] (o Y6 111 (S) <] SRR 151
4.24.1. The SQL*INEt PIOtOCOL ueuiiiiiiii s 151
4.24.2. ProxXy BeRaVIOT ciiiiiiiiiiiiiiiiiiiiiiiiiiieieite ettt ettt eeeeeeaaee 151
4.24.3. Related StANAArdS eeeeuee s 151
4.24.4. Classes in the SQLNet MOAUIEouviivniiiiiiieii e 151
4.24.5. Class AbStraCtSQLINEIPIOXY ..uuieeeieieieeeeeeeeeeeee e 152
4.24.6. Class SQLINEPIOXY ...uuuuuuiiiiiitiittt s 153
.25, MOAUIE SSH ..o 153
4.25.1. The Secure Shell ProtoCOLouuuiiieeeiieiiiiiiceee e eeeeeree e e e e e e e e e e e e e e eeeaana e e 153
4.25.2. ProxXy BeRaVIOT ...cciiiiiiiiiiiiiiiiiiiiiiiiiiiitite ettt eeeeeeaaee 154
4.25.3. Related StANAArdS eeeeeeeeee s 163
4.25.4. Classes in the Ssh Module ... 163
4.25.5. Class ADSraCtSSNPIOXY ... 163
4.25.6. ClaSS SSNPIOXY ...eeuiiiii s 167
4.25.7. Class SSASFIPPIOXY ...uuuuiiiiiiiiii s 169
4.25.8. Class SSNSCPPIOXY ..ueiee s 169
L ST\ (0T 111 LIl I Y1 o PSRRIt 169
0 ST R I o T I 2 o 3) 0] (o Tl o) P 169
4.26.2. ProxXy DeRaVIOT ...c.ciiiiiiiiiiiiiiiiiiiiiiiiiiiiititt ettt ettt ee et e eeeeeeaaee 170
4.26.3. Related StANAArdS eeeueee s 171
4.26.4. Classes in the TFtP MOAUIEcovuuiiieiiiiiiiiiceee e e e e e e e 171
4.26.5. Class ADSITaCt TFtPPIOXY ..uuuuieiieee e 172
4.26.6. ClasS TEPPIOXY .evuvutututuuuuutututtietutetutututetetetaeaeaaeaetaeeteteaeseeabesesaseaebabsaesabeseaabebenenenes 172
4.27. MOAUIE VIIC .ottt t ettt etetstebebenennne 172
4.27.1. Classes in the VIC MOAUIE e s 172
4.27.2. Class ADSITACtVIICPTOXY ...uuuiuuue s 173
4.27.3. ClasSS VIICPTOXY ..etututututuuutututtuttetutetetetetatetetatetetaaeteeetetesesseebeseseasbebassassssesssesssenennnes 173

TR] 1) OO 174
5.1. Module AULR o 174
5.1.1. Authentication and authorization basiCscccceeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeees 174
5.1.2. Authentication and authorization in ZOIPceuvveeieeieiiiiiiiiccee e 174
5.1.3. Classes in the Auth Modulecoiiiiiiiiiiiiiiiiiiiiiiiiiiereeee ettt eeeeeeeeeeeeeeeeee 175
5.1.4. Class AbstractAUuthentiCationcceeeeieiiiiiiiiiiiiiiiiiiieieieieieeeeeee e ee e e e e e e eeeeeeeeeeeeees 176
5.1.5. Class AbstractAuthOriZationcoeeeeeiiieiiieieie e 177
5.1.6. Class AUthCACRE ... s 177
5.1.7. Class AuthenticationPOliCyccoeiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 178
5.1.8. Class AuthorizationPoOliCycoeeeeeiiiiiiieee e 179

www.balasys.hu vii

5.1.9. Class BaSICACCESSLIST ..uuiivuniiiiiiiiieiiee et e et et e e et e e e e e e e e eaneeraaeeanneesnneeees 180
5.1.10. Class InbandAuthentiCationcceoueiiiiiiiiiiiie e e e e e e e e eranaes 181
5.1.11. Class NEyesAUthorizationccooeviiiiiiiiiiiiiiiii e, 181
5.1.12. Class PairAUthOTiZatiOncceeviiuuiiiiiiiiieeiee e et e e e e e e e e eees 182
5.1.13. Class PEIMItGIOUD ..eceeiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeee e e e e e e e e e e e e aeaeas 183
ST 0 S O T <l 0 L T o <N 184
5.1.15. Class PeIMUtUSEL uuiiuuniiiieiiiieite et e et e e e et e et e et e e et e e ean s eaneeraneesnneernnnns 184
5.1.16. Class SatyrAuthentiCationc.ceeeieeeeiiieitiiiiieiteeieieee 185
5.1.17. Class ServerAuthentiCationcooeueviiiuiiiiiiiiie e e e e e ee 185
5.1.18. Class ZAAUtheNtiCAtION ...ccuuiieeiiiiiiiie e e e e e e e e e s e ranaes 185
5.2. Module AUtNDB ..eeeiiei ettt e raaas 187
5.2.1. Classes in the AuthDB MOAULEouiiiiiiiiiieeee e 187
5.2.2. Class AbstractAuthenticationBackendcoooouviiiiiiiiiiiiiiiie e 187
5.2.3. Class AuthenticationPIOVIAOToiiuuniiiiiiiiiiiiieciie et e e e eaneees 187
5.2.4. Class ZAS2AuthenticationBackendccooouviiiiiiiiiiiiiiiee e 188
STRC TRLY oY L1 L @] =13 =) R 189
5.3.1. Selecting the network ProtoColcccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee ettt eeeeeeeeeeeeeeeeees 189
5.3.2. Classes in the Chainer MOAULEcoovueiiiiiiiiie e 189
FSTRC TR T O F= TS AN o 3 v Lo (O P 11 1<) oS 190
5.3.4. Class ConnNeCtCRAINeTcccuuviiuniiiieiiie et e et e e e e e e e e e e eaaneeenneees 190
5.3.5. Class FailoVerChaiNercooouiiiiiiiiiiii et e e e e e e e e e 191
5.3.6. Class MultiTargetChainercooiiiiiiiiiiiiiiiii e 192
5.3.7. Class ROUNARODINCRAINET ivveiiiiiiii it e e e e e eanneees 193
5.3.8. Class SideStaCKCRaIMOIcoovuiiiuiiiiiiie et eee e et e et e e e e e e eaneeanneeees 194
5.3.9. Class StateBasedCRhaiNercoooeuiiiiiiiiiiiiiec et e e e e e e eanne e 195
ST \Y, [oYa 11 L3 1< (T o{ o) (R 195
5.4.1. Classes in the Detector MOAUIEcouuviieniiiiiiiiecie e e e ees 196
S O F= T AN o 1 = Lo B <] <ot o) AR N 196
oI T O F= T @) i B 1< 1< o (o) N 196
5.4.4. Class DetectorPOlICYccooiiiiiiiiiiiiiii 197
SR B T O T = 1 0] I 1] =Y (o) PSP 197
SR ST O] F= TR 1 V1 B 1< (<ol o) R 198
oI O F= T T 1 B 1<] (<l ad 1o) SN 199
5.5. Module ENCIYPLON oceiiiiiiiiiiiiiieieeeee e 199
5.5.1. SSL parameter CONSTATILS uvieerrunreeeruureerrenereeerenreeerenareeerenseeenensseesssnsesensnnesensnnnns 200
5.5.2. Classes in the Encryption modulec.ccciiiiiiiiiiiiiiiiiiiiiiiiiiieieiiieeeeeeeeeeeeeeeeeeeeeeeeeee 201
5.5.3. Class ADSITACTVETITIET ...ccovvueiiiiiiee it e e e e e e e v 202
SRR N I O b= TSl Oy ¥ i (o L < RN 206
SR TS I O T Oy 1 s (o 11 ©F TR 207
5.5.6. Class ClientCertificate VeIifiercoouevviiiiiiiiiiiiieeceee e 208
SR I O T O 1T 1 80 (o) s 12h /<) w1 1<) TR 212
5.5.8. Class ClientOnlyENCTYPHON ..oeeeeeeeeeeeeeeeeeeee e 212
5.5.9. Class ClientOnlyStart TLSENCTYPHON .ccceiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee e 213
5.5.10. Class ClieNtSSLOPLONS ..ccvvuvuuiieeeeeieiiiiiiiieeeeeeeeeeaieaeeeeeeereesrennaaeeeseesesrsnnaaaeseeerenes 215
SR T B B O] =T D) o =1 o N 217
5.5.12. Class DynamiCCertifiCatecceeeeiieeiioiiiieeeeeiereeiieeeee e e e eeeierree e e e e e e enneeeeeeeeees 219
5.5.13. Class EnCryptionPOlICY = ...ccoeieieieieieee s 220
5.5.14. Class FakeStartTLSENCTYPUON cceeviiuiiiieeeeeieiiiiiiiieeeeeeeeeeiineeeeeeeeeeeenssnnaaaeseaaeenns 221

www.balasys.hu viii

5.5.15. Class ForwardStart TLSENCIYPLON ...ccceviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee, 223
5.5.16. Class Private eyccciiiiiiiiiiiiiiiiiiiiiiitieiittetteeeetee ettt et eeeeee et eeeeeeeeeeeeeeeeeeeeeeeeeeeeee 225
5.5.17. Class SNIBaSEACEITITICALE uuvieivunniiiiiieeeiiiiieeeeitie e eetiiieeeeeie e e e et e eeetneeeeanaaeees 227
5.5.18. Class SSLOPONS ceeeeeeeieiiieiiiiieiieeee et e e e e e e e e e e e e e e e e e e eeeeeenes 228
5.5.19. Class ServerCertifiCate VEIIfIercooiiviueiiiiiiiiiiiiiiiee et et eeee et e eeeaa e 230
5.5.20. Class ServerlNONEVEIIIIETcccovuuviiiiiiiiiiiiiie ettt e e et e e et e e e aaaaas 234
5.5.21. Class ServerOnlyENCIYPHONccoviiiiiiiiiiiiiiiiiiieieiieeeeeeeeeeeeeeeeeeee e 234
5.5.22. Class ServerSSLOPLONS ..ccciiiiiiiiiiiiiitiitiiiiitieiteeiteeteeeteteeeteeeeeteeeteeeeeeeeeeeeeeeeeeeeereeeee 235
5.5.23. Class StatiCCeItIfICALE uvviiiiiieeiiiiiiee ettt e et e e et e e e eaa e e e eaaaaes 237
5.5.24. Class TwoSidedENCIyPtioNccceviiiiiiiiiiiiiiiiiie e 238
5.6. Module Keybridgeccooiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeee ettt e e e e e e e e e e e e e e e eeee s 240
5.6.1. Classes in the Keybridge moduleccccceiiiiiiiiiiiiii 240
5.6.2. Class X509KeYBIIABE ...cceviiiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeee ettt ettt e ettt ee e e e et eeeeeeeeeeeeeeeeeeees 240
SR\ (oY LU LAY F=T el <) 242
5.7.1. Classes in the Matcher MOdULecoovuniiiiiiiii e 242
5.7.2. Class ADStraCtIMatChErccoeuuiiieiiiiiiiie et e et e e e e ennnes 243
5.7.3. Class CombINeMatChOToiivuniiiiiiiieiie e e e e e e e e e e eaaeeenanees 243
5.7.4. Class DINSMAtCHETuuiiiuiiiiiii et e e e et e e e e na e enaneas 244
5.7.5. Class MatCherPOLICY ..cccoeeeeeeeieeeeee e 244
5.7.6. Class RegexpFileMatChercooiiiiiiiiiiiiiiiiiiiieee e 245
5.7.7. Class RegeXPMALCRETccciiiiiiiiiiiiiiiiiiiiiiiiititieittteetee ettt ettt eeteeeteeeeeeeeeeeeeeeeeeeeeeeeeeeee 246
5.7.8. Class SmtpInvalidRecipientMatChercoooiiiiiiiieiiiiiiiiccie e 247
5.7.9. Class WindowsUpdateMatChercooouviiieieiiiiiiiiiie e eeeeeevree e e e e e eeeaee e e e e e eeeens 248
ST LY (o Ta LU T L=\ 7 AN 249
5.8.1. Classes in the NAT MOAUIEoouviiiiiiiiiiieeee e e 249
5.8.2. Class ADSIIACHINAT ...eeeiieieiieeeee et e e e e e e e e et e e e e eaneeraeesnneennnnes 250
5.8.3. Class BalanCeINATooeeiiieiiie et e e e e et eera e e ra e eaneeraneees 251
5.8.4. Class GeneTallNATeiiiiiiie et e et et e e e e e e ea e e ereeraneenananns 251
5.8.5. Class HAaShINATioeiiiiiiiiie et e e e e e e e e ean s eeraeeeanennnnens 252
5.8.6. ClaSS INATAE ..oveeeiiiieie ettt ettt e et e e ettt e s et e e e st eeestaa e sesanneeenraanns 253
5.8.7. CLasS INATGA ...ttt e et e e e e e e e et s raaeeraaeeanneeannsees 254
5.8.8. Class NAT POICY ooeeeeeieieieeeie e 254
5.8.9. Class OneToOneMUItINAToovniii i e e e et e e e e e 255
5.8.10. Class ONeTOOMEINAToeeniiieieie e et e et e e e et e e e e eaaeeran e raneeennnenes 256
5.8.11. Class RANAOIMIINATovueiiiiiiie et e e et e e e e e e e e et e eeaa e sanneeanneeens 257
SRR TR B O T 7 L ol A\ 7\ RN 257
FSYRe Y/ (oY 11 [\ [s al= i o) o NN 258
5.9.1. Classes in the Notification MOAUIEoovvuniiiiiiiiiiiiee e 258
5.9.2. Class AbstractNotificationMethodcoooovveeiiiiiiiieiiiie e 258
5.9.3. Class EmailNotificatioNnMethodoviiiiiiiiiiiiiecciie et 258
5.9.4. Class NotificationPOIICY ...cceeevieiiiiiiiiie ettt e e e e e e 259
5.10. MOdUIE PTOXY cceeiiiiiiiiiiiiiiiiiiiiiitittieteetee ettt ettt ettt ettt ettt ettt ettt et e ee e et et ettt et ettt et eeeeeeeeeeeeeaeees 259
5.10.1. Functions in module PrOXYccooiiiiiiiiiiiiiiiii 259
5.10.2. Classes in the Proxy module ... 259
5.10.3. FUNCHONS ivtiiiiiiniiiiiie e ee et e et e e e et e et e et era e st esaesneesnesanessnessnenseesneseneeanns 259
ST O T O] =Tl & (o) o 260
5.11. MOAUIE RESOIVET ...eoeeeieiie ettt e e et e e e et e e et s eaaeeaaeeeaneennnnas 263
5.11.1. Classes in the Resolver MOodulecooeuiiiiiiiiiiiiie e 263

www.balasys.hu ix

5.11.2. Class ADSIIACRESOLIVEL uuiiiieiiiiii ettt e e e e e e e e e eeaneeees 263
5.11.3. Class DINSRESOIVEL ...ceuuiiiniiiieiiieeiee et e et e et e et e et e e e e e eaaeeraneesaneeenneees 263
5.11.4. Class HAShRESOIVET uiieuniiiiiiiieeiee e et e e e eae e eaneeeas 264
5.11.5. Class ReSOIVETPOLICY ...ccciiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e 264
ST A\ oY LU L= 20 111 1<) PN 265
5.12.1. The source address used in the server-side CONNECLIONccceeunvevvnviivnieieneiinneerannenn. 265
5.12.2. Classes in the RoOuter MOAUIE coovuniiiiniiiiiiiiec e 266
5.12.3. Class ADSITACLROULET ceuuiiiieiiiiiieiie et e e e et e e e e e e e e eaaeeenneeees 266
5.12.4. Class DireCtedROULETuuiivuniiiiiiieieiiie e eee e ee e et e e e e eeeeeaaeesaeeeaneranneees 267
5.12.5. Class INDANAROULET uuivunniiiiiiiiiiiie e et e et e e e e et e eraeera e eaneranneees 268
5.12.6. Class TranspareNtROULETcceeeiereriieieieieiereieeeeeeeeeeeeeterererereeeeeeererereeerereeerereeereeeees 269
5.13. MOAUIE RULE oottt e et e e et e e e e eaa e e eaaeeraneerannees 270
5.13.1. Evaluating firewall TULEScceeeeiiiiiiieee e e e e e 270
5.13.2. SAMPIE TUIES i 272
5.13.3. Adding metadata to rules: tags and desCriptionccceeereeiriiiiiiiiiiiieieieeeeeeeeeeeeeeenn 272
5.13.4. Classes in the Rule Moduleooiveniiiiiiiii e 273
5.13.5. Class POIRANGE ccciiiiiiiiiiiiiiiiiiiiiiiiiiitiietit ettt ettt ettt ettt ee et eee et ee et eeeeeeeeeeeeeeeeeeeeeeeaees 273
5.13.6. ClasS RUIE ..ceeeiieiiii et e e e e e e e e e e e ean e ranas 273
ST 1Y oY U1 LI <) T (ol N 276
5.14.1. NAIMING SEIVICES cevvruiieieeeeeiiiiiiiieeeeeeetttttiieaeeeeeteettruaaeeeeeteertsnaaaeseeeeeenesmnnnasseeeeees 276
5.14.2. Classes in the Service MOdULeoiiiiiiiiiiiiie e 276
5.14.3. Class ADSITACESEIVICE ...ucveuniiiieiiieeiie et e et et e et e e et e e et e e raaesaneeanneeees 277
5.14.4. Class DENYSEIVICE .ceeeeiiieieieieieieee et e e e e e e e e e e e e e e e e e e 277
5.14.5. ClasS PESEIVICE ...ivveiiiiiiie ettt et e e et e e e e e e e et e e raaeeeaneeanneees 279
5.14.6. ClASS SEIVICE ..iivniiiiiiiiieee et et et e et e et e et e et e e et e eaaeeaan e eaneeranseranneeanneennnees 280

ST ST\ oY 11 LTS3 (o) o NN 285
5.15.1. Classes in the Session MOAULEouviiiiiiiiiiiii e 285
5.15.2. Class StaCKeASESSION cevvuniiiiniiiiiiiie e e e e e et e e e eea e e e e et errneeeanernnnnes 285
oI S Y [Y6 LT (oYl AN [| R 287
5.16.1. Classes in the SOCKAAAr MOAUIEeuviieniiiiiiiiece e 287
5.16.2. Class SOCKAAAIINET uuiieeniiiiiiiie e et e e e e e e e e e ean e eanneees 287
5.16.3. Class SOCKAAAIINEIEcovuniiiiiiiieeiie e et e e et e e e e e e e eaneeees 288
5.16.4. Class SOCKAAArInetHOStNAMEvvvnniiiiiiiiieeie et e e e e e eaaeeens 289
5.16.5. Class SOCKAAAIINEtRANGE ...ccoeeeeeeieieieeeeeee e 289
5.16.6. Class SOCKAAAIUDNIX ..uuuiieiiiiie it e e e e e e e e ean e eaneees 290
ST Y oY L1 L] 7: T <N 291
5.17.1. Classes in the Stack MOAULE eiimeiiiii e e 291
5.17.2. Class AbstractStackingBackendcccoiiiiiii 291
5.17.3. Class RemoteStackingBackendccccooiiiiiiiiii 291
5.17.4. Class StackingProvidercccccieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeteete ettt eeeeeeeeeeeeeeeeeeeeeeees 292
ST T oY L L0 s < 293
5.18.1. Classes in the Zone MOdUIEvivieiiiiiiiie et e e 294
ST R T O F: T3/ /o) L= N 294
ST LY (0T L1 (/7o) y o U 295
5.19.1. Functions in MOAUIE ZOTP ccceeeeiiiiiiiiiee e eeeeeciieee e e e e eeeetteee e e e e eeeeaaanaeeeeeaeeeesennnns 295

S RS I T 1 [1 0) 1S SRRt 295

6. COTe-INEEIMALcccuuerreerieerrreieereeeeeereeeseecresssecersnssseessnssssssssnssssssnnns 297
L0 1Y/ (o Ta 11 (I O T o TR 297

www.balasys.hu X

LY (o T 111 L= @] y IR PRPPPPPPPPPPPPPPIRE 297
LORC TLY (ol 111 [B £ s = 1 PPN 297
6.3.1. Zone-based Service SEIECHION cceiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 297
6.3.2. Classes in the Dispatch MOdUIeeuuuuuiiiiiiiiiiiiiiiiiiiiiiiie e 298
6.3.3. Class CSZoneDisSPatCherccciiiiiiiiiiiiiiiiitiiiiieitititeeeeteeeeeeeeeeeeeeeeereeeeeeeeereeeeeeeeeeeee 298
6.3.4. Class DISPAtCRET cceiiiiiiiiiiiiiiiiiiiiiiiieeieieee ettt ettt ettt e ettt eeee e e e eeeeeeeeeeeeeeeeeeeeaaee 299

6.4. MOAUIE GIODAIS ...eeeiiiiiiiiiiiiiiiiiiietittiet ettt ettt ettt tstesetss st sbsbebsbebebebebebenanene 301
6.5. MOAUIE SITEAIM eiiiiiiiiiiiiiiiiieiitettitietet et teeteeeteteteeeeeteteteeetete b e et teteestetatsteaesstetesssesesesenesennnnne 301
6.5.1. Classes in the Stream module ...ttt eeeeeeees 301
6.5.2. ClASS SEIBAIML ...ttt s 301
Appendix A. Additional proxy informationccccccceeccccccccscsceeeeeseeessesessssessssssssssssssssssssssssssssssese 303
AL TELNET QPPIAIX ..o 303
A2 NINTP GPPONAIX e es 308
AWC I 202N B LU ST 0] 1] 1 Ta b QR 310
A4, SQLFNEE QPPEIAIX wevvererurereretuuetetetetetatetateaeaeaeteaeteteseaeteseseseteaesesesesasessaesesssesssesssssssesesnsnnes 325
Appendix B. Global options 0f ZOYPcvvvvrrrrrrrerrrcrcrcscrssssssssssssssssesssese 328
B.1. Setting global OpPtionS Of ZOTP ..eeeieeeiiiiiiieee et e e e e e 328
1 o) o USSR 329
Y a1 PRSP 330
(0] 0] 0] 1 - PPNt 332
Appendix C. PNS ManuUal PAZeSccceeeercrcrcrcrcrcresesssssesssssssssssssessase 333
ZAS euuueeeeeeeeetttuu e eeeeettttth e eeettttthaa——teeettttthaaateeetetteth e eeeettatha e aeeeeeteettnaaaeeeeeeeeenennnann 334
7/ Tl i+ PRSP 335
ZOV eeeeeettte e e e e e ettt e e e e et e ettt e e e e et ettt b b e e e et et et e b e e et ettt e b e ee e e et ta e b b e e eeeetatabaaeeeeaeent 344
/oA o SRR 346
ZITIS eeeetetttunuu e eeeeetttetaaa e eeeertaareaaaa e eeereaasenaaaae e eeeaatenna e e e ettt eaabaa e eeee e et tebha e e e eeeeeeenrna e as 355
/A 11 3ol 0) 1 ¥ SRR 356
ZINS-INEEBIILY cerrnuiieeeeeittttiiiee et e e et etttt e e e eeeetttrtaa e eeeeeetaerenaaa e eeeeeaanssnaansseeeeeeenessnanssseeeeeneennnnn 357
T 72 1 Lal T 0] 1 | PSSP 358
10101 1T A 1) OO U U U PP U PP P PO PO PP PP PUPPPPPPPPPPPPPPN 360
F70) 1 J PPNt 361
70§ 0o 1 PRSPt 363
ZOTPCLLCONE oo 365
ZAVUDPAALE .euuieeeeeeeieitiiieeeeeeeetetaeeeaaaeeeseeesasennaaaaeeeeseesssnnsnaeeesssssssnnnnsesesessssssssnnnesseessssssnnnnneeeeeeens 367
7\ a0 |0 Ta Y0 i (o) 1 1P 368
ZUC eeeeettuueeeetuu e e e ettu e eettu e eettaaeettaaetttateettataettataathataathaaaataeaetaeattaaeataneeareneeerennns 370
Appendix D. Proxedo Network Security Suite End-User License Agreementc..ccoevuveeerereccnnee 372
D.1. 1. SUBJECT OF THE LICENSE CONTRACT ..oiitiiiiiiieiiiiiieee e eeeiiteee e e e e eeeieneeeeee e 372
D.2. 2. DEFINITIONS ...eeiiiiiiiiiieei ettt e e e e ettt e e e e e s ettt eeeeee e e s nanaeeaeeeeeesannnnsneaeaeeesaennnns 372
D.3. 3. LICENSE GRANTS AND RESTRICTIONSootiiiiiiiiiiiiiiiieeeeeeeeeieeeeeeeeeeeeneeeeeeee s 373
D.4. 4. SUBSIDIARIES ..ottt e e e e ettt e e e e e e ettt e e e e e e s e s s naateeeaeeseseannsneaeaaeeesesanns 375
D.5. 5. INTELLECTUAL PROPERTY RIGHTS ..eoiiiiiiiiiiiiieiiieeee ettt et e e e e 375
D.6. 6. TRADE MARKS ..ottt ee e e e e ettt e e e e e e e s ettt e e e e eeseansseteeeeeeeeeaannseeeaeaeeens 375
D.7. 7. NEGLIGENT INFRINGEMENTooiiiiiiiiiiiiiiiieee et te e e e e et e e e e e e e e seneeeeeaeeeeens 375
D.8. 8. INTELLECTUAL PROPERTY INDEMNIFICATIONcuutiiiiiieieieiiiieieeeeeeeeeeeeeeeeeenn 375
D.9. 9. LICENSE FEE ..ottt ettt e e e e ettt e e e e e e ettt e e e e e e seannseneeaeeeeeesennnsneeeens 376
D.10. 10. WARRANTIES ...ttt ettt e e e ettt e e e e e e ettt e e e e e e eesennnsaeeeeeeens 376
D.11. 11. DISCLAIMER OF WARRANTIES ...ttt ettt e e eeeee e e e 377

www.balasys.hu xi

D.12. 12. LIMITATION OF LIABILITY ettt ettt eetee e eeeis e e esaneeaeeeaneesasennneeannnnnns 377
D.13. 13.DURATION AND TERMINATTION ...iiiiieieiiiiee et eeeiiieeeeete e eteieeeeeeeeseeeneeaenannnns 377
D.14. 14. AMENDMENTS oottt e e e et e e e et s e e e et e e aetaaaeeeerann e aensnnnseaeennns 377
D.15. 15, WATVER Lottt ettt e e et e e e et e e e e taa s e e eaaa e e e e aansaeaaesnneasennnssaeennns 378
D.16. 16. SEVERABILITY oottt ettt e e ettee e e e ttee e eetaaeeeeaaaeeaeaaaneeasannnseasnnnnseaeennns 378
D.17. 17. NOTICES ..ottt et e e ettt e e e e et e e e etaa e e e eteaaeeesanasaansaneaesanneaessnnneesennnns 378
D.18. 18. MISCELLANEQOUS ottiiiiiiiiieeeiiee ettt e e ettt e e e saeee e essteeesensaeeeessnsseeesnnsseeesansnneeens 378
Appendix E. Creative Commons Attribution Non-commercial No Derivatives (by-nc-nd) License
.. 379
Index Of ProXy attribDULES oiiiiiiiiiieiiiiiiee ettt e e e ettt e e e e e e et e e e e e e e e e s ennseeeeeeeeeeesnnsnneees 384
Index Of COTe AttrIDULES ..ooeeeeeeiiiiieee ettt e e e e et e e e e e e et eeeeeeesesnnnsraneeeeeeesannnnes 389
Index of all AtrIDULES ...oiiiiieieeeeee et e et e e e e e e e et e e e e e s e s nnraraeeeeeeenannes 392

www.balasys.hu xii

Li

st of Examples

2.1. Customizing FTP COMIMANAS cceeiiiiieiiiiiiiieeeeeeetiiiiiieeeeeeeeettttaniaeeeseeeeerssnnnnaaeseeessessssnnnaeeseassnsssnnns 5
P ST T o T o O)) (G A ot o) o P 5
2.3. Default and XPliCit ACHIOMS uvuviiuiuriiiiiiiiirereretereierererererererer..—.—.——————————————————.—.—.——.—.———..—.—.—..—.—————. 5
2.4, CuStOMIZiNgG TESPONSE COUBS .uvuuuueeierereiiiiieiiaeeeeereettetenaaeeseeererssnnnaaaesesesesssssnsasesssesesssssnnseeesasseesssnns 6
2.5. Example PlugProxy allowing seCONdary SESSIONSc...ccceevvvruuieeeeeeeeeerrinnniaeeeeeeeernsnnnaaeeesesenssnnnnnnns 7
2.6. HTTP proxy stacked into an HTTPS CONNECHIONcceeviiiiiiieeieeeeeiiiiiiie e e e eeeeeriiiseeeeeeeeeeenanneeeeaaaes 8
2.7. Program stacking in HTTP coiiiiiiiiiiiiie i eeeet e e e e e e e et e e e e eeeeeeaaananaeeeseaeeeesnnnnnnaeaaaes 8
3.1. Accepting invalid CETtIfICAtES ..iiiiiiiieieeiieieeeeec e e e e s e s e e e e e s e s e e e e e e e e e e e e e e e e e eeeeseeeseeasans 24
3.2. Disabling specific TLS PrOtOCOLISccccceeieieeeieieee 24
3.3. Configuring FTPS SUPPOIT ..ceeeeieieieieeeieieiesesesesesesesssesesesesssesssesesasasasasasasesssesesssssssssssssssssssasesesssenns 25
4.1. Controlling the number of MaxX hoPS ..occeiviiiiiiiiie e, 38
4.2. FTP ProtoCOl SAMIPIEccciiiiiiiiiieeieceieiiieeee e e e e eeettieee e e e e e et traaeeaeeeeeeeeeesasnsnaeeeeaeenssnsnnnnaseeeeeesssnnnnnns 41
4.3. Customizing FTP to allow only anonymous SESSIONScceevuuueiieeerererrrirenieeesereeersrenniaeeseeereeennns 42
4.4, Configuring FTPS SUPPOIT .ccceeeeeeeeeee 44
4.5. Example HTTP tranSaCtiON ...c.cuuuuuiereiireiiiiiiiiieeeseeeeettitteaeeseeeeeertsnnssesesesesssssssssesesesssessssnsesessesnenes 52
4.6. ProxXy Style HTTP QUETY ..ccceeeiiiiiiiieeeieeeeeiiiiiieee e e e eeettittieeeseeeeeesstasnaneeeseeaesessnnnnsesaassesssnnsnnseseeanenes 53
4.7. Data tunneling with connect Methodcooeiiiiiiiiiiiiiiee e e e e e e e e e e s eeeeneaanes 53
4.8. Implementing URL filtering in the HTTP PrOXY ..ccccviiiiiiiiiiiiiiiciceeeeeeeeeeeeeeeeeeeee e, 54
4.9. 404 response filtering in HTTP ccvviiiiiiiiiiiireieiereeeeeeereeererreeeeeererererereeseererrerrerre..—. 54
4.10. Header filtering in HTTP ..ccooiiiiieiiie e e e e 55
4.11. URL redirection in HTTP PIOXY ..cceeeeeiiiiiiiiieeeeeeetiiiiieieeeeeeeeetatteseeeeeeeeseassnnnaeesssesessssnsnaeesesasesssnns 56
4.12. Redirecting HTTP t0 HTTPSeeeeiiiiie ittt e e e ettt e e e e e e e eeas 56
4.13. Using parent proxies il HTTP ...ttt s ettt seetaee e eetaaasseetbaasseeaaaeenaes 57
4.14. URL filtering HTTP PIOXY ciiiiiiiiiiiiiiiiiiiieceeeeeee ettt ettt e s 70
4.15. POP3 ProtoCOl SAIMPIE ..cevviiuiiieeiiiiiiiiiiieee e e e eeeeiiieee e e e e e eetttaaieeeseeaeeeasaannsaaeseaeesnsensnnnasseeessesssnnnnnns 74
4.16. Example for allowing only APOP authentication in POP3ccoiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee, 76
4.17. Example for converting simple USER/PASS authentication to APOP in POP3ccccccooviiniinneen. 76
4.18. Rewriting the banner in POP3 ... e e e ettt e e e e s e e eeeeaaaaeeeeeaeeeneees 77
4.19. SMTP PIrotoCO] SAIMPIE ..evviuuiiiieeiiiiiiiiiiieee e et eeetiiieee e e e e eeeeatateaaeeeeaeeeassannsaaeesaeesasssnnnasseaeesesssnnnnnns 81
4.20. Example for disabling the Telnet X Display Location optioncccccceiiiiiiiiiii, 90
4.21. Rewriting the DISPLAY environment variablecccccooiiiiiiiiiiiiieeeniieeiiiiiiieeeeeeeeeeeiieeeseeeeeennnns 90
4.22. Example WhoisProxy logging all Whois TEQUESESccceeiiiiiiiiuiiineeeeeiieiiiiiieneeeeeeeeeririeneeeeeeeesnsnnnes 93
4.23. IMAP protocol SAMPIE ...ccceiiiiiiiiiccc e 96
4.24. Rewriting IMAP capability TESPONSEcccviiiiiiiiieiiiiieieieieieeeeeeeee e rere e e e e e e eeeereeeeeeeeereeeseseeeseeeseseseeeees 98
4.25. Changing the greeting string in IMAPcoiiiiiiiiieeeeeeeeeeeeeeeee e 99
4.26. IMAP arguImienS I USE ..ceeevuureriruierertiuieeettuueeettuuesettsnaeereunassesesnssessunseeresnnsserennnseerssnnseensnnnns 100
/PR T €101 0] (TN I b= T =) 1oy 105
4.28. Example of the COMMANAS USAZE uuuuuuuuuuiniiiiiiiiiiiiiaaenanaaannnannnnnnnannnnnnnnnnnnnnnnnnnnnnnnn 107
4.29. Example mail header containing MIME MESSAZE cceeeieieiereiereieierereresesesesesesesesesesssesesesssesasasenas 113
4.30. Example PNG format picture attaChImentcccceceeereiereiororererorerennes 113
4.31. Example Multipart MESSAZE uuerererurmnumnnsssnnnsnsnsnsnsssnsssssnsnsnsssnnnsnnnnnns 114
4.32. Example usage of MimeProxy module, denying applicationscccceeeeeeieieieieieeeieeeieeeeeeeeeeeennn, 115
4.33. Customising RPC to allow connection to service "11223344-5566-7788-99aa-bbccddeeff00" 119
Z/CY S €= Y 0] LA TAH 8 a0} 118 T o) o 121
4.35. Example for filtering accessible NEWSZIOUPS cccceceiereieieiiiiieieieieieieseseee e naes 123

www.balasys.hu xiii

4.36. Example for defining policies for responses in NINTP cccoviiiiiiiiiieiiiiiiieeee e eeeerereee e e 124
4.37. Example RadiuSProXy CONFIGcoviiiiiiiiiiiiiiiiiee ettt e e ettt e e e e e e e e e e e e e e e nnnneeaeeeeens 131
4.38. Disabling RDP5 protocol by force-reverting it to RDP4coviiiiiieiiiiiiiieeeeeeeeeirireeee e e e 134
4.39. Disabling channel RDPDR ... s 134
4.40. Enabling CUStOM ChamNeLSuuuiiiiiiiiiiiiti e 135
4.41. Dynamically change username and Server addressccceeeeeeerererereieneieee e 135
4.42. Strict Rsh proxy denying root user access and logging the issued Rsh commands 141
4.43. Disabling video traffic il STP cciiiiiiiiiiiiiiie ettt e e e e e e e e e e e e e e e e e e nnnneeeeeeeeens 146
4.44. SOCKS and HTTP traffiC oeeiiiieiiieeiiiiieee ettt ettt e e e e e e erete e e e e e e s nnnnneeaeeeeeenanns 148
4.45. Enabling and disabling SSH channelsccooioiiiii e 156
4.46. Enabling only SFTP CONMNECLIONS uuuuuuiiiiiiiiiiiitti e 157
4.47. Restricting local forwardingccccceiiiireiiiereciiiiieee et e e e e e et e e e e e e e nnrreeeeeeeeeeanns 160
4.48. Modifying the keypair used in public-key authenticationcccccceveeviiiiiiiiieeeeerecieeeee e 162
5.1. A simple authentication POLICY ...ccooeeeiieeiiiiieieee e e 178
5.2. Caching authentication deCiSIONScooiiiiiiiiiiiiiiii 178
5.3. A simple authorization POLICY ...cceeiiiiiiiiiiiiiiiiiieieeeeeeeeeeeee ettt e e e et e e e e e e e e e e e e eeeeeeees 179
5.4. BasiCACCESSLISt @XAMPIE ..eiiiiiiieiieieeieeeeiiiccee e e e e e eeet e eere e e e eeeeeeata e eeeeeseeessannaaeeeeaeensrsnnnnaeaaaaees 180
5.5. A simple PairAuthorization POLICYcccoiiiiiiiiiiiiiiiii e 182
5.6. A simple PermitGroup POLICY ..cccoiiiiiiiiiiiiiiiiii 183
5.7. PermitTime eXAIMPIEcccciiiiiiiiiiiiie e e i eeeeti e e e e e e e ettt eeeeeeeeeeeeeaenaaaeeeeeeseesssnnnaasesaesssssnnnnnaasaeeenes 184
5.8. A simple PermitUSer POLICY ...cceiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiitittete ettt ettt eeeeeeeeeeeeeee bt eeeeeeeeeeeeeeeeeeeeaeees 184
5.9. Outband authentication eXamMPIEccuuiiiiiieiiiiiiiiieee e e e e eeerri e e e eeeeererre e eeeeeeeeeasennnaeeeaaeeees 186
5.10. A sample authentication PrOVIETciieiiiiiiiiiiiiiie e e e e e e e reeee e e e e e e eeaareeaeaeeeeenenes 187
5.11. A sample CONNECtCRAINET uvuuiiieeiiiiiiiiiiieie e e e e eeeeii e e e e e eeeeeetee e eeeeeeeeeassnnnnaaeeeaeesessnnnnnaeaaaaaes 190
5.12. A DirectedRouter using FailoverChainercoooiiiiiiiiiiiiiiiiiiiiieeeeeeeeee e 191
5.13. A DirectedRouter using RoundRobinChainerooooiiiiiiiiiiiiiiiii e, 193
5.14. CertDeteCtOr €XAIMPIE cccceiiiiiiiieee et e eeeiiiiieee e e e eeettteraaeeeeeeeaarernnaaseeeeserssnnnnaaeeeassssssnnnnnaseeaeees 196
5.15. HUPDeteCtOr @XAMIPIE cciiiiiiiiiiieeeeeeeeiiieie e e e e e eeetateaaeeeeeeeeeasenaaaaaseesesesssnnnaaaeesasessssnnnnaeeeeeeenes 198
5.16. SNIDEteCtOT EXAIMPIE cieiiiiiiiiiiieeeeeeeieiieieeeeeeeeeetttetaaeeeeeeeeeraeenaaaeeeeessesssnnnnsaeeeessssssnnnnnaeseeeeees 198
5.17. SShDEtECLOT EXAIMPIE ieiiieiiiiiiiiee e e e eee et eee e e e e eee ettt eeeeeeeeeeeereseaaaseeeseeessnnnnnaseeaeessssnnnnnasaeaeens 199
5.18. L0ading a COTtIfICAE ..eeiiiiiieiiiiieiiee ettt e ettt e e e e ettt e e e e e e e ettt e e e e e e s e s nnnsneaeaeeens 206
5.19. Loading DH ParamMeterscceeeeeeieeiieeeieieieieee e e e e e e ee e e e e e e eeeeeeeeeeeeeeeeeeeeeeaeaeaeaesaaaaenns 218
5.20. Loading @ Private KBY ...ccceeiiiiiiiiiiiiiiiiiiitiiiteettttte ettt ettt ettt ettt ettt ettt ettt e ettt ettt et ettt et ettt et e e e et e e e eeaeeees 225
5.21. Whitelisting e-mail TeCIPIENES cceiiiiiiiiiiiiiii i 243
5.22. DNSMatCher eXaIMPIEcccoviuuuiieeieiieiiiiiiiiee e e e e e eeetit i eeeeeeeeeeertaeeaaeaeeeesensssnnnasasessesesssnnnseeseesenes 244
5.23. RegexpFileMatcher eXampleccoooiiiiiiiiiiiieeeeeeeee s 245
5.24. RegexpMatcher eXampleoooiiiiiiiiiiiiiii 246
5.25. SmtpInvalidMatCher eXamPIeccciiiiiiiiiiiie e e e e et e e e e e e eeeataeraaeeeeeeererennnaeaaaaaes 247
5.26. WindowsUpdateMatCher eXamPIeceeeiiiiiiiiiiiiiiee e eeeeeeiireee e e e e eeeerraraaeeeeeeeeeaseennaaaeeaeanenes 248
5.27. GenerallNat XaAIMPIEcooiuuiiiieiiiiiiiiiiiie e e e e eee et eee e e e e e eeeearaaaaeeeeeeeeatara e eaeeeerrraanaaeaearerernnn 252
ST R U1 a T A 11510 LT (<L 254
5.29. A simple DNSReSOIVEI POLICY oeeiiiiiiiiiiiiiiiieieeee e 263
5.30. A simple HashReSOIVET POLICY ..ccceiiiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeee ettt e e e e e e e e e e e e e e e 264
5.31. DirectedROULET EXAIMIPIE coiiiiiiiiieeieeieeiiiieiee e e e e e eeeitteeeeeeeeeeeetaaee e eeeeeeseasssnnnnaaeesaesssssnnnnnaeseeeeens 267
5.32. InbandROULEr €XAIMPIE ...cceiiiiiiiiie e et e et ree e e e e e e e e e ee e e e eeereaaraa e eeeeeeeaaarrnaaeaaearenes 268
5.33. TransparentROULET @XAIMPIE uuieeiiieiiiiiiiieee e e e eeeeeiit i ereeeseeeeeraaae e eeeeeeeeeesennnnaaeeeaeeeerennnnnaeaaaeaes 269
5.34. Sample rule defiNitionNSeeeeviriiiiiiiriieiriiiieererieeeereerrr e rerrrer——.———.—.—————..————.———.——.————.——.———————.. 272
5.35. TAB@ING TUIES .ceiiiiiiiiiiiiiiiiiiiieieee ettt ettt ettt ettt et ettt et et et et et e ee e et et et e e et eee e et e e eeeeeeeeeeaeeeeeeeeeaeeees 273

www.balasys.hu Xiv

5.36. A SIMPIE DENYSEIVICE ..ciiiiiiiiiiiiiiiiiiiiititttitieittttettt ettt ettt ettt ettt ettt e e ettt eee ettt teteeeteeeeeteeeeereeeaeee 277
SR VA o B TS w Tl .11] 279
SRe 1 RIS wva Tl € 1110 [280
5.39. SockAddrInet @XamPIecooiiiiiiiiiiiiiiiiieiiie et e e e e et e e e e e e e e e e e e aeeaeaeeas 287
5.40. SockAdArInet @XamMPIeccooiiiiiiiiiiiiiiiiiee et et e et e e e e e e e e e e e e e e eaeaees 288
5.41. SockAddrInetHostname eXamplecoooiiiiiiiiiiiiiiii 289
5.42. SOCKAdArUNIX eXamMPIE .ooeiieiiiiiiieiieeee e e e 290
5.43. A simple StackingProvider Classcooiiiiiiiiiiiiiiiiii e 292
5.44. Using a StackingProvider in an FTP PrOXY ...ccociiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 292
5.45. FINAING IP NEIWOTKS oeiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeee ettt ettt ettt ettt ettt e e et e e et et eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 293
SR LT A0} T - 101 o) L= S 293
5.47. Determining the zone of an TP addresSccccceiiiiieeiieeeiiieeee e e e et ee e e e e e e eee e e e e ennnes 294
6.1. CSZoneDispatCher eXamMPIEccoiiiiiiiiiiiiiiiiiie e e e e e e e e e e e e e e 298
6.2. DisSpatCher eXAMPLEcoiiiiiiiiiiiiiiiie aaaaeaas 299
A.1. An example for the SQL*Net CONNECION SIINE ...uvvviirrereeereiiiiirieeeeeeeereiereeeeeeeeesenrrrereeeeseennnnns 325

www.balasys.hu XV

List of Procedures

1.1. Zorp startup and initialiZAtiON ccceeeeeiiiiiiiiieee e ecceiieee e e e e e et eeee e e e eeeeeraaa e e e e eeeeeeabanaaeaaaeerraeas 1
1.2.1. Handling packet-filtering SErviCesccooiiiiiiiiiiiiii e, 2
1.2.2. Handling application-1€Vel SEIVICESuuuieeriiiiiiiiiiiieie e e e eeeeeiiieee e e e eeeeeretaeeeeeeeeeeassnnnaeeeasaeeesees 2
1.3. Proxy startup and the server-side CONMMNECHION ccuuuuiieerieieeiiiiiiieeeeeeeeereeiereeeeeeeeererennaeeeeeeeeesennns 3
3.1.1. The SSL handshakeccooiiiiiiiiiiiiiiiiiiiiiiiieeetete ettt ettt et e eeeeeeeeeeee e e eeeeeeeees 9
3.2.4.1. Enabling SSL-encryption in the CONNECIONcouuiiiiieiiiiiiiiiiiieie e e e e e e e 13
3.2.8. Configuring KeYDIidgingcccccoeiiieiiieiiieieieicicceses s nnnnnnnnnnnn 25
B.1. Setting global OPtionS Of ZOIPuuvuuviiiiiiiiiiiiiiiiiiiiiieitieieieieteieteeereeeeeeeeeeereneneneeennnenennnnnnnnnnnnnnnnnes 328

www.balasys.hu XVi

Summary of contents e

Preface

Welcome to the Application-level Gateway Reference Guide. This book contains reference documentation on
the available Zorp proxies and their working environment, the Python framework.

This book contains information about the low-level proxy attributes available to customize proxy behavior and
the low-level classes comprising ALG's access control and service framework. Basic introduction to the various
protocols is also provided for reference, but the detailed discussion of the protocols is beyond the scope of this
book.

Note
@ The name of the application effectively serving as the Application-level Gateway component of Proxedo Network Security Suite is Zorp,
commands, paths and internal references will relate to that naming.

1. Summary of contents

Chapter 1, How Zorp works (p. 1) provides an overview of the internal working of ALG, for example, how
a connection is received.

Chapter 2, Configuring Zorp proxies (p. 4) describes the general concepts of configuring ALG proxies.
Chapter 3, The PNS SSL framework (p. 9) explains how to handle SSL-encrypted connections with ALG.

Chapter 4, Proxies (p. 35) is a complete reference of the ALG proxies, including their special features and
options.

Chapter 5, Core (p. 174) is the reference of ALG core modules which are directly used by gateway administrators,
forming the access control and authentication framework.

Appendix C, PNS manual pages (p. 333) is a collection of the command-line Zorp utilities.

Appendix B, Global options of Zorp (p. 328) is a reference the global options of Zorp.

2. Terminology
The following terms used throughout this documentation might require a brief explanation:

B class: A class is a set of attribute and method definitions performing certain specific functionality.
Classes can inherit methods and attributes from one or more parent classes. Classes do not contain
actual values for attributes; they only describe them.

W instance: An instance is a set of attribute values (as described by the class) and associated methods.
Instances are also called objects. Instances are created from classes by "calling" the class, with
arguments required by the constructor. For example, to create an instance of a class named "class"
one would write class(argl, arg2 [,.. argN]) where argl and arg2 are arguments of the
constructor.

www.balasys.hu xvii

Target audience and prerequisites e

m method: A function working in the context of an instance. It automatically receives a "self" argument
which can be used to fetch or set attributes stored in the associated instance.

B type: Variables in Python are not strongly typed, meaning that it is possible to assign any kind of
values to a variable; typing is assigned to the value.

m attribute: An attribute of an object is a variable holding some value, interpreted and manipulated by
object methods. Although Python is not strongly typed, types were assigned to the variables in Zorp
to indicate what kind of values they are supposed to hold.

m actiontuple: A tuple is a simple Python type defined as a list of values. An actiontuple is a special
tuple defined by Zorp where the first value must be a value specifying what action to take, and trailing
items specify arguments to the action. For example (HTTP_REQ_REJECT, "We don't like this
request") is a tuple for rejecting HTTP requests and returning the message specified in the second
value.

3. Target audience and prerequisites

This guide is intended for use by system administrators and consultants responsible for network security and
whose task is the configuration and maintenance of PNS firewalls. PNS gives them a powerful and versatile
tool to create full control over their network traffic and enables them to protect their clients against
Internet-delinquency.

This guide is also useful for IT decision makers evaluating different firewall products because apart from the
practical side of everyday PNS administration, it introduces the philosophy behind PNS without the marketing
side of the issue.

The following skills and knowledge are necessary for a successful PNS administrator.

Skill Level/Description

Linux At least a power user's knowledge.

Experience in system administration Certainly an advantage, but not absolutely necessary.
Programming language knowledge It is not an explicit requirement to know any

programming language though being familiar with the
basics of Python may be an advantage, especially in
evaluating advanced firewall configurations or in
troubleshooting misconfigured firewalls.

General knowledge on firewalls A general understanding of firewalls, their roles in the
enterprise IT infrastructure and the main concepts and
tasks associated with firewall administration is essential.
To fulfill this requirement a significant part of Chapter
3, Architectural overview in the PNS Administrator's
Guide is devoted to the introduction to general firewall
concepts.

Knowledge on Netfilter concepts and IPTables In-depth knowledge is strongly recommended; while
it is not strictly required definitely helps understanding
the underlying operations and also helps in shortening
the learning curve.

www.balasys.hu xviii

Products covered in this guide e

Skill Level/Description

Knowledge on TCP/IP protocol High level knowledge of the TCP/IP protocol suite is
a must, no successful firewall administration is possible
without this knowledge.

Table 1. Prerequisites

4. Products covered in this guide
The PNS Distribution DVD-ROM contains the following software packages:

m Current version of PNS 1.0 packages.
m Current version of Management Server (MS) 1.0.

m Current version of Management Console (MC) 1.0 (GUI) for both Linux and Windows operating
systems, and all the necessary software packages.

m Current version of Authentication Server (AS) 1.0.

m Current version of the Authentication Agent (AA) 1.0, the AS client for both Linux and Windows
operating systems.

For a detailed description of hardware requirements of PNS, see Chapter 1, System requirements in Proxedo
Network Security Suite 1.0 Installation Guide.

For additional information on PNS and its components visit the PNS website containing white papers, tutorials,
and online documentations on the above products.

5. About this document
This guide is a work-in-progress document with new versions appearing periodically.

The latest version of this document can be downloaded from https://docs.balasys.hu/.

5.1. Feedback

Any feedback is greatly appreciated, especially on what else this document should cover, including protocols
and network setups. General comments, errors found in the text, and any suggestions about how to improve
the documentation is welcome at <support@balasys.hu>.

www.balasys.hu Xix

../../pns-guide-install/pdf/pns-guide-install.pdf#system_requirements
https://www.balasys.hu/en/network-security/zorp-gateway
https://docs.balasys.hu/

Handling incoming connections e

Chapter 1. How Zorp works

This chapter describes how Zorp works, and provides information about the core Zorp modules, explaining
how they interoperate. For a detailed reference of the core modules, see the description of the particular in
Chapter 5, Core (p. 174).

B Zorp startup and initialization: The main Zorp thread is started, and the rules listening for incoming
connections are initialized.

B Handling incoming connections: The client-side connection is established and the service to proxy
the connection is selected.

B Proxy startup and server-side connections: The proxy instance inspecting the traffic is created and
connection to the server is established.

1.1. Procedure - Zorp startup and initialization

Step 1. The zorpctl utility loads the instances.conf file and starts the main zorp program. The
instances.conf file stores the parameters of the configured Zorp instances.

Step 2. zorp performs the following initialization steps:
m Sets the stack limit.
m Creates its PID file.
m Changes the running user to the user and group specified for the instance.
m Initializes the handling of dynamic capabilities and sets the chroot directory.

m [oads the firewall policy from the policy. py file.

Step 3. The init () of Zorp initializes the ruleset defined for the Zorp instance.

Step 4. The kzorp kernel module uploads packet-filtering services, rules, and zones into the kernel.

Note
@ Zorp creates four sockets (one for each type of traffic: TCP IPv6, TCP IPv4, UDP IPv6, UDP IPv4); the kzorp module directs
the incoming connections to the appropriate socket.

1.2. Handling incoming connections

Incoming connections are first received by the kzorp kernel module, which is actually a netfilter table. The
kzorp module determines the source and destination zones of the connection, and then tries to find a suitable
firewall rule. If the rule points to a packet-filtering service, the connection is processed according to Procedure
1.2.1, Handling packet-filtering services (p. 2); if it points to an application-level service, the connection is
processed according to Procedure 1.2.2, Handling application-level services (p. 2). If no suitable rule is found,
the connection is rejected.

www.balasys.hu 1

Handling incoming connections e

1.2.1. Procedure - Handling packet-filtering services

Step 1.

Step 2.
Step 3.

Step 4.

Step 5.

Zorp generates a session ID and creates a CONNTRACK entry for the connection. This ID is based
on all relevant information about the connection, including the protocol (TCP/UDP) and the client's
address.

The session ID uniquely identifies the connection and is included in every log message related to this
particular connection.

Based on the parameters of the connection, the Rule selects the service that will inspect the connection.
The Router defined in the service determines the destination address of the server.
The Router performs the following actions:

m Determines the destination address of the server.

m Sets the source address of the server-side connection, according to the forge _address

settings of the router.

If the client is permitted to access the selected service, the packet filter is instructed to let the connection
pass Zorp.

The kzorp module performs network address translation (NAT) on the connection, if needed.

1.2.2. Procedure — Handling application-level services

Step 1.

Step 2.

Step 3.

Step 4.
Step 5.

Step 6.

For incoming connection requests that are processed on the application level, the main Zorp thread
establishes the connection with the client. The connection is further processed in a separate thread; the
main thread is listening for new connections.

The Dispatcher creates the MasterSession object of the connection and generates the base session ID.
This object stores all relevant information of the connection, including the protocol (TCP/UDP) and
the client's address.

The session ID uniquely identifies the connection and is included in every log message related to this
particular connection. Other components of Zorp add further digits to the session ID.

For TCP-based connections, Zorp copies the Type of Service (ToS) value of the client-Zorp connection
in the Zorp-client connection.

The Rule selects the service that will inspect the connection.
The Router defined in the service determines the destination address of the server. The result is stored
in the Session object, where the Chainer can access it later.
The Router performs the following actions:
m Determines the destination address of the server.

m Sets the source address of the server-side connection (according to the forge_port,
forge_address settings of the router).

m Sets the ToS value of the server-side connection.

If the client is permitted to access the selected service, the startInstance() method of the service
is started. The startInstance() method performs the following actions:

www.balasys.hu 2

Handling incoming connections e

m Verifies that the new instance does not exceed the number of instances permitted for the
service (max_1instances parameter).

m Creates the final session ID.

m Creates an instance of the proxy class associated with the service. This proxy instance is
associated with a StackedSession object. The startup of the proxy is detailed in Procedure
1.3, Proxy startup and the server-side connection (p. 3).

1.3. Procedure - Proxy startup and the server-side connection

Step 1. To create an instance of the application-level proxy, the __init__ constructor of the proxy class calls
the Proxy.__init__ function of the Proxy module. The proxy instance is created into a new thread
from the ZorpProxy ancestor class.

Step 2. From the new thread, the proxy loads its configuration.

Step 3. The proxy initiates connection to the server.

®

Step 4. The Proxy.connectServer () method creates the server-side connection using the Chainer assigned
to the service. The Chainer performs the following actions:

Note
Some proxies connect the server only after receiving the first client request.

m Reads the parameters related to the server-side connection from the Session object. These
parameters were set by the Router and the Proxy.

m Performs source and destination network address translation. This may modify the addresses
set by the Router and the Proxy.

m Verifies that access to the server is permitted.

m Establishes the connection using the Attach subsystem, and passes to the proxy the stream
that represents the connection.

Note
The Proxy.connectServer () method connects stacked proxies with their parent proxies.

®

www.balasys.hu 3

Policies for requests and responses e

Chapter 2. Configuring Zorp proxies

This chapter describes how Zorp proxies work in general, and how to configure them.

m For the details on configuring TLS/SSL connections, see Chapter 2, Configuring Zorp proxies (p. 4).

m For a complete reference of the available Zorp proxies, see Chapter 4, Proxies (p. 35).

2.1. Policies for requests and responses

Zorp offers great flexibility in proxy customization. Requests and commands, responses, headers, etc. can be
managed individually in Zorp. This means that it is not only possible to enable/disable them one-by-one, but
custom actions can be assigned to them as well. The available options are listed in the description of each proxy,
but the general guidelines are discussed here.

All important events of a protocol have an associated policy hash: usually there is one for the requests or
commands and one for the responses. Where applicable for a protocol, there are other policy hashes defined as
well (e.g., for controlling the capabilities available in the IMAP protocol, etc.). The entries of the hash are the
possible events of the protocol (e.g., the request hash of the FTP protocol contains the possible commands -
RMD, DELE, etc.) and an action associated with the event - what Zorp should do when this event occurs. The
available actions may slightly vary depending on the exact protocol and the hash, but usually they are the
following:

Action Description

ACCEPT Enable the event; the command/response/etc. can be
used and is allowed through the firewall.

REJECT Reject the event and send an error message. The event
is blocked and the client notified. The communication
can continue, the connection is not closed.

DROP Reject the event without sending an error message. The
event is blocked but the client is not notified. The
communication can continue, the connection is not
closed. In some cases (depending on the protocol) this
action is able to remove only a part of the message (e.g.,
a particular header in HTTP traffic) without rejecting
the entire message.

ABORT Reject the event and terminate the connection.

POLICY Call a Python function to make a decision about the
event. The final decision must be one of the above
actions (i.e. POLICY is not allowed). The parameters
received by the function are listed in the module

www.balasys.hu 4

Default actions e

Action Description

descriptions. See the examples below and in the module
descriptions for details.

Table 2.1. Action codes for protocol events

The use of the policy hashes and the action codes is illustrated in the following examples.

— Example 2.1. Customizing FTP commands
— | Inthis example the ' RMD' command is rejected, and the connection is terminated if the user attempts to delete a file.

class MyFtp(FtpProxy):

def config(self):
self.request["RMD"] = (FTP_REQ_REJECT)
self.request["DELE"] = (FTP_REQ_ABORT)

— Example 2.2. Using the POLICY action

— | This example calls a function called pUser (defined in the example) whenever a USER command is received within an FTP session. All
| —] other commands are accepted. The parameter of the USER command (i.e. the username) is examined: if it is 'userl' or 'user2', the
connection is accepted, otherwise it is rejected.

class MyFtp(FtpProxy):

def config(self):
self.request["USER"] = (FTP_REQ_POLICY, self.pUser)
self.request["*"] = (FTP_REQ_ACCEPT)

def pUser(self,command):
if self.request_parameter == "userl" or self.request_parameter == "user2":
return FTP_REQ_ACCEPT
return FTP_REQ_REJECT

It must be noted that there is a difference between how Zorp processes the POLICY actions and all the other
ones (e.g., ACCEPT, DROP, etc.). POLICY actions are evaluated on the policy (or Python) level of Zorp, while
the other ones on the proxy (or C) level. Since the proxies of Zorp are written in C, and operate on the proxy
level, the evaluation of POLICY actions is slightly slower, but this can be an issue only in very high-throughput
environments with complex policy settings.

2.1.1. Default actions

Default actions for all events of a hash (e.g., all requests) can be set using the "*' wildcard as the event. (Most
hashes have default actions configured by default, these can be found in the description of the proxy classes.)
It is important to note that setting the action using the '*' wildcard does NOT override an action explicitly
defined for an event, even if the explicit setting precedes the general one in the Python code. This feature is
illustrated in the example below.

— Example 2.3. Default and explicit actions
—— | The following two proxy classes have the same effect, even though the order of the code lines is switched. The 'APPE' command is
| w— rejected, while all other commands are accepted.

class MyFtpl(FtpProxy):

def config(self):
self.request["APPE"] = (FTP_REQ_REJECT)
self.request["*"] = (FTP_REQ_ACCEPT)

www.balasys.hu 5

Response codes e

class MyFtp2(FtpProxy):

def config(self):
self.request["*"] = (FTP_REQ_ACCEPT)
self.request["APPE"] = (FTP_REQ_REJECT)

‘Warning
A If the relevant hash does not contain a received request or response, the '*' entry is used which matches to every request/response. If
there is no '*' entry in the given hash, the request/response is denied.

2.1.2. Response codes

Responses in certain protocols include numeric response codes, e.g., in the FTP protocol responses start with
a three-digit code. In Zorp it is possible to filter these codes as well, furthermore, to filter them based on the
command to which the response arrives to. In these cases the hash contains both the command and the answer,
and an action as well. The '*' wildcard character can be used to match for every command or response code.

— Example 2.4. Customizing response codes
—— | The following example accepts the response 250" only to the DELE' command, but allows any response code to the 'LIST' command.

class MyFtpl(FtpProxy):

def config(self):
self.response["DELE", "250"] = (FTP_RSP_ACCEPT)
self.response["*", "250"] = (FTP_RSP_REJECT)
self.response["LIST", "*"] = (FTP_RSP_ACCEPT)

It is not necessary to specify the full response code, it is also possible to specify only the first, or the first two
digits.

For example, all three response codes presented below are valid, but have different effects:

. "PWD","200”
Match exactly the answer 200 coming in a reply to a PWD command.

. IIPWDII’HZH
Match every answer starting with '2' in a reply to a PWD command.

. H*"’HZOH
Match every answer between 200 and 209 in a reply to any command.

This kind of response code lookup is available in the following proxies: FTP, HTTP, NNTP, and SMTP. The
precedence how the hash table entries are processed is the following:

1. Exact match. ("PWD","200")

2. Exact command match, partial response matches ("PWD","20"; "PWD","2"; "PWD","*")

3. Wildcard command, with answer codes repeated as above. ("*","200"; "*","20"; "*","2")

4. Wildcard for both indexes. ("*","*")

www.balasys.hu 6

Secondary sessions e

2.2. Secondary sessions

Certain proxies support the use of secondary sessions, i.e. several sessions using the same proxy instance (the
same thread), effectively reusing proxy instances. As new sessions enter the proxy via a fastpath, using secondary
sessions can significantly decrease the load on the firewall.

When a new connection is accepted, Zorp looks for the appropriate proxy instance which is willing to accept
secondary sessions. If there is none, a new proxy instance is started. An already running proxy instance is
appropriate if it is willing to accept secondary channels and the criteria about secondary sessions are met. (The
criteria can be specified in the configuration of the proxy class.)

The criteria are set via the secondary_mask attribute, while the number of secondary sessions allowed within
the same instance is controlled by the secondary_sessions attribute. The secondary_mask attribute is an
integer specifying which properties of an established session are considered to be important. If all important
properties match, the connection can be handled as a secondary session by a proxy instance accepting secondary
sessions, provided the new session does not exceed the limit set in secondary sessions. The
secondary_mask attribute is actually a bitfield interpreted as follows: bit 0 means source address; bit 1 means
source port; bit 2 means destination address; bit 3 means destination port.

Currently the Plug, RADIUS, and Sip proxies support the use of secondary sessions.

— Example 2.5. Example PlugProxy allowing secondary sessions
— | This example allows 100 parallel sessions in one proxy thread if the IP address and Port of the targets are the same.

class MyPlugProxy(PlugProxy):
def config(self):
PlugProxy.config(self)
self.secondary_mask = OxC
self.secondary_sessions = 100

2.3. Embedded protocol analysis

Each protocol proxy available in Zorp inspects the traffic for conformance to the given protocol. Often further
analysis of the data transferred via the protocol is required, this can be accomplished via stacking. Stacking is
a method when the data transferred in the protocol is passed to another proxy or program. After performing the
inspection, the stacked proxy or program returns the data to the original proxy, which resumes its transmission.

2.3.1. Proxy stacking

Proxy stacking is mainly used to inspect embedded protocols, or perform virus filtering: e.g., to inspect HTTPS
traffic, the external SSL protocol is examined with a Pssl proxy, and then a HTTP proxy is stacked to inspect
the internal protocol. It is possible to stack several layers of proxies into each other if needed, e.g., in the above
example, a further virus filtering solution (like a CF module) could be stacked into the HTTP proxy.

redundant. This feature greatly decreases the need of proxy stacking, making it needed only in special cases, for example, to inspect

Note
@ Starting with Zorp version 3.3FR1, every proxy is able to handle SSL/TLS-encypted connection on its own, making the Pssl proxy
HTTP traffic tunneled in SSH.

www.balasys.hu 7

Program stacking e

Stacking a proxy to inspect the embedded protocol is possible via the self.request_stack attribute; if
another attribute has to be used, it is noted in the description of the given proxy. The HTTP proxy is special in
the sense that it is possible to stack different proxies into the requests and the responses.

The parameters of the stack attribute has to specify the following:

m The protocol elements for which embedded inspection is required. This parameter can be used to
specify if all received data should be passed to the stacked proxy ("*"), or only the data related (sent
or received) to specific protocol elements (e.g., only the data received with a GET request in HTTP).

®m The mode how the data is passed to the stacked proxy. This parameter governs if only the data part
should be passed to the stacked proxy (XXXX_STK_DATA, where XXXX depends on the protocol),
or (if applicable) MIME header information should be included as well (XXXX_STK_MIME) to
make it possible to process the data body as a MIME envelope. Please note that while it is possible
to change the data part in the stacked proxy, it is not possible to change the MIME headers - they
can be modified only by the upper level proxy. The available constants are listed in the respective
protocol descriptions. The default value for this argument is XXXX_STK_NONE, meaning that no
data is transferred to the stacked proxy. In some proxies it is also possible to call a function (using
the XXXX_STK_POLICY action) to decide which part (if any) of the traffic should be passed to
the stacked proxy.

m The proxy class that will perform inspection of the embedded protocol.

The use of proxy stacking is illustrated in the following example:

— Example 2.6. HTTP proxy stacked into an HTTPS connection
% The following proxy class stacks an Http proxy into a Pssl Proxy to inspect HTTPS traffic.

| w—]
class HttpsPsslProxy(PsslProxy):

def config(self):
Pss1Proxy.config(self)
self.stack_proxy=(Z_STACK_PROXY, HttpProxy)

For additional information on proxy stacking, see Section 6.6.3, Analyzing embedded traffic in Proxedo Network
Security Suite 1.0 Administrator Guide, and the various tutorials available at the _Documentation Page.

2.3.2. Program stacking

When stacking a program, the data received by a proxy within a protocol is directed to the standard input.
Arbitrary commands (including command line scripts, or applications) working from the standard input can be
run on this data stream. The original proxy obtains the processed data back from the standard output. When
stacking a command, the command to be called has to be included in the proper stack attribute of the proxy
between double-quotes. This is illustrated in the following example.

— Example 2.7. Program stacking in HTTP

% In this example a simple 'sed' (stream editor) command is stacked into the HTTP proxy to replace all occurrences of 'http' to 'https', thus
| w— securing the HTTP connections on one side of the firewall.

class MyHttp(HttpProxy):
def config(self):
HttpProxy.config(self)
self.response_stack["GET"] = /
(HTTP_STK_DATA, (Z_STACK_PROGRAM, "/bin/sed '/http:/s//https:/g'"))

www.balasys.hu 8

../../pns-guide-admin/pdf/pns-guide-admin.pdf#zorp_proxies_stacking
https://www.balasys.hu/hu/dokumentacio

The SSL and TLS protocols e

Chapter 3. The PNS SSL framework

This chapter describes the SSL protocol and the SSL framework available for every Application-level Gateway
proxy.

3.1. The SSL and TLS protocols

Secure Socket Layer v3 (SSL) and Transport Layer Security vl (TLS) are widely used crypto protocols
guaranteeing data integrity and confidentiality in many PKI and e-commerce systems. They allow both the
client and the server to authenticate each other. SSL/TLS use a reliable TCP connection for data transmission
and cooperate with any application-level protocol. SSL/TLS guarantee that:

® Communication in the channel is private, only the other communicating party can decrypt the
messages.

®m The channel is authenticated, so the client can make sure that it communicates with the right server.
Optionally, the server can also authenticate the client. Authentication is performed via certificates
issued by a Certificate Authority (CA). Certificates identify the owner of an encryption keypair used
in encrypted communication.

m The channel is reliable, which is ensured by message integrity verification using MAC.

SSL/TLS is almost never used in itself: it is used as a secure channel to transfer other, less secure protocols.
The protocols most commonly embedded into SSL/TLS are HTTP and POP3 (i.e. these are the HTTPS and
POP3S protocols).

3.1.1. Procedure — The SSL handshake
As an initial step, both the client and the server collect information to start the encrypted communication.

Step 1. The client sends a CLIENT-HELLO message.

Step 2. The server answers with a SERVER-HELLO message containing the certificate of the server. At this
point the parties determine if a new master key is needed.

cache. Clients that have contacted a particular server previously can request to continue a session (by identifying its session
ID); this can be used to accelerate the initialization of the connection. Application-level Gateway currently does not support

Note
@ The server stores information (including the session ID and other parameters) about past SSL/TLS sessions in its session
this feature, but this does not cause any noticeable difference to the clients.

Step 3. The client verifies the server's certificate. If the certificate is invalid the client sends an ERROR message
to the server.

Note
@ If anew master key is needed the client gets the server certificate from the SERVER-HELLO message and generates a master
key, sending it to the server in a CLIENT-MASTER-KEY message.

www.balasys.hu 9

Handling TLS and SSL connections in Application-level Gateway

Step 4. The server sends a SERVER-VERIFY message, which authenticates the server itself.

Step 5. Optionally, the server can also authenticate the client by requesting the client's certificate with a
REQUEST-CERTIFICATE message.

Step 6. The server verifies the certificate received from the client and finishes the handshake with a
SERVER-FINISH message.

and another key for incoming communication. These are known as SERVER/CLIENT-READ-KEY and

Note
@ In SSL two separate session keys are used, one for outgoing communication (which is of course incoming at the other end),
SERVER/CLIENT-WRITE-KEY.

3.2. Handling TLS and SSL connections in Application-level Gateway

PNS has a common framework that allows every Application-level Gateway proxy to use SSL/TLS encryption,
and - in some cases - also supports STARTTLS.

®

3.2.1. Behavior of the SSL framework

Note
Currently, the following proxies support STARTTLS: Ftp proxy (to start FTPS sessions), Smtp proxy.

The SSL framework inspects SSL/TLS connections, and also any other connections embedded into the encrypted
SSL/TLS channel. SSL/TLS connections initiated from the client are terminated on the firewall, and two separate
SSL/TLS connections are built: one between the client and the firewall, and one between the firewall and the
server. If both connections match the configuration settings of Application-level Gateway (for example, the
certificates are valid, and only the allowed encryption algorithms are used), Application-level Gateway inspects
the protocol embedded into the secure channel as well. Note that the configuration settings can be different for
the two connections, for example, it is possible to permit different protocol versions and encryption settings.

When a firewall rule matches an incoming connection, Application-level Gateway starts the Service specified
in the firewall rule to inspect the connection. The Encryption policy set in the Service determines the encryption
settings used in the connection.

m For the details of the attributes related to the SSL framework, see Section 5.5, Module
Encryption (p. 199).

B Several configuration examples and considerations are discussed in the Technical White Paper and
Tutorial Proxying secure channels - the Secure Socket Layer, available at the Balasys Documentation
Page.

Depending on the scenario (TwoSidedEncryption, ClientOnlyEncryption, and so on) set in the Encryption
policy, the SSL framework selects the first peer to perform the SSL. handshake with.

As part of the handshake process, Application-level Gateway checks if encryption is required on the given side.
It is not necessary for SSL to be enabled on both sides - Application-level Gateway can handle one-sided SSL

www.balasys.hu 10

https://www.balasys.hu/hu/dokumentacio
https://www.balasys.hu/hu/dokumentacio

Session reuse in SSL and TLS connections e

connections as well (for example, the firewall communicates in an unencrypted channel with the client, but in
a secure channel with the server). If SSL is not enabled, the handshake is skipped for that side.

When SSL is needed, the Service collects the required parameters (keys, certificates, and so on) from the
Encryption policy.

The SSL handshake is slightly different for the client (in this case Application-level Gateway behaves as an
SSL server) and the server (when Application-level Gateway behaves as an SSL client):

m Client-side (SSL server) behavior. In the client-side connection Application-level Gateway acts
as an SSL server, and shows the client a certificate.
If peer authentication is enabled (that is, the required and trusted attributes of the verifier used
in the Encryption policy is properly set), Application-level Gateway sends a list of trusted CAs to
the client. If the client returns a certificate, Application-level Gateway verifies it against the trusted
CA list and their associated revocation lists, and also checks its validity.

m Server-side (SSL client) behavior. The server-side handshake is similar to the client-side
handshake only the order of certificate verification is different. On the server side, Application-level
Gateway verifies the server's certificate first, and then sends its own certificate for verification.

3.2.2. Session reuse in SSL and TLS connections

Starting with version 6.0, PNS supports session reuse in SSL and TLS connections. PNS supports both session
identifiers (REC 5246) and session tickets (REC 5077). Note that session tickets can be used only in TLS
connections. Unless explicitly disabled in the configuration of the Encryption policy (for details, see Section
5.5, Module Encryption (p. 199)), PNS attempts to use session tickets, and automatically falls back to using
session identifiers if needed.

3.2.3. Understanding Encryption policies

This section describes the configuration blocks of Encryption policies and objects used in Encryption policies.
Encryption policies were designed to be flexible, and make encryption settings easy to re-use in different
services.

An Encryption policy is an object that has a unique name, and references a fully-configured encryption
scenario.

Encryption scenarios are actually Python classes that describe how encryption is used in a particular connection,
for example, both the server-side and the client-side connection is encrypted, or the connection uses a one-sided
SSL connection, and so on. Encryption scenarios also reference other classes that contain the actual settings
for the scenario. Depending on the scenario, the following classes can be set for the client-side, the server-side,
or both.

m Certificate generator: Creates or loads an X.509 certificate that Application-level Gateway shows
to the peer. The certificate can be a simple certificate (Section 5.5.23, Class StaticCertificate (p. 237)),
a dynamically generated certificate (for example, used in a keybridging scenario, Section 5.5.12,
Class DynamicCertificate (p. 219)), or a list of certificates to support Server Name Indication (SNI,
Section 5.5.17, Class SNIBasedCertificate (p. 227)).
Related parameters: client_certificate_generator, server_certificate_generator

www.balasys.hu 11

http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5077

Configuring Encryption policies e

m Certificate verifier: The settings in this class determine if Application-level Gateway requests a
certificate of the peer and how to verify it. Application-level Gateway has separate built-in classes
for the client-side and the server-side verification settings: Section 5.5.6, Class
ClientCertificateVerifier (p. 208) and Section 5.5.19, Class ServerCertificateVerifier (p. 230). For
details and examples, see Section 3.2.5, Certificate verification options (p. 23).

Related parameters: client_verify, server_verify

m Protocol settings: The settings in this class determine the protocol-level settings of the SSL/TLS
connection, for example, the permitted ciphers and protocol versions, session-reuse settings, and so
on. Application-level Gateway has separate built-in classes for the client-side and the server-side
SSL/TLS settings: Section 5.5.10, Class ClientSSLOptions (p. 215) and Section 5.5.22, Class
ServerSSLOptions (p. 235). For details and examples, see Section 3.2.6, Protocol-level TLS
settings (p. 24).

Related parameters: client_ssl _options, server_ssl_option

Application-level Gateway provides the following built-in encryption scenarios:

® TwoSidedEncryption: Both the client-Application-level Gateway and the Application-level
Gateway-server connections are encrypted. For details, see Section 5.5.24, Class
TwoSidedEncryption (p. 238).

B ClientOnlyEncryption: Only the client-Application-level Gateway connection is encrypted, the
Application-level Gateway-server connection is not. For details, see Section 5.5.8, Class
ClientOnlyEncryption (p. 212).

®m ServerOnlyEncryption: Only the Application-level Gateway-server connection is encrypted, the
client-Application-level Gateway connection is not. For details, see Section 5.5.21, Class
ServerOnlyEncryption (p. 234).

B ForwardStartTLSEncryption: The client can optionally request STARTTLS encryption. For
details, see Section 5.5.15, Class ForwardStartTLSEncryption (p. 223).

B ClientOnlyStartTLSEncryption: The client can optionally request STARTTLS encryption, but
the server-side connection is always unencrypted. For details, see Section 5.5.9, Class
ClientOnlyStartTLSEncryption (p. 213).

m FakeStartTLSEncryption: The client can optionally request STARTTLS encryption, but the
server-side connection is always encrypted. For details, see Section 5.5.14, Class
FakeStartTLSEncryption (p. 221).

For examples on configuring Encryption policies, see How to configure SSL proxying in PNS 1.0. For details
on HTTPS-specific problems and its solutions, see How to configure HTTPS proxying in PNS 1.0.

3.2.4. Configuring Encryption policies

To configure Encryption policies, you have to create an Encryption policy, and derive and configure your own
scenario from the available built-in scenarios. To configure a scenario, you have to derive and configure your
own certificate generator, certificate verifier, and protocol settings classes. (Do not change the built-in classes
directly, because that changes the default behavior of Application-level Gateway, and can have unexpected and
unwanted effects on the configuration of Application-level Gateway.)

www.balasys.hu 12

../../pns-tutorial-ssl/pdf/pns-tutorial-ssl.pdf#zorp-tutorial-ssl
../../pns-tutorial-https/pdf/pns-tutorial-https.pdf#zorp-tutorial-https

Configuring Encryption policies e

Note
@ If the built-in scenarios do not cover your particular use-case, derive an own class from TwoSidedEncryption, and configure it to suit

your needs.

For a details on configuring Encryption Policies, see the following procedure, or the How to configure SSL
proxying in PNS 1.0 tutorial.

3.2.4.1. Procedure - Enabling SSL-encryption in the connection

Purpose:

To proxy HTTPS connections, you have to configure an Encryption Policy to handle SSL/TLS connections,
and use this Encryption Policy in your Service. The policy will be configured to:

Steps:

Step 1.

Step 2.

m Require the client and the server to use strong encryption algorithms, the use of weak algorithms
will not be permitted.

m Enable connections only to servers with certificates signed by CAs that are in the trusted CAs list
of the PNS firewall node. (For details on managing trusted CA groups, see Section 11.3.7.3, Managing
trusted groups in Proxedo Network Security Suite 1.0 Administrator Guide.)

B The clients will only see the certificate of PNS. To allow the clients to access the certificate
information of the server, see Procedure 2.2, Configuring keybridging in How to configure SSL
proxying in PNS 1.0.

Generate a certificate for your firewall. The Application-level Gateway component requires its own
certificate and keypair to perform SSL/TLS proxying.

MC: Create a certificate, set the firewall as the owner host of the certificate, then distribute it to the
firewall host. For details, see Chapter 11, Key and certificate management in PNS in Proxedo Network
Security Suite 1.0 Administrator Guide.

Python: In configurations managed manually from python, create an X.509 certificate (with its
related keypair) using a suitable software (for example, OpenSSL) and deploy it to the PNS firewall
host (for example, copy it to the /etc/key.d/mycert folder).

Create and configure an Encryption Policy. Complete the following steps.
Step a. Navigate to the Application-level Gateway MC component of the firewall host.
Step b. Select Policies > New.

Step c. Enter a name into the Policy name field, for example, MyTLSEncryption.

www.balasys.hu 13

../../pns-tutorial-ssl/pdf/pns-tutorial-ssl.pdf#zorp-tutorial-ssl
../../pns-tutorial-ssl/pdf/pns-tutorial-ssl.pdf#zorp-tutorial-ssl
../../pns-guide-admin/pdf/pns-guide-admin.pdf#pki-trusted-groups
../../pns-guide-admin/pdf/pns-guide-admin.pdf#pki-trusted-groups
../../pns-tutorial-ssl/pdf/pns-tutorial-ssl.pdf#keybridging
../../pns-guide-admin/pdf/pns-guide-admin.pdf#chapter_pki

Configuring Encryption policies e

www.balasys.hu

Configuration

- D Default_Corporate
< (110 zms-Host
Management agents
Management server
Networking
Packet filter
@ System logging

A ven

D a A & @ R { &A

Firewall Rules |Ser\.‘ices PGIiCiesl Proxies |Instances |Ad\;anced |

Policy ¥ | Descriptio —

Authentication policy

New policy

Authentication provider

Authorization policy

Detector Policy

Encryption Policy

Matcher policy

Policy name: IMyTLSEncryption

Policy type: IEncry'ption Policy
NAT policy

Resolver policy Lz e I

Stacking provider

L [
Lonew | T

Figure 3.1. Creating a new Encryption policy

Step d. Select Policy type > Encryption Policy, then click OK.
Step e. Select Class > TwoSidedEncryption.

Python:

EncryptionPolicy(
name="MyTLSEncryption",
encryption=TwoSidedEncryption()

)

14

Configuring Encryption policies e

www.balasys.hu

Step f Configuration

< [] Default_Corporate
< [0l zms-Host

@ Management agents
@ Management server
@ Networking
@ Packet filter
System logging
B ven

E 2 A

" e

7

| AEa-°s

Firewall Rules |Serwces Pnliciesl Proxies |Imstances |Advanced |

Policy

v | Descriptic —|

-

Authentication policy
Authentication provider
Authorization policy
Detector Policy
Encryption Policy
Matcher policy

NAT policy

Resolver policy

Stacking provider

[

New o Delete

 Edit ‘

Policy

Class: ITwc SidedEncryption

Parameter
client_certificate_generator
server_certificate_generator
client_verify

server_verify
client_ssl_options

server_ssl_options

T

4 Edit Select variable

Type —
class_type_certificategenerator_instanc
class_type_certificategenerator_instanci
class_type_clientcertificateverifier_instar
class_type_servercertificateverifier_insta
class_type_clientssloptions_instance

class_type_serverssloptions_instance

[Unset

Figure 3.2. Selecting Encryption policy class

Double-click client_certificate_generator, then select Class > StaticCertificate.

Step g. Double-click certificate, then double-click certificate_file_path. A window displaying
the certificates owned by the host will be displayed. The lower section of the window
shows the information contained in the certificate. Select the certificate that you want
Application-level Gateway to show to the clients (for example, the certificate created
in Step 1), then click Select.

15

Configuring Encryption policies e

www.balasys.hu

Edit value of client_certificate_generator

Class: |StaticCertificate
Parameter Type Value
certificate

class_type_certcertificate_instance

4 Edit | | .. select variable

<1

= =
m Unset

GIkA

Figure 3.3. Creating a new Encryption policy

Python:

encryption=TwoSidedEncryption(

client_certificate_generator=StaticCertificate(
certificate=Certificate.fromFile(

certificate_file_path="/etc/key.d/MS_Engine/cert.pem",
private_key=PrivateKey.fromFile(
"/etc/key.d/MS_Engine/key.pem")
)

Step h. If the private key of the certificate is password-protected, double-click
private_key_password, type the password, then click OK. Otherwise, click OK.

16

Configuring Encryption policies e

Step i. Disable mutual authentication. That way, Application-level Gateway will not request
a certificate from the clients.
Double-click client_verify, select Class > ClientNoneVerifier, then click OK.

Edit value of client_verify

Class: |ClientNoneVerifier -

Class has no parameters

£,
@
=

Figure 3.4. Disabling mutual authentication
Python:

encryption=TwoSidedEncryption(
client_verify=None
)

Step j. Specify the directory containing the certificates of the trusted CAs. These settings
determine which servers can the clients access: the clients will be able to connect only
those servers via SSL/TLS which have certificate signed by one of these CAs (or a
lower level CA in the CA chain).

www.balasys.hu 17

Configuring Encryption policies e

Double-click server_verify, double-click ca_directory, then type the path and name

to the directory that stores the trusted CA certificates,

/etc/ca.d/certs/. Click OK.

Edit value of server_verify

for example,

Class: |ServerCertificateVerifier

Parameter Type Value

crl_directory gstring

trusted

verify_depth Edit quoted string value of ca_directory

—
A

ol

verify_ca_directory

verify_crl directory Quoted string value: |/etc/ca.d/certs/

permit_invalid_certificates

check_subject

ermit_missing_crl
P - £ @gancel

¢ Edit | - Select variable

=
m Unset

Figure 3.5. Specifying trusted CAs
Python:

encryption=TwoSidedEncryption(
server_verify=ServerCertificateVerifier(
ca_directory="/etc/ca.d/certs/"
)

K|

Note
@ CAs cannot be referenced directly, only the trusted group containing them. For details on managing
trusted groups, see Section 11.3.7.3, Managing trusted groups in Proxedo Network Security Suite 1.0

Administrator Guide.

www.balasys.hu

18

../../pns-guide-admin/pdf/pns-guide-admin.pdf#pki-trusted-groups

Configuring Encryption policies e

Step k. Specify the directory containing the CRLs of the trusted CAs.
Double-click crl_directory, then type the path and name to the directory that stores
the CRLs of the trusted CA certificates, for example, /etc/ca.d/crls/. Click OK.

Edit value of server_verify

Class: ISewerCeniﬁcateVeriﬁer b4
Parameter Type Value —
ca_directory gstring "/etc/ca.d/certs/"

crl_directory gstring

trusted_certs_directory gstring

trusted o i

verify_depth T

verify_ca_directory| Edit quoted string value of crl_directory

verify_crl_directory

permit_invalid_cer Quoted string value: |/etc/ca.d/crls/

permit_missing_cr

heck_subject
check_subje: @(_Zancel

<]

=
m Unset

Edit | | . Select variable

Figure 3.6. Specifying CRLs
Python:

encryption=TwoSidedEncryption(
server_verify=ServerCertificateVerifier(
ca_directory="/etc/ca.d/certs/",
crl _directory="/etc/ca.d/crls/"

Step 1. Optional Step: The Common Name in the certificate of a server or webpage is usually
its domain name or URL. By default, Application-level Gateway compares this Common
Name to the actual domain name it receives from the server, and rejects the connection

www.balasys.hu 19

Configuring Encryption policies e

www.balasys.hu

if they do not match. That way it is possible to detect several types of false certificates
and prevent a number of phishing attacks. If this mode of operation interferes with
your environment, and you cannot use certificates that have proper Common Names,
disable this option.

Double-click server_verify > check_subject, select FALSE, then click OK.

Python:

encryption=TwoSidedEncryption(
server_verify=ServerCertificateVerifier(
ca_directory="/etc/ca.d/certs/",
crl_directory="/etc/ca.d/crls/",
check_subject=FALSE

S t e p Optional Step: Forbid the use of weak encryption algorithms to increase security. The
m. related parameters can be set separately for the client and the server-side of
Application-level Gateway, using the client_ssl_options and server_ssl_options
parameters of the Encryption Policy. Disabling weak algorithms also eliminates the
risk of downgrade attacks, where the attacker modifies the SSL session-initiation
messages to force using weak encryption that can be easily decrypted by a third party.

algorithms. If your clients use such systems or applications, you might have to permit weak encryption

Note
@ Certain outdated operating systems, or old browser applications do not properly support strong encryption
algorithms.

Step i. Double-click client_ssl_options, click method, click =, select
const_ssl _method_tlsli_1 or const_ssl_method tlsvl_2,
then click OK.

Repeat this step for the server_ssl_options parameter.

Step ii. SSL methods may occasionally fall back to older (thus weaker) protocol
versions if one of the peers does not support the newer version. To
avoid this situation, explicitly disable undesired protocol versions
(SSLv2 and SSLv3 are disabled by default).

For example, to disable TLSv1, double-click client_ssl_options >
disable_tlsv1, click TRUE, then click OK. Repeat this step for the
server_ssl_options parameter.

Python:
encryption=TwoSidedEncryption(

server_ssl_options=ServerSSLOptions(
method=SSL_METHOD_TLSV1 2, disable_proto_tlsvl=TRUE)

client_ssl options=ClientSSLOptions(
method=SSL_METHOD_TLSV1 2, disable proto_tlsv1=TRUE)

20

Configuring Encryption policies e

Step n. Optional Step: Enable untrusted certificates. Since a significant number of servers use
self-signed certificates (with unverifiable trustworthiness), in certain situations you
might need to permit access to servers that have untrusted certificates.

Double-click server_ssl_options > trusted, click FALSE, then click OK.

Python:

encryption=TwoSidedEncryption(
server_verify=ServerCertificateVerifier(
trusted=FALSE
)

Python:
The Encryption Policy configured in the previous steps is summarized in the following code snippet.

EncryptionPolicy(
name="MyTLSEncryption",
encryption=TwoSidedEncryption(

client_verify=None,

server_verify=ServerCertificateVerifier(
ca_directory="/etc/ca.d/certs/",
crl_directory="/etc/ca.d/crls/",
check_subject=FALSE
),

client_ssl options=ServerSSLOptions(
method=SSL_METHOD_TLSV1_2, disable_proto_tlsvl=TRUE),

server_ssl options=ServerSSLOptions(
method=SSL_METHOD_TLSV1_2, disable_proto_tlsvl=TRUE),

client_certificate_generator=StaticCertificate(
certificate=Certificate.fromFile(

certificate_file_path="/etc/key.d/MS_Engine/cert.pem",
private_key=PrivateKey.fromFile(
"/etc/key.d/MS_Engine/key.pem")

))

))

Step 3. Select PKI > Distribute Certificates.
Note when managing PNS without MC, you must copy the certificates and CRLs to their respective
directories. They are not updated automatically as in configurations managed by MC.

By performing the above steps, you have configured the proxy to use the specified certificate and its
private key, and also set the directory that will store the certificates of the trusted CAs and their CRLs.
Client authentication has also been disabled.

Step 4. Create a service that clients can use to access the Internet in a secure channel. This service will use
the MyTLSEncryption Encryption Policy.

www.balasys.hu 21

Configuring Encryption policies e

Step a. Select Services > New, enter a name for the service (for example,
intra HTTPS_inter), then click OK.

Step b. Select Proxy class > Http > HttpProxy.
Step c. Select Encryption > MyTLSEncryption.

Step d. Configure the other parameters of the service as needed for your environment, then
click OK.

Step e. Select Firewall Rules > New > Service, and select the service created in the previous
step. For more details on creating firewall rules, see Section 6.5, Configuring firewall
rules in Proxedo Network Security Suite 1.0 Administrator Guide.

Step f. Configure the other parameters of the rule as needed for your environment, then click

e & AW RFE@ Z 2 &
- DDefauIt_Corporate N
o Firewall Rules Services | Paliciesl Proxies | Instances | Advanced |
hd ZM5-Host L
Service | =
[E] Management agents - Class: ‘Ser\tice
[E] Management server Denyservice ‘
Description:
@ Networking dummy p
[&] Packet filter MyFTPSS5ervice Proxy class: HttpProxy
= B ; Encryption: ‘MyTLSEncryption
[l 5ystem logzin inter_HttpSNIService
Y 28ing Routing
B ven
Router: |TransparemRouter[) J
Chainer: |Ccnneclchainer{} J
Limit: | J
i NAT
Source NAT policy: | -
Destination NAT policy: | -
Authentication
Authentication policy: | -
Authorization policy: | -
Authentication name: |
» Advanced
LLPﬂew ‘ m Delete Rename
Figure 3.7. Creating a Service
Python:
def demo()
Service(

name='demo/intra_HTTPS_inter',
router=TransparentRouter (),
chainer=ConnectChainer(),
proxy_class=HttpProxy,
max_instances=0,
max_sessions=0,

keepalive=Z_ KEEPALIVE_NONE,

www.balasys.hu 22

../../pns-guide-admin/pdf/pns-guide-admin.pdf#zorp-firewall-rules
../../pns-guide-admin/pdf/pns-guide-admin.pdf#zorp-firewall-rules

Certificate verification options e

encryption_policy="MyTLSEncryption"

)

Rule(
rule_id=300,
src_subnet=('192.168.1.1/32"',),
dst_zone=('internet',),
proto=6,
service='demo/intra_HTTPS_inter'

)

Step 5. Commit and upload your changes, then restart Application-level Gateway.
Expected result:

Every time a client connects to a server, Application-level Gateway checks the certificate of the server.
If the signer CA is trusted, Application-level Gateway shows a trusted certificate to the client (browser
or other application). If the certificate of the server is untrusted, Application-level Gateway shows an
untrusted certificate to the client, giving a warning to the user. The user can then decide whether the
certificate can be accepted or not.

3.2.5. Certificate verification options

Application-level Gateway is able to automatically verify the certificates received. The types of accepted
certificates can be controlled separately on the client and the server side using the attributes of the
ClientCertificateVerifier and ServerCertificateVerifier classes (or your own classes derived from these),
respectively. These attributes offer an easy way to restrict encrypted access only to sites having trustworthy
certificates. The available options are summarized in the following table. (The text in parentheses refers to the
respective value in older PNS versions.)

required
TRUE FALSE
TRUE Peer must have a valid Peer must have a valid
certificate certificate, issued by any CA

(REQUIRED-TRUSTED) (REQUIRED-UNTRUSTED)

FALSE Certificate is not required, but | Certificate is not required, but
if the peer shows a certificate, [if the peer shows a certificate,
it must be valid and signed by |it must be valid. It can be

a trusted CA issued by any CA
(OPTIONAL-TRUSTED) (OPTIONAL-UNTRUSTED)

trusted

To accept peers with invalid certificates, set the permit_invalid certificates to TRUE.

By default (if the check_subject parameter is set to TRUE in the verifier), Application-level Gateway compares
the domain name provided in the Subject field of the server certificate to application-level information about
the server (that is, the domain name of the URL in HTTP and HTTPS connections).

www.balasys.hu 23

Protocol-level TLS settings e

— Example 3.1. Accepting invalid certificates

—— | The following example configures a simple Encryption Policy that permits invalid certificated, and does not check the subject of the
| w—] server's certificate.
EncryptionPolicy/(

name="MyTLSEncryption",
encryption=TwoSidedEncryption(
client_verify=None,
server_verify=ServerCertificateVerifier(
ca_directory="/etc/ca.d/certs/",
crl_directory="/etc/ca.d/crls/",
permit_invalid_certificates=TRUE,
check_subject=FALSE)
)

3.2.6. Protocol-level TLS settings

The following sections describe and show examples to common protocol-level TLS settings.

Setting the allowed TLS protocol

There are different and sometimes incompatible releases of the TLS protocol. TLS protocols can be set via the
ClientSSLOptions and ServerSSLOptions classes, enabling all supported protocols by default. Set the appropriate
'disable tls* parameters to disable the selected TLS protocols. Application-level Gateway currently supports
the TLS v1, TLS v1.1, TLS v1.2 protocols.

— Example 3.2. Disabling specific TLS protocols
—— | The following example disables the TLSv1 protocol on the client and the server side.

EncryptionPolicy(
name="MyTLSEncryption",
encryption=TwoSidedEncryption(
client_verify=None,
server_verify=ServerCertificateVerifier (
ca_directory="/etc/ca.d/certs/",
crl_directory="/etc/ca.d/crls/",

)
client_ssl_options=ServerSSLOptions(disable_proto_tlsvl=TRUE),
server_ssl_options=ServerSSLOptions(disable_proto_t1lsvl=TRUE),

)
)

Cipher selection

The cipher algorithms used for key exchange and mass symmetric encryption are specified by the cipher
attribute of the class referred in the client_ssl options or server_ssl options of the Encryption
policy. These attributes contain a cipher specification as specified by the OpenSSL manuals, see the manual
page ciphers(ssl) for further details.

The default set of ciphers can be set by using the following predefined variables.

Name Value
SSL_CIPHERS_HIGH n/a
SSL_CIPHERS_MEDIUM n/a
SSL_CIPHERS_LOW n/a

www.balasys.hu 24

Enabling STARTTLS (37

Name Value
SSL_CIPHERS ALL n/a
SSL_CIPHERS CUSTOM n/a

Table 3.1. Constants for cipher selection

Cipher specifications as defined above are sorted by key length. The cipher providing the best key length will
be the most preferred.

3.2.7. Enabling STARTTLS

Application-level Gateway supports the STARTTLS method for encrypting connections. STARTTLS support
can be configured separately for the client- and server side. Currently, the following proxies support STARTTLS:
Ftp proxy (to start FTPS sessions), Smtp proxy.

STARTTLS is enabled by default in the following encryption scenarios:

m ClientOnlyStartTLSEncryption: STARTTLS is enabled on the client-side, but the server-side
connection will not be encrypted.

B FakeStartTLSEncryption: STARTTLS is enabled on the client-side, the server-side connection is
always encrypted.

®m ForwardStartTLSEncryption: STARTTLS is enabled on the client-side, and Application-level
Gateway forwards the request to the server.

— Example 3.3. Configuring FTPS support
—— | This example is a standard FtpProxy with FTPS support enabled.

class FtpsProxy(FtpProxy):
def config(self):
FtpProxy.config(self)
self.max_password_length=64

EncryptionPolicy(name="ForwardSTARTTLS",
encryption=ForwardStartTLSEncryption(client_verify=ClientCertificateverifier(),
client_ssl _options=ClientSSLOptions(), server_verify=ServerCertificateVerifier(),
server_ssl_options=ServerSSLOptions(),
client _certificate generator=DynamicCertificate(private key=Privatekey.fromFile(key_file path="/etc/key.d/ZMS Engine/key.pem"),
trusted_ca=Certificate.fromFile(certificate_file_path="/etc/ca.d/certs/my-trusted-ca-cert.pem",
private_key=PrivateKey.fromFile("/etc/ca.d/keys/my-trusted-ca-cert.pem")),
untrusted_ca=Certificate.fromFile(certificate_file_path="/etc/ca.d/certs/my-untrusted-ca-cert.pem",
private_key=PrivateKey.fromFile("/etc/ca.d/keys/my-untrusted-ca-cert.pem")))))

def demo()
Service(name='demo/MyFTPSService', router=TransparentRouter(), chainer=ConnectChainer(),
proxy_class=FtpsProxy, max_instances=0, max_sessions=0, keepalive=Z_KEEPALIVE_NONE,
encryption_policy="ForwardSTARTTLS")

Rule(rule_id=2,
proto=6,
service='demo/MyFTPSService'

)

3.2.8. Procedure - Configuring keybridging

Purpose:

www.balasys.hu 25

Enabling STARTTLS (37

Keybridging is a method to let the client see a copy of the server's certificate (or vice versa). That way the client
can inspect the certificate of the server, and decide about its trustworthiness. If the PNS firewall is proxying
the SSL/TLS connection, the client cannot inspect the certificate of the server directly, but you can configure
Application-level Gateway to generate a new certificate on-the-fly, using the data in the server's certificate.
Application-level Gateway sends this generated certificate to the client. To configure to perform keybridging,
complete the following steps.

Steps:

Step 1. Create the required keys and CA certificates.

Step a.

Step b.

Step c.

Step d.

Generate two local CA certificates. Application-level Gateway will use one of them
to sign the generated certificate for servers having trusted certificates, the other one
for servers with untrusted or self-signed certificates. Make this difference visible
somewhere in the CA's certificates, for example, in their common name
(CA_for_uUntrusted_certs;CA_for_Trusted_certs). These CA certificates can
be self-signed, or signed by your local root CA.

IMPORTANT: Do NOT set a password for these CAs, as Application-level Gateway
must be able to access them automatically.

Import the certificate of the CA signing the trusted certificates to your clients to make
the generated certificates 'trusted'.
IMPORTANT: Do NOT import the other CA certificate.

Generate a new certificate. The private key of this keypair will be used in the on-the-fly
generated certificates, the public part (DN and similar information) will not be used.

In MC, set the PNS firewall host to be the owner of this certificate, then select PKI >
Distribute Certificates.
Python:

Copy the certificates and CRLs to their respective directories (for example, into
/etc/zorp/ssl-bridge/). Note that they are not updated automatically as in
configurations managed by MC.

Step 2. Create and configure an Encryption Policy. Complete the following steps.

www.balasys.hu

Step a.
Step b.
Step c.

Navigate to the Application-level Gateway MC component of the firewall host.
Select Policies > New.

Enter a name into the Policy name field, for example, KeybridgingEncryption.

26

Enabling STARTTLS (37

www.balasys.hu

Configuration

hd D Default_Corporate
< 100 zms-Host
Management agents
Management server
Networking
Packet filter
v zop
@ System logging

B ven

AR A& @ 5N
Firewall Rules | Services| Palicies | Proxies | Instances ‘Advanced |
Policy = ‘ Descriptic —
Authentication policy .
- 8 ZMC - New polic X
Authentication provider il)

Authorization policy

Detector Policy

§ crcmionpoicr
MyTLSEncryption

Matcher policy

NAT policy

Resolver policy

Stacking provider

|

New policy

Policy name: IKeyb ridgingEncrypIion|

Policy type: IEncryption Policy

Description: I

Unsaved changes

Figure 3.8. Creating an Encryption policy

Step d. Select Policy type > Encryption Policy, then click OK.
Step e. Select Class > TwoSidedEncryption.

27

Enabling STARTTLS

Configuration | @ fﬂ 1 [l:@ >r,(E SEMS

- D Default_Corporate

Firewall Rules |Serui[es P0|iCiES| Proxies ‘Instan(es |Advan[ed |
< [0l zms-Host

@ Management agents Policy v ‘ Descriptic Policy
[E] Mmanagement server Authentication policy
i . i Class: ITwoSidedEncryption ﬂ
[&] Networking Authentication provider
[E] Packet fifter Authorization policy Parameter Type —
m Detector Policy client_certificate_generator class_type_certificategenerator_instanc
System logging ~ Encryption Policy server_certificate_generator class_type_certificategenerator_instanc
VPN client_verify class_type_clientcertificateverifier_instar
MyTLSEncryption server_verify class_type_servercertificateverifier_insta
Matcher policy client_ss|_options class_type_clientssloptions_instance
NAT policy server_ss|_options class_type_serverssloptions_instance

Resolver policy

Stacking provider

= 1 o
& Edit Select variable

[[
New | wgelete| éEdlt ‘

o Unset

Figure 3.9. Selecting the encryption class
Python:
EncryptionPolicy (

name="KeybridgingEncryption",
encryption=TwoSidedEncryption()

Step f. Double-click client_certificate_generator, then select Class > DynamicCertificate.

www.balasys.hu 28

Enabling STARTTLS (37

www.balasys.hu

Edit value of client_certificate_generator

Class: I DynamicCertificate

Parameter Type Value
private_key class_type_certprivatekey_instance

trusted_ca class_type_certcertificateca_instance

untrusted_ca class_type_certcertificateca_instance

cache_directory gstring

extension_whitelist nlt_DynamicCertificate_extension_whitelist

ﬁ Unset

Edit | | .. Select variable

Iblli

N

Figure 3.10. Selecting the certificate
Python:

encryption=TwoSidedEncryption(
client_certificate_generator=DynamicCertificate()

)

Step g. Double-click private_key > key_file_path. The certificates owned by the host will
be displayed. Select the one you created in Step 1c, then click OK. MC will
automatically fill the value of the parameter to point to the location of the private key
file of the certificate.

If the private key of the certificate is password-protected, double-click passphrase,
then enter the passphrase for the private key.

Python:

29

Enabling STARTTLS (37

www.balasys.hu

Step h.

Step 1.

encryption=TwoSidedEncryption(
client_certificate_generator=DynamicCertificate(

private key=Privatekey.fromFile(key_file path="/etc/key.d/SSL-bridge/key.pem")

)
)

Double-click trusted_ca_files > certificate_file_path, select CA that
will be used to sign the generated certificates for trusted peers (for example,
CA_for_Trusted_certs), then click OK.

If the private key of the -certificate is password-protected, double-click
private_key password, then enter the passphrase for the private key.

Python:
client_certificate_generator=DynamicCertificate(
private_key=Privatekey.fromFile(key_file path="/etc/key.d/SSL-bridge/key.pem"),
trusted_ca=Certificate.fromFile(

certificate_file_path='"/etc/ca.d/certs/CA_for_Trusted_certs.pem",

private key=PrivateKey.fromFile("/etc/ca.d/keys/CA for_Trusted certs.pem"))
)

Double-click untrusted_ca_f1iles, then select CA that will be used to sign the
generated certificates for untrusted peers (for example, CA_for_Untrusted_certs).
If the private key of the -certificate is password-protected, double-click
private_key password, then enter the passphrase for the private key.

Python:

client_certificate_generator=DynamicCertificate(
private key=PrivateKey.fromFile(key file path="/etc/key.d/SSL-bridge/key.pem"),
trusted_ca=Certificate.fromFile(

certificate_file_ path="/etc/ca.d/certs/CA_for_Trusted_certs.pem",

private key=PrivateKey.fromFile("/etc/ca.d/keys/CA for_Trusted certs.pem")),
untrusted_ca=Certificate.fromFile(

certificate_file_path="/etc/ca.d/certs/CA_for_Untrusted_certs.pem",

30

Enabling STARTTLS (37

private key=PrivateKey.fromFile('/etc/ca.d/keys/CA for_Untrusted certs.pem"))
)
Python:

The Encryption Policy configured in the previous steps is summarized in the following
code snippet.

EncryptionPolicy (
name="KeybridgingEncryption",
encryption=TwoSidedEncryption(
client_verify=ClientNoneVerifier(),
client_ssl _options=ClientSSLOptions(),
server_verify=ServerCertificateVerifier(),
server_ssl_options=ServerSSLOptions(),
client_certificate_generator=DynamicCertificate(
private key=PrivateKey.fromFile(key file path="/etc/key.d/SSL-bridge/key.pem"),
trusted_ca=Certificate.fromFile(

certificate_file path="/etc/ca.d/certs/CA_for_Trusted_certs.pem",

private key=PrivateKey.fromFile("/etc/ca.d/keys/CA for_Trusted certs.pem")),
untrusted_ca=Certificate.fromFile(

certificate_file_path="/etc/ca.d/certs/CA_for_Untrusted_certs.pem",

private key=PrivateKey.fromFile("/etc/ca.d/keys/CA for_Untrusted certs.pem")

)
))

Step 3. Create a service that uses the Encryption Policy created in the previous step.

www.balasys.hu 31

Enabling STARTTLS (37

——

- T — — oy = b
Configuration | D J '\ = D & ‘
< [] Default_Corporate = .
Firewall Rules | Services | Policies | Proxies |Instances |Advanced |
~ [0 zms-Host
" R N Service —
Management agents - Class: ISewice
. N DenyService
Management server
— Description: I
aumm
Networking ’
MVETPSSenvic
Packet filter VIyFTPSService Proxy class: HttpProxy

IEET T
Encryption: I KeybridgingEncryption

inter_HttpSNIService

B system logging .
a intra_HTTPS_Keybridge_inter LR
VPN | | |

Router: |Transparen:::-:-u:erl)

Chainer: [ConnectChainer()

Limit: |

i NAT

Source NAT policy |

Destination NAT policy: |

Authentication

Authentication policy |

S S SO SO R i (i

Authorization policy: |

Authentication name:

¢ Advanced

Delete Rename

Figure 3.11. Creating a service

Python:

def demo_instance()

Service(name='demo/intra_HTTPS_Keybridge_inter',
router=TransparentRouter (), chainer=ConnectChainer(), proxy_class=HttpProxy,
max_instances=0, max_sessions=0, keepalive=Z KEEPALIVE_NONE,
encryption_policy="KeybridgingEncryption")

Rule(rule_id=20,

src_zone=("'intra',),

dst_zone=('internet',),

proto=6,
service="'demo_instance/intra_HTTPS_Keybridge_inter'

)

Step 4. Configure other parameters of the Encryption Policy, service, and firewall rule as needed by your
environment.

Step 5. Commit and upload your changes, then restart Application-level Gateway.
Expected result:

Every time a client connects to a previously unknown server, Application-level Gateway will generate
a new certificate, sign it with one of the specified CAs, and send it to the client. This new certificate
will be stored under /var/lib/zorp/ssl-bridge under a filename based on the original server
certificate. If the signer CA is trusted, the client (browser or other application) will accept the connection.
If the certificate is signed by the CA for untrusted certificates, the application will not recognize the

www.balasys.hu 32

Related standards e

issuer CA (since its certificate has not been imported to the client) and give a warning to the user. The
user can then decide whether the certificate can be accepted or not.

(Actually, two files are stored on the firewall for each certificate: the original certificate received from
the server, and the generated certificate. When a client connects to the server, the certificate provided
by the server is compared to the stored one: if they do not match, a new certificate is generated. For
example, this happens when the server certificate has been expired and refreshed.)

3.3. Related standards

m The SSL protocol is defined by Netscape Ltd. at http://wp.netscape.com/eng/ssl3/ssl-toc.html
m The TLS protocol is defined in RFC 2246.
m Session tickets are a method for SSL session reuse, described in RFC 5077.

m Session identifiers are a method for SSL session reuse, described in RFC 5246.

3.4. Encryption options reference

The available encryption-related classes and options are described in Section 5.5, Module Encryption (p. 199).

3.5. X.509 Certificates

An X.5009 certificate is a public key with a subject name specified as an X.500 DN (distinguished name) signed
by a certificate issuing authority (CA). X.509 certificates are represented as Python policy objects having the
following attributes:

subject Subject of the certificate.

issuer Issuer of the certificate (i.e. the CA that signed it).
serial Serial number of the certificate.

blob The certificate itself as a string in PEM format.

PNS uses X.509 certificates to provide a convenient and efficient way to manage and distribute certificates and
keys used by the various components and proxies of the managed firewall hosts. It is mainly aimed at providing
certificates required for the secure communication between the different parts of the firewall system, e.g. firewall
hosts and MS engine (the actual communication is realized by agents).

Certificates of trusted CAs (and their accompanying CRLs) are used in Application-level Gateway to validate
the certificates of servers accessed by the clients. The hashes and structures below are used by the various
certificate-related attributes of the Application-level Gateway Pssl proxy, particularly the ones of certificate

type.

3.5.1. X.509 Certificate Names

A certificate name behaves as a string, and contains a DN in the following format (also known as one-line
format):

/RDN=value/RDN=value/.../RDN=value/

www.balasys.hu 33

X.509 Certificate Revocation List

The word RDN stands for relative distinguished name. For example, the DN cn=Root CA, ou=CA Group,
0o=Foo Ltd, 1=Bar, st=Foobar State, c¢=US becomes /C=US/ST=Foobar State/L=Bar/0=Foo0
Ltd/0OU=CA Group/CN=Root CA/

3.5.2. X.509 Certificate Revocation List

A certifying authority may revoke the issued certificates. A revocation means that the serial number and the
revocation date is added to the list of revoked certificates. Revocations are published on a regular basis. This
list is called the Certificate Revocation List, also known as CRL. A CRL always has an issuer, a date when the
list was published, and the expected date of its next update.

3.5.3. X.509 Certificate hash

The proxy stores trusted CA certificates in a Certificate hash. This hash can be indexed by two different types.
If an integer index is used, the slot specified by this value is looked up; if a string index is used, it is interpreted
as a one-line DN value, and the appropriate certificate is looked up. Each slot in this hash contains an X.509
certificate.

3.5.4. X.509 CRL hash

Similarly to the certificate hash, a separate hash for storing Certificate Revocation Lists was defined. A CRL
contains revocation lists associated to CAs.

www.balasys.hu 34

General information on the proxy modules e

Chapter 4. Proxies

This chapter contains reference information on all the available Zorp proxies.

4.1. General information on the proxy modules

The sections discussing the available proxies are organized as follows. Overall introduction is followed by
proxy class descriptions. Each module has an abstract class which is an interface between the policy and the
proxy itself. Abstract classes are the point where the low-level attributes implemented by the proxy appear.

Each Python module contains an abstract proxy class (e.g., AbstractFtpProxy) and one or more preconfigured
proxy classes derived from the abstract class (e.g., FtpProxy, FtpProxyRO, etc.). These abstract proxies are
very low level classes which always require customization to operate at all, thus they are not directly usable.
The preconfigured classes customize the base abstract proxy to perform actually useful functionality. These
derived classes inherit all their attributes from the class they were derived from, but have some of their parameters
set to default values. Consequently, they can be used for certain tasks without any (or only minimal) modification.
Most default classes were derived directly from the abstract classes, but it is possible to derive a class from
another derived class. In this case this new class inherits the attributes from its parent class and the abstract
class as well. Abstract classes should not be used directly for configuring services in Zorp, always derive an
own class and modify its attributes to suit the requirements.

4.2, Attribute values

The description of each abstract class includes a detailed list and definition of the attributes of the proxy class.
The type and default value of the attribute is also provided. Most types of the attributes (e.g., integer, string,
boolean, etc.) are self-explanatory; more complicated attributes (listed as complex type) are explained in their
respective description or in the general proxy behavior section of the module.

Proxy attributes can be available and modified during configuration time, run time, or both. Configuration time
attributes are set and modified when the proxy is configured, that is, when the session starts. Run time attributes
are available when the connection is active, for example, information about the HTTP header being processed
is available only when the header is processed. Access to the attributes is indicated in the header of the description
of the attribute in the following format: availability during configuration time : availability
during run time. The type of availability can be read (r) access, write (w) access, both, or not available
(n/a). An attribute that is available for reading and writing during both configuration and run time is indicated
as rw: rw, an attribute that is available only for reading during run time is indicated as n/a: r.

Note
@ Unless noted otherwise, default values related to lengths (e.g., line length, etc.) are in bytes.

Timeout values are always given in milliseconds. Setting a timeout to -1 disables the timeout (i.e. it becomes unlimited).

The description of every proxy class includes a list or textual description of the attributes modified relative to
their parent class. The values of the other attributes are inherited from the parent class.

www.balasys.hu 35

4.3. Examples

A number of Python code samples is provided for the proxies to illustrate both their general operation and their
capabilities. Most of the proxy configurations shown in the examples can be easily reproduced using the MC
graphical interface. However, some of them utilize the advanced flexibility of Zorp and therefore require the
use of configuration scripts written in Python. From MC these can be implemented, maintained and edited
using the Class editor. (The Class editor is available under the Proxies tab of the Zorp MC component. When
creating a new class, click on the Class editor button under the list of available classes.)

4.4. Module AnyPy

This module defines an interface to the AnyPy proxy as implemented in Zorp. AnyPy is basically a Python
proxy which means that the proxy behaviour is defined in Python by the administrator.

4.4.1. Related standards

4.4.2. Classes in the AnyPy module

Class Description
AbstractAnyPyProxy Class encapsulating an AnyPy proxy.
AnyPyProxy Class encapsulating the default AnyPy proxy.

Table 4.1. Classes of the AnyPy module

4.4.3. Class AbstractAnyPyProxy

This class encapsulates AnyPy, a proxy module calling a Python function to do all of its work. It can be used
for defining proxies for protocols not directly supported by Zorp.

as its parent, and implement the proxyThread method to handle the traffic.

Your code will be running as the proxy to transmit protocol elements. When writing your code, take care and be security conscious: do

Warning
A This proxy class is a basis for creating a custom proxy, and cannot be used on its own. Create a new proxy class using the AnyPyProxy
not make security vulnerabilities.

4.4.3.1. Attributes of AbstractAnyPyProxy

client_max_line_length (integer)
Default: 4096

Size of the line buffer in the client stream in bytes. Default value: 4096

server_max_line_length (integer)
Default: 4096

Size of the line buffer in the server stream in bytes. Default value: 4096

www.balasys.hu 36

Class AnyPyProxy e

4.4.3.2. AbstractAnyPyProxy methods

Method Description
init _(self, session) Constructor to initialize an AnyPy instance.
proxyThread(self) Function called by the low-level proxy core to transfer
requests.

Table 4.2. Method summary

Method __init__(self, session)

This constructor initializes a new AnyPy instance based on its arguments, and calls the inherited constructor.

Arguments of __init__

session (unknown)

Default: n/a

The session to be inspected with the proxy instance.

Method proxyThread(self)

This function is called by the proxy module to transfer requests. It can use the 'self.session.client_stream' and
'self.session.server_stream' streams to read data from and write data to.

4.4.4. Class AnyPyProxy

This class encapsulates AnyPy, a proxy module calling a Python function to do all of its work. It can be used
for defining proxies for protocols not directly supported by Zorp.

4.4.4.1. Note

This proxy class can only be used as a basis for creating a custom proxy and cannot be used on its own. Please
create a new proxy class with the AnyPyProxy as its parent and implement the proxyThread method for handling
traffic.

Your code will be running as the proxy to transmit protocol elements, you'll have to take care and be security
conscious not to make security vulnerabilities.

4.5. Module Finger

The Finger module defines the classes constituting the proxy for the Finger protocol.

4.5.1. The Finger protocol

Finger is a request/response based User Information Protocol using port TCP/79. The client opens a connection
to the remote machine to initiate a request. The client sends a one line query based on the Finger query
specification and waits for the answer. A remote user information program (RUIP) processes the query, returns

www.balasys.hu 37

Proxy behavior e

the result and closes the connection. The response is a series of lines consisting of printable ASCII closed
carriage return-line feed (CRLF, ASCII13, ASCII10). After receiving the answer the client closes the connection
as well.

The following queries can be used:
m <CRLF> This is a simple query listing all users logged in to the remote machine.
m USERNAME<CRLF> A query to request all available information about the user USERNAME.

m USERNAME@HOST1<CRLF> Request the RUIP to forward the query to HOST1. The response
to this query is all information about the user USERNAME available at the remote computer HOST1.

® USERNAME@HOST1@HOST2<CRLF> Request HOST1 to forward the query to HOST2. The
response to this query is all information about the user USERNAME available at the remote computer
HOST?2.

4.5.2. Proxy behavior

Finger is a module built for parsing messages of the Finger protocol. It reads the QUERY at the client side,
parses it and - if the local security policy permits - sends it to the server. When the RESPONSE arrives it
processes the RESPONSE and sends it back to the client. It is possible to prepend and/or append a string to the
response. Requests can also be manipulated in various ways using the fingerRequest function, which is called
by the proxy if it is defined.

Length of the username, the line and the hostname can be limited by setting various attributes. Finger proxy
also has the capability of limiting the number of hosts in a request, e.g.: finger user@domain@server
normally results in fingering 'user@domain' performed by the host 'server'. By default, the proxy removes
everything after and including the first '@' character. This behavior can be modified by setting the max_hop_count
attribute to a non-zero value.

— Example 4.1. Controlling the number of max hops
| —

%‘ def MyFingerProxy(FingerProxy):

def config(self):
FingerProxy.config(self)
self.max_hop_count = 2
self.timeout = 30

4.5.3. Related standards

® The Finger User Information Protocol is described in RFC 1288.

4.5.4. Classes in the Finger module

Class Description

AbstractFingerProxy Class encapsulating the abstract Finger proxy.

www.balasys.hu 38

Class AbstractFingerProxy e

Class Description
FingerProxy Class encapsulating the default Finger proxy.

Table 4.3. Classes of the Finger module

4.5.5. Class AbstractFingerProxy

This proxy implements the Finger protocol as specified in RFC 1288.

4.5.5.1. Attributes of AbstractFingerProxy

max_hop_count (integer, rw:r)
Default: 0

Maximum number of '@' characters in the request. Any text after the last allowed '@' character is stripped
from the request.

max_hostname_length (integer, rw:r)
Default: 30

Maximum number of characters in a single name of the hostname chain.

max_line_length (integer, rw:r)
Default: 132

Maximum number of characters in a single line in requests and responses.

max_username_length (integer, rw:r)
Default: 8

Maximum length of the username in a request.

request_detailed (integer, n/a:rw)

Default: n/a

Indicates if multi-line formatting request (/W prefix) was sent by the client (-1 parameter). Request for multi-line
formatting can be added/removed by the proxy during the fingerRequest event.

request_hostnames (string, n/a:rw)

Default: n/a

The hostname chain. The hostname chain can be modified by the proxy during the fingerRequest event.

request_username (string, n/a:rw)

Default: n/a

The username to be queried. The username can be modified by the proxy during the fingerRequest event.

www.balasys.hu 39

Class FingerProxy e

response_footer (string, rw:rw)
Default:

String to be appended by the proxy to each finger response.

response_header (string, n/a:rw)
Default: ""
String to be prepended by the proxy to each finger response.

strict_username_check (boolean, rw:r)
Default: TRUE

If enabled (TRUE), only requests for usernames containing alphanumeric characters and underscore
[a-zA-Z0-9_] are allowed.

timeout (integer, rw:r)

Default: n/a

Timeout value for the request in milliseconds.

4.5.5.2. AbstractFingerProxy methods

Method Description

fingerRequest(self, username, hostname) Function processing finger requests.

Table 4.4. Method summary

Method fingerRequest(self, username, hosthame)

This function is called by the Finger proxy to process requests. It can also modify request-specific attributes.

Arguments of fingerRequest

hostname (unknown, n/a:n/a)

Default: n/a

Destination hosts of the finger request.

username (unknown, n/a:n/a)

Default: n/a

Username to be fingered.

4.5.6. Class FingerProxy

Simple FingerProxy based on AbstractFingerProxy.

www.balasys.hu 40

Module Ftp e

4.6. Module Ftp

The Ftp module defines the classes constituting the proxy for the File Transfer Protocol (FTP).

4.6.1. The FTP protocol

File Transfer Protocol (FTP) is a protocol to transport files via a reliable TCP connection between a client and
a server. FTP uses two reliable TCP connections to transfer files: a simple TCP connection (usually referred
to as the Control Channel) to transfer control information and a secondary TCP connection (usually referred
to as the Data Channel) to perform the data transfer. It uses a command/response based approach, i.e. the client
issues a command and the server responds with a 3-digit status code and associated status information in text
format. The Data Channel can be initiated either from the client or the server; the Control Channel is always
started from the client.

The client is required to authenticate itself before other commands can be issued. This is performed using the
USER and PASS commands specifying username and password, respectively.

4.6.1.1. Protocol elements

The basic protocol is as follows: the client issues a request (also called command in FTP terminology) and the
server responds with the result. Both commands and responses are line based: commands are sent as complete
lines starting with a keyword identifying the operation to be performed. A response spans one or more lines,
each specifying the same 3-digit status code and possible explanation.

4.6.1.2. Data transfer

Certain commands (for example RETR, STOR or LIST) also have a data attachment which is transferred to
the peer. Data attachments are transferred in a separate TCP connection. This connection is established on-demand
on a random, unprivileged port when a data transfer command is issued.

Endpoint information of this data channel is exchanged via the PASV and PORT commands, or their newer
equivalents (EPSV and EPRT).

The data connection can either be initiated by the client (passive mode) or the server (active mode). In passive
mode (PASV or EPSV command) the server opens a listening socket and sends back the endpoint information
in the PASV response. In active mode (PORT or EPRT command) the client opens a listening socket and sends
its endpoint information as the argument of the PORT command. The source port of the server is usually either
20, or the port number of the Command Channel minus one.

— Example 4.2. FTP protocol sample

— 220 FTP server ready
USER account

331 Password required.
PASS password

230 User logged in.

SYST

215 UNIX Type: L8

PASV

227 Entering passive mode (192,168,1,1,4,0)
LIST

150 Opening ASCII mode data connection for file list
226-Transferring data in separate connection complete.

www.balasys.hu 41

Proxy behavior e

226 Quotas off
QUIT
221 Goodbye

4.6.2. Proxy behavior

FtpProxy is a module built for parsing commands of the Control Channel in the FTP protocol. It reads the
REQUEST at the client side, parses it and - if the local security policy permits - sends it to the server. The proxy
parses the arriving RESPONSES and sends them to the client if the policy permits that. FtpProxy uses a
PlugProxy to transfer the data arriving in the Data Channel. The proxy is capable of manipulating commands
and stacking further proxies into the Data Channel. Both transparent and non-transparent modes are supported.

The default low-level proxy implementation (AbstractFtpProxy) denies all requests by default. Different
commands and/or responses can be enabled by using one of the several predefined proxy classes which are
suitable for most tasks. Alternatively, use of the commands can be permitted individually using different
attributes. This is detailed in the following two sections.

4.6.2.1. Configuring policies for FTP commands and responses

Changing the default behavior of commands can be done by using the hash attribute request, indexed by the
command name (e.g.: USER or PWD). There is a similar attribute for responses called response, indexed by
the command name and the response code. The possible values of these hashes are shown in the tables below.
See Section 2.1, Policies for requests and responses (p. 4) for details. When looking up entries of the response
attribute hash, the lookup precedence described in Section 2.1.2, Response codes (p. 6) is used.

Action Description
FTP_REQ_ACCEPT Allow the request to pass.
FTP_REQ_REJECT Reject the request with the error message specified in
the second optional parameter.
FTP_REQ_ABORT Terminate the connection.
Table 4.5. Action codes for commands in FTP
Action Description
FTP_RSP_ACCEPT Allow the response to pass.
FTP_RSP_REJECT Modify the response to a general failure with error
message specified in the optional second parameter.
FTP_RSP_ABORT Terminate the connection.
Table 4.6. Action codes for responses in FTP
& | Example 4.3. Customizing FTP to allow only anonymous sessions

—— | This example calls a function called pUser (defined in the example) whenever a USER command is received. All other commands are
| —] accepted. The parameter of the USER command (i.e. the username) is examined: if it is 'anonymous' or 'Anonymous', the connection is
accepted, otherwise it is rejected.

class AnonFtp(FtpProxy):
def config(self):
self.request["USER"] = (FTP_REQ_POLICY, self.pUser)
self.request["*"] = (FTP_REQ_ACCEPT)

www.balasys.hu 42

Proxy behavior e

def pUser(self,command):
if self.request_parameter == "anonymous" or self.request_parameter == "Anonymous":
return FTP_REQ_ACCEPT
return FTP_REQ_REJECT

4.6.2.2. Configuring policies for FTP features and FTPS support

FTP servers send the list of supported features to the clients. For example, proftpd supports the following
features: LANG en, MDTM, UTF8, AUTH TLS, PBSZ, PROT, REST STREAM, SIZE. Zorp can change
the default behavior of Ftp features using the hash attribute features, indexed by the name of the feature
(e.g.: UTF8 or AUTH TLS). The possible actions are shown in the table below. See Section 2.1, Policies for
requests and responses (p. 4) for details.

The built-in Ftp proxies of Zorp permit the use of every feature by default.

Action Description

FTP_FEATURE_ACCEPT Forward the availability of the feature from the server
to the client.

FTP_FEATURE_DROP Remove the feature from the feature list sent by the
Server.

FTP_FEATURE_INSERT Add the feature into the list of available features.

Table 4.7. Policy about enabling FTP features.

Enabling FTPS connections

For FTPS connections to operate correctly, the FTP server and client applications must comply to the FTP
Security Extensions (RFC 2228) and Securing FTP with TLS (RFC 4217) RFCs.

For FTPS connections, the AUTH TLS, PBSZ, PROT features must be accepted. Also, STARTTLS support
must be properly configured. See Section 3.2, Handling TLS and SSL connections in Application-level
Gateway (p. 10) for details.

If the proxy is configured to disable encryption between Zorp and the client, the proxy automatically removes
the AUTH TLS, PBSZ, PROT features from the list sent by the server.

If STARTTLS connections are accepted on the client side
(self.ssl.client_security=SSL_ACCEPT_STARTTLS), but TLS-forwarding is disabled on the server
side, the proxy automatically inserts the AUTH TLS, PBSZ, PROT features into the list sent by the server.
These features are inserted even if encryption is explicitly disabled on the server side or the server does not
support the FEAT command, making one-sided STARTTLS support feasible.

‘Warning
A When using inband routing with the FTPS protocol, Zorp compares the server's certificate to its hostname. The subject_alt_name
parameter (or the Common Name parameter if the subject_alt_name parameter is empty) of the server's certificate must contain the
hostname or the IP address (as resolved from the Zorp host) of the server (e.g., ftp.example. com).

Alternatively, the Common Name or the subject_alt_name parameter can contain a generic hostname, e.g., *. example.com.

Note that if the Common Name of the certificate contains a generic hostname, do not specify a specific hostname or an IP address in the
subject_alt_name parameter.

www.balasys.hu 43

Proxy behavior e

Note
@ m The Zorp Ftp proxy does not support the following FTPS-related commands: REIN, CCC, CDC.

m STARTTLS is supported in nontransparent scenarios as well.

— Example 4.4. Configuring FTPS support
— | This example is a standard FtpProxy with FTPS support enabled.

class FtpsProxy(FtpProxy):
def config(self):
FtpProxy.config(self)
self.max_password_length=64

EncryptionPolicy(name="ForwardSTARTTLS",
encryption=ForwardStartTLSEncryption(client_verify=ClientCertificateverifier(),
client_ssl options=ClientSSLOptions(), server_verify=ServerCertificateverifier(),
server_ssl_options=ServerSSLOptions(),
client_certificate generator=DynamicCertificate(private key=PrivateKey.fromFile(key_file path="/etc/key.d/ZMS Engine/key.pem"),
trusted_ca=Certificate.fromFile(certificate_file_path="/etc/ca.d/certs/my-trusted-ca-cert.pem",
private_key=PrivateKey.fromFile("/etc/ca.d/keys/my-trusted-ca-cert.pem")),
untrusted_ca=Certificate.fromFile(certificate_file_path="/etc/ca.d/certs/my-untrusted-ca-cert.pem",
private_key=PrivateKey.fromFile("/etc/ca.d/keys/my-untrusted-ca-cert.pem")))))

def demo()
Service(name="'demo/MyFTPSService', router=TransparentRouter(), chainer=ConnectChainer(),
proxy_class=FtpsProxy, max_instances=0, max_sessions=0, keepalive=Z_KEEPALIVE_NONE,
encryption_policy="ForwardSTARTTLS")

Rule(rule_id=2,
proto=6,
service="'demo/MyFTPSService'

)

4.6.2.3. Stacking

The available stacking modes for this proxy module are listed in the following table. For additional information
on stacking, see Section 2.3.1, Proxy stacking (p. 7).

Action Description
FTP_STK_DATA Pass the data to the stacked proxy or program.
FTP_STK_NONE No proxy stacked.

Table 4.8. Stacking policy.

4.6.2.4. Configuring inband authentication

The Ftp proxy supports inband authentication as well to use the built-in authentication method of the FTP and
FTPS protocols to authenticate the client. The authentication itself is performed by the ZAS backend configured
for the service.

If the client uses different usernames on ZAS and the remote server (e.g., he uses his own username to
authenticate to ZAS, but anonymous on the target FTP server), the client must specify the usernames and
passwords in the following format:

Username:

<ftp user>@<proxy user>@<remote site>[:<port>]

www.balasys.hu 44

Related standards e

Password:

<ftp password>@<proxy password>

Alternatively, all the above information can be specified as the username:

<ftp user>@<proxy user>@<remote site>[:<port>]:<ftp password>@<proxy password>

Warning
A When using inband routing with the FTPS protocol, Zorp compares the server's certificate to its hostname. The subject_alt_name

4.6.3. Related standards

parameter (or the Common Name parameter if the subject_alt_name parameter is empty) of the server's certificate must contain the
hostname or the IP address (as resolved from the Zorp host) of the server (e.g., ftp.example.com).

Alternatively, the Common Name or the subject_alt_name parameter can contain a generic hostname, e.g., *. example.com.

Note that if the Common Name of the certificate contains a generic hostname, do not specify a specific hostname or an IP address in the
subject_alt_name parameter.

m The File Transfer Protocol is described in RFC 959.

m FTP Security Extensions including the FTPS protocol and securing FTP with TLS are described in

RFC 2228 and RFC 4217.

4.6.4. Classes in the Ftp module

Class Description

AbstractFtpProxy Class encapsulating the abstract FTP proxy.

FtpProxy Default Ftp proxy based on AbstractFtpProxy.

FtpProxyAnonRO FTP proxy based on AbstractFtpProxy, only allowing
read-only access to anonymous users.

FtpProxyAnonRW FTP proxy based on AbstractFtpProxy, allowing full
read-write access, but only to anonymous users.

FtpProxyRO FTP proxy based on AbstractFtpProxy, allowing
read-only access to any user.

FtpProxyRW FTP proxy based on AbstractFtpProxy, allowing full
read-write access to any user.

4.6.5. Class AbstractFtpProxy

Table 4.9. Classes of the Ftp module

This proxy implements the FTP protocol as specified in RFC 959. All traffic and commands are denied by
default. Consequently, either customized Ftp proxy classes derived from the abstract class should be used, or
one of the predefined classes (e.g.: FtpProxy, FtpProxyRO, etc.).

www.balasys.hu

45

Class AbstractFtpProxy e

4.6.5.1. Attributes of AbstractFtpProxy

active_connection_mode (enum, rw:r)
Default: FTP_ACTIVE_MINUSONE

In active mode the server connects the client. By default this must be from Command Channel port minus one
(FTP_ACTIVE_MINUSONE). Alternatively, connection can also be performed either from port number 20
(FTP_ACTIVE_TWENTY) or from a random port (FTP_ACTIVE_RANDOM).

auth_tls_ok_client (boolean, n/a:r)
Default: ""

Shows whether the client-side authentication was performed over a secure channel.

auth_tls_ok_server (boolean, n/a:r)
Default: ""

Shows whether the server-side authentication was performed over a secure channel.

buffer_size (integer, rw:r)
Default: 4096

Buffer size for data transfer in bytes.

data_mode (enum, rw:r)
Default: FTP_DATA_KEEP

The type of the FTP connection on the server side can be manipulated: leave it as the client requested
(FTP_DATA_KEEP), or force passive (FTP_DATA_PASSIVE) or active (FTP_DATA_ACTIVE) connection.

data_port_max (integer, rw:r)
Default: 41000

On the proxy side, ports equal to or below the value of data_port_max can be allocated as the data channel.

data_port_min (integer, rw:r)
Default: 40000

On the proxy side, ports equal to or above the value of data_port_min can be allocated as the data channel.

data_protection_enabled_client (boolean, n/a:r)
Default: ""

Shows whether the data channel is encrypted or not on the client-side.

data_protection_enabled_server (boolean, n/a:r)
Default: ""

Shows whether the data channel is encrypted or not on the server-side.

www.balasys.hu 46

Class AbstractFtpProxy e

features (complex, rw:rw)
Default:

Hash containing the filtering policy for FTP features.

hostname (string, n/a:rw)
Default:

The hostname of the FTP server to connect to, when inband routing is used.

hostport (integer, n/a:rw)
Default:

The port of the FTP server to connect to, when inband routing is used.

masq_address_client (string, rw:r)
Default: ""

IP address of the firewall appearing on the client side. If its value is set, Zorp sends this IP regardless of its
true IP (where it is binded). This attribute may be used when network address translation is performed before
Zorp.

masq_address_server (string, rw:r)
Default: ""

IP address of the firewall appearing on the server side. If its value is set, Zorp sends this IP regardless of its
true IP (where it is binded). This attribute may be used when network address translation is performed before
Zorp.

max_continuous_line (integer, rw:r)
Default: 100

Maximum number of answer lines for a command.

max_hostname_length (integer, rw:r)
Default: 128

Maximum length of hostname. Used only in non-transparent mode.

max_line_length (integer, rw:r)
Default: 255

Maximum length of a line that the proxy is allowed to transfer. Requests/responses exceeding this limit are
dropped.

max_password_length (integer, rw:r)
Default: 64

Maximum length of the password.

www.balasys.hu 47

Class AbstractFtpProxy e

max_username_length (integer, rw:r)
Default: 32

Maximum length of the username.

password (string, n/a:rw)
Default:

The password to be sent to the server.

permit_client_bounce_attack (boolean, rw:rw)
Default: FALSE

If enabled the IP addresses of data channels will not need to match with the IP address of the control channel,
permitting the use of FXP while increasing the security risks.

permit_empty_command (boolean, rw:r)
Default: TRUE

Enable transmission of lines without commands.

permit_server_bounce_attack (boolean, rw:rw)
Default: FALSE

If enabled the IP addresses of data channels will not need to match with the IP address of the control channel,
permitting the use of FXP while increasing the security risks.

permit_unknown_command (boolean, rw:r)
Default: FALSE

Enable the transmission of unknown commands.

proxy_password (string, n/a:rw)
Default:

The password to be used for proxy authentication given by the user, when inband authentication is used.

proxy_username (string, n/a:rw)
Default:

The username to be used for proxy authentication given by the user, when inband authentication is used.

request (complex, rw:rw)
Default:

Normative policy hash for FTP requests indexed by command name (e.g.: "USER", "PWD" etc.). See also
Section 2.1, Policies for requests and responses (p. 4).

www.balasys.hu 48

Class AbstractFtpProxy e

request_command (string, n/a:rw)

Default: n/a

When a request is evaluated on the policy level, this variable contains the requested command.

request_parameter (string, n/a:rw)

Default: n/a

When a request is evaluated on the policy level, this variable contains the parameters of the requested command.

request_stack (complex, rw:rw)
Default:

Hash containing the stacking policy for the FTP commands. The hash is indexed by the FTP command (e.g.
RETR, STOR). See also Section 2.3.1, Proxy stacking (p. 7).

response (complex, rw:rw)
Default:

Normative policy hash for FTP responses indexed by command name and answer code (e.g.: "USER","331";
"PWD","200" etc.). See also Section 2.1, Policies for requests and responses (p. 4).

response_parameter (string, n/a:rw)
Default:

When a response is evaluated on the policy level, this variable contains answer parameters.

response_status (string, n/a:rw)
Default:

When a response is evaluated on the policy level, this variable contains the answer code.

response_strip_msg (boolean, rw:r)
Default: FALSE

Strip the response message and only send the response code.

strict_port_checking (boolean, rw:rw)
Default: TRUE

If enabled Zorp will strictly check the foreign port: in active mode the server must be connected on port 20,
while in any other situation the foreign port must be above 1023.

target_port_range (string, rw:r)
Default: "21"

The port where the client can connect through a non-transparent FtpProxy.

www.balasys.hu 49

Class FtpProxy e

timeout (integer, rw:r)
Default: 300000

General I/0 timeout in milliseconds. When there is no specific timeout for a given operation, this value is
used.

transparent_mode (boolean, rw:r)
Default: TRUE
Specifies if the proxy works in transparent (TRUE) or non-transparent (FALSE) mode.

username (string, n/a:rw)
Default:

The username authenticated to the server.

valid_chars_username (string, rw:r)
Default: "a-zA-Z0-9._@"

List of the characters accepted in usernames.

4.6.6. Class FtpProxy

A permitting Ftp proxy based on the AbstractFtpProxy, allowing all commands, responses, and features,
including unknown ones. The connection is terminated if a response with the answer code 421 is received.

4.6.7. Class FtpProxyAnonRO

FTP proxy based on AbstractFtpProxy, enabling read-only access (i.e. only downloading) to anonymous users
(uploads and usernames other than 'anonymous' or 'ftp' are disabled). Commands and return codes are strictly
checked, unknown commands and responses are rejected. Every feature is accepted.

The ABOR; ACCT; AUTH; CDUP; CWD; EPRT; EPSV; FEAT; LIST; MODE; MDTM; NLST; NOOP;
OPTS; PASV; PASS; PORT; PWD; QUIT; REST; RETR; SIZE; STAT; STRU,; SYST; TYPE; and USER
commands are permitted, the CLNT; XPWD; MACB commands are rejected.

4.6.8. Class FtpProxyAnonRW

FTP proxy based on AbstractFtpProxy, enabling full read-write access to anonymous users (the 'anonymous'
and 'ftp' usernames are permitted). Commands and return codes are strictly checked, unknown commands and
responses are rejected. Every feature is accepted.

The ABOR; ACCT; APPE; CDUP; CWD; DELE; EPRT; EPSV; LIST; MKD; MODE; MDTM; NLST; NOOP;
OPTS; PASV; PASS; PORT; PWD; QUIT; RMD; RNFR; RNTO; REST; RETR; SIZE; STAT; STOR; STOU;
STRU; SYST; TYPE; USER and FEAT commands are permitted, the AUTH; CLNT; XPWD; MACB commands
are rejected.

www.balasys.hu 50

Class FtpProxyRO e

4.6.9. Class FtpProxyRO

FTP proxy based on AbstractFtpProxy, enabling read-only access to any user. Commands and return codes are
strictly checked, unknown commands and responses are rejected. Every feature is accepted.

The ABOR; ACCT; AUTH; CDUP; CWD; EPRT; EPSV; FEAT; LIST; MODE; MDTM; NLST; NOOP;
OPTS; PASV; PASS; PORT; PWD; QUIT; REST; RETR; SIZE; STAT; STRU; SYST; TYPE; and USER
commands are permitted, the CLNT; XPWD; MACB commands are rejected.

4.6.10. Class FtpProxyRW

FTP proxy based on AbstractFtpProxy, enabling full read-write access to any user. Commands and return codes
are strictly checked, unknown commands and responses are rejected. Every feature is accepted.

The ABOR; ACCT; AUTH; CDUP; CWD; EPRT; EPSV; FEAT; LIST; MODE; MDTM; NLST; NOOP;
OPTS; PASV; PASS; PORT; PWD; QUIT; REST; RETR; SIZE; STAT; STRU; SYST; TYPE; and USER
commands are permitted, the CLNT; XPWD; MACB commands are rejected.

4.7. Module Http

The Http module defines the classes constituting the proxy for the HyperText Transfer Protocol (HTTP). HTTP
is the protocol the Web is based on, therefore it is the most frequently used protocol on the Internet. It is used
to access different kinds of content from the Web. The type of content retrieved via HTTP is not restricted, it
can range from simple text files to hypertext files and multimedia formats like pictures, videos or audio files.

4.7.1. The HTTP protocol

HTTP is an open application layer protocol for hypermedia information systems. It basically allows an open-ended
set of methods to be applied to resources identified by Uniform Resource Identifiers (URIs).

4.7.1.1. Protocol elements

HTTP is a text based protocol where a client sends a request comprising of a METHOD, an URI and associated
meta information represented as MIME-like headers, and possibly a data attachment. The server responds with
a status code, a set of headers, and possibly a data attachment. Earlier protocol versions perform a single
transaction in a single TCP connection, HTTP/1.1 introduces persistency where a single TCP connection can
be reused to perform multiple transactions.

An HTTP method is a single word - usually spelled in capitals - instructing the server to apply a function to
the resource specified by the URI. Commonly used HTTP methods are "GET", "POST" and "HEAD". HTTP
method names are not restricted in any way, other HTTP based protocols (such as WebDAV) add new methods
to the protocol while keeping the general syntax intact.

Headers are part of both the requests and the responses. Each header consists of a name followed by a colon
(:") and a field value. These headers are used to specify content-specific and protocol control information.

The response to an HTTP request starts with an HTTP status line informing the client about the result of the
operation and an associated message. The result is represented by three decimal digits, the possible values are
defined in the HTTP RFCs.

www.balasys.hu 51

Proxy behavior e

4.7.1.2. Protocol versions

The protocol has three variants, differentiated by their version number. Version 0.9 is a very simple protocol
which allows a simple octet-stream to be transferred without any meta information (e.g.: no headers are associated
with requests or responses).

Version 1.0 introduces MIME-like headers in both requests and responses; headers are used to control both the
protocol (e.g.: the "Connection" header) and to give information about the content being transferred (e.g.: the
"Content-Type" header). This version has also introduced the concept of name-based virtual hosts.

Building on the success of HTTP/1.0, version 1.1 of the protocol adds persistent connections (also referred to
as "connection keep-alive") and improved proxy control.

4.7.1.3. Bulk transfer

Both requests and responses might have an associated data blob, also called an entity in HTTP terminology.
The size of the entity is determined using one of three different methods:

1. The complete size of the entity is sent as a header (the Content-Length header).

2. The transport layer connection is terminated when transfer of the blob is completed (used by HTTP/0.9
and might be used in HTTP/1.1 in non-persistent mode).

3. Instead of specifying the complete length, smaller chunks of the complete blob are transferred, and
each chunk is prefixed with the size of that specific chunk. The end of the stream is denoted by a
zero-length chunk. This mode is also called chunked encoding and is specified by the
Transfer-Encoding header.

— Example 4.5. Example HTTP transaction

——5 | GET /index.html HTTP/1.1

Host: www.example.com
Connection: keep-alive
User-Agent: My-Browser-Type 6.0

HTTP/1.1 200 OK
Connection: close
Content-Length: 14

<html>
</html>

4.7.2. Proxy behavior

The default low-level proxy implementation (AbstractHttpProxy) denies all requests by default. Different
requests and/or responses can be enabled by using one of the several predefined proxy classes which are suitable
for most tasks. Alternatively, a custom proxy class can be derived from AbstractHttpProxy and the requests
and responses enabled individually using different attributes.

Several examples and considerations on how to enable virus filtering in the HTTP traffic are discussed in the
Technical White Paper and Tutorial Virus filtering in HTTP, available at the BalaSys Documentation Page
http://www.balasys.hu/documentation/.

www.balasys.hu 52

http://www.balasys.hu/documentation/

Proxy behavior e

4.7.2.1. Transparent and non-transparent modes

HttpProxy is able to operate both in transparent and non-transparent mode. In transparent mode, the client does
not notice (or even know) that it is communicating through a proxy. The client communicates using normal
server-style requests.

In non-transparent mode, the address and the port of the proxy server must be set on the client. In this case the
client sends proxy-style requests to the proxy.

— Example 4.6. Proxy style HTTP query

— GET http://www.example.com/index.html HTTP/1.1
Host: www.example.com

Connection: keep-alive

User-Agent: My-Browser-Type 6.0

HTTP/1.1 200 OK
Connection: close
Content-Length: 14

<html>
</html>

In non-transparent mode it is possible to request the use of the SSL protocol through the proxy, which means
the client communicates with the proxy using the HTTP protocol, but the proxy uses HTTPS to communicate
with the server. This technique is called data tunneling.

— Example 4.7. Data tunneling with connect method

— CONNECT www.example.com:443 HTTP/1.1
Host: www.example.com
User-agent: My-Browser-Type 6.0

HTTP/1.0 200 Connection established
Proxy-agent: My-Proxy/1.1

4.7.2.2. Configuring policies for HTTP requests and responses

Changing the default behavior of requests is possible using the request attribute. This hash is indexed by the
HTTP method names (e.g.: GET or POST). The response attribute (indexed by the request method and the
response code) enables the control of HTTP responses. The possible actions are described in the following
tables. See also Section 2.1, Policies for requests and responses (p. 4). When looking up entries of the
response attribute hash, the lookup precedence described in Section 2.1.2, Response codes (p. 6) is used.

Action Description
HTTP_REQ_ACCEPT Allow the request to pass.
HTTP_REQ_REJECT Reject the request. The reason for the rejection can be

specified in the optional second argument.

HTTP_REQ_ABORT Terminate the connection.

www.balasys.hu 53

Proxy behavior e

Action Description

HTTP_REQ POLICY Call the function specified to make a decision about
the event. The function receives four arguments: self,
method, url, version. See Section 2.1, Policies for
requests and responses (p. 4) for details.

Table 4.10. Action codes for HTTP requests

Action Description
HTTP_RSP_ACCEPT Allow the response to pass.
HTTP_RSP_DENY Reject the response and return a policy violation page

to the client.

HTTP_RSP_REJECT Reject the response and return a policy violation page
to the client, with error information optionally specified
as the second argument.

HTTP_RSP POLICY Call the function specified to make a decision about
the event. The function receives five parameters: self,
method, url, version, response. See Section 2.1, Policies
for requests and responses (p. 4) for details.

Table 4.11. Action codes for HTTP responses

— Example 4.8. Implementing URL filtering in the HTTP proxy

% This example calls the filterURL function (defined in the example) whenever a HTTP GET request is received. If the requested URL is
| w—1 'http://www.disallowedsite.com', the request is rejected and an error message is sent to the client.

class DmzHTTP(HttpProxy):
def config(self):
HttpProxy.config(self)
self.request["GET"] = (HTTP_REQ_POLICY, self.filterURL)

def filterURL(self, method, url, version):
if (url == "http://www.disallowedsite.com"):
self.error_info = 'Access of this content is denied by the local policy.'
return HTTP_REQ_REJECT
return HTTP_REQ_ACCECT

— Example 4.9. 404 response filtering in HTTP
— | Inthis example the 404 response code to GET requests is rejected, and a custom error message is returned to the clients instead.

class DmzHTTP(HttpProxy):
def config(self):
HttpProxy.config(self)
self.response["GET", "404"] = (HTTP_RSP_POLICY, self.filter404)

def filter404(self, method, url, version, response):
self.error_status = 404
self.error_info = "Requested page was not accessible."
return HTTP_RSP_REJECT

www.balasys.hu 54

Proxy behavior e

4.7.2.3. Configuring policies for HTTP headers

Both request and response headers can be modified by the proxy during the transfer. New header lines can be
inserted, entries can be modified or deleted. To change headers in the requests and responses use the
request_header hash or the response_header hash, respectively.

Similarly to the request hash, these hashes are indexed by the header name (like "User-Agent") and contain an
actiontuple describing the action to take.

By default, the proxy modifies only the "Host", "Connection", "Proxy-Connection" and "Transfer-Encoding"
headers. "Host" headers need to be changed when the proxy modifies the URL; "(Proxy-)Connection" is changed
when the proxy turns connection keep-alive on/off; "Transfer-Enconding" is changed to enable chunked
encoding.

Action Description

HTTP_HDR_ABORT Terminate the connection.

HTTP_HDR_ACCEPT Accept the header.

HTTP_HDR_DROP Remove the header.

HTTP_HDR _POLICY Call the function specified to make a decision about

the event. The function receives three parameters: self,
hdr_name, and hdr_value.

HTTP_HDR_CHANGE_NAME Rename the header to the name specified in the second
argument.

HTTP_HDR_CHANGE_VALUE Change the value of the header to the value specified
in the second argument.

HTTP_HDR_CHANGE_BOTH Change both the name and value of the header to the
values specified in the second and third arguments,
respectively.

HTTP_HDR_INSERT Insert a new header defined in the second argument.

HTTP_HDR_REPLACE Remove all existing occurrences of a header and replace

them with the one specified in the second argument.

Table 4.12. Action codes for HTTP headers

— Example 4.10. Header filtering in HTTP

= | The following example hides the browser used by the client by replacing the value of the User-Agent header to Lynx in all requests. The
| w— use of cookies is disabled as well.

class MyHttp(HttpProxy):
def config(self):
HttpProxy.config(self)
self.request_header["User-Agent"] = (HTTP_HDR_CHANGE_VALUE, "Lynx 2.4.1")
self.request_header["Cookie"] = (HTTP_HDR_POLICY, self.processCookies)
self.response_header["Set-Cookie"] = (HTTP_HDR_DROP,)

def processCookies(self, name, value):
You could change the current header in self.current_header_name
or self.current_header_value, the current request url is
in self.request_url
return HTTP_HDR_DROP

www.balasys.hu 55

Proxy behavior e

4.7.2.4. Redirecting URLs

URLs or sets of URLs can be easily rejected or redirected to a local mirror by modifying some attributes during
request processing.

When an HTTP request is received, normative policy chains are processed (self.request,
self.request_header). Policy callbacks for certain events can be configured with the HTTP_REQ_ POLICY
or HTTP_HDR_POLICY directives. Any of these callbacks may change the request_ur1 attribute, instructing
the proxy to fetch a page different from the one specified by the browser. Please note that this is transparent to
the user and does not change the URL in the browser.

— Example 4.11. URL redirection in HTTP proxy
— | This example redirects all HTTP GET requests to the 'http://www.example.com/' URL by modifying the value of the requested URL.

class MyHttp(HttpProxy):
def config(self):
HttpProxy.config(self)
self.request["GET"] = (HTTP_REQ_POLICY, self.filterURL)

def filterURL(self, method, url, version):
self.request_url = "http://www.example.com/"
return HTTP_REQ_ACCEPT

— Example 4.12. Redirecting HTTP to HTTPS
— | This example redirects all incoming HTTP connections to an HTTPS URL.

class HttpProxyHttpsredirect(HttpProxy):
def config(self):
HttpProxy.config(self)
self.error_silent = TRUE
self.request["GET"] = (HTTP_REQ_POLICY, self.regRedirect)

def regRedirect(self, method, url, version):
self.error_status = 301
#self.error_info = 'HTTP/1.0 301 Moved Permanently'
self.error_headers="Location: https://%s/" % self.request_url_host
return HTTP_REQ_REJECT

4.7.2.5. Request types
Zorp differentiates between two request types: server requests and proxy request.

m Server requests are sent by browsers directly communicating with HTTP servers. These requests
include an URL relative to the server root (e.g.: /index.html), and a 'Host' header indicating which
virtual server to use.

m Proxy requests are used when the browser communicates with an HTTP proxy. These requests include
a fully specified URL (e.g.: http://www.example.com/index.html).

Zorp determines the type of the incoming request from the request URL, even if the Proxy-connection header
exist. As there is no clear distinction between the two request types, the type of the request cannot always be
accurately detected automatically, though all common cases are covered.

Requests are handled differently in transparent and non-transparent modes.

www.balasys.hu 56

Proxy behavior e

m A transparent HTTP proxy (transparent_mode attribute is TRUE) is meant to be installed in front
of a network where clients do not know about the presence of the firewall. In this case the proxy
expects to see server type requests only. If clients communicate with a real HTTP proxy through the
firewall, proxy type requests must be explicitly enabled using the permit_proxy requests
attribute, or transparent mode has to be used.

®m The use of non-transparent HTTP proxies (transparent_mode attribute is FALSE) must be
configured in web browsers behind the firewall. In this case Zorp expects proxy requests only, and
emits server requests (assuming parent_proxy is not set).

4.7.2.6. Using parent proxies

Parent proxies are non-transparent HTTP proxies used behind Zorp. Two things have to be set in order to use
parent proxies. First, select a router which makes the proxy connect to the parent proxy, this can be either
InbandRouter() or DirectedRouter(). Second, set the parent_proxy and parent_proxy_port attributes in
the HttpProxy class. Setting these attributes results in proxy requests to be emitted to the target server both in
transparent and non-transparent mode.

The parent proxy attributes can be set both in the configuration phase (e.g.: config() event), or later on a
per-request basis. This is possible because the proxy re-connects.

— Example 4.13. Using parent proxies in HTTP
—— | Inthis example the MyHittp proxy class uses a parent proxy. For this the domain name and address of the parent proxy is specified, and
| w—] a service using an InbandRouter is created.

class MyHttp(HttpProxy):
def config(self):
HttpProxy.config(self)
self.parent_proxy = "proxy.example.com"
self.parent_proxy_port = 3128

def instance():
Service("http", MyHttp, router=InbandRouter())
Listener (SockAddrInet('10.0.0.1", 80), "http")

4.7.2.7. FTP over HTTP

In non-transparent mode it is possible to let Zorp process ftp:// URLs, effectively translating HTTP requests to
FTP requests on the fly. This behaviour can be enabled by setting permit_ftp_over_http to TRUE and
adding port 21 to target_port_range. Zorp currently supports passive mode transfers only.

4.7.2.8. Error messages

There are cases when the HTTP proxy must return an error page to the client to indicate certain error conditions.
These error messages are stored as files in the directory specified by the error_files_directory attribute,
and can be customized by changing the contents of the files in this directory.

Each file contains plain HTML text, but some special macros are provided to dynamically add information to
the error page. The following macros can be used:
B @INFO@ -- further error information as provided by the proxy

B @VERSION@ -- Zorp version number

www.balasys.hu 57

Related standards e

B @DATE@ -- current date
B @HOST@ -- hostname of Zorp

It is generally recommended not to display error messages to untrusted clients, as they may leak confidential
information. To turn error messages off, set the error_silent attribute to TRUE, or strip error files down to
a minimum.

®

4.7.2.9. Stacking

Note
The language of the messages can be set using the config.options.language global option, or individually for every Http proxy
using the Ianguage parameter. See Appendix B, Global options of Zorp (p. 328) for details.

HTTP supports stacking proxies for both request and response entities (e.g.: data bodies). This is controlled by
the request_stack and response_stack attribute hashes. See also Section 2.3.1, Proxy stacking (p. 7).

There are two stacking modes available: HTTP_STK_DATA sends only the data portion to the downstream
proxy, while HTTP_STK_MIME also sends all header information to make it possible to process the data body
as a MIME envelope. Please note that while it is possible to change the data part in the stacked proxy, it is not
possible to change the MIME headers - they can be modified only by the HTTP proxy. The possible parameters
are listed in the following tables.

Action Description

HTTP_STK_NONE No additional proxy is stacked into the HTTP proxy.

HTTP_STK_DATA The data part of the HTTP traffic is passed to the
specified stacked proxy.

HTTP_STK_MIME The data part including header information of the HTTP
traffic is passed to the specified stacked proxy.

Table 4.13. Constants for proxy stacking

Please note that stacking is skipped altogether if there is no body in the message.

4.7.2.10. Webservers returning data in 205 responses

Certain webserver applications may return data entities in 205 responses. This is explicitly prohibited by the
RFCs, but Zorp permits such responses for interoperability reasons.

4.7.3. Related standards

m The Hypertext Transfer Protocol -- HTTP/1.1 protocol is described in RFC 2616.
m The Hypertext Transfer Protocol -- HTTP/1.0 protocol is described in RFC 1945.

www.balasys.hu 58

Classes in the Http module e

4.7.4. Classes in the Http module

Class Description

AbstractHttpProxy Class encapsulating the abstract HTTP proxy.

HttpProxy Default HTTP proxy based on AbstractHttpProxy.

HttpProxyNonTransparent HTTP proxy based on HttpProxy, operating in
non-transparent mode.

HttpProxyURIFilter HTTP proxy based on HttpProxy, with URI filtering
capability.

HttpProxyURIFilterNonTransparent HTTP proxy based on HttpProxyURIFilter, with URI
filtering capability and permitting non-transparent
requests.

HttpWebdavProxy HTTP proxy based on HttpProxy, allowing WebDAV
extensions.

NontransHttpWebdavProxy HTTP proxy based on HttpProxyNonTransparent,
allowing WebDAV extension in non-transparent
requests.

Table 4.14. Classes of the Http module

4.7.5. Class AbstractHttpProxy

This class implements an abstract HTTP proxy - it serves as a starting point for customized proxy classes, but
is itself not directly usable. Service definitions should refer to a customized class derived from AbstractHttpProxy,
or one of the predefined proxy classes, such as HttpProxy or HttpProxyNonTransparent. AbstractHttpProxy
denies all requests by default.

4.7.5.1. Attributes of AbstractHttpProxy

auth_by_cookie (boolean, rw:r)
Default: FALSE

Authentication informations for one-time-password mode is organized by a cookie not the address of the client.

auth_by_form (boolean, rw:r)
Default: FALSE

When enabled, and the client tries to access an URL that requires authentication, Zorp displays webpage where
users can enter their authentication information. If the authentication is successful, the result is cached in a
cookie.

auth_cache_time (integer, rw:r)
Default: 0

Caching authentication information this amount of seconds.

www.balasys.hu 59

Class AbstractHttpProxy e

auth_cache_update (boolean, rw:r)
Default: FALSE

Update authentication cache by every connection.

auth_forward (boolean, rw:rw)
Default: FALSE

Controls whether inband authentication information (username and password) should be forwarded to the
upstream server. When a parent proxy is present, the incoming authentication request is put into a
'Proxy-Authorization' header. In other cases the ' WWW-Authorization' header is used.

auth_realm (string, w:r)
Default: "Zorp HTTP auth”

The name of the authentication realm to be presented to the user in the dialog window during inband
authentication.

buffer_size (integer, rw:r)
Default: 1500
Size of the I/0 buffer used to transfer entity bodies.

connect_proxy (class, rw:rw)

Default: PlugProxy

For CONNECT requests the HTTP proxy starts an independent proxy to control the internal protocol. The
connect_proxy attribute specifies which proxy class is used for this purpose.

connection_mode (enum, n/a:rw)

Default: n/a

This value reflects the state of the session. If the value equals to ' HTTP_CONNECTION_CLOSE, the session
will be closed after serving the current request. Otherwise, if the value is ' HTTP_CONNECTION_KEEPALIVE'
another request will be fetched from the client. This attribute can be used to forcibly close a keep-alive
connection.

current_header_name (string, n/a:rw)

Default: n/a

Name of the header. It is defined when the header is processed, and can be modified by the proxy to actually
change a header in the request or response.

current_header_value (string, n/a:rw)

Default: n/a

Value of the header. It is defined when the header is processed, and can be modified by the proxy to actually
change the value of the header in the request or response.

www.balasys.hu 60

Class AbstractHttpProxy e

default_port (integer, rw:rw)
Default: 80

This value is used in non-transparent mode when the requested URL does not contain a port number. The
default should be 80, otherwise the proxy may not function properly.

enable_url_filter (boolean, rw:r)
Default: FALSE
Enables URL filtering in HTTP requests.

enable_url_filter_dns (boolean, rw:r)
Default: FALSE

Enables DNS- and reverse-DNS resolution to ensure that a domain or URL is correctly categorized even when
it is listed in the database using its domain name, but the client tries to access it with its IP address (or vice-versa).

error_files_directory (string, rw:rw)

Default: "/usr/share/zorp/http"

Location of HTTP error messages.

error_headers (string, n/a:rw)

Default: n/a

A string included as a header in the error response. The string must be a valid header and must end with a
sequence.

error_info (string, n/a:rw)

Default: n/a

A string to be included in error messages.

error_msg (string, n/a:rw)

Default: n/a

A string used as an error message in the HTTP status line.

error_silent (boolean, rw:rw)
Default: FALSE

Turns off verbose error reporting to the HTTP client (makes firewall fingerprinting more difficult).

error_status (integer, rw:rw)
Default: 500

If an error occurs, Zorp uses this value as the status code of the HTTP response it generates.

www.balasys.hu 61

Class AbstractHttpProxy e

keep_persistent (boolean, rw:r)
Default: FALSE

Try to keep the connection to the client persistent even if the server does not support it.

language (string, rw:r)

Default: "en"

Specifies the language of the HTTP error pages displayed to the client. English (en) is the default. Other
supported languages: de (German); hu (Hungarian).

max_auth_time (integer, rw:rw)
Default: 0

Request password authentication from the client, invalidating cached one-time-passwords. If the time specified
(in seconds) in this attribute expires, Zorp requests a new authentication from the client browser even if it still
has a password cached.

max_body_length (integer, rw:rw)
Default: 0

Maximum allowed length of an HTTP request or response body. The default "0" value means that the length
of the body is not limited.

max_chunk_length (integer, rw:rw)
Default: 0

Maximum allowed length of a single chunk when using chunked transfer-encoding. The default "0" value
means that the length of the chunk is not limited.

max_header_lines (integer, rw:rw)
Default: 50

Maximum number of header lines allowed in a request or response.

max_hostname_length (integer, rw:rw)
Default: 256

Maximum allowed length of the hostname field in URLSs.

max_keepalive_requests (integer, rw:rw)
Default: 0

Maximum number of requests allowed in a single session. If the number of requests in the session the reaches
this limit, the connection is terminated. The default "0" value allows unlimited number of requests.

max_line_length (integer, rw:r)
Default: 4096

www.balasys.hu 62

Class AbstractHttpProxy e

max_line_length (integer, rw:r)

Maximum allowed length of lines in requests and responses. This value does not affect data transfer, as data
is transmitted in binary mode.

max_url_length (integer, rw:rw)
Default: 4096

Maximum allowed length of an URL in a request. Note that this directly affects forms using the 'GET' method
to pass data to CGI scripts.

parent_proxy (string, rw:rw)
Default: ""

The address or hostname of the parent proxy to be connected. Either DirectedRouter or InbandRouter has to
be used when using parent proxy.

parent_proxy_port (integer, rw:rw)
Default: 3128

The port of the parent proxy to be connected.

permit_ftp_over_http (boolean, rw:r)
Default: FALSE

Allow processing FTP URLSs in non-transparent mode.

permit_http09_responses (boolean, rw:r)
Default: TRUE

Allow server responses to use the limited HTTP/0.9 protocol. As these responses carry no control information,
verifying the validity of the protocol stream is impossible. This does not pose a threat to web clients, but
exploits might pass undetected if this option is enabled for servers. It is recommended to turn this option off
for protecting servers and only enable it when Zorp is used in front of users.

permit_invalid_hex_escape (boolean, rw:r)
Default: FALSE

Allow invalid hexadecimal escaping in URLs (% must be followed by two hexadecimal digits).

permit_null_response (boolean, rw:r)
Default: TRUE

Permit RFC incompliant responses with headers not terminated by CRLF and not containing entity body.

permit_proxy_requests (boolean, rw:r)
Default: FALSE

Allow proxy-type requests in transparent mode.

www.balasys.hu 63

Class AbstractHttpProxy e

permit_server_requests (boolean, rw:r)
Default: TRUE

Allow server-type requests in non-transparent mode.

permit_unicode_url (boolean, rw:r)
Default: FALSE

Allow unicode characters in URLs encoded as %u. This is an IIS extension to HTTP, UNICODE (UTF-7,
UTF-8 etc.) URLs are forbidden by the RFC as default.

request (complex, rw:rw)

Default: empty

Normative policy hash for HTTP requests indexed by the HTTP method (e.g.: "GET", "PUT" etc.). See also
Section 4.7.2.2, Configuring policies for HTTP requests and responses (p. 53).

request_count (integer, n/a:r)
Default: 0

The number of keepalive requests within the session.

request_header (complex, rw:rw)

Default: empty

Normative policy hash for HTTP header requests indexed by the header names (e.g.: "Set-cookie"). See also
Section 4.7.2.3, Configuring policies for HTTP headers (p. 55).

request_method (string, n/a:r)

Default: n/a
Request method (GET, POST, etc.) sent by the client.

request_mime_type (string, n/a:r)

Default: n/a

The MIME type of the request entity. Its value is only defined when the request is processed.

request_stack (complex, rw:rw)

Default: n/a

Attribute containing the request stacking policy: the hash is indexed based on method names (e.g.: GET). See
Section 4.7.2.9, Stacking (p. 58).

request_url (string, n/a:rw)

Default: n/a

The URL requested by the client. It can be modified to redirect the current request.

www.balasys.hu 64

Class AbstractHttpProxy e

request_url_file (string, n/a:r)

Default: n/a

Filename specified in the URL.

request_url_host (string, n/a:r)

Default: n/a

Remote hostname in the URL.

request_url_passwd (string, n/a:r)

Default: n/a
Password in the URL (if specified).

request_url_port (integer, n/a:r)

Default: n/a

Port number as specified in the URL.

request_url_proto (string, n/a:r)

Default: n/a

Protocol specifier of the URL. This attribute is an alias for request_url_scheme.

request_url_scheme (string, n/a:r)

Default: n/a

Protocol specifier of the URL (http://, ftp://, etc.).

request_url_username (string, n/a:r)

Default: n/a

Username in the URL (if specified).

request_version (string, n/a:r)

Default: n/a

Request version (1.0, 1.1, etc.) used by the client.

require_host_header (boolean, rw:r)
Default: TRUE

Require the presence of the Host header. If set to FALSE, the real URL cannot be recovered from certain
requests, which might cause problems with URL filtering.

rerequest_attempts (integer, rw:rw)
Default: 0

www.balasys.hu 65

Class AbstractHttpProxy e

rerequest_attempts (integer, rw:rw)

Controls the number of attempts the proxy takes to send the request to the server. In case of server failure, a
reconnection is made and the complete request is repeated along with POST data.

reset_on_close (boolean, rw:rw)
Default: FALSE

Whenever the connection is terminated without a proxy generated error message, send an RST instead of a
normal close. Causes some clients to automatically reconnect.

response (complex, rw:rw)

Default: empty

Normative policy hash for HTTP responses indexed by the HTTP method and the response code (e.g.: "PWD",
"209" etc.). See also Section 4.7.2.2, Configuring policies for HT'TP requests and responses (p. 53).

response_header (complex, rw:rw)

Default: empty

Normative policy hash for HTTP header responses indexed by the header names (e.g.: "Set-cookie"). See also
Section 4.7.2.3, Configuring policies for HTTP headers (p. 55).

response_mime_type (string, n/a:r)

Default: n/a

The MIME type of the response entity. Its value is only defined when the response is processed.

response_stack (complex, rw:rw)

Default: n/a

Attribute containing the response stacking policy: the hash is indexed based on method names (e.g.: GET).
See Section 4.7.2.9, Stacking (p. 58).

rewrite_host_header (boolean, rw:rw)
Default: TRUE

Rewrite the Host header in requests when URL redirection is performed.

strict_header_checking (boolean, rw:r)
Default: FALSE
Require RFC conformant HTTP headers.

strict_header_checking_action (enum, rw:r)
Default: HTTP_HDR_DROP

This attribute control what will the Zorp do if a non-rfc conform or unknown header found in the communication.
Only the HTTP_HDR_ACCEPT, HTTP_HDR_DROP and HTTP_HDR_ABORT can be used.

www.balasys.hu 66

Class AbstractHttpProxy e

target_port_range (string, rw:rw)
Default: "80,443"

List of ports that non-transparent requests are allowed to use. The default is to allow port 80 and 443 to permit
HTTP and HTTPS traffic. (The latter also requires the CONNECT method to be enabled).

timeout (integer, rw:rw)
Default: 300000

General I/O timeout in milliseconds. If there is no timeout specified for a given operation, this value is used.

timeout_request (integer, rw:rw)
Default: 10000

Time to wait for a request to arrive from the client.

timeout_response (integer, rw:rw)
Default: 300000

Time to wait for the HTTP status line to arrive from the server.

transparent_mode (boolean, rw:r)
Default: TRUE
Set the operation mode of the proxy to transparent (TRUE) or non-transparent (FALSE).

url_category (complex, rw:rw)

Default: empty

Normative policy hash for category-based URL-filtering. The hash is indexed by the name of the category.

url_filter_uncategorized_action (enum, rw:rw)
Default: HTTP_URL_ACCEPT

The action applied to uncategorized (unknown) URLs when URL filtering is used. By default, uncategorized
URLs are accepted: self.url_filter_uncategorized_action=(HTTP_URL_ACCEPT,). Note that if
you set this option to HTTP_URL_REJECT, you must add every URL on your intranet to a category and set an
HTTP_URL_ACCEPT rule to this category, otherwise your clients will not able to access your intranet sites.

Available only in Zorp version 3.4.5 and later.

use_canonicalized_urls (boolean, rw:rw)
Default: TRUE

This attribute enables URL canonicalization, which means to automatically convert URLs to their canonical
form. This enhances security but might cause interoperability problems with some applications. It is
recommended to disable this setting on a per-destination basis. URL filtering still sees the canonicalized URL,
but at the end the proxy sends the original URL to the server.

www.balasys.hu 67

Class AbstractHttpProxy e

use_default_port_in_transparent_mode (boolean, rw:rw)
Default: TRUE

Set the target port to the value of default port intransparent mode. This ensures that only the ports specified
in target_port_range can be used by the clients, even if InbandRouter is used.

4.7.5.2. AbstractHttpProxy methods

Method Description

getRequestHeader(self, header) Function returning the value of a request header.
getResponseHeader(self, header) Function returning the value of a response header.
setRequestHeader(self, header, new_value) Function changing the value of a request header.
setResponseHeader(self, header, new_value) Function changing the value of a response header.

Table 4.15. Method summary

Method getRequestHeader(self, header)

This function looks up and returns the value of a header associated with the current request.

Arguments of getRequestHeader

header (unknown, n/a:n/a)

Default: n/a

Name of the header to look up.

Method getResponseHeader(self, header)

This function looks up and returns the value of a header associated with the current response.

Arguments of getResponseHeader

header (unknown, n/a:n/a)

Default: n/a

Name of the header to look up.

Method setRequestHeader(self, header, new_value)

This function looks up and changes the value of a header associated with the current request.

Arguments of setRequestHeader

header (unknown, n/a:n/a)

Default: n/a

www.balasys.hu 68

Class HttpProxy e

header (unknown, n/a:n/a)

Name of the header to change.

new_value (unknown, n/a:n/a)

Default: n/a

Change the header to this value.

Method setResponseHeader(self, header, new_value)

This function looks up and changes the value of a header associated with the current response.

Arguments of setResponseHeader

header (unknown, n/a:n/a)

Default: n/a

Name of the header to change.

new_value (unknown, n/a:n/a)

Default: n/a

Change the header to this value.

4.7.6. Class HttpProxy

HttpProxy is a default HTTP proxy based on AbstractHttpProxy. It is transparent, and enables the most commonly
used HTTP methods: "GET", "POST" and "HEAD".

4.7.7. Class HttpProxyNonTransparent

HTTP proxy based on HttpProxy. This class is identical to HttpProxy with the only difference being that it is
non-transparent (transparent_mode = FALSE). Consequently, clients must be explicitly configured to
connect to this proxy instead of the target server and issue proxy requests. On the server side this proxy connects
transparently to the target server.

For the correct operation the proxy must be able to set the server address on its own. This can be accomplished
by using InbandRouter.

4.7.8. Class HttpProxyURIFilter

HTTP proxy based on HttpProxy, having URL filtering capability. The matcher attribute should be initialized
to refer to a Matcher object. The initialization should be done in the class body as shown in the next example.

www.balasys.hu 69

Class HttpProxyURIFilterNonTransparent e

— Example 4.14. URL filtering HTTP proxy
—

%‘ class MyHttp(HttpProxyURIFilter):

matcher = RegexpFileMatcher('/etc/zorp/blacklist.txt’',
'/etc/zorp/whitelist.txt"')

4.7.8.1. Attributes of HttpProxyURIFilter

matcher (class, rw:rw)

Default: None

Matcher determining whether access to an URL is permitted or not.

4.7.9. Class HttpProxyURIFilterNonTransparent

HTTP proxy based on HttpProxyURIFilter, but operating in non-transparent mode (transparent_mode =
FALSE).

4.7.10. Class HttpWebdavProxy
HTTP proxy based on HttpProxy, also capable of inspecting WebDAV extensions of the HTTP protocol.

The following requests are permitted: PROPFIND; PROPPATCH; MKCOL,; COPY; MOVE; LOCK; UNLOCK.

4.7.11. Class NontransHttpWebdavProxy

HTTP proxy based on HttpProxyNonTransparent, operating in non-transparent mode (transparent_mode
= FALSE) and capable of inspecting WebDAV extensions of the HTTP protocol.

The following requests are permitted: PROPFIND; PROPPATCH; MKCOL; COPY; MOVE; LOCK; UNLOCK.

4.8. Module Plug

This module defines an interface to the Plug proxy. Plug is a simple TCP or UDP circuit, which means that
transmission takes place without protocol verification.

4.8.1. Proxy behavior

This class implements a general plug proxy, and is capable of optionally disabling data transfer in either direction.
Plug proxy reads connection on the client side, then creates another connection at the server side. Arriving
responses are sent back to the client. However, it is not a protocol proxy, therefore PlugProxy does not implement
any protocol analysis. It offers protection to clients and servers from lower level (e.g.: IP) attacks. It is mainly
used to allow traffic pass the firewall for which there is no protocol proxy available.

By default plug copies all data in both directions. To change this behavior, set the copy_to_client or
copy_to_server attribute to FALSE.

Plug supports the use of secondary sessions. For details, see Section 2.2, Secondary sessions (p. 7).

www.balasys.hu 70

Related standards e

Note
Copying of out-of-band data is not supported.

®

4.8.2. Related standards

Plug proxy is not a protocol specific proxy module, therefore it is not specified in standards.

4.8.3. Classes in the Plug module

Class Description
AbstractPlugProxy Class encapsulating the abstract Plug proxy.
PlugProxy Class encapsulating the default Plug proxy.

Table 4.16. Classes of the Plug module

4.8.4. Class AbstractPlugProxy

An abstract proxy class for transferring data.

4.8.4.1. Attributes of AbstractPlugProxy

bandwidth_to_client (integer, n/a:r)

Default: n/a

Read-only variable containing the bandwidth currently used in server->client direction.

bandwidth_to_server (integer, n/a:r)

Default: n/a

Read-only variable containing the bandwidth currently used in client->server direction.

buffer_size (integer, w:r)
Default: 1500
Size of the buffer used for copying data.

copy_to_client (boolean, w:r)
Default: TRUE

Allow data transfer in the server->client direction.

copy_to_server (boolean, w:r)
Default: TRUE

Allow data transfer in the client->server direction.

www.balasys.hu 71

Class AbstractPlugProxy e

packet_stats_interval_packet (integer, w:r)
Default: 0

The number of passing packages between two successive packetStats() events. It can be useful when the Quality
of Service for the connection is influenced dynamically. Set to 0 to turn packetStats() off.

packet_stats_interval_time (integer, w:r)
Default: 0

The time in milliseconds between two successive packetStats() events. It can be useful when the Quality of
Service for the connection is influenced dynamically. Set to O to turn packetStats() off.

secondary_mask (secondary_mask, rw:r)
Default: 0xf

Specifies which connections can be handled by the same proxy instance. See Section 2.2, Secondary
sessions (p. 7) for details.

secondary_sessions (integer, rw:r)
Default: 10

Maximum number of allowed secondary sessions within a single proxy instance. See Section 2.2, Secondary
sessions (p. 7) for details.

shutdown_soft (boolean, w:r)
Default: FALSE

If enabled, the two sides of a connection are closed separately. (E.g.: if the server closes the connection the
client side connection is held until it is verified that no further data arrives, for example from a stacked proxy.)
It is automatically enabled when proxies are stacked into the connection.

stack_proxy (enum, w:r)

Default: n/a

Proxy class to stack into the connection. All data is passed to the specified proxy.

timeout (integer, w:r)
Default: 600000

I/0 timeout in milliseconds.

www.balasys.hu 72

Class PlugProxy e

4.8.4.2. AbstractPlugProxy methods

Method

Description

packetStats(self, client _bytes, client pkts, server bytes,

server pkts

Function called when the packet_stats_interval is

elapsed.

Method packetStats(self, client_bytes, client_pkts, server_bytes, server_pkts)

Table 4.17. Method summary

This function is called whenever the time interval set in packet_stats_interval elapses, or a given number of
packets were transmitted. This event receives packet statistics as parameters. It can be used in managing the
Quality of Service of the connections; e.g.: to terminate connections with excessive bandwidth requirements
(for instance to limit the impact of a covert channel opened when using plug instead of a protocol specific

proxy).

Arguments of packetStats

client_bytes (unknown, n/a:n/a)

Default: n/a

Number of bytes transmitted to the client.

client_pkts (unknown, n/a:n/a)

Default: n/a

Number of packets transmitted to the client.

server_bytes (unknown, n/a:n/a)

Default: n/a

Number of bytes transmitted to the server.

server_pkts (unknown, n/a:n/a)

Default: n/a

Number of packets transmitted to the server.

4.8.5. Class PlugProxy

A default PlugProxy based on AbstractPlugProxy.

4.9. Module Pop3

The Pop3 module defines the classes constituting the proxy for the POP3 protocol.

www.balasys.hu

73

The POP3 protocol (37

4.9.1. The POP3 protocol

Post Office Protocol version 3 (POP3) is usually used by mail user agents (MUAs) to download messages from
aremote mailbox. POP3 supports a single mailbox only, it does not support advanced multi-mailbox operations
offered by alternatives such as IMAP.

The POP3 protocol uses a single TCP connection to give access to a single mailbox. It uses a simple
command/response based approach, the client issues a command and a server can respond either positively or
negatively.

4.9.1.1. Protocol elements

The basic protocol is the following: the client issues a request (also called command in POP3 terminology) and
the server responds with the result. Both commands and responses are line based, each command is sent as a
complete line, a response is either a single line or - in case of mail transfer commands - multiple lines.

Commands begin with a case-insensitive keyword possibly followed by one or more arguments (such as RETR
or DELE).

Responses begin with a status indicator ("+OK" or "-ERR") and a possible explanation of the status code (e.g.:
"-ERR Permission denied.").

Responses to certain commands (usually mail transfer commands) also contain a data attachment, such as the
mail body. See the Section 4.9.1.3, Bulk transfers (p. 74) for further details.

4.9.1.2. POP3 states

The protocol begins with the server displaying a greeting message, usually containing information about the
server.

After the greeting message the client takes control and the protocol enters the AUTHORIZATION state where
the user has to pass credentials proving his/her identity.

After successful authentication the protocol enters TRANSACTION state where mail access commands can
be issued.

When the client has finished processing, it issues a QUIT command and the connection is closed.

4.9.1.3. Bulk transfers

Responses to certain commands (such as LIST or RETR) contain a long data stream. This is transferred as a
series of lines, terminated by a "CRLF "' CRLF" sequence, just like in SMTP.

— Example 4.15. POP3 protocol sample

— +0K POP3 server ready

USER account

+0K User name is ok

PASS password

+0K Authentication successful
LIST

+0K Listing follows

1 5758

www.balasys.hu 74

Proxy behavior e

2 232323
3 3434

RETR 1

+0K Mail body follows
From: sender@sender.com
To: account@receiver.com
Subject: sample mail

This is a sample mail message. Lines beginning with
..are escaped, another '.' character is perpended which
is removed when the mail is stored by the client.

DELE 1

+0K Mail deleted
QUIT

+0K Good bye

4.9.2. Proxy behavior

Pop3Proxy is a module built for parsing messages of the POP3 protocol. It reads and parses COMMANDSs on
the client side, and sends them to the server if the local security policy permits. Arriving RESPONSEs are
parsed as well, and sent to the client if the local security policy permits. It is possible to manipulate both the
requests and the responses.

4.9.2.1. Default policy for commands

By default, the proxy accepts all commands recommended in RFC 1939. Additionally, the following optional
commands are also accepted: USER, PASS, AUTH. The proxy understands all the commands specified in RFC
1939 and the AUTH command. These additional commands can be enabled manually.

4.9.2.2. Configuring policies for POP3 commands

Changing the default behavior of commands can be done using the hash named request. The hash is indexed
by the command name (e.g.: USER or AUTH). See Section 2.1, Policies for requests and responses (p. 4)
for details.

Action Description
POP3_REQ_ACCEPT Accept the request without any modification.
POP3_REQ _ACCEPT_MLINE Accept multiline requests without modification. Use it

only if unknown commands has to be enabled (i.e.
commands not specified in RFC 1939 or RFC 1734).

POP3_REQ_REJECT Reject the request. The second parameter contains a
string that is sent back to the client.

POP3_REQ _POLICY Call the function specified to make a decision about
the event. See Section 2.1, Policies for requests and
responses (p. 4) for details. This action uses two
additional tuple items, which must be callable Python

www.balasys.hu 75

Proxy behavior e

Action Description

functions. The first function receives two parameters:
self and command.

The second one is called with an answer, (if the answer
is multiline, it is called with every line) and receives
two parameters: self and response_param.

POP3_REQ_ABORT Reject the request and terminate the connection.

Table 4.18. Action codes for POP3 requests

— Example 4.16. Example for allowing only APOP authentication in POP3
——— | This sample proxy class rejects the USER authentication requests, but allows APOP requests.

class APop3(Pop3Proxy):
def config(self):
Pop3Proxy.config(self)
self.request["USER"] = (POP3_REQ_REJECT)
self.request["APOP"] = (POP3_REQ_ACCEPT)

— Example 4.17. Example for converting simple USER/PASS authentication to APOP in POP3
—— | The above example simply rejected USER/PASS authentication, this one converts USER/PASS authentication to APOP authentication
| — messages.

class UToAPop3(Pop3Proxy):
def config(self):
Pop3Proxy.config(self)
self.request["USER"]
self.request["PASS"]

(POP3_REQ_POLICY, self.DropUSER)
(POP3_REQ_POLICY, self.UTo0A)

def DropUSER(self,command):
self.response_value
self.response_param
return POP3_REQ_REJECT

II+OKII
"User ok Send Password"

def UToA

=

self,command):

Username is stored in self->username,

password in self->request_param,

and the server timestamp in self->timestamp,
consequently the digest can be calculated.

NOTE: This is only an example, calcdigest must be
implemented separately

digest = calcdigest(self->timestamp+self->request_param)
self->request_command = "APOP"

self->request_param = name + " " + digest

return POP3_REQ_ACCEPT

H W W W

4.9.2.3. Rewriting the banner

As in many other protocols, POP3 also starts with a server banner. This banner contains the protocol version
the server uses, the possible protocol extensions that it supports and, in many situations, the vendor and exact
version number of the POP3 server.

www.balasys.hu 76

Proxy behavior e

This information is useful only if the clients connecting to the POP3 server can be trusted, as it might make
bug hunting somewhat easier. On the other hand, this information is also useful for attackers when targeting
this service.

To prevent this, the banner can be replaced with a neutral one. Use the request hash with the 'GREETING'
keyword as shown in the following example.

— Example 4.18. Rewriting the banner in POP3

— class NeutralPop3(Pop3Proxy):

def config(self):

Pop3Proxy.config(self)

self.request["GREETING"] = (POP3_REQ_POLICY, None, self.rewriteBanner)

def rewriteBanner(self, response)
self.response_param = "Pop3 server ready"
return POP3_RSP_ACCEPT

Note
@ Some protocol extensions (most notably APOP) use random characters in the greeting message as salt in the authentication process, so
changing the banner when APOP is used effectively prevents APOP from working properly.

4.9.2.4. Stacking

The available stacking modes for this proxy module are listed in the following table. For additional information
on stacking, see Section 2.3.1, Proxy stacking (p. 7).

Action Description

POP3_STK_POLICY Call the function specified to decide which part (if any)
of the traffic should be passed to the stacked proxy.

POP3_STK_NONE No additional proxy is stacked into the POP3 proxy.

POP3_STK_MIME The data part of the traffic including the MIME headers
is passed to the specified stacked proxy.

POP3_STK_DATA Only the data part of the traffic is passed to the specified
stacked proxy.

Table 4.19. Action codes for proxy stacking

4.9.2.5. Rejecting viruses and spam

When filtering messages for viruses or spam, the content vectoring modules reject infected and spam e-mails.
In such cases the POP3 proxy notifies the client about the rejected message in a special e-mail.

To reject e-mail messages using the ERR protocol element, set the reject_by mail attribute to FALSE.
However, this is not recommended, because several client applications handle ERR responses incorrectly.

www.balasys.hu 77

Related standards e

Note
Infected e-mails are put into the quarantine and deleted from the server.

®

4.9.3. Related standards

m Post Office Protocol Version 3 is described in RFC 1939.
m The POP3 AUTHentication command is described in RFC 1734.

4.9.4. Classes in the Pop3 module

Class Description
AbstractPop3Proxy Class encapsulating the abstract POP3 proxy.
Pop3Proxy Default POP3 proxy based on AbstractPop3Proxy.

Table 4.20. Classes of the Pop3 module

4.9.5. Class AbstractPop3Proxy

This class implements an abstract POP3 proxy - it serves as a starting point for customized proxy classes, but
is itself not directly usable. Service definitions should refer to a customized class derived from
AbstractPop3Proxy, or a predefined Pop3Proxy proxy class. AbstractPop3Proxy denies all requests by default.

4.9.5.1. Attributes of AbstractPop3Proxy

max_authline_count (integer, rw:r)
Default: 4

Maximum number of lines that can be sent during the authentication conversation. The default value is enough
for password authentication, but might have to be increased for other types of authentication.

max_password_length (integer, rw:r)
Default: 16

Maximum allowed length of passwords.

max_request_line_length (integer, rw:r)
Default: 90

Maximum allowed line length for client requests.

max_response_line_length (integer, rw:r)
Default: 512

Maximum allowed line length for server responses.

www.balasys.hu 78

Class AbstractPop3Proxy e

max_username_length (integer, rw:r)
Default: 8

Maximum allowed length of usernames.

password (string, n/a:r)
Default:

Password sent to the server (if any).

permit_longline (boolean, rw:r)
Default: FALSE

In multiline answer (especially in downloaded messages) sometimes very long lines can appear. Enabling this
option allows the unlimited long lines in multiline answers.

permit_unknown_command (boolean, rw:r)
Default: FALSE

Enable unknown commands.

reject_by_mail (boolean, rw:r)
Default: TRUE

If the stacked proxy or content vectoring module rejects an e-mail message, reply with a special e-mail message
instead of an ERR response. See Section 4.9.2.5, Rejecting viruses and spam (p. 77) for details.

request (complex, rw:rw)
Default:

Normative policy hash for POP3 requests indexed by the command name (e.g.: "USER", "UIDL", etc.). See
also Section 4.9.2.2, Configuring policies for POP3 commands (p. 75).

request_command (string, n/a:rw)

Default: n/a

When a command is passed to the policy level, its value can be changed to this value.

request_param (string, n/a:rw)

Default: n/a

When a command is passed to the policy level, the value of its parameters can be changed to this value.

response_multiline (boolean, n/a:rw)

Default: n/a

Enable multiline responses.

www.balasys.hu 79

Class Pop3Proxy e

response_param (string, n/a:rw)

Default: n/a

When a command or response is passed to the policy level, the value its parameters can be changed to this
value. (It has effect only if the return value is not POP3_*_ACCEPT).

response_stack (complex, rw:rw)
Default:

Hash containing the stacking policy for multiline POP3 responses. The hash is indexed by the POP3 response.
See also Section 4.9.2.4, Stacking (p. 77).

response_value (string, n/a:rw)

Default: n/a

When a command or response is passed to the policy level, its value can be changed to this value. (It has effect
only if the return value is not POP3_*_ACCEPT).

session_timestamp (string, n/a:r)

Default: n/a

If the POP3 server implements the APOP command, with the greeting message it sends a timestamp, which
is stored in this parameter.

timeout (integer, rw:r)
Default: 600000

Timeout in milliseconds. If no packet arrives within this interval, connection is dropped.

username (string, n/a:r)

Default: n/a

Username as specified by the client.

4.9.6. Class Pop3Proxy
Pop3Proxy is the default POP3 proxy based on AbstractPop3Proxy, allowing the most commonly used requests.

The following requests are permitted: APOP; DELE; LIST; LAST; NOOP; PASS; QUIT; RETR; RSET; STAT;
TOP; UIDL; USER; GREETING. All other requests (including CAPA) are rejected.

4.10. Module Smtp

Simple Mail Transport Protocol (SMTP) is a protocol for transferring electronic mail messages from Mail User
Agents (MUAS) to Mail Transfer Agents (MTAs). It is also used for exchanging mails between MTAs.

www.balasys.hu 80

The SMTP protocol e

4.10.1. The SMTP protocol

The main goal of SMTP is to reliably transfer mail objects from the client to the server. A mail transaction
involves exchanging the sender and recipient information and the mail body itself.

4.10.1.1. Protocol elements

SMTP is a traditional command based Internet protocol; the client issues command verbs with one or more
arguments, and the server responds with a 3 digit status code and additional information. The response can span
one or multiple lines, the continuation is indicated by an '-' character between the status code and text.

The communication itself is stateful, the client first specifies the sender via the "MAIL" command, then the
recipients using multiple "RCPT" commands. Finally it sends the mail body using the "DATA" command.
After a transaction finishes the client either closes the connection using the "QUIT" command, or starts a new
transaction with another "MAIL" command.

— Example 4.19. SMTP protocol sample

— 220 mail.example.com ESMTP Postfix (Debian/GNU)
EHLO client.host.name
250-mail.example.com
250-PIPELINING

250-SIZE 50000000

250-VRFY

250-ETRN

250-XVERP

250 8BITMIME

MAIL From: <sender@sender.com>
250 Sender ok

RCPT To: <account@recipient.com>
250 Recipient ok

RCPT To: <account2@recipient.com>
250 Recipient ok

DATA

354 Send mail body

From: sender@sender.com

To: account@receiver.com

Subject: sample mail

This is a sample mail message. Lines beginning with
..are escaped, another '.' character is perpended which
is removed when the mail is stored by the client.

250 Ok: queued as BF47618170
QUIT
221 Farewell

4.10.1.2. Extensions

Originally SMTP had a very limited set of commands (HELO, MAIL, RCPT, DATA, RSET, QUIT, NOOP)
but as of RFC 1869, an extension mechanism was introduced. The initial HELO command was replaced by an
EHLO command and the response to an EHLO command contains all the extensions the server supports. These
extensions are identified by an IANA assigned name.

Extensions are used for example to implement inband authentication (AUTH), explicit message size limitation
(SIZE) and explicit queue run initiation (ETRN). Each extension might add new command verbs, but might

www.balasys.hu 81

Proxy behavior e

also add new arguments to various SMTP commands. The SMTP proxy has built in support for the most
important SMTP extensions, further extensions can be added through customization.

4.10.1.3. Bulk transfer

The mail object is transferred as a series of lines, terminated by the character sequence "CRLF '.' CRLF". When
the .’ character occurs as the first character of a line, an escaping '.' character is prepended to the line which is
automatically removed by the peer.

4.10.2. Proxy behavior

The Smtp module implements the SMTP protocol as specified in RFC 2821. The proxy supports the basic
SMTP protocol plus five extensions, namely: PIPELINING, SIZE, ETRN, 8BITMIME, and STARTTLS. All
other ESMTP extensions are filtered by dropping the associated token from the EHLO response. If no connection
can be established to the server, the request is rejected with an error message. In this case the proxy tries to
connect the next mail exchange server.

4.10.2.1. Default policy for commands

The abstract SMTP proxy rejects all commands and responses by default. Less restrictive proxies are available
as derived classes (e.g.: SmtpProxy), or can be customized as required.

4.10.2.2. Configuring policies for SMTP commands and responses

Changing the default behavior of commands can be done by using the hash attribute request. These hashes
are indexed by the command name (e.g.: MAIL or DATA). Policies for responses can be configured using the
response attribute, which is indexed by the command name and the response code. The possible actions are
shown in the tables below. See Section 2.1, Policies for requests and responses (p. 4) for details. When looking
up entries of the response attribute hash, the lookup precedence described in Section 2.1.2, Response
codes (p. 6) is used.

Action Description
SMTP_REQ_ACCEPT Accept the request without any modification.
SMTP_REQ_REJECT Reject the request. The second parameter contains an

SMTP status code, the third one an associated parameter
which will be sent back to the client.

SMTP_REQ_ABORT Reject the request and terminate the connection.

Table 4.21. Action codes for SMTP requests

Action Description
SMTP_RSP_ACCEPT Accept the response without any modification.
SMTP_RSP_REJECT Reject the response. The second parameter contains an

SMTP status code, the third one an associated parameter
which will be sent back to the client.

www.balasys.hu 82

Related standards e

Action Description

SMTP_RSP_ABORT Reject the response and terminate the connection.

Table 4.22. Action codes for SMTP responses

SMTP extensions can be controlled using the extension hash, which is indexed by the extension name. The
supported extensions (SMTP_EXT_PIPELINING; SMTP_EXT_SIZE; SMTP_EXT_ETRN;
SMTP_EXT_8BITMIME) can be accepted or dropped (SMTP_EXT_ACCEPT or SMTP_EXT_DROP)
individually or all at once using the SMTP_EXT_ALL index value.

4.10.2.3. Stacking

The available stacking modes for this proxy module are listed in the following table. For additional information
on stacking, see Section 2.3.1, Proxy stacking (p. 7).

Action Description

SMTP_STK_NONE No additional proxy is stacked into the SMTP proxy.

SMTP_STK_MIME The data part including header information of the traffic
is passed to the specified stacked proxy.

Table 4.23. Stacking options for SMTP

4.10.3. Related standards

m Simple Mail Transfer Protocol is described in RFC 2821.
m SMTP Service Extensions are described in the obsoleted RFC 1869.
m The STARTTLS extension is described in RFC 3207.

4.10.4. Classes in the Smtp module

Class Description
AbstractSmtpProxy Class encapsulating the abstract SMTP proxy.
SmtpProxy Default SMTP proxy based on AbstractSmtpProxy.

Table 4.24. Classes of the Smtp module

4.10.5. Class AbstractSmtpProxy

This class implements an abstract SMTP proxy - it serves as a starting point for customized proxy classes, but
is itself not directly usable. Service definitions should refer to a customized class derived from
AbstractSmtpProxy, or one of the predefined proxy classes.

The following requests are permitted: HELO; MAIL; RCPT; DATA; RSET; QUIT; NOOP; EHLO; AUTH;
ETRN. The following extensions are permitted: PIPELINING; SIZE; ETRN; 8BITMIME; STARTTLS.

www.balasys.hu 83

Class AbstractSmtpProxy e

4.10.5.1. Attributes of AbstractSmtpProxy

active_extensions (integer, n/a:r)

Default: n/a

Active extension bitmask, contains bits defined by the constants 'SMTP_EXT_*'

add_received_header (boolean, rw:rw)
Default: FALSE

Add a Received: header into the email messages transferred by the proxy.

append_domain (string, rw:rw)
Default:

Domain to append to email addresses which do not specify domain name. An address is rejected if it does not
contain a domain and append_domain is empty.

autodetect_domain_from (enum, rw:rw)
Default:

If you want Zorp to autodetect the domain name of the firewall and write it to the Received line, then set this.
This attribute either set the method how the Zorp detect the mailname. Only takes effect if add_received_header
is TRUE.

domain_name (string, rw:rw)
Default:

If you want to set a fix domain name into the added Receive line, set this. Only takes effect if
add_received_header is TRUE.

extensions (complex, rw:rw)
Default:

Normative policy hash for ESMTP extension policy, indexed by the extension verb (e.g. ETRN). It contains
an action tuple with the SMTP_EXT_* values as possible actions.

interval_transfer_noop (integer, rw:rw)
Default: 600000

The interval between two NOOP commands sent to the server while waiting for the results of stacked proxies.

max_auth_request_length (integer, rw:r)
Default: 256

Maximum allowed length of a request during SASL style authentication.

www.balasys.hu 84

Class AbstractSmtpProxy e

max_request_length (integer, rw:r)
Default: 256

Maximum allowed line length of client requests.

max_response_length (integer, rw:r)
Default: 512

Maximum allowed line length of a server response.

permit_long_responses (boolean, rw:r)
Default: FALSE

Permit overly long responses, as some MTAs include variable parts in responses which might get very long.
If enabled, responses longer than max_response_length are segmented into separate messages. If disabled,
such responses are rejected.

permit_omission_of_angle_brackets (boolean, rw:r)
Default: FALSE

Permit MAIL From and RCPT To parameters without the normally required angle brackets around them. They
will be added when the message leaves the proxy anyway.

permit_unknown_command (boolean, rw:r)
Default: FALSE

Enable unknown commands.

request (complex, rw:rw)
Default:

Normative policy hash for SMTP requests indexed by the command name (e.g.: "USER", "UIDL", etc.). See
also Section 4.10.2.2, Configuring policies for SMTP commands and responses (p. 82).

request_command (string, n/a:rw)

Default: n/a

When a command is passed to the policy level, its value can be changed to this value.

request_param (string, n/a:rw)

Default: n/a

When a command is passed to the policy level, the value of its parameter can be changed to this value.

request_stack (complex, rw:rw)
Default:
Attribute containing the stacking policy for SMTP commands. See Section 4.10.2.3, Stacking (p. 83).

www.balasys.hu 85

Class AbstractSmtpProxy e

require_crlf (boolean, rw:r)
Default: TRUE

Specifies whether the proxy should enforce valid CRLF line terminations.

resolve_host (boolean, rw:rw)
Default: FALSE

Resolve the client host from the IP address and add it to the Received line. Only takes effect if
add_received_header is TRUE.

response (complex, rw:rw)
Default:

Normative policy hash for SMTP responses indexed by the command name and the response code. See also
Section 4.10.2.2, Configuring policies for SMTP commands and responses (p. 82).

response_param (string, n/a:rw)

Default: n/a

When a response is passed to the policy level, the value of its parameter can be changed to this value. (It has
effect only when the return value is not SMTP_*_ACCEPT.)

response_value (string, n/a:rw)

Default: n/a

When a response is passed to the policy level, its value can be changed to this value. (It has effect only when
the return value is not SMTP_*_ACCEPT.)

timeout (integer, rw:r)
Default: 600000

Timeout in milliseconds. If no packet arrives within this in interval, the connection is dropped.

tls_passthrough (boolean, rw:r)
Default: FALSE

Change to passthrough mode after a successful STARTTLS request. Zorp does not process or change the
encrypted traffic in any way, it is transported intact between the client and server.

unconnected_response_code (integer, rw:rw)
Default: 451

Error code sent to the client if connecting to the server fails.

www.balasys.hu 86

Class SmtpProxy e

4.10.6. Class SmtpProxy

SmtpProxy implements a basic SMTP Proxy based on AbstractSmtpProxy, with relay checking and
sender/recipient check restrictions. (Exclamation marks and percent signs are not allowed in the e-mail addresses.)

4.10.6.1. Attributes of SmtpProxy

error_soft (boolean, rw:rw)
Default: FALSE

Return a soft error condition when recipient filter does not match. If enabled, the proxy will try to re-validate
the recipient and send the mail again. This option is useful when the server used for the recipient matching is
down.

permit_exclamation_mark (boolean, rw:rw)
Default: FALSE

Allow the "!" sign in the local part of e-mail addresses.

permit_percent_hack (boolean, rw:rw)
Default: FALSE

Allow the '%’ sign in the local part of e-mail addresses.

recipient_matcher (class, rw:rw)
Default:

Matcher class (e.g.: SmtpInvalidRecipientMatcher) used to check and filter recipient e-mail addresses.

relay_check (boolean, rw:rw)
Default: TRUE

Enable/disable relay checking.

relay_domains (complex, rw:r)
Default:

Domains mails are accepted for. Use Postfix style lists. (E.g.: .example.com' allows every subdomain of
example.com, but not example.com. To match example.com use 'example.com'.)

relay_domains_matcher (class, rw:r)
Default:

Domains mails are accepted for based on a matcher (e.g.: RegexpFileMatcher).

relay_zones (complex, rw:r)
Default:

Zorp zones that are relayed. The administrative hierarchy of the zone is also used.

www.balasys.hu 87

Module Telnet e

sender_matcher (class, rw:rw)
Default:

Matcher class (e.g.: SmtpInvalidRecipientMatcher) used to check and filter sender e-mail addresses.

4.11. Module Telnet

The Telnet module defines the classes constituting the proxy for the TELNET protocol.

4.11.1. The Telnet protocol

The Telnet protocol was designed to remotely login to computers via the network. Although its main purpose
is to access a remote standard terminal, it can be used for many other functions as well.

The protocol follows a simple scenario. The client opens a TCP connection to the server at the port 23. The
server authenticates the client and opens a terminal. At the end of the session the server closes the connection.
All data is sent in plain text format whithout any encryption.

4.11.1.1. The network virtual terminal

The communication is based on the network virtual terminal (NVT). Its goal is to map a character terminal so
neither the "server" nor "user" hosts need to keep information about the characteristics of each other's terminals
and terminal handling conventions. NVT uses 7 bit code ASCII characters as the display device. An end of line
is transmitted as a CRLF (carriage return followed by a line feed). NVT ASCII is used by many other protocols
as well.

NVT defines three mandatory control codes which must be understood by the participants: NULL, CR (Carriage
Return), which moves the printer to the left margin of the current line and LF (Line Feed), which moves the
printer to the next line keeping the current horizontal position.

NVT also contains some optional commands which are useful. These are the following:

®m BELL is an audible or visual sign.

m BS (Back Space) moves the printer back one position and deletes a character.
m HT (Horizontal Tab) moves the printer to the next horizontal tabular stop.

m VT Vertical Tab moves the printer to the next vertical tabular stop.

m FF (Form Feed) moves the printer to the top of the next page.

4.11.1.2. Protocol elements

The protocol uses several commands that control the method and various details of the interaction between the
client and the server. These commands can be either mandatory commands or extensions. During the session
initialization the client and the server negotiates the connection parameters with these commands. Sub-negotiation
is a process during the protocol which is for exchanging extra parameters of a command (e.g.: sending the
window size). The commands of the protocol are:

www.balasys.hu 88

Proxy behavior e

Request/Response Description

SE End of sub-negotiation parameters.

NOP No operation.

DM Data mark - Indicates the position of Sync event within
the data stream.

BRK Break - Indicates that a break or attention key was hit.

1P Suspend, interrupt or abort the process.

AO Abort output - Run a command without sending the
output back to the client.

AYT Are you there - Request a visible evidence that the AYT
command has been received.

EC Erase character - Delete the character last received from
the stream.

EL Erase line - Erase a line without a CRLF.

GA Go Ahead - Instruct the other machine to start the
transmission.

SB Sub-negotiation starts here.

WILL Will (option code) - Indicates the desire to begin
performing the indicated option, or confirms that it is
being performed.

WONT Will not (option code) - Indicates the refusal to perform,
or continue performing, the indicated option.

DO Do (option code) - Indicates the request that the other
party perform, or confirmation that the other party is
expected to perform, the indicated option.

DONT Do not (option code) - Indicates the request that the
other party stop performing the indicated option, or
confirmation that its performing is no longer expected.

IAC Interpret as command.

4.11.2. Proxy behavior

Table 4.25. Telnet protocol commands

TelnetProxy is a module built for parsing TELNET protocol commands and the negotiation process. It reads
and parses COMMAND:s on the client side, and sends them to the server if the local security policy permits.
Arriving RESPONSESs are parsed as well and sent to the client if the local security policy permits. It is possible
to manipulate options by using TELNET_OPT_POLICY. It is also possible to accept or deny certain options

and suboptions.

The Telnet shell itself cannot be controlled, thus the commands issued by the users cannot be monitored or

modified.

www.balasys.hu

89

Proxy behavior e

4.11.2.1. Default policy

The low level abstract Telnet proxy denies every option and suboption negotiation sequences by default. The
different options can be enabled either manually in a derived proxy class, or the predefined TelnetProxy class
can be used.

4.11.2.2. Configuring policies for the TELNET protocol

The Telnet proxy can enable/disable the use of the options and their suboptions within the session. Changing
the default policy can be done using the opt ion multi-dimensional hash, indexed by the option and the suboption
(optional). If the suboption is specified, the lookup precedence described in Section 2.1.2, Response codes (p. 6)
is used. The possible action codes are listed in the table below.

Action Description

TELNET_OPT_ACCEPT Allow the option.

TELNET_OPT_DROP Reject the option.

TELNET_OPT_ABORT Reject the option and terminate the Telnet session.

TELNET _OPT_ POLICY Call the function specified to make a decision about
the event. The function receives two parameters: self,
and option (an integer). See Section 2.1, Policies for
requests and responses (p. 4) for details.

Table 4.26. Action codes for Telnet options

— Example 4.20. Example for disabling the Telnet X Display Location option

— class MyTelnetProxy(TelnetProxy):
def config(self):
TelnetProxy.config(self)
self.option[TELNET_X_DISPLAY_LOCATION] = (TELNET_OPT_REJECT)

Constants have been defined for the easier use of TELNET options and suboptions. These are listed in Table
A.1, TELNET options and suboptions (p. 303).

Policy callback functions

Policy callback functions can be used to make decisions based on the content of the suboption negotiation
sequence. For example, the suboption negotiation sequences of the Telnet Environment option transfer
environment variables. The low level proxy implementation parses these variables, and passes their name and
value to the callback function one-by-one. These values can also be manipulated during transfer, by changing
the current_var_name and current_var_value attributes of the proxy class.

— Example 4.21. Rewriting the DISPLAY environment variable
—
%‘ class MyRewritingTelnetProxy(TelnetProxy):

def config(self):

www.balasys.hu 90

Related standards e

TelnetProxy.config()
self.option[TELNET_ENVIRONMENT, TELNET_SB_IS] = (TELNET_OPTION_POLICY, self.rewritevar)

def rewritevar(self, option, name, value):
if name == "DISPLAY":
self.current_var_value = "rewritten_value:0"
return TELNET_OPTION_ACCEPT

Option negotiation

In the Telnet protocol, options and the actual commands are represented on one byte. In order to be able to use
a command in a session, the option (and its suboptions if there are any) corresponding to the command has to
be negotiated between the client and the server. Usually the command and the option is represented by the same
value, e.g.: the TELNET_STATUS command and option are both represented by the value "5". However, this is
not always the case. The negotiation hash is indexed by the code of the command, and contains the code of
the option to be negotiated for the given command (or the TELNET_NEG_NONE when no negotation is needed).

Currently the only command where the code of the command differs from the related option is
self.negotiation["239"] = int(TELNET_EOR).

4.11.3. Related standards

The Telnet protocol is described in RFC 854. The different options of the protocol are described in various
other RFCs, listed in Table A.1, TELNET options and suboptions (p. 303).

4.11.4. Classes in the Telnet module

Class Description

AbstractTelnetProxy Class encapsulating the abstract Telnet proxy.

TelnetProxy Default Telnet proxy based on AbstractTelnetProxy.

TelnetProxyStrict Telnet proxy based on AbstractTelnetProxy, allowing
only the minimal command set.

Table 4.27. Classes of the Telnet module

4.11.5. Class AbstractTelnetProxy

This class implements the Telnet protocol (as described in RFC 854) and its most common extensions. Although
not all possible options are checked by the low level proxy, it is possible to filter any option and suboption
negotiation sequences using policy callbacks. AbstractTelnetProxy serves as a starting point for customized
proxy classes, but is itself not directly usable. Service definitions should refer to a customized class derived
from AbstractTelnetProxy, or one of the predefined TelnetProxy proxy classes. AbstractTelnetProxy denies all
options by default.

4.11.5.1. Attributes of AbstractTelnetProxy

current_var_name (string, n/a:rw)

Default: n/a

www.balasys.hu 91

Class TelnetProxy e

current_var_name (string, n/a:rw)

Name of the variable being negotiated.

current_var_value (string, n/a:rw)

Default: n/a

Value of the variable being negotiated (e.g.: value of an environment variable, an X display location value,
etc.).

enable_audit (boolean, w:r)
Default: FALSE

Enable session auditing.

negotiation (complex, rw:rw)
Default:

Normative hash listing which options must be negotiated for a given command. See Section Option negotiation
(p. 91) for details.

option (complex, rw:rw)

Default: n/a

Normative policy hash for Telnet options indexed by the option and (optionally) the suboption. See also Section
4.11.2.2, Configuring policies for the TELNET protocol (p. 90).

timeout (integer, rw:r)
Default: 600000

I/0 timeout in milliseconds.

4.11.6. Class TelnetProxy

TelnetProxy is a proxy class based on AbstractTelnetProxy, allowing the use of all Telnet options.

4.11.7. Class TelnetProxyStrict

TelnetProxyStrict is a proxy class based on AbstractTelnetProxy, allowing the use of the options minimally
required for a useful Telnet session.

The following options are permitted: ECHO; SUPPRESS_GO_AHEAD; TERMINAL_TYPE; NAWS; EOR;
TERMINAL_SPEED; X_DISPLAY_LOCATION; ENVIRONMENT. All other options are rejected.

4.12. Module Whois

WHOIS is a protocol providing information about domain and IP owners.

www.balasys.hu 92

The Whois protocol e

4.12.1. The Whois protocol
Whois is a netwide service to the Internet users maintained by DDN Network Information Center (NIC).

The protocol follows a very simple method. First the client opens a TCP connection to the server at the port 43
and sends a one line REQUEST closed with <CRLF>. This request can contain only ASCII characters. The
server sends the result back and closes the connection.

4.12.2. Proxy behavior

WhoisProxy is a module build for parsing messages of the WHOIS protocol. It reads and parses the REQUESTSs
on the client side and sends them to the server if the local security policy permits. Arriving RESPONSESs are
not parsed as they do not have any fixed structure or syntax.

— Example 4.22. Example WhoisProxy logging all whois requests

%‘ class MyWhoisProxy(AbstractWhoisProxy):

def whoisRequest(self, request):
log(None, CORE_DEBUG, 3, "Whois request: '%s'" % (request))
return zZV_ACCEPT

4.12.3. Related standards

® The NICNAME/WHOIS protocol is described in RFC 954.

4.12.4. Classes in the Whois module

Class Description
AbstractWhoisProxy Class encapsulating the abstract Whois proxy.
WhoisProxy Default proxy class based on AbstractWhoisProxy.

Table 4.28. Classes of the Whois module

4.12.5. Class AbstractWhoisProxy

This class implements the WHOIS protocol as specified in RFC 954.

4.12.5.1. Attributes of AbstractWhoisProxy

max_line_length (integer, rw:r)
Default: 132

Maximum number of characters allowed in a single line.

max_request_length (integer, rw:r)
Default: 128

Maximum allowed length of a Whois request.

www.balasys.hu 93

Class WhoisProxy e

request (string, n/a:rw)
Default:

The Whois request.

response_footer (string, rw:rw)
Default:
Append this string to each Whois response.

response_header (string, rw:rw)
Default:

Prepend this string to each Whois response.

timeout (integer, rw:r)
Default: 30000

I/0 timeout in milliseconds.

4.12.5.2. AbstractWhoisProxy methods

Method Description

whoisRequest(self, request) Function to process whois requests.

Table 4.29. Method summary

Method whoisRequest(self, request)

This function is called by the Whois proxy to process the requests. It can also be used to change specific attributes
of the request.

4.12.6. Class WhoisProxy

A default proxy class based on AbstractWhoisProxy.

4.13. Module Imap

Internet Message Access Protocol (IMAP) is a protocol to access electronic mailboxes via a reliable TCP
connection between the client and the server.

4.13.1. The IMAP protocol

IMAP is a standard TETF protocol to access mail folders stored on a remote mail server. Unlike POP3 which
gives only limited access to a single INBOX, IMAP permits manipulation of a remote mail store in a way that
is functionally equivalent to local mailboxes.

www.balasys.hu 94

The IMAP protocol (37

Unlike many common IETF protocols, IMAP is not a one-request/one-response protocol. The client might issue
one or more actions to be performed in parallel, thus responses to those commands can arrive in an order
independent from the order they were issued. Requests and the appropriate responses are paired by a unique
request identifier called 'tag'. There is one exception to this rule: the server might return untagged responses,
when more than a single response is associated with a single command. In this case the server responds with
one or more untagged responses and at the end a tagged response to indicate the end of the processing.

4.13.1.1. Protocol elements

The syntax of the IMAP protocol is strictly defined, both the client and the server is either reading a complete
line or a sequence of octets prefixed with the length of the sequence.

Request lines start with the tag, followed by a command verb identifying the operation. Each command might
have one or more arguments separated by spaces. Each argument has an associated type, one of: ATOM,
LITERAL, STRING, LIST. The type further specifies the syntax how these arguments are represented.

A response from the server might be sent directly in response to a request, or unilaterally whenever the server
implementation feels it appropriate. The response includes a response verb with zero or more arguments. Note
that there might be more response verbs returned for a single command and the response verbs have no direct
relationship with the request verb.

Content (e.g.: mail bodies) are transferred as literals embedded in commands and responses. There is no separate
bulk transfer mode in the protocol like in POP3 or SMTP. This results in extremely large request/response
sizes.

Each message might have one or more associated message flags like "\Deleted' or \Seen'.

4.13.1.2. Protocol states
IMAP defines four protocol states. Most commands are valid only in certain states. IMAP has the following
states:

B Non-Authenticated State: This state is at the beginning of the protocol flow before the client
authenticates him/herself.

m Authenticated State: In this state the client is authenticated and MUST select a mailbox to access
before commands that affect messages are be permitted.

m Selected State: In this state, a mailbox is selected for access. The protocol enters this state when a
mailbox has been successfully selected.

m Logout State: In this state the connection is being terminated and the server will close the connection.
IMAP is similar to other protocols in the sense that a connection is authenticated once, at the beginning of the

communication. Before authentication is performed only a limited set of commands can be issued, for example
AUTHENTICATE and LOGIN.

Each IMAP operation requires a current mailbox which is similar to the current working directory on UNIX
systems. Without a selected mailbox, only a limited set of commands can be issued, for example SELECT,
CREATE or REMOVE.

www.balasys.hu 95

Proxy behavior e

Once a mailbox is selected using the SELECT command, further operations become available, like FETCH or
STORE.

— Example 4.23. IMAP protocol sample

— * OK newmail IMAP server ready

A001 CAPABILITY

* CAPABILITY IMAP4 IMAP4revl ACL QUOTA LITERAL+\
MAILBOX-REFERRALS NAMESPACE UIDPLUS ID\
NO_ATOMIC_RENAME UNSELECT CHILDREN\
MULTIAPPEND SORT THREAD=ORDEREDSUBJECT\
THREAD=REFERENCES IDLE STARTTLS LISTEXT\
LIST-SUBSCRIBED ANNOTATEMORE

A001 OK Completed

A002 LOGIN user password

A002 OK User logged in

A003 SELECT INBOX

* FLAGS (\Answered \Flagged \Draft \Deleted \Seen)

* OK [PERMANENTFLAGS (\Answered \Flagged \Draft\
\Deleted \Seen *)]

* 1094 EXISTS

* 3 RECENT

* OK [UNSEEN 1092]

* OK [UIDVALIDITY 1047554575]

* OK [UIDNEXT 36885]

A003 OK [READ-WRITE] Completed

A004 FETCH 1 RFC822

* 1 FETCH (RFC822 {12}

123456789012

A004 OK Completed
A005 LOGOUT

* BYE LOGOUT received
A005 OK Completed

Responses to IMAP requests come in two types: tagged and untagged. When a client issues a request, the server
responds with a single tagged response, which may be preceeded by a number of untagged response lines. In
the example above, the client issues a tagged A001 CAPABILITY command to ask the server for the supported
capabilities. The server replies with the untagged * CAPABILITY IMAP4 ... line, listing the capabilities, and
the tagged A001 OK Completed line, indicating that the request was successfully completed.

4.13.2. Proxy behavior

ImapProxy is a module built for parsing requests and responses of the IMAP protocol. It reads all the REQUESTSs
at the client side, parses them and - if the local security policy permits - sends them to the server one-by-one.
When the RESPONSE:s arrive they are parsed by the proxy and sent to the client one by one if the local security
policy permits it. Simple greeting rewriting is supported to hide the version of the server. ImapProxy also
implements the NAMESPACE, RLIST and RLSUB commands and the LOGIN authentication method. Other
authentication methods are not supported and are denied (the proxy does not send them to the policy level).

4.13.2.1. Configuring policies for IMAP requests and responses

Changing the default behaviour of requests is possible using the request attribute. This hash is indexed by
the IMAP command name.

The response attribute is indexed as follows: The response attribute hash is a three-dimensional hash,
indexed by the command name for which the response is sent; the type of the response (TAGGED or

www.balasys.hu 96

Proxy behavior e

UNTAGGED); and the response name. Untagged responses are accepted when there is a command in the
pending queue (i.e. no tagged response arrived to it yet). The following constants are defined for the response

types:

Name

Value

IMAP_TAG_UNTAGGED

Untagged responses.

IMAP_TAG_ALL

Both types of responses.

IMAP_TAG_TAGGED

Tagged responses.

Table 4.30. Constants for IMAP response types

The proxy looks up the hash value corresponding to the IMAP command name as the key. If the hash contains
no entry for a command, the "*" entry is used. If there is no "*" entry in the hash, the command is denied.

The possible actions are described in the following tables.

Action

Description

IMAP_REQ_ACCEPT

Allow the command to pass.

IMAP_REQ_REJECT

Reject the command and send an error message to the
client.

IMAP_REQ_DROP

Silently drop the command - reject the command
without sending an error message.

IMAP_REQ_ABORT

Terminate the connection.

IMAP_REQ_POLICY

Call the function specified in the argument to make a
decision about the event. See Section 4.13.2.1,
Configuring policies for IMAP requests and
responses (p. 96) for details.

IMAP_REQ _REWRITE

Replace the request with a predefined one. See the
example below.

IMAP_REQ_RESPOND

Respond to the request instead of the server. The
request is not sent to the server. This action requires
two arguments: a string containing a tagged response
for the request, and a string list containing the optional
untagged responses.

Table 4.31. Action codes for IMAP requests

Action

Description

IMAP_RSP_ACCEPT

Allow the response to pass.

IMAP_RSP_REJECT

Reject the response and send an error message to the
client.

IMAP_RSP_DROP

Silently drop the response.

IMAP_RSP_ABORT

Terminate the connection.

www.balasys.hu

97

Proxy behavior e

Action Description

IMAP_RSP POLICY Call the function specified to make a decision about
the event. See Section 4.13.2.1, Configuring policies
for IMAP requests and responses (p. 96) for details.

IMAP_RSP_REWRITE Replace the response containing the greeting string
with a predefined one. See the example below.

Table 4.32. Action codes for IMAP responses

4.13.2.2. Calling methods

For calling a method, the hash must contain a tuple containing two values. The first value is
IMAP_REQ_POLICY and the second is the function to call. The function must return with one of the
IMAP_REQ_* values (excluding IMAP_*_POLICY), displayed in the table above.

The function is called with three arguments (apart from 'self'): the command tag, the command name, and its
arguments. The representation of arguments used by IMAP is described in Section 4.13.2.4, The IMAP command
structure in policies (p. 100).

If the proxy is to answer instead of the server, the action tuples must contain the following three items: The
value IMAP_REQ_RESPOND; the STRING to be sent back followed by a command tag, and a LIST containing
untagged lines to be sent back to the client.

For example, to reply to every CAPABILITY request on behalf of the server:

— Example 4.24. Rewriting IMAP capability response
| —

= | self.request["CAPABILITY"] = (IMAP_REQ RESPOND, "OK CAPABILITY completed", ("[IMAP4revi]",))

There are other methods to control which CAPABILITY s are known by the client. There is a separate capability
hash for this, indexed by the name of the capabilities. The valid values are listed below.

Action Description
IMAP_CAP_ ACCEPT Allow use of the capability.
IMAP_CAP_DROP Reject the capability.

Table 4.33. Action codes for IMAP capabilities

This hash has nothing to do with capabilities known by the proxy; it defines which answers can arrive to the
client for a CAPABILITY command.

Modifying the IMAP greeting string

The IMAP greeting string can be modified (rewritten) by the proxy to hide sensitive information about the
server. This can be realized as a rule defined as a tuple containing the following three items:

®m The value IMAP_REQ_REWRITE;
m a default return value (e.g.: IMAP_REQ_ACCEPT);

www.balasys.hu 98

Proxy behavior e

B and a string.

— Example 4.25. Changing the greeting string in IMAP
p ging g g g

%’ def config(self):

self.response["GREETING", "UNTAGGED", "OK"] = /
(IMAP_REQ_REWRITE, IMAP_REQ_ACCEPT, "Welcome to Zorp IMAP proxy")

IMAP states

In IMAP there are some defined states, and some commands are allowed only in certain states. On the policy
level these states may be examined and modified if necessary. This can be accomplished by setting two attributes,

imap_state old and imap_state new. The possible values for these variables are listed in the following
table.

Name Value

IMAP_IS_INITIAL Before any command arrived.
IMAP_IS_NONAUTH Before authentication.
IMAP_IS_AUTHENTICATING Authentication is in progress.
IMAP_IS_ AUTH Authentication performed.
IMAP_IS_SELECTED A mailbox is selected.
IMAP_IS_QUIT Logged out.

Table 4.34. IMAP states

4.13.2.3. Configuring acceptable flags

In the IMAP protocol the user can assign flags to mails (or other objects). For example, a flag is assigned to a
message to indicate that it has been read (\Seen), it can be marked as important mail or it can be indicated that
it has already been answered (\Answered). The usable flags are not predefined in the protocol, IMAP clients
can assign any flags they desire.

Flags can be controlled similarly to requests and responses using the flag hash. It is a normative hash indexed
by the name of the flag (case sensitive). The common practice is to accept any flags by default and explicitly
drop unneeded flags. The possible actions related to flags are shown in the table below.

Action Description

IMAP_FLAG_ACCEPT Accept the flag.

IMAP_FLAG_REJECT Reject the flag, including the entire command or
response.

www.balasys.hu 99

Proxy behavior e

Action Description

IMAP_FLAG_DROP Drop the flag silently, but accept the rest of the
command. If the command contains only the flag that
is dropped, the entire command is dropped.

Table 4.35. Action codes for IMAP flags

4.13.2.4. The IMAP command structure in policies

When using functions in policies to evaluate IMAP commands, the commands are represented as a recursive
tuple of tuples having the following structure. Every command is a tuple of length 3, containing the tag of the
command, the name of the command and a tuple containing the arguments.

The following values are possible as arguments (IMAP command structure in the policy layer):

W (int, string) -- Integer
® (int, int) -- Range

m <LITERAL> -- Literal Literals (the actual messages) in the requests/responses are represented by a
string having the 'Literal' value. The reason for this is that literals can be very large, therefore they
are not sent to (thus not available) the policy level in Zorp.

W string -- A string or an atom
m (",", al, a2...) -- Comma-separated list
m ("[", al, a2...) -- Bracketed list
m ("(", al, a2...) -- Parenthesized list
Of course, lists can contain other lists recursively.

When processing IMAP responses where a number argument precedes the response name (e.g.: 1094 EXISTS),
the number counts as the first argument.

Below are some examples how the different argument types are used in the IMAP protocol.

— Example 4.26. IMAP arguments in use

— Issued command: a0001 FETCH 1,2 RFC822
The command as processed by the Zorp IMAP proxy:

tag: "a0001"

command: "FETCH"

arguments: ((',', (2, '1"'), (2, '2")), 'RFC822'");

where (',', (1, '1"), (2, '2"'") is a comma separated list,

(1, '1'") is an integer, and RFC822 is a string.

Issued command: a0002 FETCH 1:2 RFC822

The command as processed by the Zorp IMAP proxy:
tag: a0002

command: FETCH

arguments: ((1, 2), 'RFC822');

where (1, 2) is a range.

Received response: * 1 FETCH (RFC822 <literal>)

The command as processed by the Zorp IMAP proxy:
command: FETCH

arguments: ((1, '1'), ('(', 'RFC822', '<LITERAL>'"));
where <LITERAL> is a literal represented by a string.

www.balasys.hu 100

Related standards e

4.13.2.5. Stacking

IMAP supports stacking proxies into different levels of the IMAP communication. Stacking is controlled by
the stack attribute hash. See also Section 2.3.1, Proxy stacking (p. 7). There are three stacking modes

available, described in the table below.

Name

Value

IMAP_BODY_FULL

Pass the complete IMAP messages to the stacked proxy
or program.

IMAP_BODY_PART

Pass only the body part of IMAP messages to the
stacked proxy or program.

IMAP_BODY_TEXT

Pass only the text part of IMAP messages to the stacked
Proxy or program.

4.13.3. Related standards

Table 4.36. Body part selection for stacking

m Internet Message Access Protocol (v4drevl) is described in RFC 3501.
m IMAP4 Binary Content Extension is described in RFC 3516.

® The IMAP UNSELECT command is described in RFC 3691.

m The IMAP MULTIAPPEND Extension is described in RFC 3502.

m The IMAP4 ID Extension is described in RFC 2971.

m IMAP4 Namespace is described in RFC 2342.

m IMAP4 Login Referrals are described in RFC 2221.

m IMAP4 Mailbox Referrals are described in RFC 2193.

m The IMAP4 QUOTA Extension is described in RFC 2087.

m The IMAP4 ACL Extension is described in RFC 2086.

m IMAP/POP AUTHorize Extension for Simple Challenge/Response is described in RFC 2195.

4.13.4. Classes in the Imap module

Class Description
AbstractImapProxy Class encapsulating the abstract IMAP proxy.
ImapProxy Default IMAP proxy based on AbstractimapProxy.

ImapProxyStrict

IMAP proxy based on AbstractimapProxy, allowing
only the minimal command set.

4.13.5. Class AbstractimapProxy

Table 4.37. Classes of the Imap module

This class implements an abstract IMAP proxy - it serves as a starting point for customized proxy classes, but
is itself not directly usable. Service definitions should refer to a customized class derived from

www.balasys.hu

101

Class AbstractimapProxy e

AbstractlmapProxy, or one of the predefined proxy classes, such as ImapProxy or ImapProxyStrict.
AbstractImapProxy denies every command, response, etc. by default.

4.13.5.1. Attributes of AbstractimapProxy

capability (complex, rw:rw)
Default:

Normative hash defining the capabilities accepted by the proxy. See Section 4.13.2.2, Calling methods (p. 98).

flag (complex, rw:rw)
Default:

Normative hash controlling flag values accepted by the proxy. See Section 4.13.2.3, Configuring acceptable
flags (p. 99).

imap_state_new (enum, n/a:rw)

Default: n/a

Protocol state after processing the line, one of the IMAP_IS_* constants. See Section 4.13.2.2, Calling
methods (p. 98).

imap_state_old (enum, n/a:rw)

Default: n/a

Protocol state before the command arrived, one of the IMAP_IS_* constants. See Section 4.13.2.2, Calling
methods (p. 98).

max_line_length (integer, rw:rw)
Default: 2048

Maximum allowed line length.

max_literal_count (integer, rw:rw)
Default: 32

Maximum number of literals allowed in one command or answer.

max_literal_length (integer, rw:rw)
Default: 65536

Maximum allowed literal length (e.g.: e-mail bodies are sent as literals).

max_password_length (integer, rw:rw)
Default: 32

Maximum allowed length of passwords.

www.balasys.hu 102

Class AbstractimapProxy e

max_pending_count (integer, rw:rw)
Default: 4

Maximum number of pending IMAP commands.

max_respond_lines (integer, rw:rw)
Default: 2

Maximum number of untagged lines that may be sent back to the client from policy.

max_username_length (integer, rw:rw)
Default: 32

Maximum allowed length of usernames.

password (string, n/a:r)

Default: n/a

Password sent to the remote server.

permit_alternative_login_challenges (boolean, rw:r)
Default: FALSE

Permit the use of "Username:" and "Password:" challenge strings durring LOGIN Authentication SASL
mechanism, described in section 2.2 of draft-murchison-sasl-login.

request (complex, rw:rw)
Default:

Normative policy hash for IMAP requests indexed by command name. See also Section 2.1, Policies for
requests and responses (p. 4).

response (complex, rw:rw)
Default:

Normative policy hash for IMAP responses, indexed by command name, response type and response name.
See Section 4.13.2.1, Configuring policies for IMAP requests and responses (p. 96).

stack (complex, rw:rw)
Default:
Attribute containing the stacking policy for IMAP messages. See Section 4.13.2.5, Stacking (p. 101) for details.

timeout (integer, rw:rw)
Default: 600000

Timeout value in milliseconds.

www.balasys.hu 103

Class ImapProxy e

username (string, n/a:r)

Default: n/a

Username sent to the remote server.

4.13.6. Class ImapProxy
ImapProxy is the default proxy for the IMAP protocol, based on AbstractimapProxy.

All requests, responses and flags are permitted, as well as the following capabilities: IMAP4; IMAP4revl;
ACL; QUOTA; NAMESPACE; X-NON-HIERARCHICAL-RENAME; NO_ATOMIC_RENAME; UNSELECT;
MAILBOX-REFERRALS; LOGIN-REFERRALS; AUTH=LOGIN; ID; CHILDREN; MULTIAPPEND;
SORT; THREAD=ORDEREDSUBJECT; THREAD=REFERENCES; LISTEXT; LIST-SUBSCRIBED;
ANNOTATEMORE.

4.13.7. Class ImapProxyStrict

IMAP proxy based on AbstractimapProxy, allowing only the minimal command set.

All flags are accepted. The following commands are permitted: AUTHENTICATE; CAPABILITY; CHECK;
CLOSE; EXAMINE; FETCH; FIND; GETACL; LIST; LOGIN; LOGOUT; LSUB; NAMESPACE; NOOP;
RLIST; RLSUB; SELECT; STATUS; UID; EXPUNGE; STORE.

The permitted capabilities are the following IMAP4; IMAP4revl; ACL; QUOTA; NAMESPACE;
X-NON-HIERARCHICAL-RENAME; NO_ATOMIC_RENAME; UNSELECT; MAILBOX-REFERRALS;
LOGIN-REFERRALS; AUTH=LOGIN.

4.14. Module Ldap

The Ldap module defines the classes constituting the proxy for the LDAP protocol.

4.14.1. The LDAP protocol

Lightweight Directory Access Protocol (LDAP) is designed to provide access to X.500 directory services (i.e.
to maintain directory databases). It is frequently used to distribute public key certificates, address book
information, and user authentication information. Clients can be controlled by individuals (via an application,
called LDAP browser) or an agent (e.g.: authentication module or any other application).

X.500 represents information in a hierarchical directory structure. Every entry in the tree is identified with a
unique distinguished name (DN) and contains several attributes. A DN looks like the following:

uid=username, ou=administrators, ou=some-department, ou=some-part -of - the-company, dc=company, dc=net

A schema defines sets of attribute entries in an ObjectClass. Every container can have different ObjectClasses,
with each ObjectClass having mandatory and optional entries. The following example defines a user with several
attributes from five ObjectClasses.

www.balasys.hu 104

The LDAP protocol e

— Example 4.27. Example Ldap entry

— dn: uid=username, ou=departnent, dc=company, dc=hu
uid: username

cn: username

sn: username

uidNumber: 1234

gidNumber: 1234

mail: username@company.hu
displayName: Dr. UserName
homeDirectory: /home/username
objectClass: top

objectClass: posixAccount
objectClass: inetOrgPerson
objectClass: inetLocalMailRecipient
objectClass: sambaSamAccount
sambaSID: 1234

loginShell: /bin/bash

userPassword: {SMD5}fdsfhiz234dsadsad
telephoneNumber: 1234

street: Foo

postOfficeBox: 1234

roomNumber: 107

4.14.1.1. Protocol elements

LDAP is arequest/response based binary protocol. The client can connect to the server on a channel at TCP/389
port and send REQUESTSs. The client can request several operations in parallel. The following operations can
be performed:

® Bind: Identify the client and optionally perform authentication.

®m Unbind: Terminate a protocol session.

m Search: Search for entries using filters.

® Modify: Modify tree entries and attributes.

m Add: Request the addition of an entry into the directory.

m Delete: Request the deletion of an entry from the directory.

m Modify DN: Change the leftmost component of the name of an entry in the directory, or to move a
subtree of entries to a new location in the directory.

®m Compare: Compare an assertion provided with an entry in the directory.
m Abandon: Request the server to cancel an outstanding operation.

m Extended: This operation is for additional operations to be defined for services not available elsewhere
in the protocol.

The protocol operates according to the following general scheme:

1. The client opens a connection at TCP/389 and binds to an object in the directory tree. The server
authenticates the client to this object. If authentication is not required, the client can use the given
tree anonymously.

2. If the authentication process is successful the client can perform requests (i.e. the above mentioned
operations: modify, add, delete etc.).

3. Finally the client unbinds and closes the connection.

www.balasys.hu 105

Proxy behavior e

The LDAP protocol is described using ASN.1 (Abstract Syntax Notation), and is typically transferred using
the Basic Encoding Rules, a subset of ASN.1.

4.14.2. Proxy behavior

LdapProxy is a module built for parsing the LDAP protocol version v2 and v3. It reads and parses the REQUESTSs
at the client side and - if the local security policy permits - sends them to the server. It parses the arriving
RESPONSE and - if the local security policy permits - forwards it to the client. LdapProxy can parse the
following requests and responses, consequently, these requests can be accepted or denied:

Request/Response Description

BindRequest Request for binding as an object.

BindResponse Response to BindRequests.

UnbindRequest Request for unbinding.

SearchRequest Request for submitting an LDAP query.

SearchResultEntry Response to SearchRequests.

SearchResultDone Response indicating the SearchRequest was performed.

ModifyRequest Request to modify an entry.

ModifyResponse Response to ModifyRequests.

AddRequest Request to add a new entry.

AddResponse Response to AddRequests.

DelRequest Request to delete an LDAP entry.

DelResponse Response to DelRequests.

ModifyDNRequest Request to modify a DN object.

ModifyDNResponse Response to ModifyDNRequests.

CompareRequest Request to compare the provided assertion with an entry
in the directory.

CompareResponse Response to CompareRequests.

AbandonRequest Request to cancel a request.

SearchResultReference Response referring to another LDAP server.

ExtendedRequest Request reserved for further queries.

ExtendedResponse Response to ExtendedRequests.

Table 4.38. Parsed LDAP operations

4.14.3. Configuring policies for LDAP requests

Changing the default behavior of requests can be done using the hash attribute request. The hash is indexed
by the request name. The possible values of these hashes are shown in the tables below. See Section 2.1, Policies
for requests and responses (p. 4) for details.

www.balasys.hu 106

Simple Authentication and Security Layer (SASL) on LDAP messages

Action Description
LDAP_REQ_ACCEPT Allow the request to pass.
LDAP_REQ_REJECT Reject the request.
LDAP_REQ_ABORT Terminate the connection.

Table 4.39. Action codes for LP requests

— Example 4.28. Example of the commands usage
In the following example the Ldap proxy allows only BindRequest, UnbindRequest, SearchRequest and CompareRequest requests.

def config(self):
AbstractLdapProxy.config(self)
self.request["BindRequest"]
self.request["UnbindRequest"]
self.request["SearchRequest"]
self.request["CompareRequest"]
self.request["*"]

LDAP_REQ_ACCEPT
LDAP_REQ_ACCEPT
LDAP_REQ_ACCEPT
LDAP_REQ_ACCEPT
LDAP_REQ_REJECT

4.14.4. Simple Authentication and Security Layer (SASL) on LDAP messages

Simple Authentication and Security Layer (SASL) is a framework for authentication and data security in Internet
protocols. It is also used by Microsoft Active directory. Please note that support for the SASL security layer in
Zorp is a work in progress - currently LDAP protocol analysis is effectively disabled for SASL wrapped requests.

4.14.5. Related standards

m Lightweight Directory Access Protocol (v3) is described in RFC 2251.

® The LDAP URL Format is described in RFC 2255.

® Using Domains in LDAP/X.500 Distinguished Names is described in RFC 2247.

m Lightweight Directory Access Protocol (v3): Technical Specification is in RFC 3377.

4.14.6. Classes in the Ldap module

Class Description

AbstractLdapProxy Class encapsulating the abstract Ldap proxy.
LdapProxy Default Ldap proxy based on AbstractL.dapProxy.
LdapProxyRO Ldap proxy enabling only read-only access.

Table 4.40. Classes of the Ldap module

4.14.7. Class AbstractLdapProxy

This class implements an abstract LDAP proxy - it serves as a starting point for customized proxy classes, but
is itself not directly usable. Service definitions should refer to a customized class derived from
Abstractl.dapProxy, or one of the predefined proxy classes. Abstractl.dapProxy denies all requests by default.

www.balasys.hu 107

Class LdapProxy e

4.14.7.1. Attributes of AbstractLdapProxy

max_message_size (integer, rw:r)
Default: 65535

Maximum allowed size of requests and responses.

max_pending_request (integer, rw:r)
Default: 32

Maximum number of pending requests.

max_search_response_number (integer, w:r)
Default: 2147483648

Determines the maximal number of LDAP search results. The action to perform on results over this limit can
be set in the response_overrun_action attribute.

permit_sasl_transport (boolean, rw:r)
Default: FALSE

Permit the use of the Simple Authentication and Security Layer (SASL) on LDAP messages. See Section
4.14.4, Simple Authentication and Security Layer (SASL) on LDAP messages (p. 107) for details.

request (complex, rw:r)

Default: n/a

Normative policy hash for LDAP requests indexed by the request. See also Section 4.14.3, Configuring policies
for LDAP requests (p. 106).

response_overrun_action (enum, w:r)
Default: LDAP_RSP_DROP

The action to perform on search results over the limit set in the max_search_response_number attribute.

timeout (integer, rw:r)
Default: 600000

I/0 timeout in milliseconds.

4.14.8. Class LdapProxy

LdapProxy is a default proxy for the LDAP protocol based on Abstractl.dapProxy. All syntactically correct
operation is permitted.

www.balasys.hu 108

Class LdapProxyRO e

4.14.9. Class LdapProxyRO

LDAP proxy based on Abstractl.dapProxy, with read-only access. This proxy does not allow clients to write
or delete on the Ldap server, i.e. the Add, Modify, Delete operations are disabled.

4.15. Module Lp

This module defines the classes constituting the proxy for the LPD protocol.

4.15.1. The LPD protocol

The Berkeley Unix operating system provides line printer spooling functionalities via a collection of commands:
'Ipr' assigns a queue, 'lpq' lists the printer queue, 'Iprm' deletes a job from the queue and 'Ipc’ controls the queue.
The protocol between the printer server and the client is the Line Printer Daemon Protocol (LPD).

A printing environment contains a printer server and several clients. The server provides printing service at
port TCP/515 and manages the printer spool to which clients connect and send printing jobs. Every job is
assigned a job ID which is a number between 0 and 999; both the client and server use this ID to refer to a given
job. The protocol allows the client to send a file to print, maintain the printing queue, remove jobs from the
spool and get the status of jobs.

LPD protocol is a request/acknowledgment based protocol. Every REQUEST begins with a single octet code,
which represents the binary number of the requested function. The code is followed by the ASCII name of the
printer queue. Other operands can follow the queue name separated by whitespace. The request must be closed
with an ASCII line feed character. After certain operations (e.g.: receiving a datafile) the server may send an
acknowledgment.

4.15.1.1. Protocol elements

The protocol has six main and several sub-commands.
m PRINT (queue): Start the printing process if it is not already running.

m RECEIVE (queue): Receive a job. This command switches the daemon into receiving mode. Receive
mode has three different subcommands:

* ABORT JOB: Remove any file which has been created during this "Receive job" command.

+ RECEIVE CONTROL FILE: After issuing this subcommand the client can send a file containing
the commands to perform on the printer queue.

+ RECEIVE DATA FILE: After issuing this subcommand the client can send the file to be printed.

® REMOVE (queue, agent, list): Remove a job from the queue. The jobs to be removed are sent in a
whitespace-separated list.

m SHORTSTATE (queue, list): Short status report command. List is a whitespace-separated list of
jobs to report about.

m LONGSTATE (queue, list): Long status report command. List is a whitespace-separated list of jobs
to report about.

m DATAFILE (length: int, name): Receive a data file.

www.balasys.hu 109

The LPD protocol e

The request attribute hash is also consulted for every control file line sent by the RECEIVE CONTROL FILE
command. If a function is called, it gets one argument, the whole control line but the first character.
The control file commands are the following:
m C CLASS -- Set the class name to be printed on the banner page.
m H HOST -- Specifies the name of the host sending the print job.
m | INDENT -- This command specifies that, for files which are printed with the 'f', of columns given.
m J JOBNAME -- Set the name of the job to be printed on the banner page.
m . BANNER -- Print a banner page at the end of the job.

m M MAIL -- Send a mail to the user when the job is finished. The user is specified in the operand,
the host name is set via the 'H' command.

® N SOURCE -- The name of the file from which the job was formed.
m P USER -- The entity who generated the job.

m S SYMLINK -- Record symbolic link data on a Unix system so that a file will not be re-printed if
its directory entry is changed after it has been printed.

m T TITLE -- The title of the document to be printed.

m U UNLINK -- Indicates that the specified file is no longer needed.

m W WIDTH -- Limit the output to the specified number of columns for the 'f', 'l', and 'p' commands.
m] TROFF1 -- Specify the file name for the troff R font.

m 2 TROFF2 -- Specify the file name for the troff I font.

m 3 TROFF3 -- Specify the file name for the troff B font.

m 4 TROFF4 -- Specify the file name for the troff S font.

m ¢ CIF -- Plot a CalTech Intermediate Form (CIF) data file.

m d DVI -- Print a Device Independent Interface (DVI - TeX output) data file.

m f FORMAT -- Print a plaintext (including page breaks) data file.

m g PLOT -- Plot a data file of the output of the Berkeley Unix plot library.

m k KERB -- Reserved for use by Kerberized LPR clients and servers.

m | NOFILTER -- Print file omitting control characters.

m n DITROFF -- Print a DITROFF data file.

B o0 PS -- Print a standard PostScript data file.

®m p PR -- Print the data file with heading, page numbers, and pagination.

m r FORTRAN -- Print the data file with FORTRAN carriage control.

m ¢t TROFF -- Print the data file as Graphic Systems C/A/T phototypesetter input.
B v RASTER -- Prints a Sun raster format file.

www.balasys.hu 110

Proxy behavior e

4.15.2. Proxy behavior

LpProxy is a module built for parsing the LPD protocol. It reads and parses the REQUESTSs on the client side
and sends them to the server if the local security policy permits it.

By default, every LP command conforming to the RFC is accepted; everything else is rejected. Use of the
different LP commands can be restricted if needed. This procedure is described in the next section.

4.15.2.1. Configuring policies for LP commands

Changing the default behavior of commands can be done by using the hash attribute request. The hash is
indexed by the command names. The possible actions are described in the following table. See Section 2.1,
Policies for requests and responses (p. 4) for details.

Action Description

LP_REQ_ACCEPT Allow the command to pass.

LP_REQ_REJECT Block the command and report it to the client.

LP_REQ_ABORT Terminate the connection.

LP_REQ_DROP Block the command without further action.

LP_REQ_POLICY Call the function specified to make a decision about
the event. The function receives three parameters: self,
command, and the parameters of the command. See
Section 2.1, Policies for requests and responses (p. 4)
for details.

Table 4.41. Action codes for LP requests

To call a policy function, the hash value must be a tuple containing LP_REQ_POLICY as its first value and
the function to be called as the second. The arguments which the function is called with depend on the command.

4.15.3. Related standards

The LP protocol is specified in RFC 1179.

4.15.4. Classes in the Lp module

Class Description
AbstractLpProxy Class encapsulating the abstract LP proxy.
LpProxy Default LP proxy based on AbstractL.pProxy.

Table 4.42. Classes of the Lp module

4.15.5. Class AbstractLpProxy

This class implements an abstract LP proxy - it serves as a starting point for customized proxy classes, but is
itself not directly usable. Service definitions should refer to a customized class derived from AbstractLpProxy,
or the predefined LpProxy proxy class. AbstractL.pProxy denies all commands by default.

www.balasys.hu 111

Class LpProxy e

4.15.5.1. Attributes of AbstractLpProxy

max_line_length (integer, rw:r)
Default: 1024

Maximum allowed length of a line.

request (complex, rw:rw)

Default: empty

Normative policy hash for LP requests indexed by the command name (including protocol commands and
their subcommands, as well as control file commands). See also Section 4.15.2.1, Configuring policies for LP
commands (p. 111).

timeout (integer, rw:r)
Default: 30000

General I/0 timeout in milliseconds.

4.15.6. Class LpProxy

LpProxy is a default LP proxy based on AbstractLpProxy, accepting all commands, including unknown ones.

4.16. Module Mime

This module defines the classes representing the MIME proxy.

4.16.1. The MIME protocol

Multipurpose Internet Mail Extensions (MIME) is a complex representation of multiple type of message bodies,
and refers to an official Internet standard that defines how messages must be formatted. It makes possible for
different types of e-mail systems to exchange messages successfully. MIME is a flexible format which allows
to include different type of messages in a single e-mail message. It redefines message format to allow:

B text messages in different character sets;

m extensible set of non-text format messages;

® multiple message types in one message body;

m text header information.

The content of the message is shown by the MIME header, which indicates the type and number of parts the
message contains. The header also contains encoding system and version information. MIME supports the
following body-types:

Body-type Description

text The primary type of MIME content. The main subtype
is plain.

multipart The message contains different types of data.

www.balasys.hu 112

The MIME protocol (37

Body-type Description

message Indicates an encapsulated text message.

image Indicates that the message contains image file.
audio Indicates that the message contains audio data.
video Indicates that the message contains video data.

Table 4.43. MIME body-types

To make sure message contents arrive without corruption, non-text messages must be encoded to printable
ASCII characters. Older UNIX systems use uuencode/uudecode transformation. MIME encoding provides
base64 to encode any attachment as text.

MIME indicates the parameters of the message in the header field, which can be the following:

MIME header Description
MIME-Version Indicates the exact version of the MIME message.
Content-Type Indicates the type of the data contained in the body.

The default content type is 'text/plain; charset=us-ascii'.

Content-Transfer-Encoding Indicates the encoding used in the message part. It is
also possible to create private transfer encoding, which
can be indicated by X-My-Private-Transfer-Encoding.

Content-ID Unique identifier of the MIME object.
Content-Description Extra comments added to the message by the user.
Additional MIME Header Fields Extra fields to be used by the developers in the future.

Table 4.44. MIME headers
Note
@ MIME headers do not guarantee that the message really contains the type of content indicated in the header.

— Example 4.29. Example mail header containing MIME message
—— | A simple e-mail message containing text message.

From: Sender User <sender@balasys.hu>

To: Receiver User <receiver@balasys.com>
Message-Id: <asdfghjkl@balasys.internal.server>
Content-Type: text/plain

Mime-Version: 1.0

Date: Thu, 01 Jul 2004 11:34:30 +0200
Content-Transfer-Encoding: 7bit

— Example 4.30. Example PNG format picture attachment
—— | A message containing an image attachment in base64 encoding.

Mime-Version: 1.0

Content-Type: image/jpeg; name="image.png"
Content-Transfer-Encoding: base64
Content-Disposition: inline; filename="image.png"

www.balasys.hu 113

Proxy behavior e

— Example 4.31. Example multipart message
—— | A multipart type message containing a simple text message with a postscript attachment.

This is a multi-part message in MIME format.
-------------- 080709090505030904090905

Content-Type: text/plain; charset=us-ascii; format=flowed
Content-Transfer-Encoding: 7bit

us-ascii message comes here...

-------------- 080709090505030904090905

Content-Type: application/postscript; name="zorp-pro-reference-guide-3.0.ps"
Content-Transfer-Encoding: base64

Content-Disposition: inline; filename="zorp-pro-reference-guide-3.0.ps"

base64 message comes here...

4.16.2. Proxy behavior

MimeProxy is a module built for parsing MIME messages. Since MIME is not a communication protocol in
itself, the MIME proxy cannot be used on its own. It can only inspect data received from a protocol proxy (e.g.:
a HTTP proxy, POP3 proxy, etc. that stacks the MimeProxy). MimeProxy reads the data received from the
other proxy and handles message headers and bodies if there are any. If the message conforms to the RFC
standard it is accepted, otherwise the content is rejected. It is also possible to stack a further proxy into the
Mime module (e.g.: a virus filtering module).

4.16.2.1. Configuring policies for MIME headers and content types
Configuring the default behavior for MIME objects is possible using the header and body_type attributes.

MimeProxy parses MIME headers first. See Table 4.44, MIME headers (p. 113) and Table 4.43, MIME
body-types (p. 112) for the available headers and body-types. The following table shows the possible actions
on MIME headers. Headers may be accepted or dropped, or the entire object can be rejected. Subobjects (i.e.
MIME objects embedded into other MIME objects) cannot be dropped or rejected individually, the entire object
must be rejected/dropped.

Action Description

MIME_HDR_ACCEPT Accept header.

MIME_HDR_DROP Drop the header, but do not reject the entire MIME
object.

MIME_HDR_ABORT Reject the entire connection.

MIME_HDR_POLICY Call the function specified to make a decision about
the header. See Section 4.16.2.1, Configuring policies
for MIME headers and content types (p. 114) for details.
Put header line into policy level.

Table 4.45. Action codes for MIME headers

Second, MimeProxy parses MIME content (or body) types. The following table shows the possible actions on
MIME types (body_type). Stacking another module is possible using the MIME_TPE_STACK action.

www.balasys.hu 114

Related standards e

Action Description

MIME_TPE_ACCEPT Accept the MIME type.

MIME_TPE_DROP Drop the entire MIME object.

MIME_TPE_DROP_ONE Drop the MIME object. This does not affect other
objects in the object.

MIME_TPE_CHANGE Modify the type of the object to the one specified in
the second argument.

MIME_TPE_ABORT Abort the connection and reject the entire MIME object.

MIME_TPE_STACK Pass the content to be inspected by another proxy.

MIME_TPE_POLICY Call the function specified to make a decision about
the event. See Section 4.16.2.1, Configuring policies
for MIME headers and content types (p. 114) for details.

Table 4.46. Action codes for MIME content types

If all contents and headers are acceptable by the local security policy, MimeProxy rebuilds the MIME message
and passes it back to the parent proxy.

— Example 4.32. Example usage of MimeProxy module, denying applications

% Removes all applications from the messages. An error message is sent to the client (silent_drop = FALSE; the directory where the
| w— error messages are stored is specified in the mime_message_path attribute).

class MyMimeProxy(MimeProxy):
def config(self):
MimeProxy.config(self)
self.body_type["application" "*"] = (MIME_TPE_DROP)
self.silent_drop = FALSE
self.mime_message_path="/usr/share/zorp/mime"

4.16.3. Related standards

®m RFC 2045: MIME Part One: Format of Internet Message Bodies

m RFC 2046: MIME Part Two: Media Types

®m RFC 2047: MIME Part Three: Message Header Extensions for Non-ASCII Text
m RFC 2048: MIME Part Four: Registration Procedures

m RFC 2049: MIME Part Five: Conformance Criteria and Example

4.16.4. Classes in the Mime module

Class Description

AbstractMimeProxy Class encapsulating the abstract MIME proxy.

www.balasys.hu 115

Class AbstractMimeProxy e

Class Description
MimeProxy Default MIME proxy based on AbstractMimeProxy.

Table 4.47. Classes of the Mime module

4.16.5. Class AbstractMimeProxy

This class implements an abstract MIME proxy - it serves as a starting point for customized proxy classes, but
is itself not directly usable. Service definitions should refer to a customized class derived from
AbstractMimeProxy, or the predefined MimeProxy proxy class. AbstractMimeProxy rejects all headers and
body-types by default.

4.16.5.1. Attributes of AbstractMimeProxy

append_object (string, rw:r)
Default: ""

Appends the specified file (e.g.: /tmp/attachment) as a new attachment. Requires the
permit_empty headers parameter to be set to TRUE.

body_type (complex, rw:r)
Default:

Multi-dimensional policy hash for body-types, indexed by body-type name (major and minor parts of the body
type). See Section 4.16.2.1, Configuring policies for MIME headers and content types (p. 114).

drop_bad_header (boolean, rw:r)
Default: FALSE

Reject the (sub)object or silently drop the header if it is syntactically or semantically incorrect. If the header
is essential for MIME parsing, this option is ignored and the message will be dropped.

error (complex, rw:rw)

Default: n/a

An alias of the error_action parameter. Obsolete, use error_action instead.

error_action (complex, rw:rw)

Default: n/a

With this normative hash you can control the action taken when some error occurs. For compatibility reasons,
the error parameter refers to the same hash.

header (complex, rw:r)
Default:

Normative policy hash for MIME header types, indexed by the header type. See Section 4.16.2.1, Configuring
policies for MIME headers and content types (p. 114).

www.balasys.hu 116

Class AbstractMimeProxy e

keep_header_comments (boolean, rw:r)
Default: TRUE

Keep or remove header comments. The syntax of MIME headers is very complex and it is possible to confuse
a parser with a specially crafted comment. To prevent this, it is possible to remove all comments. (NOTE:
This option will be header-specific in future releases of Zorp.)

max_header_length (integer, rw:r)
Default: 4096

The maximum length of a single header.

max_header_line_length (integer, rw:r)
Default: 1000

The maximum length of a single header line. A header may be split into multiple lines, this value limits the
length of a single line.

max_header_lines (integer, rw:r)
Default: 1024

Maximum number of headers in a (sub)object. Different objects are counted separately even when these objects
are subobjects of the same object. If drop_bad_header turned on all headers above this number will dropped.
If not, the conversation will aborted.

max_multipart_level (integer, rw:r)
Default: 10

The maximum recursion level the proxy should check. If the number of levels in an object exceeds the allowed
limit, the object is rejected.

max_multipart_number (integer, rw:r)
Default: 100

Maximum number of subobjects that an object is allowed to contain. The default is 100. The counter is not
restarted when checking a new subobject. (i.e.: this limits the global number of objects)

mime_message_path (string, rw:r)

Default: "/usr/share/zorp/mime"

Path to the directory where the custom error messages are stored.

permit_bad_continuous_line (boolean, rw:r)
Default: FALSE

Parse bad headers as continuous lines.

www.balasys.hu 117

Class MimeProxy e

permit_empty_headers (boolean, rw:r)
Default: FALSE

If enabled (TRUE) and the first line of a MIME object (or subobject) is not parseable as a MIME header, it is
handled as a MIME body without a header.

silent_drop (boolean, rw:r)
Default: FALSE

If disabled (FALSE), dropped objects are replaced with an object containing an error message. If enabled
(TRUE), objects and headers are dropped without notification.

timeout (integer, rw:r)
Default: -1

I/0 timeout in milliseconds. The default value (-1) means unlimited.

4.16.6. Class MimeProxy

MimeProxy is a default MIME proxy based on the AbstractMimeProxy. All headers and body-types are accepted.

4.17. Module MSRpc

Remote Procedure Call (RPC) is a protocol for calling procedures on remote machines.

4.17.1. The RPC protocol

The RPC protocol consists of two phases: negotiating an access point to a service and communicating with the
service itself. On the server side the negotiation is performed by a special service called 'Endpoint Mapper'
(EPM), which listens on the TCP/UDP port 135. The protocol of the communication is specified in the DCE
RPC Specification. If the client is allowed to use the requested service, the EPM passes its address and IP in
its response, and the client may connect to it and make any data transfer it wishes. The protocol format varies
from service to service, so Zorp only filters the communication between the client and the EPM, also maintaining
transparent forwarding facilities between the client and the service.

The filtering of the traffic between the client and the EPM means that requests can be approved or rejected for
services specified by their UUID. The denial of a service is implemented as if the EPM had refused it, the
approval is transparent in a way that the resulting service access point has the same IP as in the original EPM
request: only the port is altered to point to the dedicated forwarder facility.

The timing parameters of the communication may also be limited by specifying the maximal allowed duration
of the requests/responses; the idle timeout between requests/responses and the maximal delay between the
service approval and the connection to the approved service.

4.17.2. Proxy behavior

The Zorp MSRpc proxy is a module supporting version 2 of the MSRPC protocol.

www.balasys.hu 118

Classes in the MSRpc module e

4.17.2.1. Setting policies for services

Changing the default behavior for services can be accomplished via the self.interface hash attribute. This
hash is indexed by the service UUID, and each item in this hash is an action code defining proxy behavior for
the given command. The available action codes are shown in the following table:

Name Value

MSRPC_UUID_ACCEPT Allow access to the requested service.
MSRPC_UUID_REJECT Reject access to the requested service.
MSRPC_UUID_DROP Drop the request without further notice.

Table 4.48. Action codes for MSRpc requests.

— Example 4.33. Customising RPC to allow connection to service "11223344-5566-7788-99aa-bbccddeeff00"
5 class MyRpcProxy(MSRpcProxy):
def config(self):
self.interface["11223344-5566-7788-99aa-bbccddeeff00"] = MSRPC_UUID_ACCEPT

4.17.2.2. Restrictions

Currently the proxy handles only TCP connections and tracks/filters only the traffic toward the EPM service.
Since this does not cover the protocols used by either the standardized or the proprietary DCOM services, some
applications may not work properly through this proxy. Some remote management applications that use the
ISystemActivator service and the notification feature of Exchange are known to have issues with the Zorp
MSRpc proxy.

4.17.2.3. Global options
The following global options apply to all classes of the the MSRpc proxy:

config.msrpc.forwarder_data timeout Timeout value (in milliseconds) for forwarded traffic. Default
value: 60000 (60 sec)

4.17.3. Classes in the MSRpc module

Class Description
AbstractMSRpcProxy Class encapsulating the abstract MSRpc proxy.
MSRpcProxy Default MSRpc proxy based on AbstractMSRpcProxy.

Table 4.49. Classes of the MSRpc module

4.17.4. Class AbstractMSRpcProxy

This class implements an abstract MSRpc proxy, denying access to all services by default.

www.balasys.hu 119

Class MSRpcProxy e

4.17.4.1. Attributes of AbstractMSRpcProxy

command_timeout (integer, rw:r)
Default: 600000

Command timeout in milliseconds. If a packet cannot be transmitted during this interval, the connection is
dropped.

forwarder_timeout (integer, rw:r)
Default: 20000

Forwarder timeout in milliseconds. If no connection is established to a forwarder facility during this period
(measured from service approval), the forwarder will be cancelled.

interface (complex, rw:rw)

Default: empty

Normative policy hash indexed by the UUID of the services, specifying the security policy about the service.
See Section 4.17.2.1, Setting policies for services (p. 119) for details.

secondary_port_max (integer, rw:r)
Default: 0

The upper limit of the port range allocated for forwarders. (Zero means no restriction.)

secondary_port_min (integer, rw:r)
Default: 0

The lower limit of the port range allocated for forwarders. (Zero means no restriction.)

timeout (integer, rw:r)
Default: 600000

Idle timeout in milliseconds. If no packet arrives during this period, the connection is dropped.

4.17.5. Class MSRpcProxy

This proxy allows access only to the most necessary EPM services for RPC to function. These services are
99fcfec4-5260-101b-bbcb-00aa0021347a and 8a885d04-1ceb-11c9-9fe8-08002b104860.

4.18. Module Nntp

The Nntp module defines the classes constituting the proxy for the Network News Transfer Protocol.

4.18.1. The NNTP Protocol

Network News Transfer Protocol (NNTP) is a protocol for distributing, reading or posting USENET articles
via a reliable TCP connection between client-server or server-server.

www.balasys.hu 120

The NNTP Protocol (;

4.18.1.1. The USENET system

Traditional mailing lists have several drawbacks. Members must subscribe to each list and a mailing list
application (e.g.: the legendary majordomo) resends all posts to every member and keeps one more message
in the list archive. This process lavishes bandwidth, time and storage space.

The solution is NNTP and USENET. Articles are stored in a central news server in Standard for Interchange
of USENET Messages format. The central article repository (technically a spool) on a receiving host allows
the readers to select the desired article and read it, or post a message to a USENET group. The client selects
the article to read and the server presents it without duplicating it.

News clients usually connect to intermediate ("slave") servers or directly to the main repository. When a client
sends a message to a newsgroup, a slave server receives the message and forwards it to the other servers.

4.18.1.2. Protocol elements

NNTP protocol is a request-response based protocol. The client sends REQUEST commands - text commands
with arguments and closed by CRLF (carriage return followed by a line feed). The server answers with a
STATUS RESPONSE, which is a 3 digit numeric status indicator code and a text message. After the STATUS
RESPONSE comes the answer itself if there is any.

Status responses are reports from the server indicating the result of the last command received from the client.
Status response lines begin with a 3 digit numeric code.

The first number indicates the success, failure or the progress of the last command. 1 means informative message
is coming, 2 means the command is OK, 3 means the command is OK so far, 4 means the command is OK, but
it is temporary unavailable and 5 means the command is incorrect.

The second number indicates the function response category, where 0 means the message is related to connection
setup, 1 means the message is about newsgroup selection and 4 means the message is about posting.

The most common STATUS RESPONSEs are "200 server ready, posting allowed", "500 command not
recognized" and "201 server ready, posting not allowed".

NNTP defines default commands for reading and posting articles or listing and changing between newsgroups.
Several extensions are also available which allow the protocol to implement user identification and authentication.

— Example 4.34. Example NNTP connection

— 200 newsfeed.example.com InterNetNews NNTP server INN 2.3.2 ready (posting ok).
LIST

215 Newsgroups in form "group high low flags".
hun.business.egyeb 0000000091 0000000088 y
hun.comp.lang.java 0000054077 0000050155 m
hun.comp.lang.madach 0000000000 0000000001 y
hun.comp.net 0000000009 0000000009 y
hun.comp.o0s.0s2 0000000002 0000000002 y
hun.comp.os.solaris 0000000007 0000000007 y
hun.comp.text.tex 0000000007 0000000007 y
hun.flame 0000000065 0000000065 Yy

GROUP hun.comp.lang.java

211 3923 50155 54077 hun.comp.lang.java
ARTICLE 54077

220 54077 <XXXXXXXX . XXXXXXXX@foo.hu> article
Path: newsfeed.example.com

Distribution: hun

www.balasys.hu 121

Proxy behavior e

Subject:

Article comes here...

QUIT
205 .

4.18.2. Proxy behavior

NntpProxy is a module built for parsing the NNTP protocol. It reads and parses REQUESTs (commands) at
the client side, and sends them to the server if the local security policy permits. When a RESPONSE arrives it
parses the STATUS response and sends it to the client if the local security policy permits. It is possible to
manipulate both the requests and the responses.

4.18.2.1. Default processing of commands and responses

The NNTP proxy denies all commands and responses by default. A customized proxy class can be used to
enable commands and responses individually, or a predefined proxy class can be used.

4.18.2.2. Configuring policies for NNTP requests and responses

Changing the default behavior of requests is possible using the request attribute. This hash is indexed by the
NNTP command name (e.g.: POST or ARTICLE). The response attribute (indexed by the command name
and the response code) enables the control of NNTP responses. The possible actions are described in the
following tables. See also Section 2.1, Policies for requests and responses (p. 4). When looking up entries of
the response attribute hash, the lookup precedence described in Section 2.1.2, Response codes (p. 6) is used.

Action Description
NNTP_REQ_ACCEPT Allow the command.
NNTP_REQ_ACCEPT_CLIENTTEXT Allow the command and notify the low level proxy

layer that the client will send extra text (for example
an article) immediately after this request.

This action is required only by certain non-standard
NNTP extensions. It should be handled with great care,
because its use can result in deadlocks or erroneous

behavior.
NNTP_REQ_REJECT Reject the command.
NNTP_REQ REJECT _CLIENTTEXT Reject the command and the extra text from the client.
NNTP_REQ_ABORT Reject the command and terminate the NNTP session.
NNTP_REQ_POLICY Call the function specified to make a decision about

the event. The function receives three parameters: self,

www.balasys.hu 122

Proxy behavior e

Action Description

command, and the parameters of the command. See
Section 2.1, Policies for requests and responses (p. 4)
for details.

Table 4.50. Action codes for NNTP requests

Action Description
NNTP_RSP_ACCEPT Accept the response.
NNTP_RSP_ACCEPT_CLIENTTEXT Accept the response and notify the low level layer that

the client will send extra text (for example an article)
immediately after this response.

NNTP_RSP_ACCEPT_SERVERTEXT Accept the response and notify the low level layer of
the proxy that the NNTP server will send extra text
(e.g.: the list of newsgroups, or the body of an article)
immediately after this response.

NNTP_RSP_REJECT Reject the response. A response indicating a general
error is sent to the client.

NNTP_RSP_REJECT SERVERTEXT Reject the response and notify the low level layer that
although the server will send extra text following this
response, it must not be forwarded to the client.

NNTP_RSP_ABORT Reject the response and immediately terminate the
current NN'TP session.

NNTP_RSP_POLICY Call the function specified to make a decision about
the event. The function receives three parameters: self,
response code, and the parameters of the response. See
Section 2.1, Policies for requests and responses (p. 4)
for details.

Table 4.51. Action codes for NNTP responses

— Example 4.35. Example for filtering accessible newsgroups
—— | Inthis example access to certain newsgroups is disallowed: the GROUP responses are inspected by the function filterGroup (defined in
| w—] the example), and responses containing the group 'disallowed.news.group' are rejected.

class MyFilteredNntpProxy(NntpProxyStrict):
def config(self):
NntpProxyStrict.config(self)
self.response["GROUP", "*"] = (NNTP_REQ_POLICY, self.filterGroup)

def filterGroup(self, command, param):
if param == "disallowed.news.group":
return NNTP_REQ_REJECT
return NNTP_REQ_ACCEPT

www.balasys.hu 123

Related standards e

Example 4.36. Example for defining policies for responses in NNTP

— | Thisexample rejects all responses, except for GREETING, which is modified by the proxy. If a DATE response is received, the connection

is terminated.

class MyNntpProxy(NntpProxyStrict):
def config(self):
NntpProxyStrict.config(self)
self.response["*", "*"] = (NNTP_RSP_REJECT)
self.response["GREETING", "*"] = (NNTP_RSP_POLICY, self.changeGreeting)
self.response["DATE", "*"] = (NNTP_RSP_ABORT)

def changeGreeting(self, response, param):
self.response_param = "NNTP server of Example Corporation"
return NNTP_RSP_ACCEPT

Predefined constants are available for NNTP response codes for easier use. These are listed in Table A.2,
Constants for NNTP responses (p. 309).

4.18.2.3. Stacking

The available stacking modes for this proxy module are listed in the following table. For additional information
on stacking, see Section 2.3.1, Proxy stacking (p. 7).

Action Description

NNTP_STK_NONE No additional proxy is stacked into the NNTP proxy.

NNTP_STK_MIME The data part including header information is passed
to the specified stacked proxy.

NNTP_STK_POLICY Call the function specified to make a decision about
the proxy stacking. See Section 4.18.2.3,
Stacking (p. 124) for details.

Table 4.52. Constants for proxy stacking

Stacking in NNTP is possible for all multiline commands. These are: ARTICLE, HEAD, BODY, HELP, IHAVE,
LIST, NEWGROUPS, NEWNEWS, POST, LIST ACTIVE, LIST ACTIVE.TIMES, LIST DISTRIBUTIONS,
LIST DISTRIB.PATS, LIST NEWSGROUPS, LIST OVERVIEW.FMT, LIST SUBSCRIPTIONS, LIST

MOTD,

4.18.3.

LIST EXTENSIONS, LISTGROUP, XGTITLE, XHDR, XINDEX, XOVER, XPAT, XROVER.

Related standards

The NNTP protocol is described by the following standards:

®m The NNTP protocol is described in RFC 977.

B The most common extensions are defined in RFC 2980.

m Standard for Interchange of USENET Messages format is described in the RFC 1036.
® The USENET news system is described in RFC 850.

www.balasys.hu 124

Classes in the Nntp module e

4.18.4. Classes in the Nntp module

Class Description

AbstractNntpProxy Class encapsulating the abstract Nntp proxy.

NntpProxy Default NNTP proxy class based on
AbstractNntpProxy.

NntpProxyGroupFilter NNTP proxy class based on NntpProxy with group

filtering capacility.

NntpProxyRO NNTP proxy based on AbstractNntpProxy, denying
the posting of articles.

NntpProxyStrict NNTP proxy based on AbstractNntpProxy, allowing
only the minimal command set.

Table 4.53. Classes of the Nntp module

4.18.5. Class AbstractNntpProxy

This class implements an abstract NNTP proxy - it serves as a starting point for customized proxy classes, but
is itself not directly usable. Service definitions should refer to a customized class derived from
AbstractNntpProxy, or a predefined NntpProxy proxy class. All responses defined in RFC 977 and RFC 2980
are accepted, all commands are rejected by default.

4.18.5.1. Attributes of AbstractNntpProxy

group_name (string, n/a:r)

Default: n/a

The name of the active (and acknowledged) group.

max_line_length (integer, rw:r)
Default: 513

Maximum allowed length of a command or an answer.

max_password_length (integer, rw:r)
Default: 32

Maximum allowed length of passwords at authentication, longer passwords are rejected.

max_username_length (integer, rw:r)
Default: 16

Maximum allowed length of username at authentication; longer names are rejected.

request (complex, rw:rw)
Default:

www.balasys.hu 125

Class NntpProxy e

request (complex, rw:rw)

Normative policy hash for NNTP requests indexed by the command name. See also Section 4.18.2.2, Configuring
policies for NNTP requests and responses (p. 122).

request_command (string, n/a:rw)

Default: n/a

Command string sent by the client.

request_param (string, n/a:rw)

Default: n/a

Parameters of the command.

request_stack (complex, rw:rw)
Default:

Normative policy hash, instructing the proxy to stack another proxy into multiline answers. See also Section
4.18.2.3, Stacking (p. 124).

response (complex, rw:rw)
Default:

Normative policy hash for NNTP responses indexed by the command name and the response code. See also
Section 4.18.2.2, Configuring policies for NNTP requests and responses (p. 122).

response_param (string, n/a:rw)

Default: n/a

Parameters of the response.

response_value (enum, n/a:rw)

Default: n/a

Response code sent by the server.

timeout (integer, rw:r)
Default: 120000

I/0 timeout in milliseconds.

4.18.6. Class NntpProxy

A permitting NNTP proxy based on AbstractNntpProxy, allowing all commands and all possible responses.

www.balasys.hu 126

Class NntpProxyGroupFilter e

4.18.7. Class NntpProxyGroupFilter

NNTP proxy based on NntpProxy, with the possibility to deny access to selected groups. NntpProxyGroupFilter
uses a matcher policy (e.g., a RegexpMatcher) to determine if a particular group can be accessed or not.

4.18.7.1. Attributes of NntpProxyGroupFilter

matcher (class, rw:rw)

Default: None

Matcher determining whether access to a newsgroup is permitted or not.

4.18.8. Class NntpProxyRO

NNTP proxy based on AbstractNntpProxy, allowing read-only access to servers (i.e. posting of articles is
disabled).

All known possible responses are enabled. The following commands are permitted: ARTICLE; AUTHINFO
USER; AUTHINFO PASS; AUTHINFO SIMPLE; BODY; DATE; GROUP; HEAD; LAST; LIST; LIST
ACTIVE; LIST ACTIVE.TIMES; LIST DISTRIBUTIONS; LIST DISTRIB.PATS; LIST MOTD; LIST
NEWSGROUPS; LIST OVERVIEW.FMT; LIST SUBSCRIPTIONS; LISTGROUP; MODE READER;
NEWGROUPS; NEWNEWS; NEXT; STAT; QUIT; XGTITLE; XHDR; XOVER; LIST EXTENSIONS. All
other commands are rejected.

4.18.9. Class NntpProxyStrict

NNTP proxy based on AbstractNntpProxy, permitting only a minimal set of commands to be used. All known
possible responses are enabled. The following commands are permitted: ARTICLE; BODY; HEAD; DATE;
STAT; GROUP; LAST; LIST; NEWGROUPS; NEWNEWS; NEXT; QUIT; LIST ACTIVE; LIST
ACTIVE.TIMES; LIST DISTRIBUTIONS; LIST DISTRIB.PATS; LIST NEWSGROUPS; LIST
OVERVIEW.FMT; LIST NEWSGROUPS; LIST SUBSCRIPTIONS; LIST MOTD; LISTGROUP; XGTITLE;
XHDR; XOVER; DATE; AUTHINFO USER; AUTHINFO PASS; MODE READER; HELP; IHAVE; POST;
SLAVE; XINDEX; XPAT; XROVER; AUTHINFO SIMPLE; LIST EXTENSIONS. All other commands are
rejected.

4.19. Module Radius

The Radius module defines the classes constituting the proxy for the RADIUS protocol.

4.19.1. The RADIUS protocol

Remote Authentication Dial In User Service (RADIUS) is a client-server protocol for user authentication
between the Network Access Server (NAS) and the authenticator server. The protocol has three participants:

m The user requesting network access the service (e.g.: PPP, PLIP etc.).

B The access point (modem pools or NAS servers), which delivers the service. The access point acts
as the client in the protocol.

m The server which authenticates the user.

www.balasys.hu 127

The RADIUS protocol (37

The RadiusProxy is installed between the server and client (i.e. the access point).

4.19.1.1. Protocol elements
During the authentication process the participants use the following protocol elements:

® REQUEST: When a new connection attempt arrives to the NAS, it sends a message towards the
RADIUS server requesting the authentication of the user; or it sends an accounting related message.

m RESPONSE: The RADIUS server attempts to authenticate the user when an authentication REQUEST
is received. The server returns the result of the process to the NAS in a RESPONSE message.

m ATTRIBUTE: Both the REQUEST and RESPONSE packets contain a set of structured attribute-value
pairs containing information like username, password or the type of service requested by the user.
Attributes are identified by a number ranging from 0 to 255. Each attribute has an associated type
specified in the RADIUS RFCs which define the range of valid values.

Note
@ There are also some vendor-specific RADIUS dictionaries, where certain attributes are used for internal purposes.
Obviously, these are not discussed in the RFCs.

4.19.1.2. RADIUS states

The user initiates the authentication process when attempting to use a NAS service. When the user request
arrives, the NAS sends an Access-Request message containing the attributes username, md5 hashed password,
the user IP and the port ID. The message is sent to port UDP/1812; if no response is received within a period
of time, the request is re-sent a number of times.

If RADIUS is configured to use username/password based authentication, the server consults the database and
if all the terms match, the server replies with an Access-Accept message. When the challenge/response method
is used the server generates a challenge and sends it to the client in an Access-Challenge message. The client
displays it to the user who calculates the response which is resubmitted by the NAS client in another
Access-Request message with a new request ID, encrypted User-Password attribute and the State Attribute. If
the response is correct the server allows the connection request in an Access-Accept message and the NAS
starts to deliver the service. If the authentication process fails the server sends an Access-Reject message and
the NAS denies the delivery of the service.

The user and the NAS server (technically the radius client) are authenticated separately. The user is authenticated
only after the NAS has been verified via the Radius secret (i.e. password). Users can be authenticated by
username/password or challenge/response methods.

Username/password authentication is a traditional authentication method where the user id identifies the user
and the password authenticates him/her. During the challenge/response the user ID identifies the user itself and
the client is authenticated by a one time password. The server sends an unpredictable number to the client. The
user calculates it with a hardware or software tool and sends the result back. If the answer is correct, it validates
the client's identity and this is the response which authenticates the user.

www.balasys.hu 128

Proxy behavior e

The Access-Accept message might deliver additional parameters to the service, such as IP address. These
additional parameters are delivered as values of various attributes.

RADIUS can also be used to send Service-Start and Service-End messages for accounting purposes. While the
protocol is the same as the one described above, it uses a separate port and a separate set of attributes. When
the client is configured to use RADIUS Accounting, it sends an Accounting-Start message describing the type
of the service and the user using it. RADIUS accounting uses the port UDP/1813. The RADIUS server returns
an acknowledgment. The client repeats sending the request until it receives the acknowledgment. At the end
of delivering the service, the client sends an Accounting-Stop message to the server describing the type and
optionally the statistics about the connection. The server acknowledges the stop messages as well.

®

4.19.2. Proxy behavior

Note
Earlier UDP/1645 was also used by RADIUS servers, and accounting messages were sent using port UDP/1646.

RadiusProxy is a module built for parsing the messages of the RADIUS protocol. It reads the REQUESTS at
the client side and decrypts the user password with the given shared secret (known by both the client and the
server). If the REQUEST and all the ATTRIBUTEs are permitted by the local security policy, it sends the
message to the RADIUS server. It parses the arriving RESPONSE and validates the authenticator signature.
The authenticator signature is an MD5 hash included in the RADIUS message, generated from various message
parameters, including the shared secret. It is used to ensure that the response is genuine and was indeed sent
by the server. If the RESPONSE is permitted by the local security policy and is authentic, the message encrypted
with the secret is returned to the NAS. It is possible to keep different secrets on the two sides of the proxy (i.e.
password translation is possible). RadiusProxy is able to parse both authentication and accounting messages,
and it can also manipulate RESPONSE:s if the secret is available. If the secret is not available, Zorp cannot
validate the authenticator signatures, thus it is not possible to verify that the received response was sent to a
proper request. Both the client and server side secrets are required for modifying the messages; for validating
the authenticator signature, the server side secret is sufficient.

4.19.2.1. Configuring policies for RADIUS commands and responses

Changing the default behavior of commands can be done by using the hash attribute request. There is a similar
attribute for responses called response. These hashes are indexed by the type of the request/response. The
possible values of these hashes are shown in the tables below. See Section 2.1, Policies for requests and
responses (p. 4) for details.

Action Description

RADIUS_REQ_ACCEPT Allow the request to pass.

RADIUS_REQ_ REJECT Block the request and report it to the client.
RADIUS_REQ_ABORT Terminate the connection.
RADIUS_REQ_DROP Block the request without further action.

www.balasys.hu 129

Proxy behavior e

Action

Description

RADIUS_REQ_POLICY

Call the function specified to make a decision about
the event. See Section 2.1, Policies for requests and
responses (p. 4) for details.

Table 4.54. Action codes for RADIUS requests

Action

Description

RADIUS_RSP_ACCEPT

Allow the response to pass.

RADIUS_RSP_REJECT

Block the response and report it to the client.

RADIUS_RSP_ABORT

Terminate the connection.

RADIUS_RSP_DROP

Block the response without further action.

RADIUS_RSP_POLICY

Call the function specified to make a decision about
the event. See Section 2.1, Policies for requests and
responses (p. 4) for details.

Table 4.55. Action codes for RADIUS responses

Similar policies can be defined for RADIUS attributes. For easier use, predefined constants are available for
the different attributes. The possible actions on the attributes are listed in the following table. The attribute
constants are listed in Table A.3, RADIUS Protocol Attribute types described in RFC 2865. (p. 310).

Action

Description

RADIUS_ATR_ACCEPT

Allow the attribute to pass.

RADIUS_ATR_REJECT

Block the attribute and report it to the client.

RADIUS_ATR_ABORT

Terminate the connection.

RADIUS_ATR_DROP

Reject the entire message if it contains the specified
attribute.

RADIUS_ATR_POLICY

Call the function specified to make a decision about
the event. See Section 2.1, Policies for requests and
responses (p. 4) for details.

RADIUS_ATR_ZERO

An alias of RADIUS_ATR_DROP the action code.

RADIUS_ATR_ACCEPT_MAXONE

The message can contain zero or one of the specified
attribute.

RADIUS_ATR_ACCEPT_ONE

Accept exactly one attribute in the message. The
message is rejected if it does not contain the specified
attribute. This action can be used to check the existance
of mandatory attributes.

www.balasys.hu

130

Related standards e

Action Description

RADIUS_ATR_DROP_ONE Drop the attribute from the message; the message itself
is not rejected.

Table 4.56. Action codes for RADIUS attributes

4.19.2.2. Binding secondary sessions

The RADIUS protocol does not guarantee the delivery of the messages (since it uses UDP), consequently
packages are dropped if the system is overburden. Clients and servers attempt to send messages several times;
allowing secondary sessions increases reliability and decreases server load. See Section 2.2, Secondary
sessions (p. 7) for further information.

— Example 4.37. Example RadiusProxy config
— | The following example defines a RADIUS proxy which serves 1000 parallel requests in one thread. Packet rebuilding is turned on as
| — well, therefore the server and client side secrets are also specified.

class MyRadiusProxy(RadiusProxy):
def config(self):

RadiusProxy.config(self)
self.client_secret="secret"
self.server_secret="secret"
self.rebuild_packets='TRUE'
self.secondary_mask = OxC
self.secondary_sessions = 1000

4.19.3. Related standards

®m The RADIUS protocol is defined in RFC 2865.
m The RADIUS Accounting protocol is defined in RFC 2866.

4.19.4. Classes in the Radius module

Class Description

AbstractRadiusProxy Class encapsulating the abstract RADIUS proxy.

RadiusProxy Default RADIUS proxy based on AbstractRadiusProxy.

RadiusProxyStrict RADIUS proxy based on AbstractRadiusProxy,
allowing only a minimal command set.

Table 4.57. Classes of the Radius module

4.19.5. Class AbstractRadiusProxy

This class implements the RADIUS protocol as described by RFC 2865.

4.19.5.1. Attributes of AbstractRadiusProxy

attribute_desc (complex, rw:rw)

Default: n/a

www.balasys.hu 131

Class AbstractRadiusProxy e

attribute_desc (complex, rw:rw)

Attribute descriptors, this hash is indexed by the attribute type and the value contains a tuple of (type, min,
max). The min and max values are interpreted depending on the RADIUS type. For integers it means the
minimum and maximum integer values, for strings it is applied to the string length.

attribute_usage (complex, rw:rw)
Default:

Describes attribute usage, the hash is indexed by the tuple of (packet type, attribute id). The value is a singleton
tuple containing one of the RADIUS_ATR values.

client_secret (string, rw:r)
Default:

Secret string (password) shared between the client (probably NAS) and Zorp. Setting this value is not mandatory,
but some of the proxy functions will not be available (see Section 4.19.2, Proxy behavior (p. 129) for details).

max_packet_length (integer, rw:r)
Default: 4096

Maximum allowed length of packets.

permit_trailing_zeroes (boolean, rw:rw)
Default: FALSE

Workaround for a Cisco bug (the router sometimes pads the packets with NUL bytes).

rebuild_packets (boolean, rw:rw)
Default: FALSE

Specifies whether to rebuild packets (requires both shared secrets to be available, see Section 4.19.2, Proxy
behavior (p. 129) for details).

request (complex, rw:rw)
Default:

Normative policy hash for RADIUS request types indexed by the type of the request. See also Section 4.19.2.1,
Configuring policies for RADIUS commands and responses (p. 129).

response (complex, rw:rw)
Default:

Normative policy hash for RADIUS response types indexed by the type of the response. See also Section
4.19.2.1, Configuring policies for RADIUS commands and responses (p. 129).

secondary_mask (secondary_mask, rw:r)
Default: Oxf

www.balasys.hu 132

Class RadiusProxy e

secondary_mask (secondary_mask, rw:r)

Specifies which connections can be handled by the same proxy instance (the same connection is enabled as
secondary session by default). See Section 2.2, Secondary sessions (p. 7) for details.

secondary_sessions (integer, rw:r)
Default: 10

Maximum number of allowed secondary sessions within a single proxy instance. See Section 2.2, Secondary
sessions (p. 7) for details.

server_secret (string, rw:r)
Default:

Secret string (password) shared between the server and Zorp. Setting this value is not mandatory, but some of
the proxy functions will not be available (see Section 4.19.2, Proxy behavior (p. 129) for details).

timeout (integer, rw:r)
Default: 60000

Timeout in milliseconds.

4.19.6. Class RadiusProxy

Default RADIUS proxy based on AbstractRadiusProxy allowing all well-formed RADIUS packets (all requests,
responses, and attributes) through the firewall. Secondary sessions are enabled for the same target
(secondary_mask=0xC) (maximum 10). For a stricter default configuration use the RadiusProxyStrict class.

4.19.7. Class RadiusProxyStrict

Radius proxy strictly checking RFC compliance of the passing packets. Packets containing attributes that are
not defined in the RFC are dropped.

The following requests and responses are permitted: radius_access_request; radius_access_challenge;
radius_access_reject; radius_access_accept; radius_accounting_request; radius_accounting_response. All other
requests and responses are rejected. The policy used for the attributes is listed in the Radius Appendix.

4.20. Module Rdp

The Remote Desktop Protocol is used to access the desktop of remote computers that run Microsoft Windows
Operating systems. Its most commonly used to remotely manage Windows-based servers.

4.20.1. The Remote Desktop Protocol protocol

The Microsoft Remote Desktop Protocol (RDP) provides remote display and input capabilities over network
connections for Windows-based applications running on a server. Using RDP, clients can access the desktop
and other facilities (e.g., file shares) of remote computers. The proxy currently supports two versions of the
RDP protocol: RDP4 and RDP5. RDP4 uses 512bit RSA keys to encrypt the communication, and does not

www.balasys.hu 133

Proxy behavior e

support the forwarding of additional facilities. RDP5 uses either 512bit RSA keys (RDP4-style) or X.509
certificates (RDP5-style) for encryption, and can forward additional facilities like disk shares or sound.

Both versions support specifying a default username and optionally a password for it.

4.20.2. Proxy behavior

The Zorp RDP proxy can control the RDP traffic at three main points, controlling the version of RDP enabled
in the connection, the channels and facilities enabled in the connection, and modifying the username and the
address of the destination server.

Note
@ Starting with Zorp 3.4, in case a password-based authentication is unsuccessful, the Zorp proxy terminates the connection instead of
re-requesting the password from the user.

4.20.2.1. Controlling the protocol version

You can set restrictions on the protocol version used in the connection.

— Example 4.38. Disabling RDP5 protocol by force-reverting it to RDP4
— | The following proxy class enables RDP4 sessions only, and reverts the session to RDP4 if a client tries to initiate an RDPS5 session.

class MyRdpProxy(RdpProxy):
def config(self):
RdpProxy.config(self)
self.enable_rdp5 = FALSE
self.force_rdp4 = TRUE
self.enable_rdp4 = TRUE

4.20.2.2. Channel filtering

You can control which channels (i.e., remote facilities) can be used in the connection. The available facility
channels are shown in the following table:

Name Value

RDP_CHANNEL_RDPDR Sharing of disks, printers, serial and parallel ports, and
secure devices.

RDP_CHANNEL_RDPSND Sharing sound devices.

RDP_CHANNEL_SEAMRDP Displaying remote windows as local ones instead of
displaying the whole remote desktop in a local window
(called seamless RDP).

Table 4.58. Channel names of remotely accessible facilities.

— Example 4.39. Disabling channel RDPDR

% The following proxy class disables access to file-shares, printers, and other similar facilites.

| —
class MyRdpProxy(RdpProxy):

def config(self):

www.balasys.hu 134

Proxy behavior e

RdpProxy.config(self)
self.channel_policy[RDP_CHANNEL_RDPDR] = ZV_REJECT

Applications can open custom channels to the clients connecting remotely to the server. To permit access to
these channels, derive a proxy class and explicitly enable the channels required by the application. Consult the
documentation of the application for the exact names of these custom channels. Alternatively, configure an
RDP proxy and try to use the application: Zorp logs the names of the rejected channels.

— Example 4.40. Enabling custom channels
—— | The following proxy class enables access to custom channels examplechannelnamel and examplechannelname2 used by an
| w— application.

class CustomRdpProxy(RdpProxy):
def config(self):
RdpProxy.config(self)
self.channel_policy[examplechannelnamel]
self.channel_policy[examplechannelname2]

ZV_ACCEPT
ZV_ACCEPT

4.20.2.3. Actions by username

If the client supplies a default username, the parse_connection_name function can be used to modify the
username, and the address and port of the destination server.

— Example 4.41. Dynamically change username and server address
% The following proxy class examines the username sent by the client and modifies the username and the address of the destination server.
| w— If the client sends and unknown username, the connection is rejected.

class MyRdpProxy(RdpProxy):
def parse_connection_name(self, conn_name):

if (conn_name == "j@svri"):
return ("joe", "1.1.1.1", 3389)
elif (conn_name == "a@svri"):
return ("Administrator", "1.1.1.1", 3389)
elif (conn_name == "j@svr2"):
return ("joe", "2.2.2.2", 3389)
elif (conn_name == "a@svr2"):

return ("Administrator", "2.2.2.2", 3389)
return (None)

def config(self):
RdpProxy.config(self)

4.20.2.4. Verifying the server certificate

Use the server_certs_verify attribute to control if a server certificate is accepted. The following options
are available.

Name Value

RDP_SCV_ACCEPT_ANY Accept any server certificate.

RDP_SCV_ACCEPT_ONCE Accept unknown server certificates only on the first
occassion. The IP address-port pair of unknown server

www.balasys.hu 135

Classes in the Rdp module e

Name Value

certificates is registered, later on that certificate is used
to verify connections from that address.

RDP_SCV_ACCEPT_KNOWN Accept only known server certificates. X509 certificates
can be configured for each IP address or port pair (like
in case of the known_hosts file). For any unknown
IP address-port pair the connection is terminated.

Table 4.59. RDP server certificate verification mode.

4.20.2.5. Related standards

RDP is based on the ITU T.120 family of protocols. For details, see _http://www.itu.int/rec/T-REC-T.120/en.

4.20.3. Classes in the Rdp module

Class Description

AbstractRdpProxy Class encapsulating the abstract Rdp proxy.
Rdp4FallbackProxy Rdp proxy for RDP4 and RDP5 sessions.
Rdp4Proxy Rdp proxy for RDP4 sessions.

Rdp5Proxy Rdp proxy for RDP5 sessions.

Rdp5ProxyStrict Rdp proxy for strictly RDP5 sessions.
RdpProxy Default Rdp proxy based on AbstractRdpProxy.

Table 4.60. Classes of the Rdp module

4.20.4. Class AbstractRdpProxy

This class implements an abstract proxy for the Remote Desktop Protocol. AbstractRdpProxy serves as a starting
point for customized proxy classes, but is itself not directly usable. Service definitions should refer to a
customized class derived from AbstractRdpProxy, or one of the predefined RdpProxy proxy classes.

4.20.4.1. Attributes of AbstractRdpProxy

audit_channels (complex)

Default: n/a

Normative policy hash for information about RDP channels are to be audited or not, indexed by the channel
name. This hash may be overridden by policy functions.

auth_server (boolean)
Default: FALSE

When set to TRUE, authentication is performed on the target server, only the authorization is handled on Zorp.

www.balasys.hu 136

http://www.itu.int/rec/T-REC-T.120/en

Class AbstractRdpProxy e

channel_policy (complex)

Default: n/a

Normative policy hash for RDP channels indexed by the channel name and (optionally) the names of
sub-facilities and/or facility functions.

disable_font_smoothing (boolean)
Default: TRUE

When set to TRUE, font smoothing (antialiasing) is disabled in RDP version 5. This can affect the user
experience when accessing the graphical desktop of remote hosts.

enable_compression (boolean)
Default: TRUE
When set to TRUE, RDP traffic is compressed to reduce bandwidth usage.

enable_console_session (boolean)
Default: TRUE

Enable console sessions. NOTE: Not yet implemented

enable_crypt (rdp_crypt_mask)
Default: 0x6000001b

Enable encryption.

enable_rdp4 (boolean)
Default: TRUE
Enable RDP4 sessions.

enable_rdp4_auth (boolean)
Default: TRUE

Enable RDP4-style client authentication in RDP5 sessions.

enable_rdp5 (boolean)
Default: TRUE
Enable RDPS5 sessions.

force_rdp4 (boolean)
Default: FALSE
Revert RDP5 sessions to RDP4.

www.balasys.hu 137

Class AbstractRdpProxy e

host_key_cert_file (string)
Default:
Read the X509 certificate from the file specified.

host_key_rsa512_file (certificate)
Default:
Read the 512-bit RSA hostkey from the file specified.

host_key_rsa_file (certificate)
Default:
Read the RSA hostkey from the file specified.

host_keypair_rsa_file (certificate)
Default:

A tuple of two file names containing the certificate and key files.

max_bpp (integer)
Default:

Maximal allowed colour depth of remote desktops, no limit if unset. Must be one of 8, 15, 16, 24 and 32,
otherwise will be coerced to an applicable value.

max_height (integer)
Default:

Maximal allowed height of remote desktops, no limit if unset.

max_width (integer)
Default:

Maximal allowed width of remote desktops, no limit if unset. Must be divisible by 4, otherwise it will be
rounded down to the nearest applicable value.

timeout (integer)
Default: 600000

I/0 timeout in milliseconds. NOTE: not yet implemented

www.balasys.hu 138

Class Rdp4FallbackProxy e

4.20.4.2. AbstractRdpProxy methods

Method Description

parse _connection name(self, conn _name) Method to make decisions based on the username.

Table 4.61. Method summary

Method parse_connection_name(self, conn_name)

This function is invoked right at the start of the session, just before connecting to the server. At this time all
attributes are configured and the argument conn_name is set to the default username provided by the client.
This method shall return one of the following:

®m None: Leave everything unchanged.
m A string: Change the username to the one specified in the string.

m A tuple: Change the username, the server name and the server port. The parameters of the tuple are
optional from the right. Any parameter may be set to None or 0 to leave the original value unchanged.

4.20.5. Class Rdp4FallbackProxy

Rdp4Proxy enables RDP4 sessions only, however, if a client tries to initiate an RDP5 session, it will be reverted
to RDP4.

4.20.6. Class Rdp4Proxy

Rdp4Proxy enables RDP4 sessions only.

4.20.7. Class Rdp5Proxy

Rdp5Proxy enables RDPS5 sessions only, but RDP4-style client authentication is permitted.

4.20.8. Class Rdp5ProxyStrict

Rdp5Proxy enables RDP5 sessions only.

4.20.9. Class RdpProxy

RdpProxy is a proxy class based on AbstractRdpProxy, allowing the use of all Rdp options.

4.20.9.1. Attributes of RdpProxy

cert_cache_directory (string)

Default: "/var/lib/zorp/rdp-cert-cache"

The directory used for caching generated certificates.

www.balasys.hu 139

Module Rsh (;

generator_ca_files (certificate)
Default:

A tuple of two file names containing the certificate and key files used as a signing CA for run-time generated
certificates.

server_certs_dir (trustedkeydir)
Default:

The directory containing known RDP server certificates.

server_certs_verify (enum)
Default: RDP_SCV_ACCEPT_KNOWN

The verification mode for RDP server certificates. See Section 4.20.2.4, Verifying the server certificate (p. 135).

4.21. Module Rsh

Remote shell (RSH) is an old protocol used to execute commands on a remote server.

4.21.1. The RSH protocol

RSH has a dual channel architecture. The client establishes a connection to the RSH daemon (rshd) and sends
a user name and a command to execute. This channel becomes the standard input and output of the executed
command. An optional second channel is initiated by the daemon to transfer standard error messages.

A\

The protocol uses the following steps:

Warning
Both channels are plain text and completely insecure.

The client initiates a connection towards the server. At this stage the client sends an optional port number where
it listens for a connection used for transferring the standard error stream. These ports must be between
TCP/513-1023, this is verified by both the client and the server. The server initiates a connection to this port
if one is specified. Both connections must originate from TCP ports 513-1023. As this is the only security
measure in the protocol, both the server and client check it strictly.

Most server implementations verify the name and the address of the client using 'host' and 'gethostbyname'
commands. If the verification is not successful, the server aborts the connection with a "Host address mismatch"
message. This feature can be important if the original client address is not forged.

The client sends his/her username on the client machine. Username can be up to 16 characters long.
The client sends his/her username on the server machine. Username can be up to 16 characters long.

Rshd validates the user using the file /etc/hosts.equiv and the .rhosts files found in the user's home directory.
Users list the allowed client hosts and user IDs in their homes (in $HOME/.rhosts).

www.balasys.hu 140

Proxy behavior e

Rshd executes the command, returns its standard output in the command channel and sends the standard error

in the error channel.

Finally, the client closes the connection.

4.21.2. Proxy behavior

RshProxy is a module built for parsing messages of the RSH protocol. It reads and parses the COMMANDs
on the client side, and sends them to the server if the local security policy permits. The COMMAND:s can be

manipulated by calling the rshRequest function.

Since the RSH protocol uses ports from the privileged port range (TCP 513-1023), the forge_port parameter
of the router used must be enabled when configuring the service for the proxy.

— Example 4.42. Strict Rsh proxy denying root user access and logging the issued Rsh commands

——— | RshProxy calls the rshRequest function if defined.
class StrictRshProxy(RshProxy):
def config(self):

RshProxy.config(self)
self.timeout = 300000

return RSH_REQ_DENY

return RSH_REQ_ACCEPT

The following actions are available for rsh requests:

def rshRequest(self, client_user, server_user, cmd):
if (self.server_user == 'root'):

log(None, CORE_DEBUG, 3, "Rsh command;

"%s'" % (cmd))

Action Description

RSH_REQ_ACCEPT Allow the request to pass.
RSH_REQ_DENY

RSH_REQ_REJECT Block the request and report it to the client.
RSH_REQ_ABORT Terminate the connection.
RSH_REQ_DROP Block the request without further action.

4.21.3. Related standards

The RSH protocol is described in the man pages of rshd.

4.21.4. Classes in the Rsh module

Table 4.62. Action codes for RSH requests

Class Description

AbstractRshProxy Class encapsulating the abstract Rsh proxy.

www.balasys.hu

141

Class AbstractRshProxy e

Class Description
RshProxy Default Rsh proxy based on AbstractRshProxy. All

settings are inherited from AbstractRshProxy.

Table 4.63. Classes of the Rsh module

4.21.5. Class AbstractRshProxy

This class implements an application gateway for the RSH protocol as described in the rshd manual pages.

4.21.5.1. Attributes of AbstractRshProxy

buffer_size (integer, rw:r)
Default: 4096
Size of the I/O buffer.

client_username (string, rw:rw)

Default: "n/a"

Username on the client specified by the client.

command (string, rw:rw)

Default: "n/a"

The command itself with its arguments.

max_command_length (integer, rw:r)
Default: 256

Maximum allowed length of the command (including arguments) issued by the client.

max_username_length (integer, rw:r)
Default: 16

Maximal number of characters in the username on the server side.

require_privileged_port (boolean, rw:r)
Default: TRUE
Set to TRUE if the clients need to use privileged source port (TCP/513-1023).

server_username (string, rw:rw)

Default: "n/a"

Username on the server specified by the client.

www.balasys.hu 142

Class RshProxy e

timeout (integer, rw:r)
Default: 600000

Timeout in milliseconds. If no packet arrives in the command channel within this interval, connection is
dropped.

timeout_stderr_connect (integer, rw:r)
Default: 30000

Connection timeout value in milliseconds. If no packet arrives in the standard error channel within this interval,
connection is dropped.

4.21.5.2. AbstractRshProxy methods

Method Description

rshRequest(self, client user, server _user, cmd) Function for influencing client/server usernames and
the requested command.

Table 4.64. Method summary

Method rshRequest(self, client_user, server_user, cmd)

Function for influencing client/server usernames and the requested command.

4.21.6. Class RshProxy

The default RshProxy based on AbstractRshProxy.

4.22. Module Sip

The Sip module defines the classes constituting the proxy for the Session Initiation Protocol (SIP).

4.22.1. The SIP protocol

SIP is a peer-to-peer protocol providing call processing functions and features similar to public switched
telephone networks. The SIP protocol (or protocol family rather) is not a conventional Internet protocol, because
it is not based on the traditional client-server model. Although there are prioritized servers for performing
certain tasks, in most cases SIP phones function as both clients and servers on the network. Consequently, the
protocol does not use the usual request/response based communication, and that has important consequences
in perimeter defense.

4.22.1.1. Protocol elements

The devices involved in SIP communication can have several different roles, but a single device can play the
part of different roles at the same time. The most important roles are briefly summarized below:

m User-agent: The phone itself. In the traditional model, this would be called client.

www.balasys.hu 143

The SIP protocol e

B Registrar: The registration service. The address where a particular user-agent is accessible is registered
here. Tt acts as a sort of a name service for the protocol.

m Proxy: This device transmits the requests of the user-agents. It has nothing to do, and is not to be
confused with a proxy firewall or with a web cache proxy.

B Presence server: Similar to the registrar; this device stores information about the availability of the
user-agents. Users can monitor if the VoIP devices of their contacts (friends, business partners, etc.)
are active (i.e. on-line) via the presence server.

m Back2back user-agent: This is a special proxy implementing the functions of two user-agents. On
one side of a connection it acts as the caller, on the other side as the called party.

SIP is only involved in the signaling part of a communication session, and relies on other protocols to perform
the actual data transfer. SIP communication takes place in multiple channels: one is the signaling channel, the
other one the actual data channel used to transmit the voice and/or video data. This latter channel is opened
dynamically according to parameters negotiated in the signaling channel. The negotiation uses a separate -
embedded - protocol called Session Description Protocol (SDP) used to describe the channel and the type of
media used in a session (i.e. the IP ports, codecs, etc.). It is essential for the firewall to understand and inspect
the SDP protocol, since it contains all the information required to allow the VoIP traffic pass the firewall. The
SDP traffic also has to be modified in case network address translation is performed. To transfer the actual
voice, video, or other data, SIP uses the Real-time Transport Protocol (RTP). RTP defines a standardized packet
format for delivering audio and video over the Internet, and is frequently used in audio/video streaming and
conferencing solutions.

From the signaling point of view, it is important to note that there is no client/server hierarchy between the
user-agents, only caller/called party. The signaling traffic is usually not transmitted directly between the
user-agents, generally proxies and back2back user-agents are also involved. Consequently, signaling messages
(for example a request and a corresponding answer) can take very different routes between two user-agents,
greatly complicating the secure transmission of the protocol. On the other hand, the RTP session is built directly
between the user-agents without the interaction of proxies, though back2back user-agents may still be involved
in the transmission of the audio/video data. Therefore a special care must be taken when creating the access
control rules of the SIP signaling and data traffic.

4.22.1.2. Proxy behavior

The Zorp SIP proxy allows SIP signaling (accepting SIP messages on the TCP port 5060) and the dynamic
RTP traffic through the firewall without compromising the security of the firewall and the defended network.
Ports are dynamically opened through the firewall based on information received in the signaling traffic. The
signaling part of the protocol is inspected on the application level for protocol conformance: Zorp's SIP proxy
enforces the standards, protecting the network from attacks violating the protocol. This is especially important
since SIP clients and even servers are rarely designed with security in mind and many of them have issues from
a security point of view. As an application level gateway, Zorp parses, checks, and rebuilds every passing
signaling request and response. The actual (audio, video, etc.) communication is not inspected, it is forwarded
through Zorp on the kernel level using stateful package filtering. These connections are handled as related UDP
connections. Furthermore, it is possible to perform NATing and connection marking (see the description of the
SIP proxy classes for details).

When packets arrive to the port the Sip proxy is listening on, basic access control is performed based on the
source IP address of the packets. Each and every request and response is inspected on the application level
(Layer 7 in the OSI model). The requests and responses - including protocol elements like headers - are parsed

www.balasys.hu 144

The SIP protocol e

and strictly checked for conformance with the SIP standards. The Zorp SIP proxy understands and enforces
the SIP protocol as described in RFC 3261. The syntax and length of the various protocol elements (e.g.: length
of lines, headers, requests, etc.) is checked in order to repel various attack forms based on malformed messages,
such as buffer overflow attacks. The relation of the arriving packets relative to other packets and previous
communication information is also inspected. Packets not conforming to the logic and workflow of the protocol
(e.g.: responses without requests, etc.) are rejected. This step is important because SIP uses random ports for
transferring the actual communication data (the RTP stream, e.g.: voice, video), and otherwise it would be
possible to open covert channels through the firewall between machines, not only the intended VoIP
communication between the two SIP endpoints (i.e. the caller and the receiver).

The payload (SDP) part of the communication is parsed as well and modified if network address translation
(NAT) is used. In this case, the addresses and dynamic ports used by the RTP traffic stream have to be modified
accordingly. After all these sanity checks the policy settings of the firewall are consulted. Address, and media
type filtering is performed (e.g.: to allow only voice traffic to/from specific addresses). Network address
translation is also performed at this step if required.

Access control on the RTP stream part of the protocol is performed separately. This is important because RTP
and signaling streams can have different access control settings. If SIP servers or a SIP proxy is used on some
part of the network, the signaling and the RTP streams originate from different sources. (In such situation, the
signaling is originating from the proxy, but the RTP stream arrives directly from the actual client. However,
such a situation could also be used to initiate covert channels.)

The proxy supports the use of secondary sessions as described in Section 2.2, Secondary sessions (p. 7).

4.22.1.3. Keepalive messages in SIP

Keepalive messages in SIP are not originally part of the RFC. However, many SIP implementations actually
use them, sending UDP packets (containing only whitespaces) to maintain the connection. Zorp accepts these
packets if they are not longer than a preset value (see the max_keepalive_size attribute of the
AbstractSipProxy proxy class) and interprets them as keepalive messages. Such packets are uniformly replaced
by Zorp with UDP packets containing only a single line-feed.

4.22.1.4. Configuring SIP policies

The Zorp SIP proxy is capable of filtering the different media types in the SIP traffic based on their SDP headers
using the media hash attribute. The possible actions for the different media types are shown in the table below.
See Section 2.1, Policies for requests and responses (p. 4) for details.

Action Description

SIP_MEDIA_ACCEPT Accept the media type.

SIP_MEDIA_DROP Drop the media from the list of proposed media
channels but forward the message to the peer.

SIP_MEDIA_ABORT Drop the SIP message containing the corresponding
media type.

SIP. MEDIA_POLICY Call the function specified to make a decision about

the media type. The function receives two parameters:

www.balasys.hu 145

Related standards e

Action Description

self, and the media type string. See Section 2.1, Policies
for requests and responses (p. 4) for details.

Table 4.65. Action codes for SIP media types.

Media types are the strings in SDP headers that identify the type of media sent in the channel (e.g.: audio,
video, * for all types, etc.). There are no predefined constants for the media types, as they are not defined in
any RFCs or other standards. Typically, audio and video are used for voice and video streams, respectively.

— Example 4.43. Disabling video traffic in SIP
— | This example class accepts only voice traffic, denying video streams and aborting on all other types of media streams.

class AudioSip(SipProxy)
def config(self):
self.media["audio"]=[SIP_MEDIA ACCEPT]
self.media["video"]=[SIP_MEDIA DROP]
self.media["*"]=[SIP_MEDIA_ABORT]

4.22.2. Related standards

m The Session Initiation Protocol is described in RFC 3261.
m The Session Description Protocol is described in RFC 2327.
m RTP: A Transport Protocol for Real-Time Applications is described in RFC 3550.

4.22.3. Classes in the Sip module

Class Description
AbstractSipProxy Class encapsulating the abstract SIP proxy.
SipProxy Default SIP proxy class based on AbstractSipProxy.

Table 4.66. Classes of the Sip module

4.22.4. Class AbstractSipProxy

This proxy implements the SIP protocol as specified in RFC 3261. Service definitions should refer to a customized
class derived from AbstractSipProxy, or a predefined proxy class.

4.22.4.1. Attributes of AbstractSipProxy

max_keepalive_size (integer, w:r)
Default: 128

Maximum size for SIP signaling keepalive messages in bytes. See Section 4.22.1.3, Keepalive messages in
SIP (p. 145) for details.

max_message_size (integer, w:r)
Default: 65536

www.balasys.hu 146

Class SipProxy e

max_message_size (integer, w:r)

Maximum allowed size of a SIP signaling message in bytes.

media_connection_mark (integer, w:rw)
Default: 0

Connection mark value that is set on all on media connections. That way media connections can be easily
identified and handled by specific packet filtering rules.

secondary_mask (secondary_mask, rw:r)
Default: 0xf

Specifies which connections can be handled by the same proxy instance. See Section 2.2, Secondary
sessions (p. 7) for details.

secondary_sessions (integer, rw:r)
Default: 10

Maximum number of allowed secondary sessions within a single proxy instance. See Section 2.2, Secondary
sessions (p. 7) for details.

timeout (integer, w:r)
Default: 600000

I/0 timeout in milliseconds.

4.22.5. Class SipProxy

This class encapsulates the default SIP proxy.

4.22.5.1. Attributes of SipProxy

media (complex, rw:r)
Default:

Policy hash implementing media type filtering, indexed by the media type (as a string, e.g.: audio). See Section
4.22.1.4, Configuring SIP policies (p. 145) for details.

permit_rtp_zones (complex, rw:r)
Default:

A comma-separated list of Zorp zone pairs that are permitted to exchange voice or video streams (e.g.:
(("internet", "intranet"),)). This option replaces the Zorp DAC decision (which is unavailable here,
since RTP streams are forwarded on the kernel level). NOTE: this is a two-way connection between the zones.

rtp_endpoint_rewrite_nat_policy (unknown, rw:r)
Default:

www.balasys.hu 147

Module Socks e

rtp_endpoint_rewrite_nat_policy (unknown, rw:r)

Reference to an existing Zorp NAT policy that rewrites RTP endpoints from internal to external addresses.
The policy is called for all messages containing an SDP part, since those may also contain addresses of the
endpoints.

4.23. Module Socks

The Socks module defines the classes for the proxy to inspect Socks communication.

4.23.1. The SOCKS protocol

4.23.2. Proxy behaviour

SOCKS is a network protocol for routing packets using a proxy server between the clients and the servers.
SOCKS performs at Layer 5 of the OSI model. SOCKS is typically used to proxy other, Layer 7 protocols,
most often HTTP.

— Example 4.44. SOCKS and HTTP traffic
—— | The following configuration example embeds an HTTP proxy into a Socks proxy and can be used to inspect HTTP traffic that uses a
| w—] SOCKS proxy to access the servers. Client authentication is disabled.

class MySocksProxy(SocksProxy):
def config(self):
SocksProxy.config(self)
self.enable_socks_v4 = TRUE;
self.require_auth_v5 FALSE

def requestStack(self, ip, port):
return MyHttpProxy

4.23.2.1. Authenticating clients

The Zorp proxy can authenticate the clients using passwords. GSS-API and other authentication methods
supported by the SOCKSV5 protocol are not supported. The process of negotiating the authentication between
the client and the Zorp Socks proxy is the following:

1. The client sends the list of authentication methods is supports to the SOCKS server.

2. The Zorp Socks proxy replies to the client on behalf of the SOCKS server, depending on the
configuration of the Socks proxy:

m If the client selected password-based authentication and the disable_auth_v5 option is set to
FALSE and the require_auth_v5 is set to TRUE (which are the defaults), Zorp replies that
password authentication is supported.

m Ifthe require_auth_v5isset to FALSE, and the client supports the none authentication method,
the connection is accepted without authentication.

m In other cases, the client receives an authentication error.

The Zorp Socks proxy supports inband authentication as well. For details on inband authentication, see Section
5.1.10, Class InbandAuthentication (p. 181).

www.balasys.hu 148

Related standards e

4.23.3. Related standards

®m The SOCKS 5 protocol is defined in RFC 1928.

4.23.4. Classes in the Socks module

Class Description

AbstractSocksProxy Class encapsulating the Socks Proxy.

SocksProxy Default Socks proxy «class based on
AbstractSocksProxy.

Table 4.67. Classes of the Socks module

4.23.5. Class AbstractSocksProxy

This proxy validates SOCKS traffic. It serves as a starting point for customized proxy classes, but is itself not
directly usable. Service definitions should refer to a customized class derived from AbstractSocksProxy, or the
predefined SocksProxy proxy class.

4.23.5.1. Attributes of AbstractSocksProxy

auth (class)
Default:

The authentication provider object used in the authentication process, set in the authentication_policy()
parameter of the Zorp service. See Section 5.1.1, Authentication and authorization basics (p. 174) for details.

auth_server (boolean)
Default:

The address of the ZAS server used to authenticate the connection. Note that this option cannot be modified
by the proxy, it is set in the AuthenticationPolicy used by the Service definition.

connect_server (boolean)
Default: TRUE

Set to TRUE, if the Socks proxy is connecting directly to the SOCKS server. Set to FALSE, if the Socks proxy
is an embedded proxy and another Zorp proxy is performing the actual connection.

disable_auth_v5 (boolean)
Default: FALSE

Disable authentication in the SOCKSv5 protocol. If this option is enabled, the Zorp proxy sends only the none
authentication method to the client.

enable_socks_v4 (boolean)
Default: FALSE

www.balasys.hu 149

http://tools.ietf.org/html/rfc1928

Class AbstractSocksProxy e

enable_socks_v4 (boolean)

Accept SOCKSv4 connections as well. If the client is using an unsupported protocol version, or the client is
using SOCKSv4 but the enable_socks_v4() option is set to FALSE, the Unsupported protocol
version="'4" log message is sent to the system logs.

require_auth_v5 (boolean)
Default: TRUE

Require authentication in the SOCKSv5 protocol. If this option is enabled, the Zorp proxy sends only the
password authentication method to the client. Note that using this option requires a properly configured ZAS
AuthenticationPolicy and an authentication backend in the definition of the service that uses the Socks proxy.

timeout (integer)
Default: 600000

Timeout in milliseconds. The -1 value disables the timeout.

4.23.5.2. AbstractSocksProxy methods

Method Description

requestForward(self, ip, port) Called when the SOCKS protocol reaches forward state.

Table 4.68. Method summary

Method requestForward(self, ip, port)

This method must determine whether to stack another proxy class into the traffic, or simply forward the traffic
without analyzing. The method can raise an exception which will result in denying any traffic. The default
behavior is to forward traffic without analyzing.

Arguments of requestForward

IP (string)

Default: n/a

The TP address of the target host.

port (integer)

Default: n/a

The port number to connect to.

return (complex)

Default: n/a

Tuple of SOCKS_STK_* and a class. SOCKS_STK_NONE will result in simple forwarding, while
SOCKS_STK_DATA will start a stacked proxy instance of the returned class.

www.balasys.hu 150

Class SocksProxy e

4.23.6. Class SocksProxy

A default proxy for the SOCKS protocol based on AbstractSocksProxy. It serves as a starting point for customized
proxy classes, but is itself not directly usable. Service definitions should refer to a customized class derived
from AbstractSocksProxy, or the predefined SocksProxy proxy class. By default, the proxy rejects SOCKSv4
connections, and requires authentication from the clients.

4.24. Module SQLNet

4.24.1. The SQL*Net protocol

This class implements parts of Oracle TNS (Transparent Network Substrate) to enable clients to communicate
with Oracle servers behind firewalls using port TCP/1521. This module is especially needed when tnslsnr (the
TNS listener) is in Multi-threaded Server (MTS) mode.

The SQL*Net proxy does not analyze the whole protocol stream, as the data protocol of Oracle operates on top
of TNS.

An example for the SQL*Net connection string is provided in Example A.1, An example for the SQL*Net
connection string (p. 325).

4.24.2. Proxy behavior

SQLNetProxy is a module built for parsing messages of the SQL*Net protocol. It reads and parses QUERY's
on the client side, and sends them to the server if the local security policy permits.

In MTS mode Oracle returns a redirect packet specifying where the client should connect to. The proxy processes
this packet and initiates a new connection to the address specified; all packets sent by the client will be
automatically redirected to this new address. This functionality is completely transparent to the clients. To
accomplish this, either InbandRouter has to be used, or the overridable option has to be set for DirectedRouter
and TransparentRouter.

SQLNet proxy is able to parse connect_string and connection_data containing the address and port of
the target server and information on the database.

When the connection is established the SQLNetProxy inspects TNS headers, but does not inspect the layers
above TNS.

4.24.3. Related standards

SQL*Net is a not specified in any public standards.

4.24.4. Classes in the SQLNet module

Class Description

AbstractSQLNetProxy Class encapsulating the abstract SQLNet proxy.

www.balasys.hu 151

Class AbstractSQLNetProxy e

Class Description
SQLNetProxy Default SQLNet proxy class based on
AbstractSQLNetProxy.

Table 4.69. Classes of the SQLNet module

4.24.5. Class AbstractSQLNetProxy

AbstractSQLNetProxy is a default proxy for the SQL*Net protocol - it serves as a starting point for customized
proxy classes, but is itself not directly usable. Service definitions should refer to a customized class derived
from AbstractSQLNetProxy, or the predefined proxy class.

4.24.5.1. Attributes of AbstractSQLNetProxy

connect_data (string, n/a:rw)

Default: n/a

The TNS connect string as sent by the client, or as modified by the policy.

server_address (string, rw:rw)

Default: "n/a"

Name of the Oracle server to connect to. This value is only used together with InbandRouter, or if the overridable
option is set for DirectedRouter or TransparentRouter.

server_port (integer, rw:rw)

Default: "n/a"

Port of the Oracle listener to connect to.

split_connect_threshold (integer, rw:rw)
Default: 231
CONNECT data that is larger than this value will be split into smaller DATA packets.

strict_redirect_parsing (boolean, rw:rw)
Default: TRUE

Disabling this option allows improperly formed packets to pass the firewall.

timeout (integer, rw:r)
Default: 600000

Timeout in milliseconds.

www.balasys.hu 152

Class SQLNetProxy e

4.24.5.2. AbstractSQLNetProxy methods

Method Description
connectRequest(self, connect data) Function called when the client issues a CONNECT
request.

Table 4.70. Method summary

Method connectRequest(self, connect_data)

This function is called when the client issues a CONNECT request, to have a chance to validate and change
the CONNECT string sent by the client. The connect string can be found in the parameter connect_data.
The function has to return a logical TRUE or FALSE value, i.e. SQLNET_ACCEPT or SQLNET_ABORT.

Arguments of connectRequest

connect_data (unknown, n/a:n/a)

Default: n/a

The connect string as sent by the client.

4.24.6. Class SQLNetProxy
A transparent SQL*Net proxy based on AbstractSQLNetProxy.

In transparent mode the client addresses directly the server, so the target address is readily available; while in
nontransparent mode the client connects directly to Zorp, and Zorp receives the address of the server within
the protocol.

4.24.6.1. Attributes of SQLNetProxy

transparent_mode (boolean, rw:rw)
Default: TRUE

Enable/disable transparent mode operation.

4.25. Module Ssh

4.25.1. The Secure Shell protocol

Secure Shell (SSH) is a protocol designed to remotely access (login and execute commands) on a computer
connected to the network. SSH was aimed to replace the earlier unencrypted protocols (e.g.: rlogin, TELNET
and rsh), and provides secure encrypted communication between two hosts over an insecure network. Users of
SSH can also use it for tunneling, forwarding arbitrary TCP ports and X11 connections over the resultant secure
channel; and can transfer files using the embedded SFTP or SCP protocols.

www.balasys.hu 153

Proxy behavior e

4.25.1.1. Protocol elements

One of the main features of the SSH protocol is that almost the entire communication between the client and
the server is encrypted - including the authentication of the user. (Naturally, the negotiation of the encryption
method to be used is in plain text). During the initialization of the session server authentication is performed
and parameters for encryption, data compression and integrity verification of the data transferred are negotiated.
The protocol enforces user authentication and is capable of authenticating the user via various methods: password,
RSA key, Challenge/Response schemes like S/Key and OPIE, etc.

The typical uses of SSH include the following:

Remote shell Remotely administer a computer via an interactive terminal
console. This is one of the most widespread uses of SSH.

Remote command execution Execute commands on the remote machine. Remote command
execution can also result in significant data transfer, for example
when performing scheduled or manual tasks such as file copying
(scp), data or file synchronization (rsync), creating archive
backups (tar), etc.

TCP IP forwarding (also known as It is possible to tunnel any TCP/IP connection from the client

port forwarding) or from the server into the encrypted SSH channel. It can also
be used to forward communication otherwise not allowed, such
as the access of ports banned by the security policy. This allows
to secure any - normally unencrypted - data transfer and is
frequently used as an easy way to secure connections between
the hosts without the need to set up full VPN connections.

File transfer Securely transfer files using SFTP.

X11 forwarding Applications running on the server and requiring graphical
interface (X Window) appear on the client's monitor, but run on
the server in all other respect, thus it is possible to work with
them remotely.

Agent forwarding: Transfer authentication requests to the client machine.

4.25.1.2. Protocol versions

The original version of the protocol (SSH-1, dated 1995) has been revised in 1996, and SSH-2 was created
offering improved security and new features. The two versions of the protocol are incompatible with each other.
Since SSH-1 has inherent design flaws and is vulnerable to attacks, it is now generally considered obsolete and
its use should not be permitted. Practically all server and client applications today support SSH-2, however,
software not supporting SSH-2 may still be in use by some organizations, posing a considerable security
vulnerability to them.

The Zorp SSH proxy supports only the SSHv2 protocol (SECSH).

4.25.2. Proxy behavior

Zorp's SSH proxy uses man-in-the-middle technique to decrypt and terminate the SSH connections on the
firewall. It separates the connections into two parts and inspects all traffic, so that no data can be directly

www.balasys.hu 154

Proxy behavior e

transferred between the server and the client. Zorp supports exclusively the SSH-2 protocol, but owing to the
widespread use and availability of SSH-2 implementations, this does not mean any hindrance. The general
capabilities of Zorp's SSH proxy are summarized below.

m Protocol inspection : All traffic is inspected and only permitted across the firewall if it fully complies
to the SSH-2 protocol. This feature of Zorp provides effective protection against a great number of
attacks exploiting vulnerabilities of server and client applications, including buffer overflow
vulnerabilities.

m Verify encryption method : Zorp can also control the internal parameters of the connections, allowing
it to enforce the use of selected encryption methods (cipher type, key length, etc.), thus provide
protection against downgrade attacks.

m Control user authentication : The different authentication methods can be separately enabled or
disabled, e.g.: it is possible to enforce the use of strong authentication methods by completely disabling
password based authentication. User-level filtering and access control can also be performed. Although
this can obviously be done on the servers themselves, Zorp as an external device provides these
features reliably even if the server or the client machines get compromised.

m Control of SSH channels : Zorp has full control over the SSH channels, i.e. it can be specified which
channels are allowed to and from a given server or in a given connection. For instance, file transfer,
port forwarding, or X forwarding can be separately enabled/disabled based on various criteria.

m Disable agent forwarding : Zorp can disable agent forwarding, thus prevent that the keys used in
the internal network become accessible on external machines.

m Control remote command execution : Zorp is able to fully inspect the SSH protocol, thus it can be
specified which commands are allowed, which ones are disabled. More sophisticated decisions can
also be made based on the parameters of the session, e.g.: to allow the execution of a command only
to certain users, etc.

4.25.2.1. Configuring policies for SSH channels

The opening of SSH channels from the server and the client side is possible using the server_channel and
client_channel hashes. These hashes are indexed by the channel type (e.g.: session). The available channel
types are listed in the following table.

Name Value

session Channels for terminal shells, remote execution requests
(e.g.: scp), and SFTP.

direct-tcpip Channels for client-to-server forwarded connections.

forwarded-tcpip Channels for server-to-client forwarded connections.

auth-agent Channels for forwarding authentication agents.

auth-agent@openssh.com Channels for forwarding authentication agents, as
implemented in OpenSSH.

www.balasys.hu 155

Proxy behavior e

Name Value
x11

Channels for forwarding graphical interfaces.

Table 4.71. The list of available channel types.

The possible actions are described in the following table. See also Section 2.1, Policies for requests and
responses (p. 4).

Action Description
SSH_CHAN_ACCEPT

Accept the request without any modification.
SSH_CHAN_REJECT Reject the channel opening request.
SSH_CHAN_POLICY

Call the function specified to make a decision about
the channel opening request.

SSH_CHAN_ABORT Reject the channel opening request and terminate the

connection.

Table 4.72. Action codes for SSH channel open requests.

— Example 4.45. Enabling and disabling SSH channels
—— | The following proxy class accepts only terminal session (shell) connections, and rejects all other channel types.

class ShellonlySshProxy(SshProxy):
def config(self):
SshProxy.config(self)
self.client_channel["session"] = (SSH_CHAN_ACCEPT)
self.client_channel["session-shell"] = (SSH_CHAN_ACCEPT)
self.client_channel["*"] = (SSH_CHAN_REJECT)

4.25.2.2. Configuring policies for SSH requests

Changing the default behavior of requests arriving from the server and the client side is possible using the
server_request and client_request attributes. All requests specified in the RFCs are supported. The
index of these hashes is composed of the channel type (e.g.: session, see Section 4.25.2.1, Configuring policies
for SSH channels (p. 155) for a detailed list), a single hyphen, and the request name as defined by the SSH

protocol specification. E.g.: session-x11-req. The possible actions are described in the following table. See
also Section 2.1, Policies for requests and responses (p. 4).

Action Description

SSH_REQ_ACCEPT Accept the request without any modification.
SSH_REQ_REJECT Reject the request.
SSH_REQ_POLICY

Call the function specified to make a decision about
the request.

SSH_REQ_ABORT

Reject the request and terminate the connection.

Table 4.73. Action codes for SSH channel and global requests.

For complex decisions that are based on the parameters of the requests, you have to use the SSH_REQ_POLICY
parameter and create a function within the proxy class that examines and optionally modifies the parameters.

www.balasys.hu 156

Proxy behavior e

This custom function can receive the following four attributes:

self
side The side of the connection relative to Zorp: 0 for the client side, 1 for the server side.
index The name of the request, e.g., x11, subsystem, etc.

request A structure that has fields containing the parameters of the request. See Section 4.25.2.3,
Parameters of the SSH requests (p. 157) for details on the different request parameters.

See the following example.

— Example 4.46. Enabling only SFTP connections

—— | The following proxy class accepts SFTP connections. SFTP is a subsystem of SSH, therefore the parameters of the session-subsystem
| w—] request must be examined.

class SFtponlySshProxy(SshProxy):

def config(self):
SshProxy.config(self)
self.client_channel["session"] = (SSH_CHAN_ACCEPT)
self.client_request["session-subsystem"] = (SSH_REQ_POLICY, self.permitSFTPOnly)
self.client_channel["*"] = (SSH_CHAN_REJECT)

def permitSFTPOnly(self, side, index, request):
if request.subsystem == "sftp":

return SSH_REQ_ACCEPT

return SSH_REQ_REJECT

4.25.2.3. Parameters of the SSH requests

SSH requests can be controlled using the server_request and client_request hashes. These hashes are
indexed by the channel type (e.g.: session). Some requests have additional parameters that are also listed.
Some channels (e.g., the X11 channel) require two request messages to open, the first message requests the
channel, while the second message actually opens the requested channel. The following requests are available
from the client side. For examples on local and remote forwarding, see Section 4.25.2.4, Configuring local and
remote forwarding (p. 159).

window-change

When the window (terminal) size changes on the client side a message may be sent to inform the server of the
new window dimensions. Parameters of the request:

width_cols Width of the terminal window in characters.
height_rows Height of the terminal window in characters.
width_px Width of the terminal window in pixels.
height_px Height of the terminal window in pixels.
pty-req

Request a pseudo-terminal for the session. Parameters of the request:
term Requests a pseudo-terminal.

width_cols Width of the terminal window in characters.
height_rows Height of the terminal window in characters.

www.balasys.hu 157

Proxy behavior e

pty-req
width_px Width of the terminal window in pixels.
height_px Height of the terminal window in pixels.
x11-req

Request X11 forwarding for the session. Parameters of the request:

x11_auth_proto The name of the X11 authentication method used, e.g., MIT-MAGIC-COOKIE-1.

x11_auth_cookie

screen_number

single_connection If set to TRUE, the server forwards only a single connection.
x11

Open an X11 channel. Parameters of the request:

originator_host IP address of the host.

originator_port Port number of the host.

auth-agent-req

Request the forwarding of the authentication requests. This request has no additional parameters.

auth-agent-req@openssh.com

Request the forwarding of the authentication requests, as implemented in OpenSSH. This request has no
additional parameters.

env

Pass an environment variable and its value in the message. Parameters of the request:

name The name of environment variable.
value The value of environment variable.
shell

Request a shell be started on the server side. This request has no additional parameters.

exec

Request the server to start the execution of the command sent in the message. Parameters of the request:

command The command to be executed. The command may include a path.

subsystem

Request the server to execute a predefined subsystem. (Subsystems usually include a general file transfer
mechanism, and possibly other features as well.) Parameters of the request:

subsystem Name of the subsystem to be executed.

www.balasys.hu 158

Proxy behavior e

signal

A signal delivered to the remote process or service. Parameters of the request:

signal Name of the signal to be sent.

The following requests are available from the server side. Some requests have additional parameters that are
also listed.

exit-status

When the command running on the server terminates, an exit-status message can be sent to return the exit
status of the command.

exit_status

exit-signal

A message indicating that the remote command was terminated violently due to a signal. A zero usually means
that the command terminated successfully.

signal_narne Name of the signal. One of: ABRT, ALRM, FPE, HUP, ILL, INT, KILL, PIPE, QUIT,
SEGV, TERM, USR1, USR2, or a custom signal consisting of two strings and the @
character (e.g., signal@ example).

core_dumped

error The text of the error message. The message may consist of multiple lines separated
by CRLF (Carriage Return - Line Feed) pairs.

lang Language tag confirming to RFC3066.

xon-xoff

A message informing the client when it can or cannot perform flow control.

client_can_do TRUE if the client can perform flow control.

4.25.2.4. Configuring local and remote forwarding

Remote port-forwarding transfers connections arriving to a port of the server to the client. The client sends a
global-tcpip-forward request to the server. The parameters of this request tell the server which address
and port it should listen on for incoming connections (bind_address, bind_port). When the server receives
a connection to this address/port pair, it opens a forwarded- tcpip towards the client. The parameters of these
requests are summarized in the following tables.

El

Figure 4.1. Remote TCP forwarding

global-tcpip-forward

Connections arriving to the specified IP address and port of the server are forwarded to the client.

bind_address The server forwards connections received on this address to the client. The following
special addresses may be used:

www.balasys.hu 159

Proxy behavior e

global-tcpip-forward

B The "" parameter means that connections are to be accepted on all protocol
families supported by the SSH implementation.

m The 0. 0. 0. 0 parameter means to listen on all IPv4 addresses.
m The : : parameter means to listen on all IPv6 addresses.

m The localhost parameter means to listen on all protocol families
supported by the SSH implementation on loopback addresses only
([RFC3330] and [RFC3513]).

B The 127.0.0.1 and : : 1 parameters indicate listening on the loopback
interfaces for IPv4 and IPv6, respectively.

bind_port The server forwards connections received on this port to the client.

forwarded-tcpip

Opens a channel used to forward remote connections to the client.

connected_addr The IP address of the server that received the connection.

connected_port The port of the server that received the connection.

originator_addr The IP address of the remote host whose connection is forwarded to the client.
originator_port The port of the remote host whose connection is forwarded to the client

Local port-forwarding transfers connections arriving to the client from a host to a remote host via the SSH
server. For local port-forwarding, the client sends a direct - tcpip channel opening request to the server. The
parameters of this request tell the server which host it should forward the connection, as well as the address of
the host that connects to the client (usually localhost). This request has the following parameters.

@

Figure 4.2. Local TCP forwarding

direct-tcpip

Opens a channel used to forward remote connections to the client.

originator_addr The IP address of the host whose connection is forwarded to the remote host.
originator_port The port of the host whose connection is forwarded to the remote host.

host_addr The IP address of the remote host that is the destination of the forwarded connection.
host_port The port of the remote host that is the destination of the forwarded connection.

— Example 4.47. Restricting local forwarding
= The following proxy class permits local forwading only to port 80 of the 192.168. 1. 1 remote host. Only shell and local forwarding

| w— channels are permitted.

class RestrictedlocalforwardSshProxy(SshProxy):
def config(self):
SshProxy.config(self)
self.client_channel["session"] = (SSH_CHAN_ACCEPT)
self.client_channel["direct-tcpip"] = (SSH_CHAN_ACCEPT)

www.balasys.hu 160

Proxy behavior e

self.client_request["direct-tcpip"] = (SSH_REQ_POLICY, self.controllocalforward)
self.client_channel["*"] = (SSH_CHAN_REJECT)
def controllocalforward(self, side, index, request):
if request.host_address == "192.168.1.1" and request.host_port == "80":
return SSH_REQ_ACCEPT
return SSH_REQ_REJECT

4.25.2.5. Configuring encryption parameters

The Zorp SSH proxy is able to enforce policies on the various elements of the encrypted SSH communication,
such as the MAC, key-exchange, etc. algorithms that are permitted to be used. The parameters can be set
separately for the client and for the server side. The attributes are represented as comma-separated strings listing
the enabled methods/algorithms, in the order of preference.

Key exchange algorithms

The permitted key exchange algorithms can be specified via the c1ient_kex_algos and server_kex_algos
attributes. The Zorp SSH proxy supports the diffie-hellman-groupl4-shal and
diffie-hellman-groupl-shal algorithms.

Host key algorithms

The permitted host key algorithms can be specified via the client_hostkey _algos and
server_hostkey_algos attributes. The supported algorithms are ssh-rsa and ssh-dss.

Note
@ For a hostkey algorithm to work for the clients the corresponding private key has to be set in the host_key_rsa or the host_key_dss
attribute. The supported algorithms are ssh-rsa and ssh-dss.

Symmetric cipher algorithms

The permitted symmetric cipher algorithms can be specified via the client_cipher_algos and
server_cipher_algos attributes. The following algorithms are supported: aes128-cbc, 3des-cbc,
blowfish-cbc, casti128-cbc, arcfour, aesl192-cbc, aes256-cbc, aesl128-ctr, aesl192-ctr,
aes256-ctr.

MAC algorithms

The permitted MAC algorithms can be specified via the client_mac_algos and server_mac_algos
attributes. The supported algorithms are: hmac - shal and hmac-md5.

4.25.2.6. Host key verification

To successfully build the required SSH connections both towards the client and the server, Zorp has to show
the appropriate keys to the client (otherwise the client will reject the connection as the key does not match the
server it intends to connect). This problem can be easily overcome if Zorp is used to protect the servers: the
server key has to be deployed on Zorp as well. However, this is not possible when protecting clients, because
the private keys of all servers that will be contacted is rarely available. In this case, Zorp's SSH proxy can be
configured to automatically verify the identity of the server using the server_hostkeys_verify attribute.

www.balasys.hu 161

Proxy behavior e

This is similar to certificate verification in SSL. connections, but in SSH there is no certificate or other identity
information attached to the host keys.

The methods supported for host key verification are shown in the following table.

Name Value
SSH_HKV_ACCEPT_ANY Accept any host key.
SSH_HKV_ACCEPT _ONCE Accept unknown host keys only on the first occassion.

The TP address-port pair of unknown host keys is
registered, later on that key is used to verify connections
from that address.

SSH_HKV_ACCEPT_KNOWN Accept only known host keys. Public keys can be
configured for each IP address or port pair (like in case

of the known_hosts file). For any unknown IP
address-port pair the connection is terminated.

Table 4.74. SSH host key verification mode.

4.25.2.7. Auditing SSH channels

The SSH proxy supports the general auditing framework of Zorp. The SSH proxy can even be configured to
audit only certain types of channels, it is not necessary to fully audit all sessions (e.g.: the auditing of large file
transfers such as backups is rarely needed). The channels to be audited can be set via the audit_trails
attribute. The available channel types are described in Section 4.25.2.1, Configuring policies for SSH
channels (p. 155).

4.25.2.8. Manipulating the keys of public-key authentication

The Zorp SSH proxy can use different keys in the server-side connection and the client-side connection. To
use this feature, you have to derive a custom proxy class from the SshProxy class, and override the mapUserKey
function. In the mapUserKey function, you can check the public key of the client, and return the private key
that will be used in the server-side connection. Using this function you can set every connection to use a single
key on the server side, change the type of the key from RSA to DSA, or restrict access of certain channels only
to the selected users.

The mapUserKey function receives the blob_type and blob parameters that contain the type of the key
(ssh-dss for DSA keys, ssh-rss for RSA keys) and the public key of the client. The function can return
None to reject the connection, or a key type and a private key that will be used to authenticate on the target
Server.

— Example 4.48. Modifying the keypair used in public-key authentication

— Tlcdle following proxy class accepts only connections that use a specific DSA public key, and uses a different RSA key-pair on the server
| w— side.

class KeymappingSshProxy(SshProxy):
def config(self):
SshProxy.config(self)
def mapUserKey(self, blob_type, blob):
if blob_type != 'ssh-dss' or blob != """ssh-dss
AAAAB3NzaC1kc3MAAACBANhSxBWzv4kLVNBEV9sIX4rQkNtTXARJUP410u71Nu. .. """
return None

www.balasys.hu 162

Related standards e

return ('ssh-rss', """----- BEGIN RSA PRIVATE KEY-----
MIIEogIBAAKCAQEAZ/U9WbGjeQfEj4nUoqSIMQpKIPONPIPQG2IPGTRC/ROC+VeQ
D/ax8n7wB3PF/1DBOWpHK5]j 075y J6 TPCPQFDYLOWOM41sBhyHSGCiGyDuNCOaRal

4.25.3. Related standards
The Secure Shell (SSH) Protocol is described in the following RFCs:Architecture is described in RFC 4251.

m The Secure Shell (SSH) Protocol Architecture is described in RFC 4251.

®m The Secure Shell (SSH) Authentication Protocol is described in RFC 4252.
m The Secure Shell (SSH) Transport Layer Protocol is described in RFC 4253.
®m The Secure Shell (SSH) Connection Protocol is described in RFC 4254.

4.25.4. Classes in the Ssh module

Class Description

AbstractSshProxy Class encapsulating the abstract SSH proxy.
SshProxy Class encapsulating the abstract SSH proxy.
SshSFEtpProxy Class encapsulating an SFTP proxy.
SshScpProxy Class encapsulating an SCP proxy.

Table 4.75. Classes of the Ssh module

4.25.5. Class AbstractSshProxy
This class implements an abstract SSH proxy for the SSH2 protocol - it serves as a starting point for customized

proxy classes, but is itself not directly usable. Service definitions should refer to a customized class derived
from AbstractSshProxy, or one of the predefined proxy classes.

4.25.5.1. Attributes of AbstractSshProxy

audit_channels (string, rw:r)
Default: ""

A comma separated list of channel types to be audited. See also Section 4.25.2.7, Auditing SSH channels (p. 162).

auth_agent_forward (boolean, w:r)
Default: FALSE

Authenticate using the data received from the agent during agent-forwarding.

auth_methods (string, rw:rw)

Default: "password,keyboard-interactive,none"

www.balasys.hu 163

Class AbstractSshProxy e

auth_methods (string, rw:rw)

A comma separated list of permitted authentication methods as defined in the SSH protocol specification. The
proxy currently supports the following authentication methods: publickey, keyboard-interactive,
password and none. The none method is only used to determine which authentication methods does the
server support.

check_insane_settings (boolean, w:r)
Default: TRUE

Reject unrealistic terminal and screen settings. The number of columns and rows of the terminal must be lower
than 512; the size of the screen cannot be greater than 8192 pixels in either directions.

client_channel (complex, r:r)
Default:

A normative policy hash defining the action to take when a specific channel type is opened on the client side.
See Section 4.25.2.1, Configuring policies for SSH channels (p. 155) for details.

client_cipher_algos (string, rw:r)

Default:
"aes128-ctr,aes192-ctr,aes256-ctr,aes128-cbc,blowfish-cbe,cast128-cbe,aes192-cbe,aes256-cbc, 3des-cbe,arcfour”

A comma separated list of symmetric cipher algorithms permitted on the client side, in the order of preference.
See Section 4.25.2.5, Configuring encryption parameters (p. 161) for details.

client_comp_algos (string, rw:r)
Default:

A comma separated list of compression algorithms, in the order of preference. Currently no compression
algorithm is supported.

client_hostkey_algos (string, rw:r)

Default: "ssh-rsa,ssh-dss"

A comma separated list of hostkey algorithms permitted on the client side, in the order of preference. See
Section 4.25.2.5, Configuring encryption parameters (p. 161) for details.

client_kex_algos (string, rw:r)

Default: "diffie-hellman-group14-shal,diffie-hellman-group1-shal"

A comma separated list of allowed key exchange algorithms permitted on the client side, in the order of
preference. See Section 4.25.2.5, Configuring encryption parameters (p. 161) for details.

client_mac_algos (string, rw:r)

Default: "hmac-shal,hmac-md5"

A comma separated list of MAC algorithms, in the order of preference. See Section 4.25.2.5, Configuring
encryption parameters (p. 161) for details.

www.balasys.hu 164

Class AbstractSshProxy e

client_request (complex, r:r)
Default:

A normative policy hash defining the action to take when a specific channel request is received from the client
side. See Section 4.25.2.2, Configuring policies for SSH requests (p. 156) for details.

connection_start (enum, rw:r)
Default: SSH_CONN_START IMMEDIATELY

Specifies when is the server-side connection started. When using agent authentication, set it to
SSH_CONN_START_AFTER_PROXY_AUTH.

greeting (string, rw:r)
Default:

The content of this attribute is sent to the SSH client before sending the protocol header, e.g.: before performing
key exchange or authentication. It is usually displayed to the user or sent to the system log.

host_key_x509_dss (string, rw:r)
Default:

The DSS host key in openssl PEM format used when communicating with SSH clients. Either host_key_rsa
or host_key_dss is required.

host_key_x509_dss_certificate (string, rw:r)
Default:

The DSS host key in openssl PEM format used when communicating with SSH clients. Either host_key rsa
or host_key_dss is required.

host_key_x509_dss_files (certificate, rw:r)
Default:

A tuple of two file names containing the certificate and key files for the DSS host key in PEM format.

host_key_x509_rsa (string, rw:r)
Default:

The RSA host key in openssl PEM format used when communicating with SSH clients. Either host_key rsa
or host_key_dss is required.

host_key_x509_rsa_certificate (string, rw:r)
Default:

The RSA host key in openssl PEM format used when communicating with SSH clients. Either host_key rsa
or host_key_dss is required.

www.balasys.hu 165

Class AbstractSshProxy e

host_key_x509_rsa_files (certificate, rw:r)
Default:

A tuple of two file names containing the certificate and key files for the RSA host key in PEM format.

id_comment (string, rw:r)
Default:

Specifies the comment field in the SSH protocol header.

max_kbdint_prompt_len (integer, rw:r)
Default: 128

Specifies the maximum length of a prompt in the keyboard-interactive authentication method.

max_kbdint_prompts (integer, rw:r)
Default: 10

Specifies the maximum number of prompts in the keyboard-interactive authentication method.

max_kbdint_response_len (integer, rw:r)
Default: 128

Specifies the maximum length of a response in the keyboard-interactive authentication method.

server_channel (complex, r:r)
Default:

A normative policy hash defining the action to take when a specific channel type is opened on the server side.
See Section 4.25.2.1, Configuring policies for SSH channels (p. 155) for details.

server_cipher_algos (string, rw:r)

Default:
"aes128-ctr,aes192-ctr,aes256-ctr,aes128-cbc,blowfish-cbe,cast128-cbc,aes192-cbc,aes256-cbe,3des-cbe,arcfour”

A comma separated list of symmetric cipher algorithms permitted on the server side, in the order of preference.

server_comp_algos (string, rw:r)
Default:

A comma separated list of compression algorithms permitted on the server side, in the order of preference.
Currently no compression algorithm is supported.

server_hostkey_algos (string, rw:r)

Default: "ssh-rsa,ssh-dss"

A comma separated list of hostkey algorithms permitted on the server side, in the order of preference. See
Section 4.25.2.5, Configuring encryption parameters (p. 161) for details.

www.balasys.hu 166

Class SshProxy e

server_kex_algos (string, rw:r)

Default: "diffie-hellman-group14-shal,diffie-hellman-group1-shal"

A comma separated list of key exchange algorithms permitted on the server side, in the order of preference.
See Section 4.25.2.5, Configuring encryption parameters (p. 161) for details.

server_mac_algos (string, rw:r)

Default: "hmac-shal,hmac-md5"

A comma separated list of MAC algorithms permitted on the server side, in the order of preference. See Section
4.25.2.5, Configuring encryption parameters (p. 161) for details.

server_request (complex, r:r)
Default:

A normative policy hash defining the action to take when a specific channel request is received from the server
side. See Section 4.25.2.2, Configuring policies for SSH requests (p. 156) for details.

software_version (string, rw:r)
Default: "SSH"

The string sent to the SSH peers as the version of the software. Before changing the default, please note that
peers enable or disable various protocol workarounds based on the value of this attribute.

timeout (integer, rw:r)
Default: 600000

I/0 timeout in milliseconds. If no activity is detected within this period interval, the connection is terminated.

transparent_mode (boolean, rw:r)
Default: TRUE

Specifies whether the proxy is in transparent or non-transparent mode. In non-transparent mode the name of
destination server is extracted from the username, which should be in the format (user@host:port). The set of
characters accepted as username/hostname separators is '@"' and '%'. The set of characters that separates
hostname from port number is ":', '+' and '/'.

userauth_banner (string, rw:r)
Default:

The content of this attribute is sent to the SSH client at the start of the SSH userauth protocol. It is usually
displayed by clients as a text message.

4.25.6. Class SshProxy

This proxy implements a default SSH proxy based on AbstractSshProxy. A number of higher-level attributes
have been defined that allow easy configuration of the various services offered by SSH (e.g.: port-forwarding,
etc.). Port-forwarding, X11-forwarding, and agent-forwarding are disabled by default, the clients may open

www.balasys.hu 167

Class SshProxy e

only session channels. The following client requests are accepted in the channel: window-change, pty-req,
shell, exec, subsystem, signal, exit-status, exit-signal, and xon-xoff. The env request is not
permitted. Only known host keys are accepted on the server side.

4.25.6.1. Attributes of SshProxy

enable_agent_forward (boolean, rw:r)
Default: FALSE

Enable SSH agent forwarding specific requests and channels. NOTE: this is a high level interface for changing
the low level attributes, thus using this setting while changing the low level policy hashes manually might lead
to conflicts.

enable_port_forward (boolean, rw:r)
Default: FALSE

Enable port forwarding (both client and server initiated) specific requests and channels. NOTE: this is a high
level interface for changing the low level attributes, thus using this setting while changing the low level policy
hashes manually might lead to conflicts.

enable_x11_forward (boolean, rw:r)
Default: FALSE

Enable X11 display forwarding specific requests and channels. NOTE: this is a high level interface for changing
the low level attributes, thus using this setting while changing the low level policy hashes manually might lead
to conflicts.

host_key_dss_file (certificate, rw:r)
Default: ""
Read the DSS hostkey from the file specified. This must be DSA, not RSA.

host_key_rsa_file (certificate, rw:r)
Default: "
Read the RSA hostkey from the file specified. This must be RSA, not DSA.

server_hostkeys_dir (trustedkeydir, rw:r)
Default:

The directory containing known SSH host keys.

server_hostkeys_verify (enum, rw:r)
Default: SSH_HKV_ACCEPT_KNOWN
The verification mode for SSH host keys. See Section 4.25.2.6, Host key verification (p. 161).

www.balasys.hu 168

Class SshSFtpProxy e

4.25.6.2. SshProxy methods

Method Description
checkUserKey(self, blob_type, blob) None
mapUserKey(self, blob_type, blob) None

Table 4.76. Method summary

Method checkUserKey(self, blob_type, blob)

This method is called by the proxy to check the publickey. It returns FALSE if it cannot be accepted, TRUE
otherwise.

Method mapUserKey(self, blob_type, blob)

This method is called by the proxy to map the publickey of a user to a keypair.

4.25.7. Class SshSFtpProxy

This class implements an SFTP helper to be stacked into an SSH proxy parent.

4.25.7.1. Attributes of SshSFtpProxy

timeout (integer, rw:r)
Default: 600000

I/O timeout in milliseconds. If no activity is detected within this period interval, the connection is terminated.

4.25.8. Class SshScpProxy

This class implements an SCP helper to be stacked into an SSH proxy parent.

4.26. Module TFtp

The TFtp module defines the classes constituting the proxy for the TFTP protocol.

4.26.1. The TFtp protocol

Trivial File Transfer Protocol (TFTP) is a very simple protocol used to transfer files over the UDP transport
protocol. It is commonly used for bootstrapping diskless systems (normally workstations or routers).

The protocol follows a very simple procedure. The client sends a request to read (RRQ) or write (WRQ) a file
to the server's UDP/69 port. If the server grants the request a connection is opened and the file server starts
sending the file in fixed length blocks of 512 bytes. TFTP transports data in netascii encoding format (ASCII
text with each line terminated by the 2-character sequence of a carriage return followed by a linefeed called
CR/LF) or octet (data as 8-bit bytes with no interpretation) which is set by the mode indicator at the end of the
RRQ/WRQ message. The DATA packet also contains a block number which is used later for acknowledgment.
Every packet sent must be acknowledged by the receiver, which guarantees that the previous packet has been

www.balasys.hu 169

Proxy behavior e

received. If a packet is lost the receiver sends a request after a timeout. The server keeps just one packet in store
for retransmission until the acknowledgment arrives. A packet shorter than 512 bytes indicates the end of the
transmission.

Most errors cause termination of the transfer process and are signaled by the sending of an error packet. This
is neither acknowledged nor retransmitted. If an error occurred, then an ERROR packet is sent. If a network
error occurred then even the ERROR packet might get lost, therefore timeout is also used to detect errors.

Normal transmission termination is started by a packet smaller than 512 bytes. The packet is acknowledged by
a normal ACK packet like all the previous packet. Then the host sends the final ACK and waits for a while
before it terminates the transmission. If the final ACK is not acknowledged or the the connection timed out the
final ACK packet is retransmitted.

4.26.1.1. Protocol elements
TFTP supports five types of packets, all of which have been mentioned above:

m 1 - Read request (RRQ)
B 2 - Write request (WRQ)
m 3 - Data (DATA)
m 4 - Acknowledgment (ACK)
m 5 - Error (ERROR), which can contain the following error messages:
* 0 - Not defined, see error message (if any).
* 1 - File not found.
* 2 - Access violation.
* 3 - Disk full or allocation exceeded.
* 4 -Illegal TFTP operation.
* 5 - Unknown transfer ID.
* 6 - File already exists.

e 7 -No such user.

4.26.2. Proxy behavior

TFtpProxy is a module built for parsing messages of the TFTP protocol. It reads and parses REQUESTS on the
client side, and sends them to the server if the local security policy permits. The answers are similarly parsed
and returned to the client if the local security policy permits. Rewriting the requested filename and encoding
is supported (although transcoding is not).

One proxy instance is able to handle more than one session, if the Router and Chainer classes support fast path
operation (currently this is supported in DirectedRouter). This functionality is similar to, but different from the
secondary session handling used in PlugProxy and RadiusProxy. In TftpProxy the parameters of secondary
sessions cannot be set, they are managed automatically based on the logic of the protocol.

www.balasys.hu 170

Related standards e

4.26.2.1. Configuring policies for TFTP commands

Changing the default behaviour of requests is possible using the request attribute. This hash is indexed by
the request method ("read" or "write"), and the requested filename. If the hash contains no entry for a given
combination, the "*" entry is used. If there is no matching entry in the hash, the command is rejected. The
possible actions are described in the following table. See also Section 2.1, Policies for requests and
responses (p. 4).

Action Description
TFTP_REQ_ACCEPT Allow the request to pass.
TFTP_REQ_REJECT Reject the request and send an error message. Message

code and text can be specified as second and third
elements of the tuple.

TFTP_REQ_DROP Drop the packet.

TFTP_REQ_POLICY Call the function specified to make a decision about
the event. The function receives four parameters: self,
the method ("read"/"write"), the file name and the
encoding used in the request. See Section 2.1, Policies
for requests and responses (p. 4) for details.

TFTP_REQ_REWRITE Rewrite filename and/or encoding and accept the
packet. See Section Rewriting the request (p. 171) for
details.

Table 4.77. Action codes on TFTP requests

Rewriting the request

To rewrite and accept a request, the hash value must be a tuple containing TFTP_REQ_REWRITE as the first
value, and the filename and encoding to be sent to the server as the second and third values.

Responding with a custom error

To respond with a user-defined error code and message, the hash value must be a tuple containing
TFTP_REQ_ERROR as the first value, the error code (an integer as defined by the TFTP RFC) as the second
one, and the error message as the third. The session is (obviously) terminated; the TFTP server is not notified.

4.26.3. Related standards

Trivial File Transfer Protocol is described in RFC 1350.

4.26.4. Classes in the TFtp module

Class Description

AbstractTFtpProxy Class encapsulating the abstract TFtp proxy.

www.balasys.hu 171

Class AbstractTFtpProxy e

Class Description
TEtpProxy Default TFtp proxy class based on AbstractTFtpProxy.

Table 4.78. Classes of the TFtp module

4.26.5. Class AbstractTFtpProxy

This class implements the TFTP protocol as described in RFC 1350. It serves as a starting point for customized
proxy classes, but is itself not directly usable. Service definitions should refer to a customized class derived
from AbstractTFtpProxy, or the predefined TFtpProxy proxy class.

4.26.5.1. Attributes of AbstractTFtpProxy

encoding (string, n/a:r)

Default: n/a

Encoding used in the current transfer.

filename (string, n/a:r)

Default: n/a

Name of the file being transferred.

request (complex, rw:rw)
Default:

Normative policy hash for TFTP requests indexed by the request method and the filename. See also Section
4.26.2.1, Configuring policies for TFTP commands (p. 171).

timeout (integer, rw:r)
Default: -1

Timeout in milliseconds. The -1 value disables the timeout.

4.26.6. Class TFtpProxy

A default proxy for the TFTP protocol based on AbstractTFtpProxy, allowing only read-only access.

4.27. Module Vnc

VNC protocol is for accessing the desktop of remote computers.

4.27.1. Classes in the Vnc module

Class Description

AbstractVncProxy Class encapsulating the abstract Vnc proxy.

www.balasys.hu 172

Class AbstractVncProxy e

Class Description
VncProxy Default Vnc proxy based on AbstractVncProxy.

Table 4.79. Classes of the Vnc module

4.27.2. Class AbstractVncProxy
This class implements the VNC protocol. AbstractVncProxy serves as a starting point for customized proxy

classes, but is itself not directly usable. Service definitions should refer to a customized class derived from
AbstractVncProxy, or one of the predefined VncProxy proxy classes.

4.27.2.1. Attributes of AbstractVncProxy

readonly (boolean)
Default: FALSE

Decides whether to block client activities or not.

4.27.3. Class VncProxy

VncProxy is a proxy class based on AbstractVncProxy, allowing the use of all Vnc options.

www.balasys.hu 173

Module Auth e

Chapter 5. Core

This chapter provides detailed description for the core modules of Zorp.

5.1. Module Auth

This module contains classes related to authentication and authorization. Together with the AuthDB module it
implements the Authentication and Authorization framework of Zorp.

User authentication verifies the identity of the user trying to access a particular network service. When performed
on the connection level, that enables the full auditing of the network traffic. Authentication is often used in
conjunction with authorization, allowing access to a service only to clients who have the right to do so.

5.1.1. Authentication and authorization basics

Authentication is a method to ensure that certain services (access to a server, etc.) can be used only by the
clients allowed to access the service. The process generally called as authentication actually consists of three
distinct steps:

m [dentification: Determining the clients identity (e.g.: requesting a username).

m Authentication: Verifying the clients identity (e.g.: requesting a password that only the real client
knows).

m Authorization: Granting access to the service (e.g.: verifying that the authenticated client is allowed
to access the service).

independently. Authentication verifies the identity of the client. There are situations where authentication is sufficient,
because all users are allowed to access the services, only the event and the user's identity has to be logged. On the other
hand, authorization is also possible without authentication, for example if access to a service is time-limited (e.g.: it can

Note
@ It is important to note that although authentication and authorization are usually used together, they can also be used
only be accessed outside the normal work-hours, etc.). In such situations authentication is not needed.

5.1.2. Authentication and authorization in Zorp

Zorp can authenticate and authorize access to the Zorp services. The aim of authentication is to identify the
user and the associated group memberships. When the client initiates a connection, it actually tries to use a
Zorp service. Zorp checks if an authentication policy is associated to the service. If an authentication policy is
present, Zorp contacts the authentication provider specified in the authentication policy. The type of
authentication (the authentication class used, e.g., InbandAuthentication) is also specified in the authentication
policy. The authentication provider connects to an authentication backend (e.g., a user database) to perform
the authentication of the client - Zorp itself does not directly communicate with the database.

If the authentication is successful, Zorp verifies that the client is allowed to access the service (by evaluating
the authorization policy and the identity and group memberships of the client). If the client is authorized to

www.balasys.hu 174

Classes in the Auth module e

access the service, the server-side connection is built. The client is automatically authorized if no authorization
policy is assigned to the service.

Currently only one authentication provider, the Zorp Authentication Server (ZAS) is available via the
ZAS2AuthenticationBackend class. Authentication providers are actually configured instances of the authentication
backends, and it is independent from the database that the backend connects to. The authentication backend is
that ties the authentication provider to the server storing the user data. For details on using ZAS, see the
Connection authentication and authorization chapter of the Zorp Administrator's Guide.

The aim of authentication is to identify the user and resolve group memberships. The results are stored in the
in the auth_user and auth_groups attributes of the session object. Note that apart from the information
required for authentication, Zorp also sends session information (e.g., the IP address of the client) to the
authentication provider.

Zorp provides the following authentication classes:

® [nbandAuthentication: Use the built-in authentication of the protocol to authenticate the client on
the Zorp.

m ServerAuthentication: Enable the client to connect to the target server, and extract its authentication
information from the protocol.

m ZAAuthentication: Outband authentication using the Zorp Authentication Agent.

If the authentication is successful, Zorp verifies that the client is allowed to access the service (by evaluating
the authorization policy). If the client is authorized to access the service, the server-side connection is built.
The client is automatically authorized if no authorization policy is assigned to the service.

Each Zorp service can use an authorization policy to determine whether a client is allowed to access the service.
If the authorization is based on the identity of the client, it takes place only after a successful authentication -
identity-based authorization can be performed only if the client's identity is known and has been verified. The
actual authorization is performed by Zorp, based on the authentication information received from ZAS or
extracted from the protocol.

Zorp provides the following authorization classes:

B PermitUser: Authorize listed users.

B PermitGroup: Authorize users belonging to the specified groups.

B PermitTime: Authorize connections in a specified time interval.

B BasicAccessList: Combine other authorization policies into a single rule.

B PairAuthorization: Authorize only user pairs.

m NEyesAuthorization: Have another client authorize every connection.

5.1.3. Classes in the Auth module

Class Description
AbstractAuthentication Class encapsulating the abstract authentication
interface.

www.balasys.hu 175

Class AbstractAuthentication e

Class Description
AbstractAuthorization Class encapsulating the authorization interface.
AuthCache Class encapsulating the authentication cache.

AuthenticationPolicy

A policy determining how the user is authenticated to
access the service.

AuthorizationPolicy

A policy determining how the user is authorized to
access the service.

BasicAccessList

Class encapsulating the authorization by access list.

InbandAuthentication

Class encapsulating the inband authentication interface.

NEyesAuthorization

Class encapsulating N eyes authorization.

PairAuthorization

Class encapsulating pair-based 4 eyes authorization.

PermitGroup Class encapsulating the group membership based
authorization.

PermitTime Class encapsulating time based authorization.

PermitUser Class encapsulating the user-name based authorization.

SatyrAuthentication

Class encapsulating the outband authentication interface
using the Satyr application.

ServerAuthentication

Class encapsulating the server authentication interface.

ZAAuthentication

Class encapsulating the outband authentication interface
using the Zorp Authentication Agent.

5.1.4. Class AbstractAuthentication

Table 5.1. Classes of the Auth module

This class encapsulates interfaces for inband and outband authentication procedures. Service definitions should
refer to a customized class derived from AbstractAuthentication, or one of the predefined authentication classes,

such as InbandAuthentication or ZAAuthentication.

5.1.4.1. AbstractAuthentication methods

Method

Description

init__(self, authentication provider, auth cache)

Constructor to initialize an AbstractAuthentication
instance.

Table 5.2. Method summary

Method __init__(self, authentication_provider, auth_cache)

This constructor initializes an instance of the AbstractAuthentication class.

www.balasys.hu

176

Class AbstractAuthorization e

5.1.5. Class AbstractAuthorization

This class encapsulates an authorization interface. Authorization determines whether the authenticated entity
is in fact allowed to access a specific service. Service definitions should refer to a customized class derived
from AbstractAuthorization, or one of the predefined authorization classes, such as PermitUser or PermitGroup.

5.1.6. Class AuthCache

This class encapsulates an authentication cache which associates usernames with client IP addresses. The
association between a username and an IP address is valid only until the specified timeout. Caching the
authentication results means that the users do not need to authenticate themselves for every request: it is assumed
that the same user is using the computer within the timeout. E.g.: once authenticated for an HTTP service, the
client can browse the web for Timeout period, but has to authenticate again to use FTP.

To use a single authorization cache for every service request of a client, set the service equiv attribute to
TRUE. That way Zorp does not make difference between the different services (protocols) used by the client:
after a successful authentication the user can use all available services without having to perform another
authentication. E.g.: if this option is enabled in the example above, the client does not have to re-authenticate
for starting an FTP connection.

5.1.6.1. AuthCache methods

Method Description

init _(self, _name, timeout, update stamp,|Constructor to initialize an instance of the AuthCache
service equiv, cleanup threshold) class.

Table 5.3. Method summary

Method __init__(self, name, timeout, update_stamp, service_equiv, cleanup_threshold)

This constructor initializes and registers an AuthCache instance that can be referenced in authentication policies.

Arguments of __init__

cleanup_threshold (integer)
Default: 100

When the number of entries in the cache reaches the value of cleanup_threshold, old entries are
automatically deleted.

service_equiv (boolean)
Default: FALSE

If enabled, then a single authentication of a user applies to every service from that client.

timeout (integer)
Default: 600

Timeout while an authentication is assumed to be valid.

www.balasys.hu 177

Class AuthenticationPolicy e

update_stamp (boolean)
Default: TRUE

If set to TRUE, then cached authentications increase the validity period of the authentication cache. Otherwise,
the authentication cache expires according to the timeout value set in attribute timeout (p. 177).

5.1.7. Class AuthenticationPolicy

Authentication policies determine how the wuser is authenticated to access the service. The
authentication_policy attribute of a service can reference an instance of the AuthenticationPolicy class.

— Example 5.1. A simple authentication policy
—— | Thefollowing example defines an authentication policy that can be referenced in service definitions. This policy uses inband authentication
| s— and references an authentication provider.

AuthenticationPolicy(name="demo_authentication_policy", cache=None,
authentication=InbandAuthentication(), provider="demo_authentication_provider")

To use the authentication policy, include it in the definition of the service:

Service(name="office_http_inter", proxy_class=HttpProxy,
authentication_policy="demo_authentication_policy", authorization_policy="demo_authorization_policy")

— Example 5.2. Caching authentication decisions
—— | The following example defines an authentication policy that caches the authentication decisions for ten minutes (600 seconds). For
| —] details on authentication caching, see see Section 5.1.6, Class AuthCache (p. 177)).

AuthenticationPolicy(name="demo_authentication_policy", cache=AuthCache(timeout=600, update_stamp=TRUE,
service_equiv=TRUE, cleanup_threshold=100), authentication=InbandAuthentication(),
provider="demo_authentication_provider")

5.1.7.1. AuthenticationPolicy methods

Method Description

init __ (self, name, provider, authentication, cache) |Constructor to initialize an instance of the
AuthenticationPolicy class.

Table 5.4. Method summary

Method __init__(self, name, provider, authentication, cache)

Arguments of __init__

authentication (class)
Default: None

The authentication method used in the authentication process. See Section 5.1.1, Authentication and authorization
basics (p. 174) for details.

www.balasys.hu 178

Class AuthorizationPolicy e

cache (class)

Default: None

Caching method used to store authentication results.

name (string)

Default: n/a

Name identifying the AuthenticationPolicy instance.

provider (class)

Default: n/a

authorization basics (p. 174) for details.

The authentication provider object used in the authentication process. See Section 5.1.1, Authentication and

5.1.8. Class AuthorizationPolicy

Authorization policies determine how the user is authorized to access the service. The authorization_policy

attribute of a service can reference an instance of the AuthorizationPolicy class.

— Example 5.3. A simple authorization policy

— | The following example defines an authotization policy that can be referenced in a service definition and permits only the members of

| e—1 the admin or system groups to access the service.

"system")))

5.1.8.1. AuthorizationPolicy methods

To use the authorization policy, include it in the definition of the service:

Service(name="office_http_inter", proxy_class=HttpProxy,
authentication_policy="demo_authentication_policy", authorization_policy="demo_authorization_policy")

AuthorizationPolicy(name="demo_authorization_policy", authorization=PermitGroup(grouplist=("admin",

Method

Description

init__(self, name, authorization)

Method __init__(self, name, authorization)

Arguments of __init__

Table 5.5. Method summary

authorization (class)

Default: n/a

AuthorizationPolicy (p. 179) for examples.

The authorization method (e.g., PermitGroup) used in the instance. See Section 5.1.8, Class

www.balasys.hu

179

Class BasicAccessList e

name (string)

Default: n/a

Name of the AuthorizationPolicy instance. This name can be referenced in service definitions.

5.1.9. Class BasicAccessList

This class encapsulates an access list that uses any class derived from the AbstractAuthorization class.
BasicAccessList allows to combine multiple access control requirements into a single decision.

BasicAccessList uses a list of rules. The rules are evaluated sequentially. Each rule can specify whether matching
the current rule is Sufficient or Required. A connection is authorized if a Sufficient rule matches the
connection, or all Required rules are fulfilled. If a Required rule is not met, the connection is refused.

Rules are represented as a list of Python tuples as the following example shows:

— Example 5.4. BasicAccessList example
—— | When referenced in a service definition, the following users can access the service:

®m members of the development group;
m anyone with the user1 username;

m anyone with the user2 username.

AuthPolicy('intra',
authentication=zZAAAuthentication
('zas2db', key_file='fwzaa.key',6 cert_file='fwzaa.crt'),
authorization=BasicAccessList(
((Z_BACL_SUFFICIENT, PermitUser('useri')),
(Z_BACL_SUFFICIENT, PermitUser('user2')),
(Z_BACL_REQUIRED, PermitGroup('development')))))

5.1.9.1. BasicAccessList methods

Method Description

init__(self, acl) Constructor to initialize a BasicAccessList instance.

Table 5.6. Method summary

Method __init__(self, acl)

This constructor creates a new BasicAccessList instance which can be referenced in an authentication policy.

Arguments of __init__

acl (complex)

Default: n/a

Access control rules represented as a list of tuple.

www.balasys.hu 180

Class InbandAuthentication e

5.1.10. Class InbandAuthentication

This class encapsulates inband authentication. Inband authentication is performed by the proxy using the rules
of the application-level protocol. Only the authentication methods supported by the particular protocol can be
used during inband authentication. Authentication policies can refer to instances of the Inband Authentication
class using the auth parameter.

A

5.1.10.1. InbandAuthentication methods

‘Warning
Inband authentication is currently supported only for the Http, Ftp, and Socks proxy classes.

Method Description

init __ (self, authentication provider, auth cache) |Constructor to initialize an InbandAuthentication
instance.

Table 5.7. Method summary

Method __init__(self, authentication_provider, auth_cache)

This constructor initializes an instance of the InbandAuthentication class.

5.1.11. Class NEyesAuthorization

This class encapsulates an N-eyes based authorization method, which means that connections are authorized
if other administrators authenticate themselves within the defined timelimits.

When NEyesAuthorization is used, the client trying to access the service has to be authorized by another
(already authorized) client (this authorization chain can be expanded to multiple levels). NEyesAuthorization
can only be used in conjunction with another NEyesAuthorization policy. One of them is the authorizer set
to authorize the authorized policy.

In a simple 4-eyes scenario the authorizer policy points to the authorized policy inits Authorization policy
parameter, and has its wait_authorization parameter disabled. The authorized policy has an empty
Authorization policy parameter (meaning that it is at lower the end of an N-eyes chain), and has its
wait_authorization parameter enabled, meaning that it has to be authorized by another policy.

For examples on using the NEyesAuthorization class, see the Proxying secure channels - SSH tutorial available
from the BalaSys Documentation Page at http://www.balasys.hu/documentation/.

www.balasys.hu 181

http://www.balasys.hu/documentation/

Class PairAuthorization e

5.1.11.1. NEyesAuthorization methods

Method Description

init _(self, authorize policy, wait authorization,|Constructor to initialize a NEyesAuthorization instance.

wait_timeout)

Table 5.8. Method summary

Method __init__(self, authorize_policy, wait_authorization, wait_timeout)

This constructor initializes an NEyesAuthorization instance.

Arguments of __init__

authorize_policy (class)

Default: None

The authorization policy authorized by the current NEyesAuthorization policy.

wait_authorization (boolean)
Default: FALSE

Specifies whether the current authorization policy must wait for other authorization policies to finish. If this
parameter is set, the client has to be authorized by another client. If set to FALSE, the current client is at the
top of an authorizing chain.

wait_timeout (integer)
Default: 60000

The time (in milliseconds) Zorp will wait for the authorizing user to authorize the one accessing the service.
If the other authorizations are not completed in time, the current authorization will fail.

5.1.12. Class PairAuthorization

This class encapsulates pair-based authorization method. Only two users simultaneously accessing the service
are authorized, single users are not permitted to access the service. Set the time (in milliseconds) Zorp will wait
for the second user to access the service using the wait_timeout parameter.

— Example 5.5. A simple PairAuthorization policy
— | The following example permits access to the service only if two users having different usernames authenticate successfully within one
| s— minute.

AuthorizationPolicy(name="demo_pairauthorization_policy",
authorization=PairAuthorization(wait_timeout=60000))

For more detailed examples, see the Proxying secure channels - SSH tutorial available from the BalaSys Documentation Page at
http://www.balasys.hu/documentatior/.

www.balasys.hu 182

http://www.balasys.hu/documentation/

Class PermitGroup e

5.1.12.1. PairAuthorization methods

Method Description

init _ (self, wait timeout) Constructor to initialize a PairAuthorization instance.

Table 5.9. Method summary

Method __init__(self, wait_timeout)

This constructor initializes a PairAuthorization instance.

Arguments of __init__

wait_timeout (integer)
Default: 60000

The time (in milliseconds) Zorp will wait for the pair to complete the authorization. If the authorizations are
not completed in time, the current authorization will fail.

5.1.13. Class PermitGroup

This class encapsulates an authorization decision based on group membership. Users who authenticate as a
member of a usergroup specified in the policy receive access to the service. Otherwise access is denied.

— Example 5.6. A simple PermitGroup policy
— | The following example permits only the members of the admin or system groups to access the service.

AuthorizationPolicy(name="demo_authorization_policy", authorization=PermitGroup(grouplist=("admin",
"system")))

5.1.13.1. PermitGroup methods

Method Description

init _(self, grouplist) Constructor to initialize a PermitGroup instance.

Table 5.10. Method summary

Method __init__(self, grouplist)

This constructor initilizes a PermitGroup instance.

Arguments of __init__

grouplist (complex)

Default: n/a

The list of authorized groups, represented as group names.

www.balasys.hu 183

Class PermitTime e

5.1.14. Class PermitTime

This class encapsulates an authorization decision based on the time when the connection is started. The connection
is permitted if it is started in one of the permitted time periods (according to the system time of the host running

Zorp).

Specify the permitted time intervals as a comma-separated list, where each element contains the beginning and

ending time of the permitted interval in HH : MM format.

— Example 5.7. PermitTime example

—— | When used in the intervals attribute of a PermitTime instance, the following example permits access only from 07:00 to 09:00 and

— from 17:00 to 19:00.

"9:00"), ("17:00", "19:00"))))

5.1.14.1. PermitTime methods

(("7:00", "9:00"), ("17:00", "19:00"))

The following is a complete authorization policy using the above intervals:

AuthorizationPolicy(name="demo_permittime_policy", authorization=PermitTime(intervals=(("7:00",

Method

Description

init _ (self, intervals)

Constructor to initialize a PermitTime instance.

Method __init__(self, intervals)

This constructor initilizes a PermitTime instance.

Arguments of __init__

Table 5.11. Method summary

intervals (complex)

Default: n/a

List of time intervals when connections are permitted (in HH: MM, HH:MM format).

5.1.15. Class PermitUser

This class encapsulates an authorization decision based on usernames. Users who authenticate using one of the
usernames specified in the policy receive access to the service. Otherwise access is denied.

— Example 5.8. A simple PermitUser policy
—

—— | The following example permits only the admin and root users to access the service.

AuthorizationPolicy(name="demo_permituser", authorization=PermitUser (userlist=("admin", "root")))

www.balasys.hu

184

Class SatyrAuthentication e

5.1.15.1. PermitUser methods

Method Description

init _(self, userlist) Constructor to initialize a PermitUser instance.

Table 5.12. Method summary

Method __init__(self, userlist)

This constructor initilizes a PermitUser instance.

Arguments of __init__

userlist (complex)

Default: n/a

Comma-separated list of authorized usernames.

5.1.16. Class SatyrAuthentication

This class encapsulates outband authentication using the Satyr application. Satyr has been renamed to Zorp
Authentication Agent, therefore this class is obsolete. Use ZA Authentication instead. See Section 5.1.18, Class
ZAAuthentication (p. 185) for details.

5.1.17. Class ServerAuthentication

This class encapsulates server authentication: Zorp authenticates the user based on the response of the server
to the user's authentication request. Server authentication is a kind of inband authentication, it is performed
within the application protocol, but the target server checks the credentials of the user instead of Zorp. This
authentication method is useful when the server can be trusted for authentication purposes, but you need to
include an authorization decision in the service definition.

5.1.17.1. ServerAuthentication methods

Method Description
init _(self) Constructor to initialize a ServerAuthentication
instance.

Table 5.13. Method summary
Method __init__(self)

This constructor initializes an instance of the ServerAuthentication class.

5.1.18. Class ZAAuthentication

This class encapsulates outband authentication using the Zorp Authentication Agent (ZAA). The Zorp
Authentication Agent is an application that runs on the client computers and provides an interface for the users

www.balasys.hu 185

Class ZA Authentication e

to authenticate themselves when Zorp requests authentication for accessing a service. This way any protocol,
even those not supporting authentication can be securely authenticated. All communication between Zorp and
ZAA is SSL-encrypted.

— Example 5.9. Outband authentication example
= | The following authentication policy defines a class that uses outband authentication.

AuthenticationPolicy(name="demo_outbandauthentication_policy", cache=None,
authentication=ZAAuthentication(port=1316, timeout=60000, connect_timeout=60000,
pki=("/etc/key.d/Zorp_certificate/cert.pem", "/etc/key.d/Zorp_certificate/key.pem")),
provider="demo_authentication_provider")

5.1.18.1. ZAAuthentication methods

Method Description

init__(self, authentication provider, pki, cert file,|Constructor to initialize an instance of the
key file, port, timeout, connect_timeout, auth cache) |ZAAuthentication class.

Table 5.14. Method summary

Method __init__(self, authentication_provider, pki, cert_file, key_file, port, timeout, connect_timeout,
auth_cache)

This constructor initializes an instance of the ZA Authentication authentication class that can be referenced in
authentication policies to perform outband authentication.

Arguments of __init__

connect_timeout (integer)
Default: 60000

Connection timeout (in milliseconds) to the Zorp Authentication Agent.

pki (certificate)
Default: None

A tuple containing the name of a certificate and a key file. Zorp uses this certificate to encrypt the communication
with the Authentication Agents.

port (integer)
Default: 1316
The port number where the Zorp Authentication Agent is listening. Default value: 1316.

timeout (integer)
Default: 60000

Authentication timeout in milliseconds.

www.balasys.hu 186

Module AuthDB 3

5.2. Module AuthDB

This module contains classes related to authentication databases. Together with the Auth module it implements
the Authentication and Authorization framework of Zorp. See Section 5.1.1, Authentication and authorization
basics (p. 174) and Section 5.1.2, Authentication and authorization in Zorp (p. 174) for details.

5.2.1. Classes in the AuthDB module

Class Description

AbstractAuthenticationBackend Class encapsulating the abstract authentication backend
like ZAS.

AuthenticationProvider A database-independent class used by Zorp to connect
to an authentication backend.

ZAS2AuthenticationBackend Class encapsulating the ZAS authentication backend.

Table 5.15. Classes of the AuthDB module

5.2.2. Class AbstractAuthenticationBackend

This is an abstract class to encapsulate an authentication backend, which is responsible for checking authentication
credentials against a backend database. In actual configurations, use one of the derived classes like
ZAS2AuthenticationBackend.

The interface defined here is used by various authentication methods like ZAAuthentication and
InbandAuthentication.

5.2.3. Class AuthenticationProvider

The authentication provider is an intermediate layer that mediates between Zorp and the authentication backend
(e.g., a user database) during connection authentication - Zorp itself does not directly communicate with the
database.

— Example 5.10. A sample authentication provider
—— | The following example defines an authentication provider that uses the ZAS2AuthenticationBackend backend.

AuthenticationProvider (name="demo_authentication_provider",
backend=zZAS2AuthenticationBackend(serveraddr=SockAddrInet('192.168.10.10', 1317), use_ss1=TRUE,
ssl verify depth=3, pki_cert=("/etc/key.d/ZAS _certificate/cert.pem",
"/etc/key.d/ZAS_certificate/key.pem"), pki_ca=("/etc/ca.d/groups/demo_trusted_group/certs/",
"/etc/ca.d/groups/demo_trusted_group/crls/")))

www.balasys.hu 187

Class ZAS2AuthenticationBackend e

5.2.3.1. AuthenticationProvider methods

Method Description

init _ (self. name, backend) Constructor to initialize an
AbstractAuthorizationBackend instance.

Table 5.16. Method summary

Method __init__(self, name, backend)

This constructor initializes an AbstractAuthorizationBackend instance.

Arguments of __init__

backend (class)
Default: n/a

Type of the database backend used by the ZAS instance.

name (string)

Default: n/a

Name of the ZAS instance.

5.2.4. Class ZAS2AuthenticationBackend

This class encapsulates a Zorp Authentication Server database and provides interface to other authentication
classes to verify against users managed through ZAS. See Section 5.2.3, Class AuthenticationProvider (p. 187)
for examples on using the ZAS2AuthenticationBackend class.

5.2.4.1. ZAS2AuthenticationBackend methods

Method Description

init _ (self, serveraddr, use ssl, pki cert, cert file,|Constructor to initialize a ZAS2AuthenticationProvider
key file, pki ca, ca dir, crl dir, ssl verify depth) instance.

Table 5.17. Method summary

Method __init__(self, serveraddr, use_ssl, pki_cert, cert_file, key_file, pki_ca, ca_dir, crl_dir,
ssl_verify_depth)

This constructor creates a new ZAS2AuthenticationProvider instance that can be used in authentication policies.

Arguments of __init__

pki_ca (cagroup)

Default: None

www.balasys.hu 188

Module Chainer e

pki_ca (cagroup)

The name of a trusted CA group. When using SSL, ZAS must show a certificate signed by a CA that belongs
to this group.

pki_cert (certificate)
Default: None

A tuple containing the name of a certificate and a key file. Zorp shows this certificate to ZAS when using SSL.

serveraddr (sockaddr)

Default: n/a

The IP address of this ZAS instance. ZAS accepts connections on this address.

ssl_verify_depth (integer)
Default: 3

Specifies the maximum number of CAs in the trust chain when verifying the certificate of Zorp.

use_ssl (boolean)
Default: FALSE

Enable this option if Zorp communicates with ZAS using SSL.

5.3. Module Chainer

Chainers establish a TCP or UDP connection between a proxy and a selected destination. The destination is
usually a server, but the SideStackChainer connects an additional proxy before connecting the server.

5.3.1. Selecting the network protocol

The client-side and the server-side connections can use different networking protocols if needed. The protocol
attribute of the chainer classes determines the network protocol used in the server-side connection. By default,
Zorp uses the same protocol in both connections. The following options are available:

Name Description

ZD PROTO_AUTO Use the protocol that is used on the client side.
ZD PROTO_TCP Use the TCP protocol on the server side.
ZD_PROTO_UDP Use the UDP protocol on the server side.

Table 5.18. The network protocol used in the server-side connection

5.3.2. Classes in the Chainer module

Class Description

AbstractChainer Class encapsulating the abstract chainer.

www.balasys.hu 189

Class AbstractChainer e

Class Description
ConnectChainer Class to establish the server-side TCP/IP connection.
FailoverChainer Class encapsulating the connection establishment with

multiple target addresses and keeping down state
between connects. FailoverChainer prefers connecting
to target hosts in the order they were specified.

MultiTargetChainer Class encapsulating connection establishment with
multiple target addresses.

RoundRobinChainer Class encapsulating the connection establishment with
multiple target addresses and keeping down state
between connects.

SideStackChainer Class to pass the traffic to another proxy.

StateBasedChainer Class encapsulating connection establishment with
multiple target addresses and keeping down state
between connects.

Table 5.19. Classes of the Chainer module

5.3.3. Class AbstractChainer

AbstractChainer implements an abstract chainer that establishes a connection between the parent proxy and the
selected destination. This class serves as a starting point for customized chainer classes, but is itself not directly
usable. Service definitions should refer to a customized class derived from AbstractChainer, or one of the
predefined chainer classes, such as ConnectChainer or FailoverChainer.

5.3.4. Class ConnectChainer

ConnectChainer is the default chainer class based on AbstractChainer. This class establishes a TCP or UDP
connection between the proxy and the selected destination address.

ConnectChainer is used by default if no other chainer class is specified in the service definition.

ConnectChainer attempts to connect only a single destination address: if the connection establishment procedure
selects multiple target servers (e.g., a DNSResolver with the multi=TRUE parameter or a DirectedRouter with
multiple addresses), ConnectChainer will use the first address and ignore all other addresses. Use FailoverChainer
to select from the destination from multiple addresses in a failover fashion, and RoundRobinChainer to distribute
connections in a roundrobin fashion.

— Example 5.11. A sample ConnectChainer
—— | The following service uses a ConnectChainer that uses the UDP protocol on the server side.

Service(name="demo_service", proxy_class=HttpProxy, chainer=ConnectChainer (protocol=ZD_PROTO_UDP),
router=TransparentRouter (overrideable=FALSE, forge_addr=FALSE))

www.balasys.hu 190

Class FailoverChainer e

5.3.4.1. ConnectChainer methods

Method Description

init __ (self, protocol, timeout connect) Constructor to initialize an instance of the
ConnectChainer class.

Table 5.20. Method summary

Method __init__(self, protocol, timeout_connect)

This constructor creates a new ConnectChainer instance which can be associated with a Service.

Arguments of __init__

protocol (enum)
Default: ZD_PROTO_AUTO

Optional parameter that specifies the network protocol used in the connection protocol. By default, the
server-side communication uses the same protocol that is used on the client side. See Section 5.3.1, Selecting
the network protocol (p. 189) for details.

timeout_connect (integer)
Default: 30000

Specifies connection timeout to be used when connecting to the target server.

5.3.5. Class FailoverChainer

This class is based on the StateBasedChainer class and encapsulates a real TCP/IP connection establishment,
and is used when a top-level proxy wants to perform chaining. In addition to ConnectChainer this class adds
the capability to perform stateful, failover HA functionality across a set of IP addresses.

Note
@ Use FailoverChainer if you want to connect to the servers in a predefined order: i.e., connect to the first server, and only connect to the
second if the first server is unavailable.

If you want to distribute connections between the servers (i.e., direct every new connection to a different server to balance the load) use
RoundRobinChainer .

— Example 5.12. A DirectedRouter using FailoverChainer

% The following service definition uses a DirectedRouter class with two possible destination addresses. Zorp uses these destinations in a
| e—] failover fashion, targeting the second address only if the first one is unaccessible.

Service(name="intra_HTTP_inter", router=DirectedRouter(dest_addr=(SockAddrInet('192.168.55.55"', 8080),
SockAddrInet('192.168.55.56', 8080)), forge_addr=FALSE, forge_port=Z_PORT_ANY, overrideable=FALSE),
chainer=FailoverChainer (protocol=ZD_PROTO_AUTO, timeout_state=60000, timeout_connect=30000),

max_instances=0, proxy_class=HttpProxy,)

www.balasys.hu 191

Class MultiTargetChainer e

5.3.5.1. FailoverChainer methods

Method Description

init _ (self. protocol, timeout, timeout state,|Constructor to initialize a FailoverChainer instance.
timeout connect, round robin)

Table 5.21. Method summary

Method __init__(self, protocol, timeout, timeout_state, timeout_connect, round_robin)

This constructor initializes a FailoverChainer class by filling arguments with appropriate values and calling the
inherited constructor.

Arguments of __init__

protocol (enum)
Default: ZD_PROTO_AUTO

Optional, specifies connection protocol (ZD_PROTO_TCP or ZD_PROTO_UDP), when not specified it defaults
to the protocol used on the client side.

timeout_connect (integer)
Default: 30000

Specifies connection timeout to be used when connecting to the target server.

timeout_state (integer)
Default: 60000

The down state of remote hosts is kept for this interval in milliseconds.

5.3.6. Class MultiTargetChainer

This class encapsulates a real TCP/IP connection establishment, and is used when a top-level proxy wants to
perform chaining. In addition to ConnectChainer, this class adds the capability to perform stateless, simple load
balance server connections among a set of IP addresses.

The same mechanism is used to set multiple server addresses as with a single destination address: the Router
class sets a list of IP addresses in the session. target_address attribute.

www.balasys.hu 192

Class RoundRobinChainer e

5.3.6.1. MultiTargetChainer methods

Method Description

init__(self, protocol, timeout connect) Constructor to initialize a MultiTargetChainer instance.

Table 5.22. Method summary

Method __init__(self, protocol, timeout_connect)

This constructor initializes a MultiTargetChainer class by filling arguments with appropriate values and calling
the inherited constructor.

Arguments of __init__

protocol (enum)
Default: ZD_PROTO_AUTO

Optional, specifies connection protocol (either ZD_PROTO_TCP or ZD_PROTO_UDP), when not specified
defaults to the same protocol as was used on the client side.

self (class)
Default: n/a

this instance

timeout_connect (integer)
Default: 30000

Specifies connection timeout to be used when connecting to the target server.

5.3.7. Class RoundRobinChainer

This class is based on the StateBasedChainer class and encapsulates a real TCP/IP connection establishment,
and is used when a top-level proxy wants to perform chaining. In addition to ConnectChainer this class adds
the capability to perform stateful, load balance server connections among a set of IP addresses.

— Example 5.13. A DirectedRouter using RoundRobinChainer

—— | The following service definition uses a RoundRobinChainer class with two possible destination addresses. Zorp uses these destinations
| w— in a roundrobin fashion, alternating between the two destinations.

Service(name="intra_HTTP_inter", router=DirectedRouter(dest_addr=(SockAddrInet('192.168.55.55"', 8080),
SockAddrInet('192.168.55.56', 8080)), forge_addr=FALSE, forge_port=Z_PORT_ANY, overrideable=FALSE),
chainer=RoundRobinChainer (protocol=zZD_PROTO_AUTO, timeout_state=60000, timeout_connect=30000),

max_instances=0, proxy_class=HttpProxy)

www.balasys.hu 193

Class SideStackChainer e

5.3.8. Class SideStackChainer

This class encapsulates a special chainer. Instead of establishing a connection to a server, it creates a new proxy
instance and connects the server side of the current (parent) proxy to the client side of the new (child) proxy.
The right_class parameter specifies the child proxy.

It is possible to stack multiple proxies side-by-side. The final step of sidestacking is always to specify a regular
chainer via the right_chainer parameter that connects the last proxy to the destination server.

Tip
Proxy sidestacking is useful for example to create one-sided SSL connections. See the tutorials of the BalaSys Documentation Page
available at http://www.balasys.hu/documentation/ for details.

5.3.8.1. Attributes of SideStackChainer

right_chainer (unknown)

Default: n/a

The chainer used to connect to the destination of the side-stacked proxy class set in the right_class attribute.

right_class (unknown)

Default: n/a

The proxy class to connect to the parent proxy. Both built-in and customized classes can be used.

5.3.8.2. SideStackChainer methods

Method Description

init__(self, right class, right_chainer) Constructor to initialize an instance of the
SideStackChainer class.

Table 5.23. Method summary

Method __init__(self, right_class, right_chainer)

This constructor creates a new FailoverChainer instance which can be associated with a Service.

Arguments of __init__

right_chainer (class)

Default: None

The chainer used to connect to the destionation of the side-stacked proxy class set in the right_class attribute.

right_class (class)

Default: n/a

www.balasys.hu 194

http://www.balasys.hu/documentation/

Class StateBasedChainer e

right_class (class)

The proxy class to connect to the parent proxy. Both built-in or customized classes can be used.

5.3.9. Class StateBasedChainer

This class encapsulates a real TCP/IP connection establishment, and is used when a top-level proxy wants to
perform chaining. In addition to ConnectChainer, this class adds the capability to perform stateful, load balance
server connections among a set of IP addresses.

®

5.3.9.1. StateBasedChainer methods

Note
Both the FailoverChainer and RoundRobinChainer classes are derived from StateBasedChainer.

Method Description

init _ (self, protocol, timeout connect, timeout state)|Constructor to initialize a StateBasedChainer instance.

Table 5.24. Method summary

Method __init__(self, protocol, timeout_connect, timeout_state)

This constructor initializes a StateBasedChainer class by filling arguments with appropriate values and calling
the inherited constructor.

Arguments of __init__

protocol (enum)
Default: ZD_PROTO_AUTO

Optional, specifies connection protocol (ZD_PROTO_TCP or ZD_PROTO_UDP), when not specified it defaults
to the same protocol used on the client side.

timeout_connect (integer)
Default: 30000

Specifies connection timeout to be used when connecting to the target server.

timeout_state (integer)
Default: 60000

The down state of remote hosts is kept for this interval in miliseconds.

5.4. Module Detector

Detectors can be used to determine if the traffic in the incoming connection uses a particular protocol (for
example, HTTP, SSH), or if it has other specific characteristics (for example, it uses SSL encryption with a

www.balasys.hu 195

Classes in the Detector module e

specific certificate). Zorp can detect such characteristics of the traffic, and start a specific service to inspect the
traffic (for example, start a specific HttpProxy for HTTP traffic, and so on).

5.4.1. Classes in the Detector module

Class Description

AbstractDetector Class encapsulating the abstract detector.

CertDetector Class encapsulating a Detector that determines if an
SSL/TLS-encrypted connection uses the specified
certificate

DetectorPolicy Class encapsulating a Detector which can be used by
a name.

HttpDetector Class encapsulating a Detector that determines if the
traffic uses the HTTP protocol

SniDetector Class encapsulating a Detector that determines whether
a client targets a specific host in a SSL/TLS-encrypted
connection.

SshDetector Class encapsulating a Detector that determines if the

traffic uses the SSHv2 protocol

Table 5.25. Classes of the Detector module

5.4.2. Class AbstractDetector

This abstract class encapsulates a detector that determines whether the traffic in a connection belongs to a
particular protocol.

5.4.3. Class CertDetector

This Detector determines if an SSL/TLS-encrypted connection uses the specified certificate, and rejects any
other protocols and certificates.

— Example 5.14. CertDetector example
— | The following example defines a DetectorPolicy that detects if the traffic is SSL/TLS-encrypted, and uses the certificate specified.

mycertificate="----- BEGIN CERTIFICATE-----
MIIEdjCCA16gAWIBAgIIQ7Xu3Mwnk+4wDQYJK0oZIhvcNAQEFBQAWSTELMAKGALUE
BhMCVVMXEZARBgNVBAOTCkdvb2dsZSBJIbmMxJTAjBgNVBAMTHEdvb2dsZSBJbnR1
cm51dCBBdXRob3JIpdHkgRzIWHhCNMTQWMTISMTQWNTM3WhcNMTQWNTISMDAWMDAW
WjBoMQswCQYDVQQGEwWJIVUzZETMBEGALIUECAWKQ2FsaWzZvcm5pY TEWMBQGALUEBwWwWN
TW91bnRhaw4gVm11dzETMBEGALUECGWKR29vZ2x1IE1uYZzEXMBUGA1IUEAWWOd3d3
Lmdvb2dsZS5jb20wggEiMAOGCSqGSTh3DQEBAQUAA4IBDWAWYGEKAOIBAQCKeHmm
eYY7uMMRXKg14NPx8zFtD/VmUI2b4FdQYgD8AURifA+fqvxicEKi7Td1SrZ4z1dn
AjbAS+fC0eQji8foJTosrkXgQgv5ds0+81lU3dooVXogemeJKUihzI/h+7cf1287/
7EbMI5RaDBUPTHmMZHeDtk38XUYsBrS93nICq4VDUAXY2BKsGSS219wRv14fhdDDm
guQ5cRDKN/pgqdYEqAQxFVEjamw]jcUWSBsW1qSn37fI9s/MZDCzfMwz6AheFMrRNL
00J2Y3cVdBxibVdqjGS+AG5qIUz/AsVHNL3JEsa550SrMFubCPCzYDMAVLKz1iqZX
5G25c0e/qh0bSK4/AgMBAAGj ggFBMIIBPTAdBgNVHSUEF jAUBggr BgEFBQCDAQYI
KwYBBQUHAWIWGQYDVRORBBIWEIIOd3d3Lmdvb2dsZS5jb20waAYIKwYBBQUHAQEE
XDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtpLmdvb2dsZS5jb20vRO1BRzIuY3J0
MCsGCCsGAQUFBzABhh90dHRWO1i8vY2xpZW50czEuZ29vZ2x1LmNvbS9vY3NwMBOG
A1UdDgQWBBR1IOrR+bm3NNXp5DWKruhkxnMrpDAMBgNVHRMBAT8EAjAAMB8GA1Ud

www.balasys.hu 196

Class DetectorPolicy e

IwQYMBaAFErdBhYbvPZotXb1lgba7Yhq6WoEVMBCGA1UdIAQQMA4wWDAYKKwYBBAHW
€QIFATAWBgNVHRSEKTANMCWgI6Ahhh9odHRWOi8vcGtpLmdvb2dsZS5jb20vR0O1B
RzIuY3JsSMAOGCSQGSIb3DQEBBQUAA4IBAQA6j90PKESK/FX5sbLY4p7xsnltndHD
N1loyzmb8+cmke6W/eFHsY0g+zUeUBW3zbOEMBNNXWNTCB1aVIcRGe8GUDDANAZSX
MQBeBisNb69kn2untS7Rb1L83+8H787RsLeXucahr3kCoc610TemIOHEI430DtVI
UFEDNJDE1wgsHkdZecnNS291ZySpK2skr3rH7qUkbP11kzbFvsnFUyp3AJS4ib9+
4xPr656QfUi/8vgoSVvOy5Y3rT/U3CtI9tPoDSZTYGT164LDxJa8dEGYMTKHgjyJ
HmbKzes13N/BN18XUlvTnjEaifQXvJjoypqcMHUFPjkqwI1HSyb1iRth

----- END CERTIFICATE-----"

DetectorPolicy(name="MyCertDetector", detector=CertDetector(certificate=mycertificate)

5.4.3.1. Attributes of CertDetector

certificate (unknown)

Default: n/a

The certificate to detect in PEM format. You can use the certificate directly, or store it in a file and reference
the file with full path, for example, DetectorPolicy(name="MyCertDetector",
detector=CertDetector(certificate=("/etc/key.d/mysite/cert.pem",)))

5.4.3.2. CertDetector methods

Method Description

init__(self, certificate) Constructor to initialize a CertDetector instance.

Table 5.26. Method summary

Method __init__(self, certificate)

This constructor initializes a CertDetector instance

Arguments of __init__

certificate (certificate)

Default: n/a

The certificate in PEM format. This must contain either the certificate as a string, or a full pathname to a file
containing the certificate.

5.4.4. Class DetectorPolicy

DetectorPolicy instances are reusable detectors that contain configured instances of the detector classes (for
example, HttpDetector, SshDetector) that detect if the traffic uses a particular protocol, or a particular certificate
in an SSL/TLS connection. DetectorPolicy instances can be used in the detect option of firewall rules. For
examples, see the specific detector classes.

5.4.5. Class HttpDetector

This Detector determines if the traffic uses the HTTP protocol, and rejects any other protocol.

www.balasys.hu 197

Class SniDetector e

— Example 5.15. HttpDetector example
% The following example defines a DetectorPolicy that detects HTTP traffic.

| e—]
DetectorPolicy(name="http", detector=HttpDetector()

5.4.5.1. Attributes of HttpDetector

ignore (unknown)

Default: n/a

A list of compiled regular expressions which should be ignored when detecting the traffic type. By default,
this list is empty.

match (unknown)

Default: n/a

A list of compiled regular expressions which result in a positive match. If the traffic matches this regular
expression, it is regarded as HTTP traffic. Default value:
[OPTIONS|GET|HEAD|POST |PUT|DELETE | TRACE |CONNECT] + ".*HTTP/1."

5.4.5.2. HttpDetector methods

Method Description

init __(self, **kw) Constructor to initialize a HttpDetector instance.

Table 5.27. Method summary
Method __init__(self, **kw)
This constructor initializes a HttpDetector instance

5.4.6. Class SniDetector

Class encapsulating a Detector that determines whether a client targets a specific host in a SSL/TLS-encrypted
connection and rejects any other protocols and hostnames.

— Example 5.16. SNIDetector example

% The following example defines a DetectorPolicy that detects if the traffic is SSL/TLS-encrypted, and uses targets the host
| w— www.example.com.

DetectorPolicy(name="MySniDetector",
detector=SniDetector (RegexpMatcher (match_list=("www.example.com",))))

5.4.6.1. Attributes of SniDetector

server_name_matcher (class)

Default: n/a

www.balasys.hu 198

Class SshDetector e

server_name_matcher (class)

Matcher class (e.g.: RegexpMatcher) used to check and filter hostnames in Server Name Indication TLS
extension, for example, DetectorPolicy(name="MySniDetector",
detector=SniDetector (RegexpMatcher (match_list=("www.example.com",))))

5.4.6.2. SniDetector methods

Method Description

init__ (self, server _name matcher) Constructor to initialize a SNIDetector instance.

Table 5.28. Method summary

Method __init__ (self, server_name_matcher)

This constructor initializes a SNIDetector instance

Arguments of __init__

server_name_matcher (class)

Default: n/a

Matcher class (e.g.: RegexpMatcher) used to check and filter hostnames in Server Name Indication TLS
extension.

5.4.7. Class SshDetector

This Detector determines if the traffic uses the SSHv2 protocol, and rejects any other protocol.

— Example 5.17. SshDetector example

% The following example defines a DetectorPolicy that detects SSH traffic.

DetectorPolicy(name="ssh", detector=SshDetector()

5.5. Module Encryption

Starting with Zorp 6, the SSL/TLS framework of the Zorp proxies has been moved into a separate entity called
Encryption policy. That way, you can easily share and reuse encryption settings between different services:
you have to configure the Encryption policy once, and you can use it in multiple services. The SSL framework
is described in Chapter 3, The PNS SSL framework (p. 9). (The earlier framework from the Proxy module is
still available for compatibility reasons, but will be removed from the upcoming Zorp versions. For details on
the parameters of this earlier framework, see Section 5.10, Module Proxy (p. 259).)

®

Note
STARTTLS support is currently available only for the Ftp proxy to support FTPS sessions and for the SMTP proxy.

www.balasys.hu 199

SSL parameter constants e

5.5.1. SSL parameter constants

Name

Value

SSL_VERIFY_NONE

Automatic certificate verification is disabled.

SSL_VERIFY_OPTIONAL_UNTRUSTED

Certificate is optional, if present, both trusted and
untrusted certificates are accepted.

SSL_VERIFY_OPTIONAL_TRUSTED

Certificate is optional, but if a certificate is present,
only certificates signed by a trusted CA are accepted.

SSL_VERIFY_REQUIRED_UNTRUSTED

Valid certificate is required, both trusted and untrusted
certificates are accepted.

SSL_VERIFY_REQUIRED_TRUSTED

Certificate is required, only valid certificates signed by
a trusted CA are accepted.

Table 5.29. Certificate verification settings

Name Value
SSL_CIPHERS_HIGH n/a
SSL_CIPHERS_MEDIUM n/a
SSL_CIPHERS_LOW n/a
SSL_CIPHERS_ALL n/a
SSL_CIPHERS_CUSTOM n/a
Table 5.30. Constants for cipher selection
Name Value

SSL_HSO_CLIENT_SERVER

Perform the SSL-handshake with the client first.

SSL_HSO_SERVER_CLIENT

Perform the SSL-handshake with the server first.

Table 5.31. Handshake order.

Name

Value

SSL_NONE

Disable encryption between Zorp and the peer.

SSL_FORCE_SSL

Require encrypted communication between Zorp and
the peer.

SSL_ACCEPT_STARTTLS

Permit STARTTLS sessions. Currently supported only
in the Ftp and Smtp proxies.

Table 5.32. Client connection security type.

Name

Value

SSL_NONE

Disable encryption between Zorp and the peer.

SSL_FORCE_SSL

Require encrypted communication between Zorp and
the peer.

www.balasys.hu

200

Classes in the Encryption module e

Name

Value

SSL_FORWARD_STARTTLS

Forward STARTTLS requests to the server. Currently
supported only in the Ftp and Smtp proxies.

Table 5.33. Server connection security type.

Name Value
SSL_ERROR n/a
SSL_DEBUG n/a

Table 5.34. Verbosity level of the log messages
Name Value
SSL_HS_ACCEPT 0
SSL_HS_REJECT 1
SSL_HS_POLICY 6
SSL_HS_VERIFIED 10

Table 5.35. Handshake policy decisions

5.5.2. Classes in the Encryption module
Class Description
AbstractVerifier Class encapsulating the abstract Certificate verifier.
Certificate Class encapsulating a certificate and its private key,

and optionally the passphrase for the private key.

CertificateCA

Class encapsulating the certificate of a Certificate
Authority (CA certificate) and its private key, and
optionally the passphrase for the private key.

ClientCertificateVerifier

Class that can be used to verify the certificate of the
client-side connection.

ClientNoneVerifier

Disables certificate verification in client-side

connection.

ClientOnlyEncryption

The ClientOnlyEncryption class handles scenarios when
only the client-Zorp connection is encrypted, the
Zorp-server connection is not

ClientOnlyStartTLSEncryption

The client can optionally request STARTTLS
encryption, but the server-side connection is always
unencrypted.

ClientSSLOptions Class encapsulating a set of SSL options used in the
client-side connection.
DHParam Class encapsulating DH parameters.

DynamicCertificate

Class to perform SSL keybridging.

www.balasys.hu

201

Class AbstractVerifier e

Class

Description

EncryptionPolicy

Class encapsulating a named set of encryption settings.

FEakeStartTLSEncryption

The client can optionally request STARTTLS
encryption, but the server-side connection is always
encrypted.

ForwardStartTLSEncryption

The ForwardStartTLSEncryption class handles
scenarios when the client can optionally request
STARTTLS encryption.

PrivateKey Class encapsulating a private key.
SNIBasedCertificate Class to be used for Server Name Indication (SNI)

SSLOptions

Class encapsulating the abstract SSL options.

ServerCertificateVerifier

Class that can be used to verify the certificate of the
server-side connection.

ServerNoneVerifier

Disables certificate verification in server-side
connection.

ServerOnlyEncryption

The ServerOnlyEncryption class handles scenarios
when only the Zorp-server connection is encrypted, the
client-Zorp connection is not

ServerSSLOptions

Class encapsulating a set of SSL options used in the
server-side connection.

StaticCertificate

Class encapsulating a static Certificate object.

TwoSidedEncryption

The TwoSidedEncryption class handles scenarios when

both the client-Zorp and the Zorp-server connections
are encrypted.

Table 5.36. Classes of the Encryption module

5.5.3. Class AbstractVerifier

This class includes the settings and options used to verify the certificates of the peers in SSL and TLS connections.
Note that you cannot use this class directly, use an appropriate derived class, for example, ClientCertificateVerifier
or ServerCertificateVerifier instead.

5.5.3.1. Attributes of AbstractVerifier

ca_directory (string)
Default: ""

Directory where the trusted CA certificates are stored. Note that when handling an SSL or TLS connection
and the ca_directory parameter is set, Zorp loads every certificate available in this directory, and this might
require a huge amount of memory. If the verify_type parameter is set to verify peer certificates, Zorp sends
the subject names of CA certificates stored in this directory to the peer to request a certificate from these CAs.
Unless you are authenticating the peers based on their certificates, use the verify ca directory option
instead. Use of ca_directory option is deprecated.

www.balasys.hu 202

Class AbstractVerifier e

crl_directory (string)
Default: ""

Directory where the CRLs associated with the trusted CAs are stored. Note that when handling an SSL or TLS
connection and the cr1_directory parameter is set, Zorp loads every CRL available in this directory, and
this might require a huge amount of memory. Unless you are authenticating the peers based on their certificates,
use the verify_crl_directory option instead. Use of cr1_directory option is deprecated.

permit_invalid_certificates (boolean)
Default: FALSE

When permit_invalid certificates is TRUE and trusted is FALSE, Zorp accepts even invalid
certificates, for example, expired or self-signed certificates.

permit_missing_crl (boolean)
Default: FALSE

This option has effect only if the verify crl _directory parameter is set. If Zorp does not find a CRL in
these directories that matches the CAs in the certificate chain and permit_missing_cr1 is set to FALSE,
Zorp rejects the certificate. Otherwise, the certificate is accepted even if no matching CRL is found.
Available only in Zorp version 3.4.3 and later.

required (boolean)

Default: trusted

If the required is TRUE, Zorp requires a certificate from the peer.

trusted (boolean)
Default: TRUE

If the peer shows a certificate and the trusted parameter is TRUE, only certificates signed by a trusted CA
are accepted.

trusted_certs_directory (string)
Default: ""

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP address
shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA. Each file
in the directory should contain a certificate in PEM format. The filename must bethe IP address.

verify_ca_directory (string)
Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when Zorp verifies the certificate of the peer.
Available only in Zorp version 3.4.3 and later.

www.balasys.hu 203

Class AbstractVerifier e

verify_crl_directory (string)
Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when Zorp verifies the certificate of the peer.
Available only in Zorp version 3.4.3 and later.

verify_depth (integer)
Default: 4

The length of the longest accepted CA verification chain. Zorp will automatically reject longer CA chains.

5.5.3.2. AbstractVerifier methods

Method Description

init _ (self, ca_directory, crl _directory,|Constructor to initialize an AbstractVerifier instance.
trusted certs directory, required, trusted, verify depth,
verify ca directory, verify crl directory,
permit_invalid certificates, permit_missing crl)

Table 5.37. Method summary

Method __init__(self, ca_directory, crl_directory, trusted_certs_directory, required, trusted, verify_depth,
verify_ca_directory, verify_crl_directory, permit_invalid_certificates, permit_missing_crl)

This constructor defines an AbstractVerifier with the specified parameters.

Arguments of __init__

ca_directory (string)
Default: ""

Directory where the trusted CA certificates are stored. Note that when handling an SSL or TLS connection
and the ca_directory parameter is set, Zorp loads every certificate available in this directory, and this might
require a huge amount of memory. If the verify_type parameter is set to verify peer certificates, Zorp sends
the subject names of CA certificates stored in this directory to the peer to request a certificate from these CAs.
Unless you are authenticating the peers based on their certificates, use the verify ca directory option
instead. Use of ca_directory option is deprecated.

crl_directory (string)
Default: ""

Directory where the CRLs associated with the trusted CAs are stored. Note that when handling an SSL or TLS
connection and the cr1_directory parameter is set, Zorp loads every CRL available in this directory, and
this might require a huge amount of memory. Unless you are authenticating the peers based on their certificates,
use the verify_crl_directory option instead. Use of crl_directory option is deprecated.

www.balasys.hu 204

Class AbstractVerifier e

permit_invalid_certificates (boolean)
Default: FALSE

When permit_invalid certificates is TRUE and trusted is FALSE, Zorp accepts even invalid
certificates, for example, expired or self-signed certificates.

permit_missing_crl (boolean)
Default: FALSE

This option has effect only if the verify_crl_directory parameter is set. If Zorp does not find a CRL in
these directories that matches the CAs in the certificate chain and permit_missing_cr1 is set to FALSE,
Zorp rejects the certificate. Otherwise, the certificate is accepted even if no matching CRL is found.
Available only in Zorp version 3.4.3 and later.

required (boolean)
Default: TRUE

If the required is TRUE, Zorp requires a certificate from the peer.

trusted (boolean)
Default: TRUE

If the peer shows a certificate and the trusted parameter is TRUE, only certificates signed by a trusted CA
are accepted.

trusted_certs_directory (string)
Default: ""

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP address
shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA. Each file
in the directory should contain a certificate in PEM format. The filename must bethe IP address.

verify_ca_directory (string)
Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when Zorp verifies the certificate of the peer.
Available only in Zorp version 3.4.3 and later.

verify_crl_directory (string)
Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when Zorp verifies the certificate of the peer.
Available only in Zorp version 3.4.3 and later.

www.balasys.hu 205

Class Certificate e

verify_depth (integer)
Default: 4

The length of the longest accepted CA verification chain. Zorp will automatically reject longer CA chains.

5.5.4. Class Certificate

The Certificate class stores a certificate, its private key, and optionally a passphrase for the private key. The
certificate must be in PEM format.

When configuring Zorp manually using its configuration file, use the regular constructor of the Certificate class
to load a certificate from a string. To load a certificate from a file, use the Certificate.fromFile method.

— Example 5.18. Loading a certificate
—— | The following example loads a certificate from the Zorp configuration file.

my_certificate = "----- BEGIN CERTIFICATE-----
MIICUTCCAfugAwIBAgIBADANBgkghkiGOwWOBAQQFADBXMQSWCQYDVQQGEWJIDTIEL
MAKGA1UECBMCUE4xCzAJBgNVBACTAKNOMQswCQYDVQQKEWJIPTjELMAKGALUECXMC
VU4xFDASBgNVBAMTCOh1cm9uzZyBZYW5nNMB4XDTALIMDCXNTIXMTKkON10XDTALIMDgX
NDIXMTkON1lowVzELMAKGA1UEBhMCQO4xCzAJBgNVBAgTA1BOMQsSwCQYDVQQHEWJID
TJELMAKGALUEChMCT04XxCzAJBgNVBASTA1VOMRQWEQYDVQQDEwt IZXJvbmcgwWwFu
ZzBCcMAOGCSqGSIb3DQEBAQUAAOSAMEGCQQCP5hnG70ogBht1ynp0S21cBewKE/B7]
V14geyslnr26xZUsSVko36Znhia0/zbMOoRcKK9VEcgMtcLFUQTWD13RAgMBAAG]
gbEwga4wHQYDVROOBBYEFFXI70krXeQDxZghaCQoR4jUDncEMH8GA1UdIWR4MHaA
FFXI70krXeQDxZgbaCQoR4jUDNCEOVUKWTBXMQsSWCQYDVQQGEWJIDTjELMAKGALUE
CBMCUE4xCzAJBgNVBACTAKNOMQswCQYDVQQKEwWJPTjELMAKGALUECXMCVU4XFDAS
BgNVBAMTCOh1lcm9uzZyBZYW5nggEAMAWGA1UJEWQFMAMBAT8WDQY JKoZIhvcNAQEE
BQADQQA/ugzBrjjK9jcwWnDVfGH1k3icNRqO0OV7Ri32z/+HQX67aRfgZu7KWdI+Ju
Wm7DCTrPNGVWFWUQOmsPue9rzBgo
————— END CERTIFICATE-----"

my_certificate_object = Certificate(my_certificate, 'mypassphrase')

The following example loads a certificate from an external file.

my_certificate_object = Certificate.fromFile("/tmp/my_certificate.pem", 'mypassphrase')

5.5.4.1. Attributes of Certificate

certificate_file_path (certificatechain)

Default: n/a

The path and filename to the certificate file. The certificate must be in PEM format.

private_key_password (string)
Default: None

Passphrase used to access the private key of the certificate specified in certificate_file path.

www.balasys.hu 206

Class CertificateCA e

5.5.4.2. Certificate methods

Method Description
init _(self, certificate, private key) Load a certificate from a string, and access it using its
passphrase
fromFile(certificate file path, private key) Load a certificate from a file, and access it using its
passphrase

Table 5.38. Method summary

Method __init__(self, certificate, private_key)

Initializes a Certificate instance by loading a certificate from a string, and accesses it using its passphrase. To
load a certificate from a file, use the Certificate.fromFile method.

Arguments of __init__

certificate_file_path (certificate)

Default: n/a

The path and filename to the certificate file. The certificate must be in PEM format.

private_key_password (string)
Default: None

Passphrase used to access the private key of the certificate specified in certificate _file path.

Method fromFile(certificate_file_path, private_key)

Initializes a Certificate instance by loading a certificate from a file, and accesses it using its passphrase.

Arguments of fromFile

certificate_file_path (certificate)

Default: n/a

The path and filename to the certificate file. The certificate must be in PEM format.

passphrase (string)

Default: None

Passphrase used to access the private key specified in certificate_file_path.

5.5.5. Class CertificateCA

The CertificateCA class stores a CA certificate, its private key, and optionally a passphrase for the private key.
The certificate must be in PEM format.

www.balasys.hu 207

Class ClientCertificate Verifier e

5.5.5.1. Attributes of CertificateCA

certificate_file_path (certificate)

Default: n/a

The path and filename to the certificate file. The certificate must be in PEM format.

private_key_password (string)
Default: None

Passphrase used to access the private key of the certificate specified in certificate_file path.

5.5.5.2. CertificateCA methods

Method Description
init __(self, certificate, private key) Load a CAcertificate from a string, and access it using
its passphrase

Table 5.39. Method summary

Method __init__(self, certificate, private_key)

Initializes a CertificateCA instance by loading a CA certificate, and accesses it using its passphrase.

Arguments of __init__

certificate_file_path (certificate)

Default: n/a

The path and filename to the CA certificate file. The certificate must be in PEM format.

private_key_password (string)

Default: None

Passphrase used to access the private key specified in certificate_file_ path.

5.5.6. Class ClientCertificateVerifier

This class includes the settings and options used to verify the certificates of the peers in client-side SSL. and
TLS connections.

5.5.6.1. Attributes of ClientCertificateVerifier

ca_directory (string)
Default: ""

Directory where the trusted CA certificates are stored. Note that when handling an SSL or TLS connection
and the ca_directory parameter is set, Zorp loads every certificate available in this directory, and this might

www.balasys.hu 208

Class ClientCertificate Verifier (;

ca_directory (string)

require a huge amount of memory. If the verify_type parameter is set to verify peer certificates, Zorp sends
the subject names of CA certificates stored in this directory to the peer to request a certificate from these CAs.
Unless you are authenticating the peers based on their certificates, use the verify ca_directory option
instead. Use of ca_directory option is deprecated.

crl_directory (string)
Default: ""

Directory where the CRLs associated with the trusted CAs are stored. Note that when handling an SSL or TLS
connection and the cr1_directory parameter is set, Zorp loads every CRL available in this directory, and
this might require a huge amount of memory. Unless you are authenticating the peers based on their certificates,
use the verify crl_directory option instead. Use of cr1_directory option is deprecated.

permit_invalid_certificates (boolean)
Default: FALSE

When permit_invalid certificates is TRUE and trusted is FALSE, Zorp accepts even invalid
certificates, for example, expired or self-signed certificates.

permit_missing_crl (boolean)
Default: FALSE

This option has effect only if the verify_crl_directory parameter is set. If Zorp does not find a CRL in
these directories that matches the CAs in the certificate chain and permit_missing_crl is set to FALSE,
Zorp rejects the certificate. Otherwise, the certificate is accepted even if no matching CRL is found.
Available only in Zorp version 3.4.3 and later.

required (boolean)
Default: TRUE

If the required is TRUE, Zorp requires a certificate from the peer.

trusted (boolean)
Default: TRUE

If the peer shows a certificate and the trusted parameter is TRUE, only certificates signed by a trusted CA
are accepted.

trusted_certs_directory (string)
Default: ""

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP address
shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA. Each file
in the directory should contain a certificate in PEM format. The filename must bethe IP address.

www.balasys.hu 209

Class ClientCertificate Verifier (;

verify_ca_directory (string)
Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when Zorp verifies the certificate of the peer.
Available only in Zorp version 3.4.3 and later.

verify_crl_directory (string)
Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when Zorp verifies the certificate of the peer.
Available only in Zorp version 3.4.3 and later.

verify_depth (integer)
Default: 4

The length of the longest accepted CA verification chain. Zorp will automatically reject longer CA chains.

5.5.6.2. ClientCertificateVerifier methods

Method Description

init _ (self, ca_directory, crl_directory,|Constructor to initialize a ClientCertificateVerifier
trusted certs directory, required, trusted, verify depth, |instance.
verify ca directory, verify crl_directory,
permit_invalid certificates, permit_missing crl)

Table 5.40. Method summary

Method __init__(self, ca_directory, crl_directory, trusted_certs_directory, required, trusted, verify_depth,
verify_ca_directory, verify_crl_directory, permit_invalid_certificates, permit_missing_crl)

This constructor defines a ClientCertificateVerifier with the specified parameters.

Arguments of __init__

ca_directory (string)
Default: ""

Directory where the trusted CA certificates are stored. Note that when handling an SSL or TLS connection
and the ca_directory parameter is set, Zorp loads every certificate available in this directory, and this might
require a huge amount of memory. If the verify type parameter is set to verify peer certificates, Zorp sends
the subject names of CA certificates stored in this directory to the peer to request a certificate from these CAs.
Unless you are authenticating the peers based on their certificates, use the verify ca_directory option
instead. Use of ca_directory option is deprecated.

www.balasys.hu 210

Class ClientCertificate Verifier (;

crl_directory (string)
Default: ""

Directory where the CRLs associated with the trusted CAs are stored. Note that when handling an SSL or TLS
connection and the cr1_directory parameter is set, Zorp loads every CRL available in this directory, and
this might require a huge amount of memory. Unless you are authenticating the peers based on their certificates,
use the verify_crl_directory option instead. Use of cr1_directory option is deprecated.

permit_invalid_certificates (boolean)
Default: FALSE

When permit_invalid certificates is TRUE and trusted is FALSE, Zorp accepts even invalid
certificates, for example, expired or self-signed certificates.

permit_missing_crl (boolean)
Default: FALSE

This option has effect only if the verify crl _directory parameter is set. If Zorp does not find a CRL in
these directories that matches the CAs in the certificate chain and permit_missing_cr1 is set to FALSE,
Zorp rejects the certificate. Otherwise, the certificate is accepted even if no matching CRL is found.
Available only in Zorp version 3.4.3 and later.

required (boolean)
Default: TRUE

If the required is TRUE, Zorp requires a certificate from the peer.

trusted (boolean)
Default: TRUE

If the peer shows a certificate and the trusted parameter is TRUE, only certificates signed by a trusted CA
are accepted.

trusted_certs_directory (string)
Default: ""

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP address
shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA. Each file
in the directory should contain a certificate in PEM format. The filename must bethe IP address.

verify_ca_directory (string)
Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when Zorp verifies the certificate of the peer.
Available only in Zorp version 3.4.3 and later.

www.balasys.hu 211

Class ClientNone Verifier e

verify_crl_directory (string)
Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when Zorp verifies the certificate of the peer.
Available only in Zorp version 3.4.3 and later.

verify_depth (integer)
Default: 4

The length of the longest accepted CA verification chain. Zorp will automatically reject longer CA chains.

5.5.7. Class ClientNoneVerifier

This class disables every certificate verification in client-side SSL. and TLS connections.

5.5.8. Class ClientOnlyEncryption

The ClientOnlyEncryption class handles scenarios when only the client-Zorp connection is encrypted, the
Zorp-server connection is not.

5.5.8.1. Attributes of ClientOnlyEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate Zorp shows to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)
Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificate VerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

www.balasys.hu 212

Class ClientOnlyStartTLSEncryption e

5.5.8.2. ClientOnlyEncryption methods

Method Description

init__(self, client certificate generator, client verify,|Initializes SSL/TLS connection on the client side.
client ssl options)

Table 5.41. Method summary

Method __init__(self, client_certificate_generator, client_verify, client_ssl_options)

The ClientOnlyEncryption class handles scenarios when only the client-Zorp connection is encrypted, the
Zorp-server connection is not.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate Zorp shows to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)
Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

5.5.9. Class ClientOnlyStartTLSEncryption

The ClientOnlyStartTLSEncryption class handles scenarios when the client can optionally request STARTTLS
encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS. The
server-side connection will not be encrypted.

‘Warning
A If the client does not send a STARTTLS request, the client-side communication will not be encrypted at all. The server-side connection
will never be encrypted.

5.5.9.1. Attributes of ClientOnlyStartTLSEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate Zorp shows to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

www.balasys.hu 213

Class ClientOnlyStartTLSEncryption e

client_ssl_options (class)
Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificate VerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

5.5.9.2. ClientOnlyStartTLSEncryption methods

Method Description
init _(self, client certificate generator, client verify,[The client can optionally request STARTTLS
client ssl options) encryption, but the server-side connection is always
unencrypted.

Table 5.42. Method summary

Method __init__(self, client_certificate_generator, client_verify, client_ssl_options)

The ClientOnlyStartTLSEncryption class handles scenarios when the client can optionally request STARTTLS
encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS. The
server-side connection will not be encrypted.

Warning
A If the client does not send a STARTTLS request, the client-side communication will not be encrypted at all. The server-side connection
will never be encrypted.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate Zorp shows to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)
Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificateVerifier()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

www.balasys.hu 214

Class ClientSSLOptions (37

5.5.10. Class ClientSSLOptions

This class (based on the SSLOptions class) collects the TLS and SSL settings directly related to encryption,
for example, the permitted protocol versions, ciphers, session reuse settings, and so on.

5.5.10.1. Attributes of ClientSSLOptions

cipher (enum)

Default: n/a

Specifies the allowed ciphers. For details, see Table 5.30, Constants for cipher selection (p. 200).

cipher_server_preference (boolean)
Default: FALSE

Use server and not client preference order when determining which cipher suite, signature algorithm or elliptic
curve to use for an incoming connection.

dh_params (dhparams)
Default: None

The DH parameter used by ephemeral DH key generarion.

disable_compression (boolean)
Default: FALSE
Set this to TRUE to disable support for SSL/TLS compression.

disable_session_cache (boolean)
Default: FALSE

Do not store session information in the session cache. Set this option to TRUE to disable SSL session reuse.

disable_ticket (boolean)
Default: FALSE

Session tickets are a method for SSL session reuse, described in RFC 5077. Set this option to TRUE to disable
SSL session reuse using session tickets.

disable_tlsv1 (boolean)
Default: TRUE

Do not allow using TLSv1 in the connection.

disable_tlsvl_1 (boolean)
Default: FALSE

Do not allow using TLSv1.1 in the connection.

www.balasys.hu 215

Class ClientSSLOptions e

disable_tlsvl_2 (boolean)
Default: FALSE

Do not allow using TLSv1.2 in the connection.

session_cache_size (integer)
Default: 20480

The number of sessions stored in the session cache for SSL session reuse.

5.5.10.2. ClientSSLOptions methods

Method Description

init (self, method, cipher, [Constructor to initialize a ClientSSLOptions instance.
cipher_server preference, timeout, disable sslv2,
disable sslv3, disable tlsv1, disable tlsvl 1,

disable tlsvl 2, session cache_size,
disable session cache, disable ticket,
disable compression, dh params,

disable renegotiation)

Table 5.43. Method summary

Method __init__(self, method, cipher, cipher_server_preference, timeout, disable_sslv2, disable_sslv3,
disable_tlsvl, disable_tlsvl 1, disable_tlsvl 2, session_cache_size, disable_session_cache,
disable_ticket, disable_compression, dh_params, disable_renegotiation)

This constructor defines a ClientSSL.Options with the specified parameters.

Arguments of __init__

cipher (enum)

Default: n/a

Specifies the allowed ciphers. For details, see Table 5.30, Constants for cipher selection (p. 200).

cipher_server_preference (boolean)
Default: FALSE

Use server and not client preference order when determining which cipher suite, signature algorithm or elliptic
curve to use for an incoming connection.

dh_param_{file_path (string)
Default: None

The path and filename to the DH parameter file. The DH parameter file must be in PEM format.

www.balasys.hu 216

Class DHParam e

disable_compression (boolean)
Default: FALSE
Set this to TRUE to disable support for SSL/TLS compression.

disable_renegotiation (boolean)
Default: TRUE
Set this to TRUE to disable client initiated renegotiation.

disable_session_cache (boolean)
Default: FALSE

Do not store session information in the session cache. Set this option to TRUE to disable SSL session reuse.

disable_ticket (boolean)
Default: FALSE

Session tickets are a method for SSL session reuse, described in RFC 5077. Set this option to TRUE to disable
SSL session reuse using session tickets.

disable_tlsv1 (boolean)
Default: TRUE

Do not allow using TLSv1 in the connection.

disable_tlsvl_1 (boolean)
Default: FALSE

Do not allow using TLSv1.1 in the connection.

disable_tlsvl_2 (boolean)
Default: FALSE

Do not allow using TLSv1.2 in the connection.

session_cache_size (integer)
Default: 20480

The number of sessions stored in the session cache for SSL session reuse.

timeout (integer)
Default: 300

Drop idle connection if the timeout value (in seconds) expires.

5.5.11. Class DHParam

The DHParam class stores DH parameters. The DH parameters must be in PEM format.

www.balasys.hu 217

Class DHParam e

When configuring Zorp manually using its configuration file, use the regular constructor of the DHParam class
to load DH parameters key from a string. To load DH parameters key from a file, use the DHParam.fromFile
method.

— Example 5.19. Loading DH parameters
—— | The following example loads DH parameters from the Zorp configuration file.

my_dh_params = "----- BEGIN DH PARAMETERS-----
MIIBCAKCAQEAVVO8WgUTNtkDs33qe5ulT7Ij11mTrRnwFV4z7W4A0DU9j+prdRdD
UAb1HYBrQn30Fsfg/6WDVTmUj8Lvgn9aFjwYTe6U3Ey7CQt4MBw2BhCO3R19KDW7
Im8UdBBhxuekuqZGifMkEEFzAcbiQepvBXiGMucDWgbLaaTY/FrKqb509DvoenSV
Aj/VNFnsefQTHXGo1Urg8ixawj7kTNhM3x7kj7BhK4ALfBuv/93aet2SQjU207C6
03j3mku8CD93Xsbng6rIzmRd6pCANEFHORgO10X7+VMWWG5h5YDSF8CVACRIroZkXxR
dyPdVNzY1z1X3JIx1n3It/6F2yyx/FOXAGWIBAg==
----- END DH PARAMETERS-----"

my_dh_params_object = DHParam(my_dh_params)

The following example loads DH parameters key from an external file.

my_dh_params_object = DHParam.fromFile("/tmp/my_dh_params.pem")

5.5.11.1. Attributes of DHParam

params (string)
Default: ""

The path and filename to the DH parameters file. The DH parameters must be in PEM format.

5.5.11.2. DHParam methods

Method Description
init __(self, params) Load DH parameters key from a string
fromFile(file path) Load a DH parameters from a file

Table 5.44. Method summary

Method __init__(self, params)

Initializes a DHParam instance by loading DH parameters key from a string. To load a DH parameters from a
file, use the DHParam.fromFile method.

Arguments of __init__

params (certificate)

Default: n/a

The path and filename to the DH parameters file. The DH parameters must be in PEM format.

Method fromFile(file_path)

Initializes a DHParam instance by loading a DH parameters from a file.

www.balasys.hu 218

Class DynamicCertificate e

Arguments of fromFile

file_path (dhparam)

Default: n/a

The path and filename to the DH parameters file. The DH parameters must be in PEM format.

5.5.12. Class DynamicCertificate

This class is able to generate certificates mimicking another certificate, primarily used to transfer the information
of a server's certificate to the client in keybridging. Can be used only in TwoSidedEncryption. For details on
configuring keybridging, see Procedure 3.2.8, Configuring keybridging (p. 25).

5.5.12.1. DynamicCertificate methods

Method Description

init _(self, private key, trusted ca, untrusted ca,|Initializes a DynamicCertificate instance to use for
cache_directory, extension whitelist) keybridging

Table 5.45. Method summary

Method __init__(self, private_key, trusted_ca, untrusted_ca, cache_directory, extension_whitelist)

Arguments of __init__

cache_directory (string)

Default: None

The cache directory to store the keybridged certificates generated by Zorp, for example,
/var/lib/zorp/sslbridge/. The zorp user must have write privileges for this directory.

extension_whitelist (complex)

Default: None

private_key (class)

Default: n/a

The private key of the CA certificate set in trusted _ca

trusted_ca (class)

Default: n/a

The CA certificate that Zorp will use to sign the keybridged certificate of trusted peers.

untrusted_ca (class)

Default: n/a

www.balasys.hu 219

Class EncryptionPolicy e

untrusted_ca (class)

The CA certificate that Zorp will use to sign the keybridged certificate of untrusted peers.

5.5.13. Class EncryptionPolicy

This class encapsulates a named set of encryption settings and an associated Encryption policy instance.
Encryption policies provide a way to re-use encryption settings without having to define encryption settings
for each service individually.

5.5.13.1. Attributes of EncryptionPolicy

encryption (class)

Default: n/a

An encryption scenario instance that will be used in the Encryption Policy.
This describes the scenario and the settings how encryption is used in the scenario, for example:

m Both the client-side and the server-side connections are encrypted (IwoSidedEncryption)

® Only the client-side connection is encrypted (ClientOnlyEncryption)
®m Only the server-side connection is encrypted (ServerOnlyEncryption)

m STARTTLS is enabled (ClientOnlyStartTLSEncryption, FakeStartTLSEncryption, or
ForwardStartTLSEncryption)

To customize the settings of a scenario (for example, to set the used certificates), derive a class from the
selected scenario, set its parameters as needed for your environment, and use the customized class.

name (string)

Default: n/a

Name identifying the Encryption policy.

5.5.13.2. EncryptionPolicy methods

Method Description

init __(self, name, encryption) Constructor to create an Encryption policy.

Table 5.46. Method summary

Method __init__(self, name, encryption)

This constructor initializes an Encryption policy, based on the settings of the encryption parameter. This
describes the scenario and the settings how encryption is used in the scenario, for example:

m Both the client-side and the server-side connections are encrypted (TwoSidedEncryption)

®m Only the client-side connection is encrypted (ClientOnlyEncryption)

®m Only the server-side connection is encrypted (ServerOnlyEncryption)

www.balasys.hu 220

Class FakeStartTLSEncryption e

m STARTTLS is enabled (ClientOnlyStartTLSEncryption, FakeStartTLSEncryption, or
ForwardStartTLSEncryption)

To customize the settings of a scenario (for example, to set the used certificates), derive a class from the selected
scenario, set its parameters as needed for your environment, and use the customized class.

Arguments of __init__

encryption (class)

Default: n/a

An encryption scenario instance that will be used in the Encryption Policy.

name (string)

Default: n/a

Name identifying the Encryption policy.

5.5.14. Class FakeStartTLSEncryption
The FakeStartTLSEncryption class handles scenarios when the client can optionally request STARTTLS

encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS. The
server-side connection will always be encrypted.

Warning
A If the client does not send a STARTTLS request, the client-side communication will not be encrypted at all. The server-side connection
will always be encrypted.

5.5.14.1. Attributes of FakeStartTLSEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate Zorp shows to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)
Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificate VerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

www.balasys.hu 221

Class FakeStartTLSEncryption e

server_ssl_options (class)
Default: ServerSSLOptions()

The protocol-level encryption settings used on the server side. This must be a ServerSSLOptions instance.

server_verify (class)

Default: ServerCertificate VerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.14.2. FakeStartTLSEncryption methods

Method Description

init _(self, client certificate generator, client verify, |Initializes a FakeStartTLSEncryption instance to handle
server verify, client ssl options, server ssl options) |scenarios when the client can optionally request
STARTTLS encryption.

Table 5.47. Method summary

Method __init__(self, client_certificate_generator, client_verify, server_verify, client_ssl_options,
server_ssl_options)

The FakeStartTLSEncryption class handles scenarios when the client can optionally request STARTTLS
encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS. The
server-side connection will always be encrypted.

Warning
A If the client does not send a STARTTLS request, the client-side communication will not be encrypted at all. The server-side connection
will always be encrypted.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate Zorp shows to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)
Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificate VerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

www.balasys.hu 222

Class ForwardStartTLSEncryption e

server_ssl_options (class)
Default: ServerSSLOptions()

The protocol-level encryption settings used on the server side. This must be a ServerSSLOptions instance.

server_verify (class)

Default: ServerCertificate VerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.15. Class ForwardStartTLSEncryption

The ForwardStartTLSEncryption class handles scenarios when the client can optionally request STARTTLS
encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS, and Zorp
will forward the request to the server. If the server supports STARTTLS, the server-side connection will also
use STARTTLS.

Warning
A If the client does not send a STARTTLS request, the communication will not be encrypted at all. Both the client-Zorp and the Zorp-server
connections will be unencrypted.

5.5.15.1. Attributes of ForwardStartTLSEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate Zorp shows to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)
Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificate VerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

server_ssl_options (class)
Default: ServerSSLOptions()

The protocol-level encryption settings used on the server side. This must be a ServerSSLOptions instance.

server_verify (class)

Default: ServerCertificate VerifierGroup()

www.balasys.hu 223

Class ForwardStartTLSEncryption e

server_verify (class)

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.15.2. ForwardStartTLSEncryption methods

Method Description

init _(self, client certificate generator, client verify,|Initializes a ForwardStartTLSEncryption instance to
server verify, client ssl options, server ssl options) |handle scenarios when the client can optionally request
STARTTLS encryption.

Table 5.48. Method summary

Method __init__(self, client_certificate_generator, client_verify, server_verify, client_ssl_options,
server_ssl_options)

Initializes a ForwardStartTLSEncryption instance to handle scenarios when the client can optionally request
STARTTLS encryption. If the client sends a STARTTLS request, the client-side connection will use STARTTLS,
and Zorp will forward the request to the server. If the server supports STARTTLS, the server-side connection
will also use STARTTLS.

Warning
A If the client does not send a STARTTLS request, the communication will not be encrypted at all. Both the client-Zorp and the Zorp-server
connections will be unencrypted.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate Zorp shows to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)
Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificate VerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

server_ssl_options (class)
Default: ServerSSLOptions()

The protocol-level encryption settings used on the server side. This must be a ServerSSLOptions instance.

www.balasys.hu 224

Class PrivateKey e

server_verify (class)

Default: ServerCertificate VerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.16. Class PrivateKey

The PrivateKey class stores a private key and optionally a passphrase for the private key. The private key must
be in PEM format.

When configuring Zorp manually using its configuration file, use the regular constructor of the PrivateKey
class to load a private key from a string. To load a private key from a file, use the PrivateKey.fromFile method.

— Example 5.20. Loading a private key
—— | The following example loads a private key from the Zorp configuration file.

my_private_key = "----- BEGIN RSA PRIVATE KEY-----
MIIEpgIBAAKCAQEA9rbxqq+Zi70nRFAZe7SCTB6VgzP1PhkiUmOPmMbwFmMROS1SSyY
YMPSyIzaQqwELYOSQTZtsT3jhd6MCFPBZntym63/GwDuethGSjE9y8rt/9yr+T3I
zz+6ABnZXHJ38tdGYataF1Ndi3CsY5NXGszVFv1Is17P5mbYWQgJ7QzI/a5mPKa+
9pVXsDQthEV3BVUawIEJJInSOTHD5XZQJ/MX6F4RPn+2MC9i/RbcAORVNLPmMt2eiy
NV3+55sKdd7GpdMmEbRVOHZYW2x INyulxYbwU9YIP88dHCgvqoOgkAX2HLXCJOy6
2gvsS8J7HEbohD98dxPJX7P8w9juORi6HpSsqOWIDAQABAOIBAQDXStIdJtuRC+GG
RXfXca/61P3j3qV2KSzATRe+CkvAR001CC9T7z6zb+bPI5kLIblxWvPiJawOnn4l
jj5JFhTvMalagTeaz7yW5d2NR2r1SkZwW7Au2uePSv9ZIzL1IVLzzDnz/PW2Xxv51
bromT/Tr+N9GV8iIwNqu5sryp60FasKB/55LhCcKVYrkdy2WhJc8Y8TXUjF4n8Jn
Xuyd44N6uu5RULIEgN7bPsz01F1T8ujCICWDNNYUw91lwSVVEC2EbTg841u2UcnE4k
grB7rCKLooDpY1KjXx/109Dj9Uv3hwLpSTw2dYR0ZSOKOFIKYACP1QcininrTGeL
cOPXyK6BA0GBAPVNBd7/U94Krp9Bp3j jXUEN1Frgf+B7QgRKpG7tN3RDRIMIVLEZ
mnxvbwW6o4hsq4TzF/ratnRjqp+79TwswUz36G98FtW1lTUS620BznIkwImDGo+ysv
3QK8XUZ4Wg3EcnE5bG8AMOK0oDRazc0g7UxopbHC+SNLRMZA/2dBvVh4zA0GBAP(Q6
UWIfcSnLyFYy7EPh3P7gmotBNPORgcX6aKdwR7pzk6MgTADHXKVIP+eeDEWpPF58T
RYBW7KxN4h6cNMg1RZBbhED3hONJkpYMGSqOhyczN40SIHHr f3iBO7p35v7Eee82
2H/rT6BNrQF1fPIbz5spgT+eV5BUTAB7bsbWiuDhA0GBALVAgeT26y21mfhVkVow
5LQA+gp5Jwor J1IFYNADtBx3M2StwASqQDazDsIYTVr4dmHvWK3Teb09iaPt50Mz0
3daWhD+D3VCVv98FtM+r4FKGI/Zmd8Twd8HTrfGIchw/A7mex3efxEhDkwqY28Rhk
N2N3suNcx6GJjIQynVNXCRIpAOGBAOJYyIEqUXxyn0iPOBLM30SiXxXUP7wWN5i8FA7wW
gFCBUecNt4uoCdiyk+fqBf10evT3UQQ07ZKJI71t3RAANAIZTUO6buUQjMBFMbAa90
4fP19BLtaQCaHH+HCCuX3I/+9rumS9JHIKX3qoTHYrdsmxo3D/u9MqR4p/EKDLRq
XpQCO9I9BAOGBAPZtXxtEKcOXxhYeuor4qIQbtledrO+cfEzaXyUvjleLdg8ruU3Yeh3
JLbYgCcSNr4rMvEwhuvwbwgWljed7TvgjKKEYYSWW2ESWCmAjNIhDBVzX90h1cY34
Ae/P630Ht89sWbb50G2+fch7xCwH3kYmVgT4/xPvOFQRspwpErKY1Cwg
————— END RSA PRIVATE KEY-----"

my_private_key_object = PrivateKey(my_private_key, 'mypassphrase')

The following example loads a private key from an external file.

my_private_key_object = PrivateKey.fromFile("/tmp/my_private.key", 'mypassphrase')

5.5.16.1. Attributes of PrivateKey

key_file_path (string)
Default: ""
The path and filename to the private key file. The private key must be in PEM format.

passphrase (string)

Default: None

www.balasys.hu 225

Class PrivateKey e

passphrase (string)

Passphrase used to access the private key specified in key_file_path.

5.5.16.2. PrivateKey methods

Method Description
init _(self, key, passphrase) Load a private key from a string, and access it using
its passphrase
fromFile(key file path, passphrase) Load a private key from a file, and access it using its
passphrase

Table 5.49. Method summary

Method __init__(self, key, passphrase)

Initializes a PrivateKey instance by loading a private key from a string, and accesses it using its passphrase.
To load a private key from a file, use the PrivateKey.fromFile method.

Arguments of __init__

key_file_path (certificate)

Default: n/a

The path and filename to the private key file. The private key must be in PEM format.

passphrase (string)
Default: None

Passphrase used to access the private key specified in key_file_path.

Method fromFile(key_file_path, passphrase)

Initializes a PrivateKey instance by loading a private key from a file, and accesses it using its passphrase.

Arguments of fromFile

key_file_path (certificate)

Default: n/a

The path and filename to the private key file. The private key must be in PEM format.

passphrase (string)

Default: None

Passphrase used to access the private key specified in key _file path.

www.balasys.hu 226

Class SNIBasedCertificate (;

5.5.17. Class SNIBasedCertificate
This class adds support for the Server Name Indication (SNI) TLS extension, as described in REC 6066. It

stores a mapping between hostnames and certificates, and automatically selects the certificate to show to the
peer if the peer has sent an SNI request.

5.5.17.1. Attributes of SNIBasedCertificate

default (class)
Default: None

The certificate to show to the peer if no matching hostname is found in hostname_certificate_map.

hostname_certificate_map (complex)

Default: n/a

A hash containing a matcher-certificate map. Each element of the hash contains a matcher and a certificate:
if a matcher matches the hostname in the SNI request, Zorp shows the certificate to the peer. You can use any
matcher policy, though in most cases, RegexpMatcher will be adequate. Different elements of the hash can
use different types of matchers, for example, RegexpMatcher and RegexpFileMatcher. For details on matcher
policies, see Section 5.7, Module Matcher (p. 242). For an example on using SNIBasedCertificate, see Procedure
4.1, Configuring Server Name Indication (SNI) in How to configure HTTPS proxying in PNS 1.0.

hostname_certificate_map={
RegexpMatcher (
match_list=("myfirstdomain.example.com",)): StaticCertificate(

certificate=Certificate.fromFile(
certificate_file_path="/etc/key.d/myfirstdomain/cert.pem",

private_key=PrivateKey.fromFile(
"/etc/key.d/myfirstdomain/key.pem"))), }

5.5.17.2. SNIBasedCertificate methods

Method Description

init _(self, hostname certificate _map, default)

Table 5.50. Method summary

Method __init__(self, hosthame_certificate_map, default)

Arguments of __init__

default (class)

Default: None

The certificate to show to the peer if no matching hostname is found in hostname_certificate_map.

www.balasys.hu 227

http://tools.ietf.org/html/rfc6066
../../pns-tutorial-https/pdf/pns-tutorial-https.pdf#configuring-server-name-indication
../../pns-tutorial-https/pdf/pns-tutorial-https.pdf#configuring-server-name-indication

Class SSLOptions (37

hostname_certificate_map (complex)

Default: n/a

A matcher-certificate map that describes which certificate will Zorp show to the peer if the matcher part matches
the hostname in the SNI request. For details on matcher policies, see Section 5.7, Module Matcher (p. 242).

5.5.18. Class SSLOptions

This class collects the TLS and SSL settings directly related to encryption, for example, the permitted protocol
versions, ciphers, session reuse settings, and so on. Note that you cannot use this class directly, use an appropriate
derived class, for example, ClientSSLOptions or ServerSSLOptions instead.

5.5.18.1. Attributes of SSLOptions

cipher (complex)

Default: n/a

Specifies the allowed ciphers. For details, see Table 5.30, Constants for cipher selection (p. 200).

disable_compression (boolean)
Default: FALSE
Set this to TRUE to disable support for SSL/TLS compression.

disable_session_cache (boolean)
Default: FALSE

Do not store session information in the session cache. Set this option to TRUE to disable SSL session reuse.

disable_ticket (boolean)
Default: FALSE

Session tickets are a method for SSL session reuse, described in RFC 5077. Set this option to TRUE to disable
SSL session reuse using session tickets.

disable_tlsv1 (boolean)
Default: TRUE

Do not allow using TLSv1 in the connection.

disable_tlsvl_1 (boolean)
Default: FALSE

Do not allow using TLSv1.1 in the connection.

disable_tlsvl_2 (boolean)
Default: FALSE

www.balasys.hu 228

Class SSLOptions (37

disable_tlsvl_2 (boolean)

Do not allow using TLSv1.2 in the connection.

session_cache_size (integer)
Default: 20480

The number of sessions stored in the session cache for SSL session reuse.

5.5.18.2. SSLOptions methods

Method Description

init _(self, cipher, timeout, disable tlsv1,|Constructor to initialize an SSLOptions instance.
disable tlsvl 1, disable tlsvl 2, session cache_size,
disable session cache, disable ticket,
disable compression)

Table 5.51. Method summary

Method __init__(self, cipher, timeout, disable_tlsvl, disable_tlsvl_1, disable_tlsvl_2, session_cache_size,
disable_session_cache, disable_ticket, disable_compression)

This constructor defines an SSL.Options with the specified parameters.

Arguments of __init__

cipher (enum)

Default: n/a

Specifies the allowed ciphers. For details, see Table 5.30, Constants for cipher selection (p. 200).

disable_compression (boolean)
Default: FALSE
Set this to TRUE to disable support for SSL/TLS compression.

disable_session_cache (boolean)
Default: FALSE

Do not store session information in the session cache. Set this option to TRUE to disable SSL session reuse.

disable_ticket (boolean)
Default: FALSE

Session tickets are a method for SSL session reuse, described in RFC 5077. Set this option to TRUE to disable
SSL session reuse using session tickets.

www.balasys.hu 229

Class ServerCertificateVerifier e

disable_tlsv1 (boolean)
Default: TRUE

Do not allow using TLSv1 in the connection.

disable_tlsvl_1 (boolean)
Default: FALSE

Do not allow using TLSv1.1 in the connection.

disable_tlsvl_2 (boolean)
Default: FALSE

Do not allow using TLSv1.2 in the connection.

session_cache_size (integer)
Default: 20480

The number of sessions stored in the session cache for SSL session reuse.

timeout (integer)
Default: 300

Drop idle connection if the timeout value (in seconds) expires.

5.5.19. Class ServerCertificateVerifier

This class includes the settings and options used to verify the certificates of the peers in server-side SSL and
TLS connections. Note that the ServerCertificateVerifier class always requests a certificate from the server.

5.5.19.1. Attributes of ServerCertificateVerifier

ca_directory (string)
Default: ""

Directory where the trusted CA certificates are stored. Note that when handling an SSL or TLS connection
and the ca_directory parameter is set, Zorp loads every certificate available in this directory, and this might
require a huge amount of memory. If the verify_type parameter is set to verify peer certificates, Zorp sends
the subject names of CA certificates stored in this directory to the peer to request a certificate from these CAs.
Unless you are authenticating the peers based on their certificates, use the verify ca directory option
instead.

check_subject (boolean)
Default: TRUE

If the check_subject parameter is TRUE, Zorp compares the Subject of the server-side certificate with
application-layer information (for example, it checks whether the Subject matches the hostname in the URL).
For details, see Section 3.2.5, Certificate verification options (p. 23).

www.balasys.hu 230

Class ServerCertificateVerifier e

crl_directory (string)
Default: ""

Directory where the CRLs associated with the trusted CAs are stored. Note that when handling an SSL or TLS
connection and the cr1_directory parameter is set, Zorp loads every CRL available in this directory, and
this might require a huge amount of memory. Unless you are authenticating the peers based on their certificates,
use the verify_crl_directory option instead.

permit_invalid_certificates (boolean)
Default: FALSE

When permit_invalid certificates is TRUE and trusted is FALSE, Zorp accepts even invalid
certificates, for example, expired or self-signed certificates.

permit_missing_crl (boolean)
Default: FALSE

This option has effect only if the verify crl _directory parameter is set. If Zorp does not find a CRL in
these directories that matches the CAs in the certificate chain and permit_missing_cr1 is set to FALSE,
Zorp rejects the certificate. Otherwise, the certificate is accepted even if no matching CRL is found.
Available only in Zorp version 3.4.3 and later.

trusted (boolean)
Default: TRUE

If the peer shows a certificate and the trusted parameter is TRUE, only certificates signed by a trusted CA
are accepted.

trusted_certs_directory (string)
Default: ""

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP address
shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA. Each file
in the directory should contain a certificate in PEM format. The filename must bethe IP address.

verify_ca_directory (string)
Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when Zorp verifies the certificate of the peer.
Available only in Zorp version 3.4.3 and later.

verify_crl_directory (string)
Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when Zorp verifies the certificate of the peer.

www.balasys.hu 231

Class ServerCertificateVerifier e

verify_crl_directory (string)

Available only in Zorp version 3.4.3 and later.

verify_depth (integer)
Default: 4

The length of the longest accepted CA verification chain. Zorp will automatically reject longer CA chains.

5.5.19.2. ServerCertificateVerifier methods

Method Description
init _(self, ca_directory, crl _directory,|Constructor to initialize a ServerCertificateVerifier
trusted certs directory, trusted, verify_depth, |instance.
verify ca_directory, verify crl_directory,
permit_invalid certificates, permit_missing crl,
check subject)

Table 5.52. Method summary

Method __init__(self, ca_directory, crl_directory, trusted_certs_directory, trusted, verify_depth,
verify_ca_directory, verify_crl_directory, permit_invalid_certificates, permit_missing_crl, check_subject)

This constructor defines a ServerCertificate Verifier with the specified parameters.

Arguments of __init__

ca_directory (string)
Default: ""

Directory where the trusted CA certificates are stored. Note that when handling an SSL or TLS connection
and the ca_directory parameter is set, Zorp loads every certificate available in this directory, and this might
require a huge amount of memory. If the verify type parameter is set to verify peer certificates, Zorp sends
the subject names of CA certificates stored in this directory to the peer to request a certificate from these CAs.
Unless you are authenticating the peers based on their certificates, use the verify ca_directory option
instead. Use of ca_directory option is deprecated.

check_subject (boolean)
Default: TRUE

If the check_subject parameter is TRUE, Zorp compares the Subject of the server-side certificate with
application-layer information (for example, it checks whether the Subject matches the hostname in the URL).
For details, see Section 3.2.5, Certificate verification options (p. 23).

crl_directory (string)
Default: ""

www.balasys.hu 232

Class ServerCertificateVerifier e

crl_directory (string)

Directory where the CRLs associated with the trusted CAs are stored. Note that when handling an SSL or TLS
connection and the cr1_directory parameter is set, Zorp loads every CRL available in this directory, and
this might require a huge amount of memory. Unless you are authenticating the peers based on their certificates,
use the verify_crl_directory option instead. Use of cri_directory option is deprecated.

permit_invalid_certificates (boolean)
Default: FALSE

When permit_invalid certificates is TRUE and trusted is FALSE, Zorp accepts even invalid
certificates, for example, expired or self-signed certificates.

permit_missing_crl (boolean)
Default: FALSE

This option has effect only if the verify _crl_directory parameter is set. If Zorp does not find a CRL in
these directories that matches the CAs in the certificate chain and permit_missing_crl is set to FALSE,
Zorp rejects the certificate. Otherwise, the certificate is accepted even if no matching CRL is found.
Available only in Zorp version 3.4.3 and later.

trusted (boolean)
Default: TRUE

If the peer shows a certificate and the t rusted parameter is TRUE, only certificates signed by a trusted CA
are accepted.

trusted_certs_directory (string)
Default: ""

A directory where trusted IP address - certificate assignments are stored. When a peer from a specific IP address
shows the certificate stored in this directory, it is accepted regardless of its expiration or issuer CA. Each file
in the directory should contain a certificate in PEM format. The filename must bethe IP address.

verify_ca_directory (string)
Default: ""

Directory where the trusted CA certificates are stored. CA certificates are loaded on-demand from this directory
when Zorp verifies the certificate of the peer.
Available only in Zorp version 3.4.3 and later.

verify_crl_directory (string)
Default: ""

Directory where the CRLs (Certificate Revocation Lists) associated with trusted CAs are stored. CRLs are
loaded on-demand from this directory when Zorp verifies the certificate of the peer.
Available only in Zorp version 3.4.3 and later.

www.balasys.hu 233

Class ServerNone Verifier e

verify_depth (integer)
Default: 4

The length of the longest accepted CA verification chain. Zorp will automatically reject longer CA chains.

5.5.20. Class ServerNoneVerifier

This class disables every certificate verification in server-side SSL and TLS connections.

5.5.21. Class ServerOnlyEncryption

The ServerOnlyEncryption class handles scenarios when only the Zorp-server connection is encrypted, the
client-Zorp connection is not.

5.5.21.1. Attributes of ServerOnlyEncryption

server_certificate_generator (class)
Default: None

The class that will generate the certificate Zorp shows to the server. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

server_ssl_options (class)
Default: ServerSSLOptions()

The protocol-level encryption settings used on the server side. This must be a ServerSSLOptions instance.

server_verify (class)

Default: ServerCertificateVerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.21.2. ServerOnlyEncryption methods

Method Description

init _(self, server certificate generator,|Initializes SSL/TLS connection on the server side.
server verify, server ssl_options)

Table 5.53. Method summary

Method __init__(self, server_certificate_generator, server_verify, server_ssl_options)

The ServerOnlyEncryption class handles scenarios when only the Zorp-server connection is encrypted, the
client-Zorp connection is not.

www.balasys.hu 234

Class ServerSSLOptions e

Arguments of __init__

server_certificate_generator (class)
Default: None

The class that will generate the certificate Zorp shows to the server. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

server_ssl_options (class)
Default: ServerSSLOptions()

The protocol-level encryption settings used on the server side. This must be a ServerSSLOptions instance.

server_verify (class)

Default: ServerCertificateVerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.22. Class ServerSSLOptions

This class (based on the SSLOptions class) collects the TLS and SSL settings directly related to encryption,
for example, the permitted protocol versions, ciphers, session reuse settings, and so on.

5.5.22.1. Attributes of ServerSSLOptions

cipher (enum)

Default: n/a

Specifies the allowed ciphers. For details, see Table 5.30, Constants for cipher selection (p. 200).

disable_compression (boolean)
Default: FALSE
Set this to TRUE to disable support for SSL/TLS compression.

disable_session_cache (boolean)
Default: FALSE

Do not store session information in the session cache. Set this option to TRUE to disable SSL session reuse.

disable_ticket (boolean)
Default: FALSE

Session tickets are a method for SSL session reuse, described in RFC 5077. Set this option to TRUE to disable
SSL session reuse using session tickets.

disable_tlsv1 (boolean)
Default: TRUE

www.balasys.hu 235

Class ServerSSLOptions e

disable_tlsv1 (boolean)

Do not allow using TLSv1 in the connection.

disable_tlsvl_1 (boolean)
Default: FALSE

Do not allow using TLSv1.1 in the connection.

disable_tlsvl_2 (boolean)
Default: FALSE

Do not allow using TLSv1.2 in the connection.

session_cache_size (integer)
Default: 20480

The number of sessions stored in the session cache for SSL session reuse.

5.5.22.2. ServerSSLOptions methods

Method Description

init__(self, method, cipher, timeout, disable sslv2,|Constructor to initialize a ServerSSLOptions instance.
disable sslv3, disable tlsv1, disable tlsvl 1,
disable tlsvl 2, session cache_size,
disable session cache, disable ticket,
disable compression)

Table 5.54. Method summary

Method __init__(self, method, cipher, timeout, disable_sslv2, disable_sslv3, disable_tlsv1,
disable_tlsvl 1, disable_tlsvl 2, session_cache_size, disable_session_cache, disable_ticket,
disable_compression)

This constructor defines a ServerSSLOptions with the specified parameters.

Arguments of __init__

cipher (enum)

Default: n/a

Specifies the allowed ciphers. For details, see Table 5.30, Constants for cipher selection (p. 200).

disable_compression (boolean)
Default: FALSE
Set this to TRUE to disable support for SSL/TLS compression.

www.balasys.hu 236

Class StaticCertificate e

disable_session_cache (boolean)
Default: FALSE

Do not store session information in the session cache. Set this option to TRUE to disable SSL session reuse.

disable_ticket (boolean)
Default: FALSE

Session tickets are a method for SSL session reuse, described in RFC 5077. Set this option to TRUE to disable
SSL session reuse using session tickets.

disable_tlsv1 (boolean)
Default: TRUE

Do not allow using TLSv1 in the connection.

disable_tlsvl_1 (boolean)
Default: FALSE

Do not allow using TLSv1.1 in the connection.

disable_tlsvl_2 (boolean)
Default: FALSE

Do not allow using TLSv1.2 in the connection.

session_cache_size (integer)
Default: 20480

The number of sessions stored in the session cache for SSL session reuse.

timeout (integer)
Default: 300

Drop idle connection if the timeout value (in seconds) expires.

5.5.23. Class StaticCertificate

This class encapsulates a static Certificate that can be used in SSL/TLS connections.

5.5.23.1. Attributes of StaticCertificate

certificate (class)

Default: n/a

The certificate instance to show to the peer.

www.balasys.hu 237

Class TwoSidedEncryption e

5.5.23.2. StaticCertificate methods

Method Description

init _(self, certificate) Initializes a static Certificate object.

Table 5.55. Method summary

Method __init__(self, certificate)

A static Certificate that can be used in SSL/TLS connections.

Arguments of __init__

certificate (class)

Default: n/a

The certificate instance to show to the peer.

5.5.24. Class TwoSidedEncryption

The TwoSidedEncryption class handles scenarios when both the client-Zorp and the Zorp-server connections
are encrypted. If you do not need encryption on the client- or the server-side, use the ServerOnlyEncryption or
ClientOnlyEncryption classes, respectively. For a detailed example on keybridging, see Procedure 3.2.8,
Configuring keybridging (p. 25).

5.5.24.1. Attributes of TwoSidedEncryption

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate Zorp shows to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)
Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificate VerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

server_certificate_generator (class)

Default: None

The class that will generate the certificate Zorp shows to the server. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

www.balasys.hu 238

Class TwoSidedEncryption e

server_ssl_options (class)
Default: ServerSSLOptions()

The protocol-level encryption settings used on the server side. This must be a ServerSSLOptions instance.

server_verify (class)

Default: ServerCertificate VerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.5.24.2. TwoSidedEncryption methods

Method Description

init _(self, client certificate generator, |Initializes SSL/TLS connection with both peers.
server_certificate generator, client verify,
server_verify, client ssl options, server _ssl _options)

Table 5.56. Method summary

Method __init__(self, client_certificate_generator, server_certificate_generator, client_verify,
server_verify, client_ssl_options, server_ssl_options)

The TwoSidedEncryption class handles scenarios when both the client-Zorp and the Zorp-server connections
are encrypted.

Arguments of __init__

client_certificate_generator (class)

Default: n/a

The class that will generate the certificate Zorp shows to the client. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

client_ssl_options (class)
Default: ClientSSLOptions()

The protocol-level encryption settings used on the client side. This must be a ClientSSLOptions instance.

client_verify (class)

Default: ClientCertificate VerifierGroup()

The settings used to verify the certificate of the client. This must be a ClientCertificateVerifier instance.

server_certificate_generator (class)

Default: None

The class that will generate the certificate Zorp shows to the server. You can use an instance of the
StaticCertificate, DynamicCertificate, or SNIBasedCertificate classes.

www.balasys.hu 239

Module Keybridge e

server_ssl_options (class)
Default: ServerSSLOptions()

The protocol-level encryption settings used on the server side. This must be a ServerSSLOptions instance.

server_verify (class)

Default: ServerCertificate VerifierGroup()

The settings used to verify the certificate of the server. This must be a ServerCertificateVerifier instance.

5.6. Module Keybridge

Keybridging is a method to let the client see a copy of the server's certificate (or vice versa), allowing it to
inspect it and decide about its trustworthiness. Because of proxying the SSL/TLS connection, the client is not
able to inspect the certificate of the server directly, therefore Zorp generates a certificate based on the server's
certificate on-the-fly. This generated certificate is presented to the client.

For details on configuring keybridging, see Procedure 3.2.8, Configuring keybridging (p. 25).

5.6.1. Classes in the Keybridge module

Class Description
X509KeyBridge Class to perform SSL keybridging.

Table 5.57. Classes of the Keybridge module

5.6.2. Class X509KeyBridge

This class is able to generate certificates mimicking another certificate, primarily used to transfer the information
of a server's certificate to the client in keybridging. For details on configuring keybridging, see Procedure 3.2.8,
Configuring keybridging (p. 25).

5.6.2.1. Attributes of X509KeyBridge

cache_directory (string)
Default: ""

The directory where all automatically generated certificates are cached.

key_file (string)
Default: ""

Name of the private key to be used for the newly generated certificates.

key_passphrase (string)
Default: ""

Passphrase required to access the private key stored in key_file.

www.balasys.hu 240

Class X509KeyBridge (37

trusted_ca_files (certificate)

Default: None

A tuple of cert_file, key_file, passphrase) for the CA used for keybridging trusted certificates.

untrusted_ca_files (certificate)
Default: None

A tuple of cert_file, key_file, passphrase) for the CA used for keybridging untrusted certificates.

5.6.2.2. X509KeyBridge methods

Method Description

old init(self, key file, cache_directory,|None
trusted ca files, untrusted ca files, key passphrase,
extension whitelist)

Table 5.58. Method summary

Method _old_init(self, key_file, cache_directory, trusted_ca_files, untrusted_ca_files, key_passphrase,
extension_whitelist)

n/a

Arguments of _old_init

cache_directory (string)

Default: "/var/lib/zorp/keybridge-cache"

The directory where all automatically generated certificates are cached.

extension_whitelist (complex)

Default: None

Zorp transfers the following certificate extensions to the client side: Key Usage, Subject Alternative
Name, Extended Key Usage. Other extensions will be automatically deleted during keybridging. This is
needed because some certificate extensions contain references to the Issuer CA, which references become
invalid for keybridged certificates. To transfer other extensions, list them in the extension_whitelist
parameter. Note that modifying this parameter replaces the default values, so to extend the list of transferred
extensions, include the 'keyUsage', 'subjectAltName', 'extendedKeyUsage' listas well. For
example:

self.extension_whitelist = ('keyUsage', 'subjectAltName', 'extendedKeyUsage',
'customExtension')

key_file (certificate)

Default: n/a

www.balasys.hu 241

Module Matcher e

key_file (certificate)

Name of the private key to be used for the newly generated certificates.

key_passphrase (string)
Default: ""

Passphrase required to access the private key stored in key_file.

trusted_ca_files (certificate)

Default: n/a

A tuple of cert_file, key file, passphrase) for the CA used for keybridging trusted certificates.

untrusted_ca_files (certificate)

Default: None

A tuple of cert_file, key_file, passphrase) for the CA used for keybridging untrusted certificates.

5.7. Module Matcher

In general, matcher policies can be used to find out if a parameter is included in a list (or which elements of a
list correspond to a certain parameter), and influence the behavior of the proxy class based on the results.
Matchers can be used for a wide range of tasks, for example, to determine if the particular IP address or URL
that a client is trying to access is on a black or whitelist, or to verify that a particular e-mail address is valid.

5.7.1. Classes in the Matcher module

Class Description

AbstractMatcher Class encapsulating the abstract string matcher.

CombineMatcher Matcher for implementing logical expressions based
on other matchers.

DNSMatcher DNS matcher

MatcherPolicy Class encapsulating a Matcher which can be used by a
name.

RegexpFileMatcher Class encapsulating Matcher which uses regular
expressions stored in files for string matching.

RegexpMatcher Class encapsulating a Matcher which uses regular
expressions for string matching.

SmtplnvalidRecipientMatcher Class verifying the validity of the recipient addresses
in E-mails.

www.balasys.hu 242

Class AbstractMatcher e

Class Description

WindowsUpdateMatcher Windows Update matcher

Table 5.59. Classes of the Matcher module

5.7.2. Class AbstractMatcher

This abstract class encapsulates a string matcher that determines whether a given string is found in a backend
database.

Specialized subclasses of AbstractMatcher exist such as 'RegexpFileMatcher' which use regular expressions
stored in flat files to find matches.

5.7.3. Class CombineMatcher

This matcher makes it possible to combine the results of several matchers using logical operations.
CombineMatcher uses prefix-notation in its expressions and uses the following format: the operand, a comma,
first argument, a comma, second argument. For example, an AND expression should be formatted the following
way: (Z_AND, matcherl, matcherZ2). Expressions using more than one operands should be bracketed,
e.g., (Z_OR (Z_AND, matcheri, matcher2), matcher3). The following oprations are available:

B Z_AND : Logical AND operation.
B Z_OR: Logical OR operation.

® Z XOR : Logical XOR operation.
B Z_NOT : Logical negation.

B Z_EQ : Logical equation.

— Example 5.21. Whitelisting e-mail recipients
— | A simple use for CombineMatcher is to filter the recipients of e-mail addresses using the following process:

1. An SmtpInvalidMatcher (called SmtpCheckrecipient) verifies that the recipient exists.

2. A RegexpMatcher (called Smtpwhitelist) or RegexpFileMatcher is used to check if the address is on a predefined list
(list of permitted addresses).

3. A CombineMatcher (called SmtpCombineMatcher) sums up the results of the matchers with a logical AND operation.

4. An SmtpProxy (called SmtpRecipientMatcherProxy)references SmtpCombineMatcher inits recipient_matcher
attribute.

Python:

class SmtpRecipientMatcherProxy(SmtpProxy):
recipient_matcher="SmtpCombineMatcher"

def config(self):

super (SmtpRecipientMatcherProxy, self).config()

MatcherPolicy(name="SmtpCombineMatcher", matcher=CombineMatcher (expr=(Z_AND, "SmtpCheckrecipient",
"Smtpwhitelist")))

MatcherPolicy(name="SmtpwWhitelist", matcher=RegexpMatcher (match_list=("info@example.com",),
ignore_list=None))

MatcherPolicy(name="SmtpCheckrecipient", matcher=SmtpInvalidRecipientMatcher (server_port=25,
cache_timeout=60, attempt_delivery=FALSE, force_delivery_attempt=FALSE,
server_name="recipientcheck.example.com"))

www.balasys.hu 243

Class DNSMatcher e

5.7.4. Class DNSMatcher

DNSMatcher retrieves the IP addresses of domain names. This can be used in domain name based policy
decisions, for example to allow encrypted connections only to trusted e-banking sites.

DNSMatcher operates as follows: it resolves the IP addresses stored in the list of domain names using the
specified Domain Name Server, and compares the results to the IP address of the connection (i.e., the IP address
of the server or the client). The matcher returns a true value if the IP addresses resolved from the list of domain
names include the IP address of the connection.

— Example 5.22. DNSMatcher example
—— | The following DNSMatcher class uses the dns . example.com name server to resolve the example2.com and example3. com domain
| w— names.

MatcherPolicy(name="ExampleDomainMatcher", matcher=DNSMatcher(server="dns.example.com",
hosts=("example2.com", "example3.com")))

5.7.4.1. DNSMatcher methods

Method Description
init __(self, hosts, server) Constructor to initialize an instance of the DNSMatcher
class.

Table 5.60. Method summary

Method __init__(self, hosts, server)

This constructor initializes an instance of the DNSMatcher class.

Arguments of __init__

hosts (complex)

Default: n/a

Hostnames to resolve.

server (string)

Default: None

IP address of the DNS server to query. Defaults to the servers set in the resolv.conf file.

5.7.5. Class MatcherPolicy

Matcher policies can be used to find out if a parameter is included in a list, or which elements of a list correspond
to a certain parameter), and influence the behavior of the proxy class based on the results. Matchers can be used
for a wide range of tasks, for example, to determine if the particular IP address or URL that a client is trying
to access is on a black or whitelist, or to verify that a particular e-mail address is valid.

www.balasys.hu 244

Class RegexpFileMatcher e

MatcherPolicy instances are reusable matchers that contain configured instances of the matcher classes (e.g.,
DNSMatcher, RegexpMatcher) available in Zorp. For examples, see the specific matcher classes.

5.7.6. Class RegexpFileMatcher

This class is similar to RegexpMatcher, but stores the regular expressions to match and ignore in files. For
example, this class can be used for URL filtering. The matcher itself stores only the paths and the filenames to
the lists. Zorp automatically monitors the file and reloads it when it is modified. Searches are case-insensitive.

— Example 5.23. RegexpFileMatcher example
| m— |
%’ MatcherPolicy(name="demo_regexpfilematcher",
matcher=RegexpFileMatcher (match_fname="/tmp/match_list.txt", ignore_fname="/tmp/ignore_list.txt"))

5.7.6.1. Attributes of RegexpFileMatcher

ignore_date (unknown)

Default: n/a

Date (in unix timestamp format) when the ignore_file was loaded.

ignore_file (unknown)

Default: n/a

Name of the file storing the patterns to ignore.

match_date (unknown)

Default: n/a

Date (in unix timestamp format) when the match_file was loaded.

match_file (unknown)

Default: n/a

Name of the file storing the patterns for positive matches.

5.7.6.2. RegexpFileMatcher methods

Method Description

init _(self, match fname, ignore fname) Constructor to initialize a RegexpFileMatcher instance.

Table 5.61. Method summary

Method __init__(self, match_fname, ignore_fname)

This constructor initializes an instance of the RegexpFileMatcher class.

www.balasys.hu 245

Class RegexpMatcher e

Arguments of __init__

ignore_fname (filename)

Default: None

Name of the file storing the patterns to ignore.

match_fname (filename)

Default: None

Name of the file storing the patterns for positive matches.

5.7.7. Class RegexpMatcher

A simple regular expression based matcher with a match and an ignore list. Searches are case-insensitive.

— Example 5.24. RegexpMatcher example
—— | The following RegexpMatcher matches only the smtp. example.com string.

MatcherPolicy(name="Smtpdomains", matcher=RegexpMatcher (match_list=("smtp.example.com",),
ignore_list=None))

5.7.7.1. Attributes of RegexpMatcher

ignore (unknown)

Default: n/a

A list of compiled regular expressions defining the strings to be ignored even if match resulted in a positive
match.

match (unknown)

Default: n/a

A list of compiled regular expressions which result in a positive match.

5.7.7.2. RegexpMatcher methods

Method Description

init _(self, match list, ignore list, ignore case) |Constructor to initialize a RegexpMatcher instance.

Table 5.62. Method summary

Method __init__(self, match_list, ignore_list, ighore_case)

This constructor initializes a RegexpMatcher instance by setting the match and ignore attributes to an empty
list.

www.balasys.hu 246

Class SmtpInvalidRecipientMatcher e

Arguments of __init__

ignore_list (filename)
Default: None

The list of regular expressions to ignore.

match_list (filename)
Default: None

The list of regular expressions to match.

5.7.8. Class SmtplnvalidRecipientMatcher

This class encapsulates a VRFY/RCPT based validity checker to transparently verify the existance of E-mail
addresses. Instead of immediately sending the e-mail to the recipient SMTP server, Zorp queuries an independent
SMTP server about the existance of the recipient e-mail address.

Instances of this class can be referred to in the recipient_matcher attribute of the SmtpProxy class. The
SmtpProxy will automatically reject unknown recipients even if the recipient SMTP server would accept them.

— Example 5.25. SmtpInvalidMatcher example

— Python: o
class SmtpRecipientMatcherProxy(SmtpProxy):

recipient_matcher="SmtpCheckrecipient"
def config(self):
super (SmtpRecipientMatcherProxy, self).config()

MatcherPolicy(name="SmtpCheckrecipient", matcher=SmtpInvalidRecipientMatcher (server_port=25,
cache_timeout=60, attempt_delivery=FALSE, force_delivery_attempt=FALSE,
server_name="recipientcheck.example.com"))

5.7.8.1. SmtpinvalidRecipientMatcher methods

Method Description

init__(self, server _name, server port, cache timeout,
attempt_delivery, force delivery attempt,
sender_address, bind name)

Table 5.63. Method summary

Method __init__(self, server_name, server_port, cache_timeout, attempt_delivery, force_delivery_attempt,
sender_address, bind_name)

Arguments of __init__

bind_name (string)
Default: ""

Specifies the hostname to bind to before initiating the connection to the SMTP server.

www.balasys.hu 247

Class WindowsUpdateMatcher e

cache_timeout (integer)
Default: 60

How long will the result of an address verification be retained (in seconds).

force_delivery_attempt (boolean)
Default: FALSE

Force a delivery attempt even if the autodetection code otherwise would use VRFY. Useful if the server always
returns success for VRFY.

sender_address (string)
Default: "<>"

This value will be used as the mail sender for the attempted mail delivery. Mail delivery is attempted if the
force_delivery_attempt is TRUE, or the recipient server does not support the VRFY command.

server_name (string)

Default: n/a

Domain name of the SMTP server that will verify the addresses.

server_port (integer)
Default: 25

Port of the target server.

5.7.9. Class WindowsUpdateMatcher

WindowsUpdateMatcher is actually a DNSMatcher used to retrieve the IP addresses currently associated with
the v5.windowsupdate.microsoft.nsatc.net, v4.windowsupdate.microsoft.nsatc.net, and
update.microsoft.nsatc.net domain names from the specified name server. Windows Update is running
on a distributed server farm, using the DNS round robin method and a short TTL to constantly change the set
of servers currently visible, consequently the IP addresses of the servers are constantly changing.

— Example 5.26. WindowsUpdateMatcher example
—l

5 MatcherPolicy(name="demo_windowsupdatematcher", matcher=wWindowsUpdateMatcher())

www.balasys.hu 248

Module NAT 3

5.7.9.1. WindowsUpdateMatcher methods

Method Description

init _(self, server) Constructor to initialize an instance of the
WindowsUpdateMatcher class.

Table 5.64. Method summary

Method __init__(self, server)

This constructor initializes an instance of the WindowsUpdateMatcher class.

Arguments of __init__

server (string)

Default: None

The IP address of the name server to query.

5.8. Module NAT

Network Address Translation (NAT) is a technology that can be used to change source or destination addresses
in a connection from one IP address to another one. This module defines the classes performing the translation
for IP addresses.

Zorp supports several different NAT methods using different NAT classes, like GeneralNAT or StaticNAT. To
actually perform network address translation in a service, you have to use a NATPolicy instance that contains
a configured NAT class. NAT policies provide a way to re-use NAT instances whithout having to define NAT
mappings for each service individually.

5.8.1. Classes in the NAT module

Class Description

AbstractNAT Class encapsulating the abstract NAT interface.

BalanceNAT Class encapsulating a Line Balancing NAT

GeneralNAT Class encapsulating a general subnet-to-subnet NAT.

HashNAT Class which sets the address from a hash table.

NAT46 Class that performs translation from IPv4 to IPv6
addresses (NAT46)

NAT64 Class that performs translation from IPv6 to IPv4
addresses (NAT64)

NATPolicy Class encapsulating named NAT instances.

OneToOneMultiNAT Class translating addresses between two IP ranges.

OneToOneNAT Class translating addresses between two IP ranges.

www.balasys.hu 249

Class AbstractNAT e

Class Description

RandomNAT Class generating a random IP address.

StaticNAT Class that replaces the source or destination address
with a predefined address.

Table 5.65. Classes of the NAT module

5.8.2. Class AbstractNAT

This class encapsulates an interface for application level network address translation (NAT). This NAT is
different from the NAT used by packet filters: it modifies the outgoing source/destination addresses just before
Zorp connects to the server.

Source and destination NATs can be specified when a Service is created.

The NAT settings are used by the ConnectChainer class just before connecting to the server.

5.8.2.1. AbstractNAT methods

Method Description
init _(self) Constructor to initialize an AbstractNAT instance.

performTranslation(self, session, addrs, nat type) Function that performs the address translation.

Table 5.66. Method summary

Method __init__(self)

This constructor initializes an AbstractNAT instance. Currently it does nothing, but serves as a placeholder for
future extensions.

Method performTranslation(self, session, addrs, nat_type)

This function is called before connecting a session to the destination server. The function returns the address
(a SockAddr instance) to bind to before establishing the connection.

Arguments of performTranslation

addrs (unknown)

Default: n/a

tuple of (source, destination) address, any of them can be none in case of the other translation

nat_type (unknown)

Default: n/a
translation type, either NAT_SNAT or NAT_DNAT

www.balasys.hu 250

Class BalanceNAT e

session (unknown)

Default: n/a

Session which is about to connect the server.

5.8.3. Class BalanceNAT

®

BalanceNAT performs simple line-balancing between multiple lines. It can be used for example to divide traffic
between interfaces (e.g., multiple uplinks to the Internet).

Note
BalanceNAT can be used only as Source NAT.

5.8.3.1. BalanceNAT methods

Method Description

init _(self, balance policy, keep sessions) Constructor to initialize a BalanceNAT instance.

Table 5.67. Method summary

Method __init__(self, balance_policy, keep_sessions)

This constructor initializes a BalanceNAT instance.

Arguments of __init__

balance_policy (string)
Default: n/a

Name of the policy that specifies how to share the traffic between the lines.

keep_sessions (boolean)

Default: n/a

If enabled and there are multiple connections between a client and a destination, then these connections will
use the same line.

5.8.4. Class GeneralNAT

This class encapsulates a general subnet-to-subnet NAT. It requires a list of from, to, translated to
parameters:

m from: the source address of the connection.
B to: the destination address of the connection.

B translated to: the translated address.

www.balasys.hu 251

Class HashNAT e

If the NAT policy is used as SNAT, the translated address is used to translate the source address of the connection;
if the NAT policy is used as DNAT, the translated address is used to translate the destination address of the
connection. The translation occurs according to the first matching rule.

— Example 5.27. GeneralNat example
— | The following example defines a simple GeneralNAT policy that maps connections coming from the 192.168.1.0/24 subnet and
| w— targeting the 192.168.10.0/24 subnet into the 10. 70. 0. 0/24 subnet.

NATPolicy(name="Demo_GeneralNAT", nat=GeneralNAT(mapping=((InetSubnet("192.168.1.0/24"),
InetSubnet("192.168.10.0/24"), InetSubnet("10.70.0.0/24")),)))

If the policy is used as SNAT, the 192.168. 1. 0/24 subnet is translated into the 210. 70. 0. 0/24 subnet and used as the source address
of the connection. If the policy is used as DNAT, the 192.168.10.0/24 subnet is translated into the 10. 70. 0. 0/24 subnet and used
as the target address of the connection.

5.8.4.1. GeneralNAT methods

Method Description

init__(self, mapping) Constructor to initialize a General NAT instance.

Table 5.68. Method summary

Method __init__(self, mapping)

This constructor initializes a GeneralNAT instance.

Arguments of __init__

mapping (complex)

Default: n/a

List of tuples of InetSubnets in (source domain, destination domain, mapped domain) format.

5.8.5. Class HashNAT

HashNAT statically maps an IP address to another using a hash table. The table is indexed by the source IP
address, and the value is the translated IP address. Both IP addresses are stored in string format.

5.8.5.1. HashNAT methods

Method Description

init__(self, ip_hash, default reject) Constructor to initialize a HashNAT instance.

Table 5.69. Method summary

Method __init__(self, ip_hash, default_reject)

This constructor initializes a HashINAT instance.

www.balasys.hu 252

Class NAT46 3

Arguments of __init__

default_reject (boolean)
Default: TRUE

Enable this parameter to reject all connections outside the specific source range.

ip_hash (complex)

Default: n/a

The hash storing the IP address.

5.8.6. Class NAT46

NAT46 embeds and IPv4 address into a specific portion of the IPv6 address according to the NAT46 specification
as described in RFC6052 (http://tools.ietf.org/html/rfc6052#section-2.2).

5.8.6.1. NAT46 methods

Method Description

init__(self, prefix, prefix_mask, suffix) Constructor to initialize a NAT46 instance.

Table 5.70. Method summary

Method __init__(self, prefix, prefix_mask, suffix)

This constructor initializes a NAT46 instance.

Arguments of __init__

prefix (string)
Default: "64:ff9b::"

This parameter specifies the common leading part of the IPv6 address that the IPv4 address should map into.
Bits that exceed the mask will be overwritten by the mapping.

prefix_mask (integer)
Default: 96

This parameter specifies the position to embed the IPv4 address to and must be one of 32, 40, 48, 56, 64, or
96.

suffix (string)
Default: "::"

This parameter specifies the common trailing part of the IPv6 address that the IPv4 address should map into.
The length of the suffix must not exceed the empty bit count determined by the configured prefix mask.

www.balasys.hu 253

Class NAT64 3

5.8.7. Class NAT64

NAT64 maps specific bits of the IPv6 address to IPv4 addresses according to the NAT64 specification as
described in RFC6052 (http://tools.ietf.org/html/rfc6052#section-2.2).

5.8.7.1. NAT64 methods

Method Description

init _(self, prefix mask) Constructor to initialize a NAT64 instance.

Table 5.71. Method summary

Method __init__(self, prefix_mask)

This constructor initializes a NAT64 instance.

Arguments of __init__

prefix_mask (integer)
Default: 96

This parameter specifies the length of the IPv6 address to consider and must be one of 32, 40, 48, 56, 64, or
96.

5.8.8. Class NATPolicy

This class encapsulates a name and an associated NAT instance. NAT policies provide a way to re-use NAT
instances whithout having to define NAT mappings for each service individually.

— Example 5.28. Using Natpolicies
—— | The following example defines a simple NAT policy, and uses this policy for SNAT in a service.

NATPolicy(name="demo_natpolicy", nat=GeneralNAT(mapping=((InetSubnet(addr="10.0.1.0/24"),
InetSubnet(addr="192.168.1.0/24")),)))

Service(name="office_http_inter", proxy_class=HttpProxy, snat_policy="demo_natpolicy")

5.8.8.1. NATPolicy methods

Method Description

init _(self, name, nat, cacheable) Constructor to initialize a NAT policy.

Table 5.72. Method summary

Method __init__(self, name, nat, cacheable)

This contructor initializes a NAT policy.

www.balasys.hu 254

Class OneToOneMultiNAT 3

Arguments of __init__

cacheable (boolean)
Default: TRUE

Enable this parameter to cache the NAT decisions.

name (string)

Default: n/a

Name identifying the NAT policy.

nat (class)

Default: n/a

NAT object which performs address translation.

5.8.9. Class OneToOneMultiNAT

®

This class is similar to OneToOneNAT as it 1:1 address translation between the source and destination subnets.
The difference is that the OneToOneMultiNAT class supports multiple mappings by using a list of mapping
pairs.

Note
This class is obsolete, use GeneralNAT instead.

If the source address is outside the given source address range, a DACException is raised. The source and
destination subnets must have the same size.

5.8.9.1. OneToOneMultiNAT methods

Method Description
init _(self, mapping, default reject) Constructor to initialize a OneToOneMultiNAT
instance.

Table 5.73. Method summary

Method __init__(self, mapping, default_reject)

This constructor initializes an instance of the OneToOneMultiNAT class. Arguments must be Subnet instances
specifying two non-overlapping IP subnets with the same size.

Arguments of __init__

default_reject (boolean)
Default: TRUE

www.balasys.hu 255

Class OneToOneNAT e

default_reject (boolean)

Enable this parameter to reject all connections outside the specific source range.

mapping (complex)

Default: n/a

List of Subnet pairs in the from, to format.

5.8.10. Class OneToOneNAT

®

This class performs 1:1 address translation between the source and destination subnets. If the source address
is outside the given source address range, a DACException is raised. The source and destination subnets must
have the same size.

Note
This class is obsolete, use GeneralNAT instead.

Tip
Use OneToOneNAT to redirect a a block of IP addresses to another block, for example, when the webservers located in the DMZ have
dedicated IP aliases on the firewall.

5.8.10.1. OneToOneNAT methods

Method Description

init _(self, from domain, to domain, default reject)|Constructor to initialize a OneToOneNAT instance.

Table 5.74. Method summary

Method __init__(self, from_domain, to_domain, default_reject)

This constructor initializes a OneToOneNAT instance. Arguments must be Subnet instances specifying two
non-overlapping IP subnets with the same size.

Arguments of __init__

default_reject (boolean)
Default: TRUE

Enable this parameter to reject all connections outside the specific source range.

from_domain (class)

Default: n/a

The source subnet (Subnet instance).

www.balasys.hu 256

Class RandomNAT e

to_domain (class)

Default: n/a

The destination subnet (Subnet instance).

5.8.11. Class RandomNAT

This class randomly selects an address from a list of IP addresses. This can be used for load-balancing several
lines by binding each session to a different interface.

5.8.11.1. RandomNAT methods

Method Description

init _(self, addresses) Constructor to initialize a RandomNAT instance.

Table 5.75. Method summary

Method __init__ (self, addresses)

This constructor initializes a RandomNAT instance.

Arguments of __init__

addresses (complex)

Default: n/a

List of the available interfaces. Each item of the list must be am instance of the SockAddr (or a derived) class.

5.8.12. Class StaticNAT

This class assigns a predefined value to the address of the connection.

5.8.12.1. StaticNAT methods

Method Description

init_ (self, addr) Constructor to initialize a StaticNAT instance.

Table 5.76. Method summary

Method __init__(self, addr)

This constructor initializes a StaticNAT instance.

Arguments of __init__

addr (sockaddr)
Default: n/a

www.balasys.hu 257

Module Notification e

addr (sockaddr)

The address that replaces all addresses.

5.9. Module Notification

5.9.1. Classes in the Notification module

Class Description

AbstractNotificationMethod Class encapsulating the abstract notification method.

EmailNotificationMethod Class sending out notifications in e-mail.

NotificationPolicy Class encapsulating a NotificationPolicy which
describes how to send out notifications.

Table 5.77. Classes of the Notification module

5.9.2. Class AbstractNotificationMethod
This abstract class encapsulates a notification that is performed when a certain event occurs.

Specialized classes can be derived from AbstractNotification, such as the EmailNotificationMethod class.

5.9.3. Class EmailNotificationMethod

This class encapsulates a notification handler that sends an e-mail with the given mail properties.

5.9.3.1. Attributes of EmailNotificationMethod

recipient (string)

Default: n/a

The e-mail address of the recipient.

5.9.3.2. EmailNotificationMethod methods

Method Description

init__(self, recipient) Constructor to initialize an EmailNotification instance.

Table 5.78. Method summary

Method __init__(self, recipient)

This constructor initializes an EmailNotification instance and sets the attributes of the outgoing e-mail.

www.balasys.hu 258

Class NotificationPolicy e

Arguments of __init__

recipient (string)

Default: n/a

The e-mail address of the recipient.

5.9.4. Class NotificationPolicy

5.10. Module Proxy

This module encapsulates the ZorpProxy component implemented by the Zorp core. The Proxy module provides
a common framework for protocol-specific proxies, implementing the functions that are used by all proxies.
Protocol-specific proxy modules are derived from the Proxy module, and are described in Chapter 4,
Proxies (p. 35).

5.10.1. Functions in module Proxy

Function Description
proxyLog Function to send a proxy-specific message to the system
log.

Table 5.79. Function summary

5.10.2. Classes in the Proxy module

Class Description
Proxy Class encapsulating the abstract Zorp proxy.

Table 5.80. Classes of the Proxy module

5.10.3. Functions

5.10.3.1. Function proxyLog(self, type, level, msg, args)

This function sends a message into the system log. All messages start with the session_id that uniquely
identifies the connection.

Arguments of proxyLog

level (integer)

Default: n/a

Verbosity level of the log message.

msg (string)

Default: n/a

www.balasys.hu 259

Class Proxy e

msg (string)

The text of the log message.

type (string)
Default: n/a

The class of the log message.

5.10.4. Class Proxy

This class serves as the abstact base class for all proxies implemented in Zorp. When an instance of the Proxy
class is created, it loads and starts a protocol-specific proxy. Proxies operate in their own threads, so this
constructor returns immediately.

5.10.4.1. Attributes of Proxy

encryption_policy (class)

Default: None

Name of the Encryption policy instance used to encrypt the sessions and verify the certificates used. For details,
see Section 5.5, Module Encryption (p. 199).

language (string)

Default: "en"

Determines the language used for user-visible error messages. Supported languages: en - English; de - German;
hu - Hungarian.

5.10.4.2. Proxy methods

Method Description

closedByAbort(self) Function called by the proxy core when an abort has
been occured.

config(sel Function called by the proxy core to initialize the proxy
instance.

connectServer(self) Function called by the proxy instance to establish the

server-side connection.

getCredentials(self. method, username, domain, target, |Function called when proxy requires credentials for

port) server side authentication.
invalidPolicyCall(self) Invalid policy function called.
setServerAddress(self, host, port) Function called by the proxy instance to set the address

of the destination server.

www.balasys.hu 260

Class Proxy e

Method Description
userAuthenticated(se